54,892 research outputs found

    Design and development of auxiliary components for a new two-stroke, stratified-charge, lean-burn gasoline engine

    Get PDF
    A unique stepped-piston engine was developed by a group of research engineers at Universiti Teknologi Malaysia (UTM), from 2003 to 2005. The development work undertaken by them engulfs design, prototyping and evaluation over a predetermined period of time which was iterative and challenging in nature. The main objective of the program is to demonstrate local R&D capabilities on small engine work that is able to produce mobile powerhouse of comparable output, having low-fuel consumption and acceptable emission than its crankcase counterpart of similar displacement. A two-stroke engine work was selected as it posses a number of technological challenges, increase in its thermal efficiency, which upon successful undertakings will be useful in assisting the group in future powertrain undertakings in UTM. In its carbureted version, the single-cylinder aircooled engine incorporates a three-port transfer system and a dedicated crankcase breather. These features will enable the prototype to have high induction efficiency and to behave very much a two-stroke engine but equipped with a four-stroke crankcase lubrication system. After a series of analytical work the engine was subjected to a series of laboratory trials. It was also tested on a small watercraft platform with promising indication of its flexibility of use as a prime mover in mobile platform. In an effort to further enhance its technology features, the researchers have also embarked on the development of an add-on auxiliary system. The system comprises of an engine control unit (ECU), a directinjector unit, a dedicated lubricant dispenser unit and an embedded common rail fuel unit. This support system was incorporated onto the engine to demonstrate the finer points of environmental-friendly and fuel economy features. The outcome of this complete package is described in the report, covering the methodology and the final characteristics of the mobile power plant

    Systematic formulation of non-functional characteristics of software

    Get PDF
    This paper presents NoFun, a notation aimed at dealing with non-functional aspects of software systems at the product level in the component programming framework. NoFun can be used to define hierarchies of non-functional attributes, which can be bound to individual software components, libraries of components or (sets of) software systems. Non-functional attributes can be defined in several ways, being possible to choose a particular definition in a concrete context. Also, NoFun allows to state the values of the attributes in component implementations, and to formulate non-functional requirements over component implementations. The notation is complemented with an algorithm able to select the best implementation of components (with respect to their non-functional characteristics) in their context of use.Peer ReviewedPostprint (published version

    Supporting software maintenance with non-functional information

    Get PDF
    The paper highlights the role of non functional information (about efficiency, reliability and other software attributes) of software components in software maintenance, focusing in the component programming framework. Non functional information is encapsulated in modules bound to both definitions and implementations of software components and it is written as expressions in a classical programming language. It is shown with an example how this notation supports software maintenance, with the help of an algorithm which is able to select the best implementation of a software component in its context of use, meaning byPeer ReviewedPostprint (published version

    Software process modelling as relationships between tasks

    Get PDF
    Systematic formulation of software process models is currently a challenging problem in software engineering. We present an approach to define models covering the phases of specification, design, implementation and testing of software systems in the component programming framework, taking into account non-functional aspects of software (efficiency, etc.), automatic reusability of implementations in systems and also prototyping techniques involving both specifications and implementations. Our proposal relies on the identification of a catalogue of tasks that appear during these phases which satisfy some relationships concerning their order of execution. A software process model can be defined as the addition of more relationships over these tasks using a simple, modular process language. We have developed also a formal definition of correctness of a software development with respect to a software process model, based on the formulation of models as graphs.Peer ReviewedPostprint (published version

    50 years of isolation

    Get PDF
    The traditional means for isolating applications from each other is via the use of operating system provided “process” abstraction facilities. However, as applications now consist of multiple fine-grained components, the traditional process abstraction model is proving to be insufficient in ensuring this isolation. Statistics indicate that a high percentage of software failure occurs due to propagation of component failures. These observations are further bolstered by the attempts by modern Internet browser application developers, for example, to adopt multi-process architectures in order to increase robustness. Therefore, a fresh look at the available options for isolating program components is necessary and this paper provides an overview of previous and current research on the area

    Agent fabrication and its implementation for agent-based electronic commerce

    Get PDF
    In the last decade, agent-based e-commerce has emerged as a potential role for the next generation of e-commerce. How to create agents for e-commerce applications has become a serious consideration in this field. This paper proposes a new scheme named agent fabrication and elaborates its implementation in multi-agent systems based on the SAFER (Secure Agent Fabrication, Evolution & Roaming) architecture. First, a conceptual structure is proposed for software agents carrying out e-commerce activities. Furthermore, agent module suitcase is defined to facilitate agent fabrication. With these definitions and facilities in the SAFER architecture, the formalities of agent fabrication are elaborated. In order to enhance the security of agent-based e-commerce, an infrastructure of agent authorization and authentication is integrated in agent fabrication. Our implementation and prototype applications show that the proposed agent fabrication scheme brings forth a potential solution for creating agents in agent-based e-commerce applications
    corecore