
Supporting Software Maintenance with
Non-Functional Information

Xavier Franch, Pere Botella
franch@lsi.upc.es, botella@lsi.upc.es

Dept. Llenguatges i Sistemes InformAtics (LSI)
Universitat Politkcnica de Catalunya (UPC)

Pau Gargallo 5,08028 Barcelona, Catalunya (Spain)
FAX: 34-3-40 170 14. Phone: 34-3-40 16965

Abstract
This paper highlights the role of non-functional

information (about efficiency, reliability and other
software attributes) of software components in software
maintenance, focusing in the component programming
framework. Non-functional information is encapsulated in
modules bound to both definitions and implementations of
sojiiare components and it is written as expressions in a
classical programming language. I t is shown with an
example how this notation supports sofnvare maintenance,
with the help of an algorithm which is able to select the
best implementation of a software component in its
context of use, meaning by "best" the one that better fits
to its non-functional requirements. As a conclusion, we
may say that our proposal will probably reduce
maintenance costs in case of software modifications due to
changes in the non-functional environment of the system
and also to changes in the NF-behaviour of software
components, including migration to other platforms.

1. Introduction

Software systems may be seen as the composition of
many software components which work together to
accomplish their goals. They are characterised both by
their functionality (i.e., what the system does) and by their
non-functionality (i.e.9 how the system behave with
respect to some observable attributes, like performance,
reusability, reliability, etc.). Both aspects are relevant to
software development; however, non-functional issues
have received little attention compared to functional ones
and, in particular, there exist just a few proposals of
formally-defined notations to express non-functional
information of software systems.

The absence of explicit statement of non-functional
issues have a negative impact on many aspects of the
software process, including software maintenance. There
are many common scenarios which would benefit from

this kind of non-functional information appearing in
software systems:

The environment of the system changes with respect
to its expected non-functional behaviour. We mention
here: variations on response time requirements,
moving from the existing platform to another one,
etc.
A software component in the system is modified in a
way such that its non-functional characteristics vary.
This could happen, for instance, when developing the
system as a sequence of prototypes: new versions of
software components may improve execution time, or
reliability through exhaustive testing, etc.
A new version of a software component is built with
a different non-functional behaviour compared to other
existing versions. A typical situation would be a
software factory producing a new version of a reusable
component.

Note that all of these situations require studying the
non-functional behaviour of (part of) the software system
and eventually they also require the ability to compare two
functional-equivalent software components with respect to
their non-functional behaviour and/or to test if a software
component satisfies some non-functional constraints. So,
the existence of non-functional information in the software
system itself would improve the achievement of these
tasks reducing thus the high cost of maintaining and
evolving existing software.

In this paper, we present a notation (formally defined in
[7]) to support the statement of non-functional
information and we study its feasibility in software
maintenance through a small (for the sake of brevity)
example. Up to now, our research has addressed to the
component programming framework as defined in [8, 121,
which is characterised by the existence of components
representing abstract data types, with: 1) a definition
stating the type's name and its operations; 2) many
implementations, most of them using classical data
structures like graphs, lists, hash tables and trees, whose
results concerning non-functionality are well-known.

0-8186-7892-5/97 $10.00 0 1997 IEEE
10

Non-functional information of software components is
actually encapsulated in ad hoc modules bound to them and
it is classified into three kinds: declaration of
non-functional properties, statement of non-functional
behaviour and statement non-functional requirements. The
notation we propose has been designed with the goal of
simplicity in mind (to improve software development and
understanding) and it is complete enough to allow
automatic selection of the "best" version of a software
component, meaning by "best" the one that better fits to
the non-functional requirements of the component in the
system. This automatic selection has a positive impact on
the whole software development process and, in particular,
on software maintenance. Also, it should be said that our
proposal does not depend on the underlying programming
language used to code the system, provided that
component definitions and implementations can be defined
in independent modules (as it is the case, for instance, in
the 0.-0. family).

shortest-path (network, int, int)

simplify-network (network) returns network
ret urns lis t-of-pair-of-in t

end module

2. Stating Non-Functional Information
on Software

We classify non-functional information into three

Non-functional property (short, NF-property). Any
attribute of software which serves as a mean to
describe it and possibly to evaluate it. For instance,
time and space efficiency, reusability degree and
reliability. Up to now, we have not defined any
predefined catalogue of NF-properties, but the
mechanisms to define them.
In the general case, we study a given software
component with respect to a particular set of
NF-properties; we say then that the component is
characterised by this set.
Non-funct ional b e h a v i o u r of a component
implementation (short, NF-behaviour). Evaluation of
the set of NF-properties which characterise this
component.
Non-funct ional requirement on a component
implementation (short, N F - r e q u i r e m e n t) . Any
constraint on its NF-behaviour referred to one or more
NF-properties from the set characterising the
component.

different kinds:

2.1. Declaration of NF-properties

NF-properties are declared in NF-declaration modules,
bound to software component definitions. They may be
declared directly or else they may be imported from
p r o p e r t y modules , which define sets of related
NF-properties that can be used in different systems and
which allow users to define their own catalogues of
NF-properties.

NF-properties may be of four different types, depending

Boolean. NF-properties that simply hold or fail, as
full portability.
Numerical. NF-properties which can be measured
somehow, as reusability degree.
By enumeration. NF-properties which can be classified
into some categories, as user interface (icons,
command language, etc.).
Efficiency. To establish the execution time and space
of exported operations and types.
Efficiency properties need not to be explicitly declared
(they come into existence from the corresponding
software component definition); instead, it is
necessary to provide a set of measure units to
modelise input data sizes that can have influence on
efficiency.

In the component programming framework, efficiency
can be measured with a class of functions using the
big-Oh asymptotical notation [2], used to establish
efficiency of programs for a great amount of input data and
defined as:

on the domain of their values:

00 = (g: @ + W / ~ c O E A?, 3noE W :

N+ stands for positive integers and f is a function
characterising the efficiency of a type or operation. The
definition has been given for a single measure unit; it can
be extended for an arbitrary number of them.

We present next an example. The software component
NETWORK (fig. 1) represents geographical distributions
of items with a connection cost (money, distance, time,
etc.); both items and connection costs are represented by
positive integer numbers. There are operations for adding
and removing items and links, to obtain the shortest path
connecting two items and to simplify the network in such
a way that all the items are connected and the global cost
is as low as possible (i.e., to compute a minimum
spanning tree for the network). Lists of items include
connection costs; so, a component defining lists of pairs
of integers is imported.

V n 2 no: g (n) I cof(n)}

11

Concerning non-functionality, we have chosen as
NF-properties: three boolean ones to tell if the component
is fully portable, if it has been coded by an external
programmer and if the implementation uses the dynamic
storage mechanism of the language; a property by
enumeration to determine which kind of data structure is
used in the type; and two numerical properties to state the
reliability of the component and the number of links of

the representation. We have chosen to define some of them
in a separate property module, so that they can be used in
many other different systems. Note the coexistence of very
abstract NF-properties (e.g., reliability) with more
concrete ones (e.g., number of links). Concerning
efficiency, we have introduced two measure units, one for
the number of items and the other for the number of
connections.

declaration module for NETWORK property module IMPL-ISSUES - - - -
imports IMPL-ISSUES properties
properties boolean dynamic-storage

boolean fully-portable, external-programmer numerical nb-links
numerical confidence-correctness [0..5] enumerated data-structure

(* 0 -> 5: increasing degree of testing *) = (hashing, avl, heap, chained, others, none)
measure units n-items, n-conns

end module end module

Fig. 2: NF-properties for the NETWORK software component.

2.2. Statement of NF-behaviour

Each software component implementation V for a given
software component definition D should state its
NF-behaviour with respect to D's NF-properties in a
NF-behaviour module, bound to V. To be more precise,
each implementation should define: which logical
NF-properties hold, the value for every numerical and
enumerated NF-property, and the time and space costs for
the exported types and procedures.

So, the cost for an implementation IMP-NET1 for the
definition NETWORK using adjacency lists, an improved
Dijkstra algorithm (with heaps) to find out the shortest
path and the Kruskal algorithm for the minimum spanning
tree computation may look as in fig. 3. Note the use of
arithmetic operators in stating efficiency, interpreted in the
big-Oh notation as explained in [2].

behaviour module for IMP-NET-1
behaviour

fully-portable; confidence-correctness = 3
dynamic-storage; nb-links = 1

space(network) = njtems + n-conns
time(create) = n-items
time(add-item, rem-item) = n-items
time(add-link, rem-link) = n-items
time(shortest-path) =

(n-i tems+n-conns)*log(n-items)
time(simp1ify-network) = n-conns*log(n-items)
space(shortest-path, simplify-network) =

n-items + n-conns

data-structure = hashing

end module

Fig. 3: Behaviour for an implementation of NETWORK.

By default, auxiliary space for procedures is 0(1) and
logical properties do not hold.

2.3. Statement of NF-requirements

NF-requirements state conditions on implementations
of software components. Syntactically, they are boolean
expressions enriched with some ad hoc constructs for
non-functionality (see examples below). Their purpose is
to represent the environment where implementations are to
be put in. They may appear both in NF-declaration and
NF-behaviour modules and they may involve again
measure units introduced in NF-declaration modules.

NF-requirements in NF-declaration modules state the
conditions that an implementation must fulfil in order to
be useful in the software system. They affect both the
development of new implementations and the reuse of
existing ones. We modify in fig. 4 the declaration module
for NETWORK including some relationships between
NF-properties and measure units.

declaration module for NETWORK
imports IMPL-ISSUES
properties

boolean fully-portable, external-programmer
numerical confidence-correctness [0..5]

measure units n-items, n-conns
re lat ions

n-conns c= pot(n-items, 2)
dynamic-storage => confidence-correctness < 5
(not fully-portable and external-programmer) =>

confidence-correctness = 0
end module

Fig. 4: The NETWORK software component definition
including NF-requirements.

12

NF-requirements in NF-behaviour modules state the
conditions that an implementation must fulfil in order to
be used in another implementation. NF-requirements
should appear for every software component imported by
an implementation and they should be complete enough to
select a single implementation for each of these
components; also, a concrete implementation for a
software component may be selected directly by its name.

In NF-behaviour modules, it is also possible to state a
list of NF-requirements over a definition, which are
applied in order of appearance; this corresponds with the
usual case of having requirements with different degree of
importance. NF-requirements in the list are applied until
one of the following three conditions holds:

A single implementation is selected.
Applying the next NF-requirement would yield an

All the NF-requirements have been applied
In the last two cases, more than one implementation

may satisfy a given list and then requirements would have
to be reviewed (in fact, the algorithm may be tuned so that
a single implementation is selected from the set of
candidates satisfying the list of NF-requirements).

For instance, a NF-requirement over lists in the
IMP-NET-I implementation could be: "time efficiency of
individual operations and their auxiliary space must be
negligible (i.e., O(1)); next, list traversal should be as fast
as possible; last, and in order of importance,
implementation must be reliable, fully portable and with
the fewest links per cell". These requirements can be
expressed as in fig. 5.

empty set of implementations.

~~

behaviour module for IMP-NET-1
behaviour ...
requirements

on LIST-OF-PAIR-OF-INTEGERS:
time(put, delete, get) = 1 and

min(time(traversa1));
max(confidence-correctness);
fully-portable; min(nb-links)

space(ops(L1ST-OF-PAIR-OFINTEGERS)) = 1 ;

end module

Fig. 5: NF-requirements over lists in an implementation
of NETWORK.

3. Support to Software Maintenance

In this section, we study how the notation presented
here (with the help of the implementation selection
algorithm described in [7]) supports software maintenance.
First of all, we introduce two more implementations for
NETWORK, IMP-NET-2 and IMP-NET-3, with the
following NF-behaviour (we just show the properties used
in the example).

behaviour module for IMP-NET-2
behaviour

fully-portable; external-programmer
confidence-correctness = 5
time(add-item, rem-item) = 1
time(add-link, rem-link) = I
time(shortest-path) = pot(n-items, 2)
time(simp1ify-network) = pot(njtems, 2)

requirements ... the same as IMP-NET-1
end module
behaviour module for IMP-NET-3

behaviour
not fully-portable; not external-programmer
confidence-correctness = 3
time(add-item, remjtem) = n-items
time(add-link, rem-link) = n-items
time(shortest-path) = pot(n-items, 2)
time(simp1ify-network) = pot(n-items, 2)

requirements ... the same as IMP-NET-1
end module

Fig. 6: NF-behaviour for two more implementations of
NETWORK.

Next, we define the initial context for the NETWORK
component. Let the context be a software system for a
national railway network which main goal is to find out
shortest paths between pairs of train stations. We represent
the system with a software component definition
R A I L W A Y , implemented with a module
RAILWA Y-IMPL. According to the railway environment,
we state two kind of NF-requirements:

In R A I L W A Y , we define n - c o n n s to be
asymptotically equal to n-items, as it is the case in a
usual railway network. Note that this assignment
satisfies the relation n-conns <= pot(n-items, 2)
stated in NETWORK, as it is necessary to happen.

declaration module for RAILWAY

relations n-conns = n-items

Fig. 7: Adding NF-information in RAILWAY.

In RAILWAY-IMPL, we constrain NETWORK in
the following way. First, we require an
implementation with a good response time for
shortest-path; second, in case of more than one
implementation satisfying this main goal, we require
them to be confident enough and to be made by a non
external programmer; last, we require the
implementation to be fully portable.

13

behaviour module for RAILWAY-IMPL
behaviour ...
requirements on NETWORK:

time(shortest-path) <= pot(njtems, 2);
confidence-correctness >= 3 and not

full y-portable
external-programmer;

end module

Fig. 8: Adding NF-requirements over NETWORK in
an implementation of RAILWAY.

The evaluation of these requirements on the existing

time(shortest-path) e= pot(njtems, 2): satisfied by all
implementations (even by IMPL-NET1 , because
of the equality It-conns = n-items)

confidence-~orrectness>=3 and not extemalqrogrammer:
satisfied by IMPL-NET1 and IMPL-NET3; so,
IMPL-NET2 is discarded

fully-portable: satisfied by IMPL-NET1 and not by
IMPL-NET3

The implementation selection algorithm chooses then
IMPL-NET1 to be used in the software system for the
railway network.

implementations yields to the following result:

3.1. Changes on the Current Platform

Let's suppose that, after a few crashes in the railway
software system, the railway company decides to give
preference to software reliability over other considerations.
This decision is easily taken into account just by changing
the NF-behaviour module for RAILWAY-IMPL (see fig.
9).

behaviour module for RAILWAY-IMPL
behaviour ...
requirements on NETWORK:

max(confidence-correctness);
time(shortest-path) <= pot(n-items, 2);
not external-programmer; fully-portable

end module

Fig. 9: Changing NF-requirements over NETWORK.

Then, the implementation selection algorithm should be
executed again, selecting IMPL-NET-2 as the new
implementation for NETWORK.

3.2. Moving to a new Platform

Now, let's suppose that we reuse the N E T W O R K
component in a software system for a wide area computer
network with a nearly fully-connected topological
configuration. In this network, nodes may temporally
disconnect when their local work load is too high; also,

connection costs may vary depending on some factors. So,
operations for adding and removing nodes and links are
executed very often and they must be optimised. Every
time the network configuration changes, we require to
execute the minimum spanning tree algorithm to have all
the nodes connected with the minimum global cost; so,
this operation must be optimised too.

The change of platform with these non-functional
information is represented with the modules shown in fig.
10.

relations n-conns = pot(n-items, 2)
(* nearly fully-connected network *)

end module

behaviour module for COMPUTER-NETWORK-IMPL
behaviour ...
requirements on NETWORK:

time(add-item, rem-item, add-link, rem-link) = 1
and min(time(simp1ify-network))

end module

Fig. IO: NF-information appearing in a new platform
using NETWORK.

This NF-information leads to IMPL-NET-2 as the
implementation automatically selected for NETWORK.

3.3. Renovating Software Components

Once the software system is operative, some variations
may occur in its non-functional behaviour as time goes
by. Some of them may result from improvements of the
components; for instance, when a component has been
more carefully tested or when its efficiency is improved
somehow; modifications made when the component
becomes an aging piece of software also fall in this
category. Other changes may arise from the environment
evolution, as it happens if the component's programmer
moves from the software company. Anyway, such a
change requires just modifying the non-functional modules
bound to the component and then re-running the
implementation selection algorithm.

3.4. Creating new Implementations for Software
Components

Other situation we think our approach is well-suited to
deal with is the creation of new versions for software
components. Note that this case is similar to the former
one: it is necessary to create the NF-modules for them and
then re-running the implementation selection algorithm in
all the software systems where the component is used,
because it may be the case that this new implementation

14

fits in some contexts better than the previously chosen
ones.

4. Conclusions

A notation for stating non-functional issues of software
systems in the component programming framework has
been presented. We have shown its usefulness in
supporting software maintenance due to changes in
non-functional characteristics of the environment or the
software itself. The notation is complete enough to
express NF-properties of software components in a way
such that the best implementations for them in every
context where they appear are automatically selected
depending on their NF-behaviour; contexts are represented
by means of NF-requirements (a list of boolean
expressions). NF properties may be boolean, numerical,
by enumeration of values or concerning efficiency.
Implementations should state both their NF-behaviour
with respect to their corresponding properties, and also
their NF-requirements on every used component.
Our proposal provides many interesting features. First,

programmers just establish NF-requirements and
NF-behaviour of software components; implementations
are automatically selected avoiding then a bad design (with
respect to selection of implementations). Second, software
is robust with respect to changes on NF-requirements and
construction of new implementations, requiring just
re-running the implementation selection algorithm. Last,
information about non-functionality is a constituent part
of software, improving thus its understanding and making
easier the communication between designers,
implementers and users of components; all of these
features support software maintenance, especially the
second one. On the other hand, there seems to be no
drawbacks in our approach, because the NF-language is
conceptually simple, with a syntax resembling classical
expressions and it is not bound to any particular
programming language provided that definitions and
implementations are kept separated.

Some aspects of our work have not been explained here
because they are out of scope of the paper. For instance,
neither the working procedure of the automatic selection
algorithm (for which there is a prototype) nor the problem
of interaction of data implemented in different ways have
been studied. They play an important part in our system
but they do not directly affect software maintenance. For
details, see [6, 71.

Our approach has currently some limitations. There is
no way to verify that a software component
implementation really exhibits the stated NF-behaviour. In
fact, we are interested not in verifying but in extracting
NF-behaviour from implementations whenever possible.

interpretation techniques to compute automatically
efficiency of operations and types, as done in [11. A related
problem is to choose which metrics do we use to measure

For instance, we are studying the application of abstract

the most usual NF-properties others than efficiency. Also,
we are starting to adapt our proposal from component
programming to the information systems field, which
demands some changes on the kind of NF-information
managed (for instance, asymptotic efficiency has to be
replaced for time measured in fractions of seconds),
although the main ideas are the same. Last, we want to
complement our product-oriented approach by a process-
oriented one, yielding thus to a software process in which
non-functionality plays a crucial role (as done in [1 13).

As far as we know, there exists no proposal for a
language with the constructs presented in this report,
although there have been many claims in this sense [S,
13, 171. There are many non-formalised proposals [9, IO]
which results are subsumed in our work. Also, [I61
presents an interesting case study to deal with boolean
NF-properties into an 0.-0. framework; no other kind of
properties are dealt in her approach. On the other hand, [3]
and [15] offer the possibility to select implementations
from some efficiency information appearing in programs;
however, the constructs they offer are not as powerful as
ours. [141 makes also a proposal oriented to software reuse
but limited to efficiency again.

The approach closest to ours is [4, 51, which provides a
framework to evaluate the design of software systems, the
measure criterion being the adequacy of implementations
with respect to some non-functional requirements stated
over a set of attributes. The requirements are stated as an
array of weights over the properties and every attribute has
a weight too; then, the evaluation of implementations
result in a number and comparison is possible. The
proposal is not integrated in the software itself and then
the selection of implementations is not automatic.

References

[I] Y. Ait-Ameur. "Formal Program Development by
Transformation and Non Functional Properties Evaluation".
In Proceedings of the 5th SEKE International Conference,
IEEE, 1993.

[2] G. Brassard. "Crusade for a Better Notation". SIGACT
News, 16(4), 1985.

[3] D. Cohen, N. Goldman, K. Narayanaswamy. "Adding
Performance Information to ADT Interfaces". In Proceedings
of the IDL Workshop, ACM SIGPLAN Notices 29(8), 1994.

[4] S. CBrdenas, M.V. Zelkowitz. "Evaluation Criteria for
Functional Specifications". In Proceedings of 12th ICSE,
Nice (France), 1990.

[5] S. CBrdenas, M.V. Zelkowitz. "A Management Tool for
Evaluation of Software Designs". IEEE Transactions on
Software Engineering, 17(9), 1991.

[6] X. Franch. "Combining Different Implementations of
Types in a Program". In Proceedings Joint of Modular
Languages Conference, Ulm (Germany), 1994.

[7] X. Franch. "Automatic Implementation Selection for
Software Components using a Multiparadigm Language to
state Non-Functional Issues". Ph.D. Thesis, Universitat
Polithcnica de Catalunya, (Spain), 1996.

15

[8] M. Jazayeri. "Component Programming - a Fresh Look
at Software Components". In Proceedings of 5th ESEC,
Barcelona (Catalunya, Spain), 1995.

[9] B. Liskov, J. Guttag. Abstraction and Specification in
Program Development. The MIT Press, 1986.

[lo] Y. Matsumoto. "Some Experiences in Promoting
Reusable Software". IEEE Transactions on Software
Engineering, 10(5), 1984.

[1 1 1 J. Mylopoulos, L. Chung, B. Nixon. "Representing
and Using Nonfunctional Requirements: a Process-Oriented
Approach". IEEE Trans. on Software Engineering, 18(6),
1992.

[121 "Special Feature: Component-Based Software Using
RESOLVE". ACM Software Engineering Notes, 19(4), 1994.

[13] M. Shaw. "Abstraction Techniques in Modern
Programming Languages". IEEE Software, 1 (lo), 1984.

[14] M. Sitaraman. "On Tight Performance Specification of
Object-Oriented Components". In Proceedings of the 3rd
International Conference on Soflare Reuse, IEEE, 1994.

[15] P.C-Y. Sheu, S. Yoo. "A Knowledge-Based Program
Transformation System". In Proceedings 6th CAiSE, Utrecht
(Holanda), LNCS 811, 1994.

[16] J. Wing. "Specifying Avalon Objects in Larch". In
Proceedings of TAPSOFT'89, Vol. 2, Barcelona (Catalunya,
Spain), LNCS 352, 1989.

[17] J. Wing. "A Specifier's Introduction to Formal
Methods". IEEE Computer 23(9), 1990.

16

