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Abstract 

The traditional means for isolating applications 
from each other is via the use of operating system 
provided “process” abstraction facilities. However, as 
applications now consist of multiple fine-grained, 
independent and separately acquired components, the 
traditional process abstraction model is proving to be 
insufficient in ensuring this isolation. Statistics 
indicate that a high percentage of software failure 
occurs due to propagation of component failures. 
These observations are further bolstered by the 
attempts by modern Internet browser application 
developers, for example, to adopt multi-process 
architectures in order to increase robustness. 
Therefore, a fresh look at the available options for 
isolating program components is necessary and this 
paper provides an overview of previous activity and 
current research in the area.  

1. Introduction 

Many applications extend their functionality by 
loading components dynamically into their allocated 
address space. For example, operating system kernels 
may dynamically load device drivers, web browsers 
may load “extensions” and many applications support 
some form of “plug-in” components, often of unknown 
origin and quality, to augment their functionality. 
However, such functionality may come at a cost 
whereby the failure of a single component can 
adversely affect the entire host application. 

In contrast to software components, processes are 
typically protected from each other so that buggy or 
malicious code may not readily affect an entire system. 
Traditionally, operating systems have provided support 
for process isolation through the following means, as 
mentioned by Law and McCann [1]. 

a. Preventing applications from executing privileged 
instructions (e.g.. disabling interrupts, executing
direct I/O instructions, etc.) and 

b. Preventing an application from accessing illegal 
memory locations (e.g. another application’s 
memory, memory mapped I/O locations, etc.) 

Most operating systems today enable this isolation 
through use of processor modes and memory paging 
[2], while earlier computer designs such as memory 
segmentation and typing structures have been largely 
ignored. However, the more recent notion of an 
application-oriented, software component does not 
have the ability to take advantage of similar isolation 
schemes. Typically, an application will load a 
component into its existing address space, enabling the 
component to access any part of the host application’s 
memory, thus leaving the host vulnerable to bad or 
misbehaving applications. Small and Seltzer [3] argue 
that if a component consistently crashes its host, the 
extra functionality is hardly worthwhile. Despite this, 
they note that few component extensions address the 
reliability issue. 

The statistics are quite revealing: over 85% of 
Windows XP crashes are due to faulty device drivers 
and Linux drivers may have 2 to 7 times the bug count 
of the kernel [4]. Such failures are not limited to OS 
kernel drivers and applications suffer similar problems. 
Zeigler [5] indicates that over 70% of Internet Explorer 
crashes are due to 3rd party add-ons. To combat this 
issue, both Internet Explorer [5] and Google’s Chrome 
browser [6] have shifted to multi-process architectures 
where program components are isolated into several, 
disparate Operating System (OS) processes. 

Xu et al [7] note that dynamically loaded extensions 
need to be verified as the hosting process needs to be 
assured that an untrusted component is safe and does 
not compromise the host’s or other components’ 
integrity. Clearly, a revisitation of component isolation 
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mechanisms and a holistic view to combating the 
problem are pressing requirements. This paper 
provides a review of various attempts at software 
component isolation, past and present, with insights 
into suitable mechanisms for such enforceable and 
reliable isolation. 

2. A categorization of isolation 
mechanisms 

This section provides an overview of more current 
mechanisms available for component isolation. Three 
basic mechanisms for isolation are identified and 
categorized by Small and Seltzer [3]. We expand this 
to a more fine-grained categorization, to reflect the 
variety of isolation mechanisms available, set out in 
relation to their level within the computer’s 
architecture. This categorization will be the basis for 
discussing those various isolation mechanisms. It 
should be noted however, that some mechanisms do not 
fit cleanly into a category and may be a mix of many 
techniques.  

Isolation 
Mechanism 

Description Examples 

Hardware 
Isolation 

This category deals 
with mechanisms that 
utilize some hardware 
support in enforcing 
isolation. The main 
drawback is that, due 
to reliance on specific 
hardware features, 
these techniques may 
not be portable across 
all computer 
architectures 

Privilege level 
change, 
Isolation using 
memory 
segmentation 
and/or typing 
support, 
Isolation using 
paging hardware, 
Isolation into 
separate 
processors, e.g. 
peripheral I/O 
processors, 
Hardware 
virtualization 
support. 

Binary code 
level isolation 

Protection afforded 
by modifying binary 
code. 

Software Fault 
Isolation, 
Binary translation, 
Virtual Machine 
Monitors. 

Integration 
into OS 
kernel 
isolation 
facilities 

OS kernel protection 
mechanisms for 
isolating components. 

Kernel Wrapping, 
Sandboxing. 

Language 
support 

Isolation provided 
through language 
level/compiler level 
support. 

Type safe 
languages, 
Static analysis, 
Compilers. 

Application 
level isolation 

Isolation facilities 
implemented entirely 
in user space. 

Interpreters, 
JIT Compilers, 
Vx32, Native 
Client. 

Table 1. Categorization of isolation mechanisms and examples

2.1 Hardware Isolation 

A variety of hardware based techniques have been 
utilized for process/component isolation for almost 50 
years, dating from the earliest 2nd generation computer 
systems providing multiprogramming facilities, e.g. 
English Electric KDF-9 etc. Some techniques, such as 
simple, dual-state privilege level change based on OS-
user separation, are available in most modern system 
architectures. Some other techniques, such as memory 
segmentation support, are now only widely available on 
certain architectures like the Intel “x86” line of 
processors. This section examines each of these 
mechanisms in turn, highlighting their usage and 
specific advantages and disadvantages. 

The idea of protection rings and segmentation were 
pioneered in the Multics system and implemented in 
the GE-645 computer [8]. Earlier 2nd and 3rd 
generation mainframe computer architectures did, 
however, provide separate hardware mechanisms to 
assist in a form of isolation. These varied greatly from 
complete isolation into distinct and separate processor 
units, as in the peripheral processor concepts in the 
Control Data 6000, 7000, Cyber-70/170 computer 
systems and memory “tagging” used in the IBM 
System/360 series. Amdahl [9] et al clearly pointed out 
in 1964 that program isolation was essential in the 
System/360 in terms of “tamper-proof storage 
protection” and a “protected supervisor program”. The 
Burroughs B5000, introduced in 1961 was also an 
early system which featured segmentation and tagged 
memory [10]. 

Most modern operating systems utilize a 2 level 
protection mechanism [2]. The operating system 
executes at a higher privilege level (ring) allowing it to 
execute any instruction. Applications have a lower 
privilege level and hardware ensures that any attempt 
to execute a high privilege instruction causes a 
“trap”[2]. The question of whether or not such a 2-level 
scheme is sufficient for complete isolation of processes 
to provide trusted system operation is one of constant 
debate. 

A more specific version of privilege level based 
protection is utilized in micro-kernel based operating 
systems [2]. This minimalist approach is an attempt to 
enforce the principle of least privilege and economy of 
mechanism [11]. At its extremes, even paging and 
scheduling may run as user mode applications [12], 
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which allows for a more modular approach with a 
greater degree of robustness and isolation of faults. 

The Minix 3 operating system provides a recent 
example of this approach [12]. User space components 
are monitored by a “reincarnation server”, a process 
which periodically polls each component to see 
whether it is healthy [13]. If the component is found to 
be defective, it is “reincarnated”, by sending it a kill
signal and restarting the process shortly thereafter [13]. 

The major drawback of the micro-kernel approach is 
the high cost of switching protection domains.  
Estimates for switching overhead over traditional 
monolithic kernels run as high as two orders of 
magnitude [14] though proponents of the micro-kernel 
approach have demonstrated to the contrary that proper 
optimization can lead to very low overheads [15].  

Overall, the level of protection afforded by this 
mechanism is more suited to process level granularity. 
For components, which may be at much finer levels of 
granularity, the protection domain switching overhead 
may be too prohibitive. This is sharply highlighted by 
the fact that many traditional monolithic kernels still 
continue to minimize privilege level changes 
specifically because of such perceived overheads [16]. 

Another widely used isolation mechanism is one of 
memory “paging”. Paging protection is a feature 
offered by most modern computers and works by 
dividing the address space into pages, typically of 
fixed-length, with the ability to set permissions per 
page [17]. Most modern operating systems utilize 
paging protection for enabling process isolation [2]. 

Peterson et al [18] analyse the options available to 
designers of sandboxing mechanisms and  describe a 
generic operating system Application Programming 
Interface (API) for creating sandboxed programs, 
where each sandboxed process runs in a separate 
address space by utilizing paging hardware. However, 
the main drawback in using paging support for fine-
grained components is that pages may be too coarsely 
grained for component protection  [19], typically being 
in the order of a few Kilobytes (KiB), with 4KiB being 
the most common. Components however, typically 
occupy only a few hundred bytes [20]. 

Memory “segmentation” hardware support is 
another important protection mechanism used over the 
last 50 years as highlighted by use in the Multics 
system.  In the Intel x86 hardware architecture, each 
segment can have 4 possible segment privilege levels 
(SPL). The hardware ensures that lower privilege 
segments cannot access higher privilege segments, thus 
isolating memory from each other. The advantages of 
such hardware support for preserving high performance 
are stressed by Chiueh et al [21]. 

Banerji et al [22] utilize kernel/user mode 
separation along with paging and segmentation 
hardware to create Protected Shared Libraries (PSLs). 
Additional examples of using segments for component 
level isolation are described later. 

However, a significant problem in using 
segmentation is the gradual dwindling of support for 
this hardware feature even in Intel processor units [23]. 

Hardware virtualization is also an isolation 
mechanism which has been around for decades. The 
concept of virtual machines go back into the 1950s/60s, 
e.g. in early computer systems from the United 
Kingdom, and such facilities were implemented in the 
likes of the IBM System/360 Model 67 and System/370
series [24]. System/370 featured hardware support for 
interpretive execution, making the development of 
VMM software much simpler [24].  Despite this 
however, the popularity of VM technology waned 
somewhat over the years, but it has lately gained a 
resurgence of interest with the development and 
marketing of software systems such as VMware [25], 
which provided a VMM for the popular Intel x86 
architecture, despite the fact that the Intel x86 
architecture itself had several non-virtualizable 
instructions [26]. Many novel techniques have been 
used to overcome these limitations, such as binary 
translation [25]  and para-virtualization [27]. 

In 2005, Intel and AMD introduced additional 
machine instructions  to their respective architectures 
to remedy this problem [23]. The Intel and AMD 
extensions are similar [25].  However, as noted by 
Adams and Agesen  [25], early versions of Intel’s and 
AMD’s hardware virtualization did not necessarily 
result in better performance, due to the lack of support 
for Memory Management Unit (MMU) virtualization. 
To remedy this, AMD introduced Nested Page Tables 
(NPT) [28] and Intel has followed suit by adding 
support for Extended Page Tables (EPT) in their new 
“Nehalem” processor architecture, both of which add 
support for MMU virtualization [29]. 

2.2 Binary Code Level Isolation 

Binary code level isolation relies on modifying the 
application binary at load-time or run-time, in order to 
insert additional checks and guards for ensuring 
isolation. 

One of the key techniques in binary code level 
isolation is Software Fault Isolation (SFI). This method 
was first described by Wahbe et al [16] and the basic 
technique has been utilized in many forms. A 
“sandboxed” code version is created so that memory 
references always fall within the sandboxed region, 
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thus preventing a component from accessing memory 
outside of its bounds [16]. SFI, originally demonstrated 
by Wahbe et al on a Reduced Instruction Set Computer 
(RISC) architecture, has also been demonstrated on 
Complex Instruction Set Computer (CISC) 
architectures [30]. Techniques such as binary 
translation [25] are offshoots of the ideas in SFI.

The main advantages of this method, as identified 
by Xu et al [7] are 
a. Operates directly on binary code,  
b. Provides the ability to extend the host at a very 

fine-grained level,  
c. Enforces a default collection of safety conditions 

to prevent array out-of-bounds violations, address-
alignment violations, uses of uninitialized 
variables, null-pointer dereferences and stack 
manipulation violations 

However, one significant weakness in their 
approach is that it requires compiler level 
modifications for the technique to work. As they point 
out, modification of the executable binary is 
complicated and adds too much overhead to the code 
injection process. However, Erlingsson et al [31] have 
attempted to address this problem by using control flow 
analysis and a binary rewriter which ensures that all 
expected properties and guards continue to hold. 

SFI techniques have also been used in the “Nooks” 
system [4], in combination with hardware support, to 
create an architecture for device driver fault isolation 
and recovery. Fraser et al [32] describe similar 
protection mechanisms for “commercial-off-the-shelf” 
or COTS systems. Kumar et al [33] describe the use of 
SFI in embedded systems, where hardware support for 
protection domains is absent. In addition, Small and 
Seltzer [3] have estimated the performance 
characteristics of various techniques, and conclude that 
SFI based techniques offer good overall performance. 

A strong example of such software based techniques 
providing better performance than corresponding 
hardware protection comes from Adams and Agesen 
[25]. Through their experience in implementing the 
popular VMware virtual machine monitor, they provide 
performance measurements which indicate that 
hardware assisted techniques can be overshadowed by 
Binary Translation techniques. 

Swift et al [4] point out that it may be difficult to 
implement SFI when the range of addresses are not 
contiguous. Further, although it is relatively cheap to 
call into SFI code as opposed to a protection domain 
switch, the SFI code itself executes more slowly due to 
the additional checks.  

2.3 Integration into OS Kernel Isolation 
Facilities 

Attempts have been made to enforce isolation 
through integrating separate application level 
components with the OS kernel API layer. One such 
example is the use of “wrapping” techniques. 
Wrapping involves the verification of all parameters 
passed between the host and its extensions [4].  In the 
Nooks architecture [4], an amalgamation of techniques 
such as hardware memory protection, software fault 
isolation and privilege lowering along with kernel 
wrapping are used to prevent device driver failures. 
Each device driver is carefully wrapped by a proxy 
which is responsible for fault isolation and recovery 
[4]. 

However, Tanenbaum et al [12] points out that 
attempting to define and create a wrapper for use 
around each and every device driver is an error prone 
and painful process, hampering the adoption of the 
technique. Further, Erlingsson et al [31] point out that 
the protection offered by Nooks can be easily 
circumvented by malicious code. 

Peterson et al [18] describe a generic operating 
system API for creating sandboxed programs, where 
each sandboxed process runs in separate address 
spaces. Their work lends support to the need for 
making components a first class concept within the 
operating system, as argued by Mendelsohn [34]. An 
interesting implementation is also made in the Go! OS 
[1]. Instead of weaving in and out of kernel/user mode, 
the Go! component based OS works entirely in kernel 
mode.  

2.4 Language Support 

Language based isolation relies on the safety of a 
language’s type system, where the operations that a 
program performs can only be operations that are 
deemed sensible for that type [35]. Typically, this will 
involve both a dynamic and a static access control 
mechanism. 

The SPIN operating system utilizes Modula-3 as a 
type-safe programming language along with a trusted 
compiler to create type-safe extensions [36]. A more 
modern example of the use of type safe code for 
component isolation is the “Singularity” operating 
system, a prototype OS created by Microsoft Research 
[37]. The key philosophy behind Singularity is the 
concept of a Software Isolated Process (SIP), which, 
unlike traditional hardware based process isolation, 
relies on static type checking and language safety rules 
to ensure isolation between processes. The results 
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indicate that SIP may incur lower overheads than 
hardware based isolation [37]. 

In Singularity, all software components have to be 
rewritten in a type safe language (in this case a .NET 
compatible one) in order for the scheme to work, 
making it unsuitable for the large base of existing 
applications [37]. In addition, Swift et al [4] point out 
several difficulties in the adoption of type-safe 
languages. The major issue is the problem of rewriting 
all drivers in the type safe language. 

Another approach is that of “Proof Carrying Code 
(PCC)”, whereby an automated proof generator is used 
to analyze each program and attach a formal proof that 
the program will execute within its defined boundaries 
[38]. However, writing a comprehensive proof 
generator which can deal with the complexities of 
optimized code remains a problem and so far, the 
technique has not been demonstrated with non-trivial 
examples [12]. Guaranteeing the completeness of the 
policy itself is also difficult [39] and therefore, this 
technique remains open to further investigation. 

2.5 Application Level Isolation 

Application Level Isolation involves isolation 
enforced entirely in user-space and managed by the 
application itself. Interpretation based isolation has 
been categorized under application level support, as it 
is usually performed entirely in user-space. Interpreted 
languages have shown excellent safety properties and 
can be made extremely secure [12]. For example, the 
JVM contains a built-in verifier that provides several 
safety checks to ensure that no forged pointers or 
pointer manipulations can be performed, effectively 
preventing code from accessing unauthorized memory 
locations [12, 40].  The major drawback of 
interpretation techniques is speed. 

A further problem is that not all programs can be 
written in an interpreted language. For example, a 
badly written extension DLL can easily crash an entire 
“Java Virtual Machine (JVM)”, as they all reside 
within the same address space. One solution to this 
issue, is to isolate components in separate process 
address spaces [41]. Lastly, there is a large existing 
base of code that is in binary format. It is not feasible 
to rewrite all of these programs in an interpreted 
language [12]. 

Another technique implemented at an application 
level is that of using a multi-process application 
architecture. This has been exemplified by the current 
trend of browsers being built using such a model [6, 
42]. The basic idea is to use the operating system’s IPC 
mechanisms to communicate between components 

loaded into disparate OS processes. A trade off is made 
between performance and reliability [6]. 

A somewhat similar attempt is an application level 
library for isolating components through a combination 
of SFI and segmentation hardware [43]. This attempt is 
novel in that the entire library is implemented in user-
mode, requiring no changes to the OS kernel. It is 
limited by its reliance on x86 architectural features. A 
similar attempt is reported in the Google Native Client 
project, which enables the creation of browser 
extensions using portable x86 binary components [44]. 

3. Conclusion 

This literature survey has evaluated the current 
landscape of component isolation mechanisms. 
Through this survey, we draw the following 
conclusions about the various protection mechanisms. 

Privilege-level change offers a flexible mechanism 
for detecting illegal instructions, but MMU support is 
required for detecting illegal memory accesses. The 
cost of ring transitions remains very high however, and 
the cost is prohibitive for the extremely fine granularity 
of protection required for component level protection. 

Paging hardware provides a flexible means of 
protecting illegal memory access but is somewhat 
coarsely grained to be really useful for component level 
protection. 

Segmentation hardware appears very promising for 
component level protection facilities as recently 
demonstrated by its use in Vx32 and Google Native 
Client. However, not all machine architectures support 
segmentation, limiting the portability of the solution. 

Hardware virtualization support offers great promise 
in implementing isolation schemes, especially with the 
introduction of the AMD-V Nested Paging and Intel 
Nehalem extensions. Although originally designed for 
the execution of full operating systems within a virtual 
machine, it may be possible to construct light-weight 
isolation domains for individual components by using 
these additional instructions. 

Software Fault Isolation is a promising technique for 
ensuring component safety and protection that offers 
good overall performance. However, most current 
implementations require compiler level modifications 
and do not work directly on existing binary code, 
rendering its use difficult. 

Static analysis is marred by the problem of being 
difficult to implement at a binary code level and due to 
the difficulty in ensuring that the technique is failsafe. 
Overall, static analysis could be deemed a preventive 
measure and mainly be used in determining whether a 
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given component obeys certain constraints during its 
execution. Thus, it could be used to prevent a faulty 
component from being loaded in the first place, but not 
to prevent failure during the execution of the 
component.  

Proof-carrying code is yet to be demonstrated with 
non-trivial examples. However, it is a promising 
avenue for further research. 

Type-safe code provides an excellent compromise 
between safety and performance. However, it cannot be 
applied to existing binary code and requires a complete 
rewrite in a type-safe language, rendering the technique 
difficult to apply to the massive code bases already 
written. 

Wrapping is difficult to apply for the ensuring of 
complete protection as the current difficulty with 
wrapping is the painstaking process of manually 
writing a hardware straightjacket for each and every 
component. 

Interpretation techniques are very effective for light-
weight component isolation. However, the technique is 
difficult to apply at a binary code level. It is also not 
suitable for kernel level extensions, as the required 
timing granularity is too fine. Finally, it mandates the 
use of specific languages, which leaves out a large base 
of binary components. 

Application Level Isolation such as that used in 
Google Chrome utilize the relatively tried and tested 
methods of IPC, but also incur the associated 
performance penalties of IPC mechanisms. There is 
also an increase in complexity due to the extra effort 
required in coordinating between components. 

Finally, further research is needed into many of the 
above technologies if components are to become first-
class concepts within operating systems. At the same 
time, the needs of autonomic software systems can only 
be met if underlying hardware and operating 
system/middleware component software systems can 
rely on those lower layer isolation schemes to provide 
the verifiable security functions needed. 
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