

QUT Digital Repository:
http://eprints.qut.edu.au/

Goonasekera, Nuwan A. and Caelli, William J. and Sahama, Tony R. (2009) 50
Years of Isolation. In: Symposia and Workshops on Ubiquitous, Autonomic and
Trusted Computing, 7-9 July, 2009, Brisbane, Australia.

 © Copyright 2009 The Institute of Electrical and Electronics Engineers,
Inc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10895634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

50 Years of Isolation

Goonasekera N, Caelli W.J and Sahama T
Faculty of Science and Technology

Queensland University of Technology
Brisbane, Australia

nuwan.goonasekera@student.qut.edu.au, w.caelli@qut.edu.au, t.sahama@qut.edu.au

Abstract

The traditional means for isolating applications
from each other is via the use of operating system
provided “process” abstraction facilities. However, as
applications now consist of multiple fine-grained,
independent and separately acquired components, the
traditional process abstraction model is proving to be
insufficient in ensuring this isolation. Statistics
indicate that a high percentage of software failure
occurs due to propagation of component failures.
These observations are further bolstered by the
attempts by modern Internet browser application
developers, for example, to adopt multi-process
architectures in order to increase robustness.
Therefore, a fresh look at the available options for
isolating program components is necessary and this
paper provides an overview of previous activity and
current research in the area.

1. Introduction

Many applications extend their functionality by
loading components dynamically into their allocated
address space. For example, operating system kernels
may dynamically load device drivers, web browsers
may load “extensions” and many applications support
some form of “plug-in” components, often of unknown
origin and quality, to augment their functionality.
However, such functionality may come at a cost
whereby the failure of a single component can
adversely affect the entire host application.

In contrast to software components, processes are
typically protected from each other so that buggy or
malicious code may not readily affect an entire system.
Traditionally, operating systems have provided support
for process isolation through the following means, as
mentioned by Law and McCann [1].

a. Preventing applications from executing privileged
instructions (e.g.. disabling interrupts, executing
direct I/O instructions, etc.) and

b. Preventing an application from accessing illegal
memory locations (e.g. another application’s
memory, memory mapped I/O locations, etc.)

Most operating systems today enable this isolation
through use of processor modes and memory paging
[2], while earlier computer designs such as memory
segmentation and typing structures have been largely
ignored. However, the more recent notion of an
application-oriented, software component does not
have the ability to take advantage of similar isolation
schemes. Typically, an application will load a
component into its existing address space, enabling the
component to access any part of the host application’s
memory, thus leaving the host vulnerable to bad or
misbehaving applications. Small and Seltzer [3] argue
that if a component consistently crashes its host, the
extra functionality is hardly worthwhile. Despite this,
they note that few component extensions address the
reliability issue.

The statistics are quite revealing: over 85% of
Windows XP crashes are due to faulty device drivers
and Linux drivers may have 2 to 7 times the bug count
of the kernel [4]. Such failures are not limited to OS
kernel drivers and applications suffer similar problems.
Zeigler [5] indicates that over 70% of Internet Explorer
crashes are due to 3rd party add-ons. To combat this
issue, both Internet Explorer [5] and Google’s Chrome
browser [6] have shifted to multi-process architectures
where program components are isolated into several,
disparate Operating System (OS) processes.

Xu et al [7] note that dynamically loaded extensions
need to be verified as the hosting process needs to be
assured that an untrusted component is safe and does
not compromise the host’s or other components’
integrity. Clearly, a revisitation of component isolation

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.86

54

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.86

54

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.86

54

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

mechanisms and a holistic view to combating the
problem are pressing requirements. This paper
provides a review of various attempts at software
component isolation, past and present, with insights
into suitable mechanisms for such enforceable and
reliable isolation.

2. A categorization of isolation
mechanisms

This section provides an overview of more current
mechanisms available for component isolation. Three
basic mechanisms for isolation are identified and
categorized by Small and Seltzer [3]. We expand this
to a more fine-grained categorization, to reflect the
variety of isolation mechanisms available, set out in
relation to their level within the computer’s
architecture. This categorization will be the basis for
discussing those various isolation mechanisms. It
should be noted however, that some mechanisms do not
fit cleanly into a category and may be a mix of many
techniques.

Isolation
Mechanism

Description Examples

Hardware
Isolation

This category deals
with mechanisms that
utilize some hardware
support in enforcing
isolation. The main
drawback is that, due
to reliance on specific
hardware features,
these techniques may
not be portable across
all computer
architectures

Privilege level
change,
Isolation using
memory
segmentation
and/or typing
support,
Isolation using
paging hardware,
Isolation into
separate
processors, e.g.
peripheral I/O
processors,
Hardware
virtualization
support.

Binary code
level isolation

Protection afforded
by modifying binary
code.

Software Fault
Isolation,
Binary translation,
Virtual Machine
Monitors.

Integration
into OS
kernel
isolation
facilities

OS kernel protection
mechanisms for
isolating components.

Kernel Wrapping,
Sandboxing.

Language
support

Isolation provided
through language
level/compiler level
support.

Type safe
languages,
Static analysis,
Compilers.

Application
level isolation

Isolation facilities
implemented entirely
in user space.

Interpreters,
JIT Compilers,
Vx32, Native
Client.

Table 1. Categorization of isolation mechanisms and examples

2.1 Hardware Isolation

A variety of hardware based techniques have been
utilized for process/component isolation for almost 50
years, dating from the earliest 2nd generation computer
systems providing multiprogramming facilities, e.g.
English Electric KDF-9 etc. Some techniques, such as
simple, dual-state privilege level change based on OS-
user separation, are available in most modern system
architectures. Some other techniques, such as memory
segmentation support, are now only widely available on
certain architectures like the Intel “x86” line of
processors. This section examines each of these
mechanisms in turn, highlighting their usage and
specific advantages and disadvantages.

The idea of protection rings and segmentation were
pioneered in the Multics system and implemented in
the GE-645 computer [8]. Earlier 2nd and 3rd
generation mainframe computer architectures did,
however, provide separate hardware mechanisms to
assist in a form of isolation. These varied greatly from
complete isolation into distinct and separate processor
units, as in the peripheral processor concepts in the
Control Data 6000, 7000, Cyber-70/170 computer
systems and memory “tagging” used in the IBM
System/360 series. Amdahl [9] et al clearly pointed out
in 1964 that program isolation was essential in the
System/360 in terms of “tamper-proof storage
protection” and a “protected supervisor program”. The
Burroughs B5000, introduced in 1961 was also an
early system which featured segmentation and tagged
memory [10].

Most modern operating systems utilize a 2 level
protection mechanism [2]. The operating system
executes at a higher privilege level (ring) allowing it to
execute any instruction. Applications have a lower
privilege level and hardware ensures that any attempt
to execute a high privilege instruction causes a
“trap”[2]. The question of whether or not such a 2-level
scheme is sufficient for complete isolation of processes
to provide trusted system operation is one of constant
debate.

A more specific version of privilege level based
protection is utilized in micro-kernel based operating
systems [2]. This minimalist approach is an attempt to
enforce the principle of least privilege and economy of
mechanism [11]. At its extremes, even paging and
scheduling may run as user mode applications [12],

555555

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

which allows for a more modular approach with a
greater degree of robustness and isolation of faults.

The Minix 3 operating system provides a recent
example of this approach [12]. User space components
are monitored by a “reincarnation server”, a process
which periodically polls each component to see
whether it is healthy [13]. If the component is found to
be defective, it is “reincarnated”, by sending it a kill
signal and restarting the process shortly thereafter [13].

The major drawback of the micro-kernel approach is
the high cost of switching protection domains.
Estimates for switching overhead over traditional
monolithic kernels run as high as two orders of
magnitude [14] though proponents of the micro-kernel
approach have demonstrated to the contrary that proper
optimization can lead to very low overheads [15].

Overall, the level of protection afforded by this
mechanism is more suited to process level granularity.
For components, which may be at much finer levels of
granularity, the protection domain switching overhead
may be too prohibitive. This is sharply highlighted by
the fact that many traditional monolithic kernels still
continue to minimize privilege level changes
specifically because of such perceived overheads [16].

Another widely used isolation mechanism is one of
memory “paging”. Paging protection is a feature
offered by most modern computers and works by
dividing the address space into pages, typically of
fixed-length, with the ability to set permissions per
page [17]. Most modern operating systems utilize
paging protection for enabling process isolation [2].

Peterson et al [18] analyse the options available to
designers of sandboxing mechanisms and describe a
generic operating system Application Programming
Interface (API) for creating sandboxed programs,
where each sandboxed process runs in a separate
address space by utilizing paging hardware. However,
the main drawback in using paging support for fine-
grained components is that pages may be too coarsely
grained for component protection [19], typically being
in the order of a few Kilobytes (KiB), with 4KiB being
the most common. Components however, typically
occupy only a few hundred bytes [20].

Memory “segmentation” hardware support is
another important protection mechanism used over the
last 50 years as highlighted by use in the Multics
system. In the Intel x86 hardware architecture, each
segment can have 4 possible segment privilege levels
(SPL). The hardware ensures that lower privilege
segments cannot access higher privilege segments, thus
isolating memory from each other. The advantages of
such hardware support for preserving high performance
are stressed by Chiueh et al [21].

Banerji et al [22] utilize kernel/user mode
separation along with paging and segmentation
hardware to create Protected Shared Libraries (PSLs).
Additional examples of using segments for component
level isolation are described later.

However, a significant problem in using
segmentation is the gradual dwindling of support for
this hardware feature even in Intel processor units [23].

Hardware virtualization is also an isolation
mechanism which has been around for decades. The
concept of virtual machines go back into the 1950s/60s,
e.g. in early computer systems from the United
Kingdom, and such facilities were implemented in the
likes of the IBM System/360 Model 67 and System/370
series [24]. System/370 featured hardware support for
interpretive execution, making the development of
VMM software much simpler [24]. Despite this
however, the popularity of VM technology waned
somewhat over the years, but it has lately gained a
resurgence of interest with the development and
marketing of software systems such as VMware [25],
which provided a VMM for the popular Intel x86
architecture, despite the fact that the Intel x86
architecture itself had several non-virtualizable
instructions [26]. Many novel techniques have been
used to overcome these limitations, such as binary
translation [25] and para-virtualization [27].

In 2005, Intel and AMD introduced additional
machine instructions to their respective architectures
to remedy this problem [23]. The Intel and AMD
extensions are similar [25]. However, as noted by
Adams and Agesen [25], early versions of Intel’s and
AMD’s hardware virtualization did not necessarily
result in better performance, due to the lack of support
for Memory Management Unit (MMU) virtualization.
To remedy this, AMD introduced Nested Page Tables
(NPT) [28] and Intel has followed suit by adding
support for Extended Page Tables (EPT) in their new
“Nehalem” processor architecture, both of which add
support for MMU virtualization [29].

2.2 Binary Code Level Isolation

Binary code level isolation relies on modifying the
application binary at load-time or run-time, in order to
insert additional checks and guards for ensuring
isolation.

One of the key techniques in binary code level
isolation is Software Fault Isolation (SFI). This method
was first described by Wahbe et al [16] and the basic
technique has been utilized in many forms. A
“sandboxed” code version is created so that memory
references always fall within the sandboxed region,

565656

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

thus preventing a component from accessing memory
outside of its bounds [16]. SFI, originally demonstrated
by Wahbe et al on a Reduced Instruction Set Computer
(RISC) architecture, has also been demonstrated on
Complex Instruction Set Computer (CISC)
architectures [30]. Techniques such as binary
translation [25] are offshoots of the ideas in SFI.

The main advantages of this method, as identified
by Xu et al [7] are
a. Operates directly on binary code,
b. Provides the ability to extend the host at a very

fine-grained level,
c. Enforces a default collection of safety conditions

to prevent array out-of-bounds violations, address-
alignment violations, uses of uninitialized
variables, null-pointer dereferences and stack
manipulation violations

However, one significant weakness in their
approach is that it requires compiler level
modifications for the technique to work. As they point
out, modification of the executable binary is
complicated and adds too much overhead to the code
injection process. However, Erlingsson et al [31] have
attempted to address this problem by using control flow
analysis and a binary rewriter which ensures that all
expected properties and guards continue to hold.

SFI techniques have also been used in the “Nooks”
system [4], in combination with hardware support, to
create an architecture for device driver fault isolation
and recovery. Fraser et al [32] describe similar
protection mechanisms for “commercial-off-the-shelf”
or COTS systems. Kumar et al [33] describe the use of
SFI in embedded systems, where hardware support for
protection domains is absent. In addition, Small and
Seltzer [3] have estimated the performance
characteristics of various techniques, and conclude that
SFI based techniques offer good overall performance.

A strong example of such software based techniques
providing better performance than corresponding
hardware protection comes from Adams and Agesen
[25]. Through their experience in implementing the
popular VMware virtual machine monitor, they provide
performance measurements which indicate that
hardware assisted techniques can be overshadowed by
Binary Translation techniques.

Swift et al [4] point out that it may be difficult to
implement SFI when the range of addresses are not
contiguous. Further, although it is relatively cheap to
call into SFI code as opposed to a protection domain
switch, the SFI code itself executes more slowly due to
the additional checks.

2.3 Integration into OS Kernel Isolation
Facilities

Attempts have been made to enforce isolation
through integrating separate application level
components with the OS kernel API layer. One such
example is the use of “wrapping” techniques.
Wrapping involves the verification of all parameters
passed between the host and its extensions [4]. In the
Nooks architecture [4], an amalgamation of techniques
such as hardware memory protection, software fault
isolation and privilege lowering along with kernel
wrapping are used to prevent device driver failures.
Each device driver is carefully wrapped by a proxy
which is responsible for fault isolation and recovery
[4].

However, Tanenbaum et al [12] points out that
attempting to define and create a wrapper for use
around each and every device driver is an error prone
and painful process, hampering the adoption of the
technique. Further, Erlingsson et al [31] point out that
the protection offered by Nooks can be easily
circumvented by malicious code.

Peterson et al [18] describe a generic operating
system API for creating sandboxed programs, where
each sandboxed process runs in separate address
spaces. Their work lends support to the need for
making components a first class concept within the
operating system, as argued by Mendelsohn [34]. An
interesting implementation is also made in the Go! OS
[1]. Instead of weaving in and out of kernel/user mode,
the Go! component based OS works entirely in kernel
mode.

2.4 Language Support

Language based isolation relies on the safety of a
language’s type system, where the operations that a
program performs can only be operations that are
deemed sensible for that type [35]. Typically, this will
involve both a dynamic and a static access control
mechanism.

The SPIN operating system utilizes Modula-3 as a
type-safe programming language along with a trusted
compiler to create type-safe extensions [36]. A more
modern example of the use of type safe code for
component isolation is the “Singularity” operating
system, a prototype OS created by Microsoft Research
[37]. The key philosophy behind Singularity is the
concept of a Software Isolated Process (SIP), which,
unlike traditional hardware based process isolation,
relies on static type checking and language safety rules
to ensure isolation between processes. The results

575757

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

indicate that SIP may incur lower overheads than
hardware based isolation [37].

In Singularity, all software components have to be
rewritten in a type safe language (in this case a .NET
compatible one) in order for the scheme to work,
making it unsuitable for the large base of existing
applications [37]. In addition, Swift et al [4] point out
several difficulties in the adoption of type-safe
languages. The major issue is the problem of rewriting
all drivers in the type safe language.

Another approach is that of “Proof Carrying Code
(PCC)”, whereby an automated proof generator is used
to analyze each program and attach a formal proof that
the program will execute within its defined boundaries
[38]. However, writing a comprehensive proof
generator which can deal with the complexities of
optimized code remains a problem and so far, the
technique has not been demonstrated with non-trivial
examples [12]. Guaranteeing the completeness of the
policy itself is also difficult [39] and therefore, this
technique remains open to further investigation.

2.5 Application Level Isolation

Application Level Isolation involves isolation
enforced entirely in user-space and managed by the
application itself. Interpretation based isolation has
been categorized under application level support, as it
is usually performed entirely in user-space. Interpreted
languages have shown excellent safety properties and
can be made extremely secure [12]. For example, the
JVM contains a built-in verifier that provides several
safety checks to ensure that no forged pointers or
pointer manipulations can be performed, effectively
preventing code from accessing unauthorized memory
locations [12, 40]. The major drawback of
interpretation techniques is speed.

A further problem is that not all programs can be
written in an interpreted language. For example, a
badly written extension DLL can easily crash an entire
“Java Virtual Machine (JVM)”, as they all reside
within the same address space. One solution to this
issue, is to isolate components in separate process
address spaces [41]. Lastly, there is a large existing
base of code that is in binary format. It is not feasible
to rewrite all of these programs in an interpreted
language [12].

Another technique implemented at an application
level is that of using a multi-process application
architecture. This has been exemplified by the current
trend of browsers being built using such a model [6,
42]. The basic idea is to use the operating system’s IPC
mechanisms to communicate between components

loaded into disparate OS processes. A trade off is made
between performance and reliability [6].

A somewhat similar attempt is an application level
library for isolating components through a combination
of SFI and segmentation hardware [43]. This attempt is
novel in that the entire library is implemented in user-
mode, requiring no changes to the OS kernel. It is
limited by its reliance on x86 architectural features. A
similar attempt is reported in the Google Native Client
project, which enables the creation of browser
extensions using portable x86 binary components [44].

3. Conclusion

This literature survey has evaluated the current
landscape of component isolation mechanisms.
Through this survey, we draw the following
conclusions about the various protection mechanisms.

Privilege-level change offers a flexible mechanism
for detecting illegal instructions, but MMU support is
required for detecting illegal memory accesses. The
cost of ring transitions remains very high however, and
the cost is prohibitive for the extremely fine granularity
of protection required for component level protection.

Paging hardware provides a flexible means of
protecting illegal memory access but is somewhat
coarsely grained to be really useful for component level
protection.

Segmentation hardware appears very promising for
component level protection facilities as recently
demonstrated by its use in Vx32 and Google Native
Client. However, not all machine architectures support
segmentation, limiting the portability of the solution.

Hardware virtualization support offers great promise
in implementing isolation schemes, especially with the
introduction of the AMD-V Nested Paging and Intel
Nehalem extensions. Although originally designed for
the execution of full operating systems within a virtual
machine, it may be possible to construct light-weight
isolation domains for individual components by using
these additional instructions.

Software Fault Isolation is a promising technique for
ensuring component safety and protection that offers
good overall performance. However, most current
implementations require compiler level modifications
and do not work directly on existing binary code,
rendering its use difficult.

Static analysis is marred by the problem of being
difficult to implement at a binary code level and due to
the difficulty in ensuring that the technique is failsafe.
Overall, static analysis could be deemed a preventive
measure and mainly be used in determining whether a

585858

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

given component obeys certain constraints during its
execution. Thus, it could be used to prevent a faulty
component from being loaded in the first place, but not
to prevent failure during the execution of the
component.

Proof-carrying code is yet to be demonstrated with
non-trivial examples. However, it is a promising
avenue for further research.

Type-safe code provides an excellent compromise
between safety and performance. However, it cannot be
applied to existing binary code and requires a complete
rewrite in a type-safe language, rendering the technique
difficult to apply to the massive code bases already
written.

Wrapping is difficult to apply for the ensuring of
complete protection as the current difficulty with
wrapping is the painstaking process of manually
writing a hardware straightjacket for each and every
component.

Interpretation techniques are very effective for light-
weight component isolation. However, the technique is
difficult to apply at a binary code level. It is also not
suitable for kernel level extensions, as the required
timing granularity is too fine. Finally, it mandates the
use of specific languages, which leaves out a large base
of binary components.

Application Level Isolation such as that used in
Google Chrome utilize the relatively tried and tested
methods of IPC, but also incur the associated
performance penalties of IPC mechanisms. There is
also an increase in complexity due to the extra effort
required in coordinating between components.

Finally, further research is needed into many of the
above technologies if components are to become first-
class concepts within operating systems. At the same
time, the needs of autonomic software systems can only
be met if underlying hardware and operating
system/middleware component software systems can
rely on those lower layer isolation schemes to provide
the verifiable security functions needed.

4. References

[1] G. Law and J. McCann, "A new protection model for
component-based operating systems," in Proceedings
of the IEEE International Performance, Computing,
and Communications Conference, 2000, pp. 537-543.

[2] A. S. Tanenbaum, Modern Operating Systems, 2nd ed.:
Prentice Hall, 2001.

[3] C. Small and M. Seltzer, "A comparison of OS
extension technologies," in Proceedings of the
USENIX 1996 Annual Technical Conference, San
Diego, CA, 1996, pp. 41-54.

[4] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers,
"Nooks: an architecture for reliable device drivers," in

Proceedings of the 10th ACM SIGOPS European
workshop: beyond the PC Saint-Emilion, France: ACM
Press, 2002.

[5] A. Zeigler. (2009, Jan 30). IE8 and Loosely-Coupled
IE (LCIE). [Online]. Available:
http://blogs.msdn.com/ie/archive/2008/03/11/ie8-and-
loosely-coupled-ie-lcie.aspx

[6] A. Barth, C. Jackson, C. Reis, and The Google Chrome
Team. (2009 Jan. 30). The Security Architecture of the
Chromium Browser. Available:
http://crypto.stanford.edu/websec/chromium/

[7] Z. Xu, B. P. Miller, and T. Reps, "Safety checking of
machine code," in Proceedings of the ACM SIGPLAN
2000 conference on Programming language design
and implementation, Vancouver, BC, Canada, 2000,
pp. 70-82.

[8] J. H. Saltzer, "Protection and the control of information
sharing in Multics," Commun. ACM, vol. 17, pp. 388-
402, 1974.

[9] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks,
"Architecture of the IBM System/360," IBM Journal of
Research and Development, vol. 8, 1964.

[10] A. J. W. Mayer, "The architecture of the Burroughs
B5000: 20 years later and still ahead of the times?,"
SIGARCH Computer Architecture News, vol. 10, pp. 3-
10, 1982.

[11] J. H. Saltzer and M. D. Schroeder, "The protection of
information in computer systems," Proceedings of the
IEEE, vol. 63, pp. 1278-1308, 1975.

[12] A. S. Tanenbaum, J. N. Herder, and H. Bos, "Can we
make operating systems reliable and secure?,"
Computer, vol. 39, pp. 44-51, 2006.

[13] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum, "Construction of a Highly Dependable
Operating System," in Sixth European Dependable
Computing Conference, 2006, pp. 3-12.

[14] A. Purohit, C. P. Wright, J. Spadavecchia, and E.
Zadok, "Cosy: Develop in User-Land, Run in Kernel-
Mode," in Proceedings of HotOS IX: The 9th
Workshop on Hot Topics in Operating Systems Lihue,
Hawaii, USA: USENIX Association, 2003.

[15] J. Liedtke, K. Elphinstone, S. Schonberg, H. Hartig, G.
Heiser, N. Islam, and T. Jaeger, "Achieved IPC
performance (still the foundation for extensibility)," in
The Sixth Workshop on Hot Topics in Operating
Systems, 1997, pp. 28-31.

[16] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham, "Efficient software-based fault isolation,"
SIGOPS Operating Systems Review, vol. 27, pp. 203-
216, 1993.

[17] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, 4th ed.:
Morgan Kaufmann Publishers Inc., 2006.

[18] D. S. Peterson, M. Bishop, and R. Pandey, "A Flexible
Containment Mechanism for Executing Untrusted
Code," in Proceedings of the 11th USENIX Security
Symposium: USENIX Association, 2002.

[19] J. Shen, G. Venkataramani, and M. Prvulovic,
"Tradeoffs in fine-grained heap memory protection," in
Proceedings of the 1st workshop on Architectural and

595959

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

system support for improving software dependability
San Jose, California: ACM Press, 2006.

[20] L. Lam and T. Chiueh, "Checking array bound
violation using segmentation hardware," in
Proceedings of the International Conference on
Dependable Systems and Networks, 2005, pp. 388-397.

[21] T. Chiueh, G. Venkitachalam, and P. Pradhan,
"Integrating segmentation and paging protection for
safe, efficient and transparent software extensions," in
Proceedings of the seventeenth ACM symposium on
Operating systems principles Charleston, South
Carolina, United States: ACM Press, 1999.

[22] A. Banerji, J. M. Tracey, and D. L. Cohn, "Protected
shared libraries - a new approach to modularity and
sharing," Proceedings of the USENIX 1997 Annual
Technical Conference, pp. 59-75, 1997.

[23] Intel, Intel 64 and IA-32 Architectures Software
Developer's Manual vol. 3B: System Programming
Guide: Intel Corporation, 2007.

[24] P. H. Gum "System/370 Extended Architecture:
Facilities for Virtual Machines," IBM Journal of
Research and Development, vol. 27, 1983.

[25] K. Adams and O. Agesen, "A comparison of software
and hardware techniques for x86 virtualization," ACM
SIGARCH Computer Architecture News, vol. 34, pp. 2-
13, 2006.

[26] J. S. Robin and C. E. Irvine, "Analysis of the Intel
Pentium's ability to support a secure virtual machine
monitor," in Proceedings of the 9th conference on
USENIX Security Symposium, Denver, Colorado, 2000,
p. 10.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, "Xen
and the art of virtualization," ACM SIGOPS Operating
Systems Review, vol. 37, pp. 164-177, 2003.

[28] AMD. (2009 Jan. 30). AMD-V™ Nested Paging.
Advanced Micro Devices, Inc., [Online]. Available:
http://developer.amd.com/assets/NPT-WP-1%201-
final-TM.pdf

[29] Intel. (2009, Jan. 30). Intel® Virtualization
Technology. [Online]. Available:
http://www.intel.com/technology/virtualization/index.h
tm

[30] S. McCamant and G. Morrisett, "Evaluating SFI for a
CISC architecture," in Proceedings of the 15th
conference on USENIX Security Symposium. vol. 15
Vancouver, B.C., Canada: USENIX Association, 2006.

[31] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G.
C. Necula, "XFI: Software Guards for System Address
Spaces " Symposium on Operating System Design and
Implementation, pp. 75–88 2006.

[32] T. Fraser, L. Badger, and M. Feldman, "Hardening
COTS software with generic software wrappers," in
Foundations of Intrusion Tolerant Systems
[Organically Assured and Survivable Information
Systems], 2003, pp. 399-413.

[33] R. Kumar, E. Kohler, and M. Srivastava, "Harbor:
Software-based Memory Protection For Sensor
Nodes," in 6th International Symposium on

Information Processing in Sensor Networks, 2007, pp.
340-349.

[34] N. Mendelsohn, "Operating systems for component
software environments," in The Sixth Workshop on Hot
Topics in Operating Systems, 1997, pp. 49-54.

[35] C. Hawblitzel and T. von Eicken, "A Case for
Language-Based Protection," Cornell University
Technical Report 98-1670, 1998.

[36] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.
E. Fiuczynski, D. Becker, C. Chambers, and S. Eggers,
"Extensibility safety and performance in the SPIN
operating system," in Proceedings of the fifteenth ACM
symposium on Operating systems principles Copper
Mountain, Colorado, United States: ACM, 1995.

[37] M. Aiken, M. Fahndrich, C. Hawblitzel, G. Hunt, and
J. Larus, "Deconstructing process isolation," in
Proceedings of the 2006 workshop on Memory system
performance and correctness San Jose, California:
ACM Press, 2006.

[38] G. C. Necula and P. Lee, "Safe Kernel Extensions
Without Run-Time Checking," in Proceedings of the
Second USENIX Symposium on Operating Systems
Design and Implementation, Seattle, WA, 1996.

[39] I. Ganev, G. Eisenhauer, and K. Schwan, "Kernel
plugins: when a VM is too much," in Proceedings of
the 3rd conference on Virtual Machine Research And
Technology Symposium, San Jose, California, 2004.

[40] Y. Chiba, "Heap protection for Java virtual machines,"
in Proceedings of the 4th International Symposium on
Principles and Practice of Programming in Java
Mannheim, Germany: ACM Press, 2006.

[41] G. Czajkowski and L. Dayn, "Multitasking without
compromise: a virtual machine evolution," in
Proceedings of the 16th ACM SIGPLAN conference on
Object oriented programming, systems, languages, and
applications Tampa Bay, FL, USA: ACM, 2001.

[42] C. Reis, B. Bershad, S. D. Gribble, and H. M. Levy,
"Using Processes to Improve the Reliability of
Browser-based Applications," Technical Report UW-
CSE-2007-12-01, Department of Computer Science
and Engineering, University of Washington, 2007.

[43] B. Ford and R. Cox, "Vx32: Lightweight User-level
Sandboxing on the x86," in USENIX Annual Technical
Conference, Boston, MA, 2008, pp. 293–306.

[44] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T.
Ormandy, S. Okasaka, N. Narula, and N. Fullagar,
"Native Client: A Sandbox for Portable, Untrusted x86
Native Code," in To appear in the Proceedings of the
IEEE Symposium on Security and Privacy, 2009.

606060

Authorized licensed use limited to: QUEENSLAND UNIVERSITY OF TECHNOLOGY. Downloaded on January 17, 2010 at 22:53 from IEEE Xplore. Restrictions apply.

