3,713 research outputs found

    Complexity of the Steiner Network Problem with Respect to the Number of Terminals

    Get PDF
    In the Directed Steiner Network problem we are given an arc-weighted digraph GG, a set of terminals TV(G)T \subseteq V(G), and an (unweighted) directed request graph RR with V(R)=TV(R)=T. Our task is to output a subgraph GGG' \subseteq G of the minimum cost such that there is a directed path from ss to tt in GG' for all stA(R)st \in A(R). It is known that the problem can be solved in time V(G)O(A(R))|V(G)|^{O(|A(R)|)} [Feldman&Ruhl, SIAM J. Comput. 2006] and cannot be solved in time V(G)o(A(R))|V(G)|^{o(|A(R)|)} even if GG is planar, unless Exponential-Time Hypothesis (ETH) fails [Chitnis et al., SODA 2014]. However, as this reduction (and other reductions showing hardness of the problem) only shows that the problem cannot be solved in time V(G)o(T)|V(G)|^{o(|T|)} unless ETH fails, there is a significant gap in the complexity with respect to T|T| in the exponent. We show that Directed Steiner Network is solvable in time f(R)V(G)O(cgT)f(R)\cdot |V(G)|^{O(c_g \cdot |T|)}, where cgc_g is a constant depending solely on the genus of GG and ff is a computable function. We complement this result by showing that there is no f(R)V(G)o(T2/logT)f(R)\cdot |V(G)|^{o(|T|^2/ \log |T|)} algorithm for any function ff for the problem on general graphs, unless ETH fails

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.Comment: 23 pages, 6 figures An extended abstract appeared in proceedings of STACS 201

    The Range of Topological Effects on Communication

    Full text link
    We continue the study of communication cost of computing functions when inputs are distributed among kk processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Chattopadhyay, Radhakrishnan and Rudra (FOCS'14) recently initiated a study of the effect of topology of the network on the total communication cost using tools from L1L_1 embeddings. Their techniques provided tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-Disjointness the communication cost is essentially nn times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like EDXOR\text{ED} \circ \text{XOR} and XORED\text{XOR} \circ \text{ED}, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et. al. These include (i) viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the communication constraints of certain problems as a family of collection of multiway cuts, where each multiway cut simulates the hardness of computing the function on the star topology
    corecore