2,110 research outputs found

    Improved Algorithms for the Shortest Vector Problem and the Closest Vector Problem in the Infinity Norm

    Get PDF
    Blomer and Naewe[BN09] modified the randomized sieving algorithm of Ajtai, Kumar and Sivakumar[AKS01] to solve the shortest vector problem (SVP). The algorithm starts with N=2O(n)N = 2^{O(n)} randomly chosen vectors in the lattice and employs a sieving procedure to iteratively obtain shorter vectors in the lattice. The running time of the sieving procedure is quadratic in NN. We study this problem for the special but important case of the ℓ∞\ell_\infty norm. We give a new sieving procedure that runs in time linear in NN, thereby significantly improving the running time of the algorithm for SVP in the ℓ∞\ell_\infty norm. As in [AKS02,BN09], we also extend this algorithm to obtain significantly faster algorithms for approximate versions of the shortest vector problem and the closest vector problem (CVP) in the ℓ∞\ell_\infty norm. We also show that the heuristic sieving algorithms of Nguyen and Vidick[NV08] and Wang et al.[WLTB11] can also be analyzed in the ℓ∞\ell_{\infty} norm. The main technical contribution in this part is to calculate the expected volume of intersection of a unit ball centred at origin and another ball of a different radius centred at a uniformly random point on the boundary of the unit ball. This might be of independent interest.Comment: Changed the titl

    Approximate Voronoi cells for lattices, revisited

    Get PDF
    We revisit the approximate Voronoi cells approach for solving the closest vector problem with preprocessing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis-Laarhoven-De Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized iterative slicer when using less than 20.076d+o(d)2^{0.076d + o(d)} memory, and we show how to obtain time-memory trade-offs even when using less than 20.048d+o(d)2^{0.048d + o(d)} memory. We also settle the open problem of obtaining a continuous trade-off between the size of the advice and the query time complexity, as the time complexity with subexponential advice in our approach scales as dd/2+o(d)d^{d/2 + o(d)}, matching worst-case enumeration bounds, and achieving the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.Comment: 18 pages, 1 figur

    Approximate CVP_p in Time 2^{0.802 n}

    Get PDF
    We show that a constant factor approximation of the shortest and closest lattice vector problem w.r.t. any ?_p-norm can be computed in time 2^{(0.802 +?) n}. This matches the currently fastest constant factor approximation algorithm for the shortest vector problem w.r.t. ??. To obtain our result, we combine the latter algorithm w.r.t. ?? with geometric insights related to coverings

    QSETH strikes again: finer quantum lower bounds for lattice problem, strong simulation, hitting set problem, and more

    Full text link
    While seemingly undesirable, it is not a surprising fact that there are certain problems for which quantum computers offer no computational advantage over their respective classical counterparts. Moreover, there are problems for which there is no `useful' computational advantage possible with the current quantum hardware. This situation however can be beneficial if we don't want quantum computers to solve certain problems fast - say problems relevant to post-quantum cryptography. In such a situation, we would like to have evidence that it is difficult to solve those problems on quantum computers; but what is their exact complexity? To do so one has to prove lower bounds, but proving unconditional time lower bounds has never been easy. As a result, resorting to conditional lower bounds has been quite popular in the classical community and is gaining momentum in the quantum community. In this paper, by the use of the QSETH framework [Buhrman-Patro-Speelman 2021], we are able to understand the quantum complexity of a few natural variants of CNFSAT, such as parity-CNFSAT or counting-CNFSAT, and also are able to comment on the non-trivial complexity of approximate-#CNFSAT; both of these have interesting implications about the complexity of (variations of) lattice problems, strong simulation and hitting set problem, and more. In the process, we explore the QSETH framework in greater detail than was (required and) discussed in the original paper, thus also serving as a useful guide on how to effectively use the QSETH framework.Comment: 34 pages, 2 tables, 2 figure

    On the Quantum Complexity of the Continuous Hidden Subgroup Problem

    Get PDF
    The Hidden Subgroup Problem (HSP) aims at capturing all problems that are susceptible to be solvable in quantum polynomial time following the blueprints of Shor's celebrated algorithm. Successful solutions to this problems over various commutative groups allow to efficiently perform number-theoretic tasks such as factoring or finding discrete logarithms. The latest successful generalization (Eisentrager et al. STOC 2014) considers the problem of finding a full-rank lattice as the hidden subgroup of the continuous vector space Rm , even for large dimensions m . It unlocked new cryptanalytic algorithms (Biasse-Song SODA 2016, Cramer et al. EUROCRYPT 2016 and 2017), in particular to find mildly short vectors in ideal lattices. The cryptanalytic relevance of such a problem raises the question of a more refined and quantitative complexity analysis. In the light of the increasing physical difficulty of maintaining a large entanglement of qubits, the degree of concern may be different whether the above algorithm requires only linearly many qubits or a much larger polynomial amount of qubits. This is the question we start addressing with this work. We propose a detailed analysis of (a variation of) the aforementioned HSP algorithm, and conclude on its complexity as a function of all the relevant parameters. Incidentally, our work clarifies certain claims from the extended abstract of Eisentrager et al
    • …
    corecore