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Abstract. The Hidden Subgroup Problem (HSP) aims at capturing all
problems that are susceptible to be solvable in quantum polynomial time
following the blueprints of Shor’s celebrated algorithm. Successful solu-
tions to this problems over various commutative groups allow to effi-
ciently perform number-theoretic tasks such as factoring or finding dis-
crete logarithms.
The latest successful generalization (Eisentrager et al. STOC 2014) con-
siders the problem of finding a full-rank lattice as the hidden subgroup
of the continuous vector space Rm, even for large dimensions m. It un-
locked new cryptanalytic algorithms (Biasse-Song SODA 2016, Cramer
et al. EUROCRYPT 2016 and 2017), in particular to find mildly short
vectors in ideal lattices.
The cryptanalytic relevance of such a problem raises the question of a
more refined and quantitative complexity analysis. In the light of the in-
creasing physical difficulty of maintaining a large entanglement of qubits,
the degree of concern may be different whether the above algorithm re-
quires only linearly many qubits or a much larger polynomial amount of
qubits.
This is the question we start addressing with this work. We propose a
detailed analysis of (a variation of) the aforementioned HSP algorithm,
and conclude on its complexity as a function of all the relevant param-
eters. Incidentally, our work clarifies certain claims from the extended
abstract of Eisentrager et al.
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1 Introduction

The Hidden Subgroup Problem. Among all quantum algorithms, Shor’s
algorithm [25] for factoring and finding discrete logarithms stands out as demon-
strating the largest complexity gap between classical and quantum computing.
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It is also singular by its cryptanalytic implications, and, due to progress toward
the realization of large quantum computers, this celebrated algorithm is now mo-
tivating the standardization of quantum-resistant schemes [19], in preparation
of a global update of widely deployed encryption and authentication protocols.

The core idea of quantum period finding from [25] is not limited to factoring
and discrete logarithm, and the Hidden Subgroup Problem formalized in [18]
serves as a convenient interface between the quantum-algorithmic techniques
for period finding, and applications to solve other computational problems, in
particular problems arising from number theory. We will here discuss only the
case of commutative groups. The cases of non-abelian groups such as dihedral
groups are very interesting as well and have fascinating connections with lattice
problems [22]; however, no polynomial time algorithm is known for those cases,
and the best known algorithm has sub-exponential complexity [15], using very
different techniques.

The simplest version of the Hidden Subgroup Problem consists of finding a
hidden subgroup H in a finite abelian group G, when given access to a strictly
H-periodic function f : G→ R. Here, in the language of representation theory,
the off-the-shelf period-finding quantum algorithm finds a uniformly random
character χ ∈ Ĝ that acts trivially on H. Shor’s original algorithm [25] for integer
factoring finds a hidden subgroup H in the ambient group Z. The infiniteness of
Z induces some “cut-off” error; nevertheless, the distribution of the algorithm’s
output is still concentrated around the multiples of the inverse period.

A generalization to the real line H = R was proposed by Hallgren [12] and
allows to solve Pell’s equation. The case of real vector space of constant dimen-
sion H = Rc has also been studied in [11,24], and permits the computation of
unit groups of number fields of finite degree.

The Continuous Hidden Subgroup Problem in large dimension. The
latest generalization of the HSP algorithm, proposed by Eisentrager, Hallgren,
Kitaev and Song in an extended abstract [8], targets the ambient group G = Rm
(for a non-constant dimension m) with a hidden discrete subgroup H = Λ, i.e.
a lattice. Next to the ambient group Rm being continuous, an additional special
feature is that the Λ-periodic function f is assumed to produce a “quantum
output”. More formally, f : Rm → S, x 7→ |f(x)〉, where S is the state space of a
quantum system, and the HSP algorithm is given access to a unitary that maps
|x〉|0〉 to |x〉|f(x)〉. A crucial observation here is that |f(x)〉 and |f(y)〉 are not
necessarily orthogonal (or even distinct) for distinct x and y modulo Λ. In other
words, it is not assumed that f is strictly periodic, but merely that |f(x)〉 and
|f(y)〉 are “somewhat orthogonal” for x and y that are “not too close” modulo
Λ, and that f is Lipschitz continuous.

In their extended abstract [8] Eisentrager et al. consider a variation of the
standard HSP algorithm in order to tackle the Continuous HSP problem. In
order to deal with the continuous nature of the domain Rm of f , the proposed
HSP algorithm acts on a bounded “grid” of points within Rm. Additionally, the
algorithm is modified in the following ways: (1) The initial state is not a uniform
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superposition (over the considered grid points in Rn) but follows a trigonometric
distribution, and (2) the quantum Fourier transform is done “remotely”, i.e.,
rather than applying it to the actual register, the register is entangled with an
ancilla and the quantum Fourier transform is then applied to the ancilla instead.
According to [8], applying the quantum Fourier transform directly would make
the resulting approximation errors difficult to analyze.

As an application, Eisentrager et al. also propose a quantum polynomial time
algorithm for computing the unit group of a number field in their article [8]. This
was generalized by Biasse and Song [2] to the computation of S-unit groups,
and therefore to the computation of class groups and to finding a generator of
a principal ideals. This led to solving the short vector problem in certain ideal
lattices for non-trivial approximation factors [4,5,21]. While the cryptanalytic
consequences for ideal-lattice based cryptography seems limited so far [7], these
results demonstrate a hardness gap between ideal lattices and general ones.

The Analysis by Eisentrager et al. While demonstrating that a class of
problems admits a quantum polynomial time algorithm is typically sufficiently
satisfactory from a theoretical perspective, the potential cryptanalytic implica-
tion of efficiently solving the Continuous HSP invites us to refine the complexity
analysis. This is the main purpose of this paper.

One difficulty for this study is that the extended abstract of Eisentrager et
al. has to this date not been followed by a public full version. Certainly, the
extended abstract does give a credible approach to the problem at hand, by
illustrating that in the limit of choosing an unbounded and infinitely fine grid in
Rm the algorithm does what it is supposed to do. However, due to the absence
of a full treatment of certain claims in the analysis and due the formulation of
the main claim about the solvability of the continuous HSP, the quantitative
aspects of their result remain unclear.

In more detail, neither the statement of Theorem 6.1 nor its analysis in [8]
addresses the dependency of the (claimed to be polynomial time) running time on
the parameters of the Continuous HSP. For example, a constant function satisfies
Definition 1.1 in [8] of being a Continuous HSP instance for any lattice L with
parameter ε = 1, or, similarly, with ε < 1 but r being greater than the covering
radius of L; yet, such a function makes the Continuous HSP problem vacuously
hard. Similarly, even when the parameters of the Continuous HSP are constant
(and in a meaningful region so as to avoid the above kind of counter examples),
it is unclear how the expected “quality” of the output (in terms of precision and
success probability) affects the running time. The proposed algorithm is clearly
polynomial time in the number of qubits it acts on; however, while [8] argues that
in the theoretical limit of infinitely many qubits the algorithm works perfectly,
the “rate of convergence” remains unclear.

An additional complication is that it may not be clear what polynomial-time
formally means when the input is an oracle. For example, in an application of
the Continuous HSP algorithm it may be critical to know whether the running
time grows polynomially in the the Lipschitz constant of f (which is one of the
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parameters of the Continuous HSP), or polynomially in its logarithm. We will
show that it is actually the latter.

Our work. The goal of this paper is to provide a rigorous refined analysis of (a
slightly modified version of) the Continuous HSP quantum algorithm proposed
by Eisentrager et al. [8]. We provide an explicit bound on the number of qubits
needed by the algorithm, clarifying the dependency on the parameters of the
Continuous HSP instance and on the required precision and success probability.
This shows explicitly in what parameters the algorithm is polynomial time and
with what exponent.

The algorithm that we consider and analyze differs from the one proposed
by Eisentrager et al. [8] in the following two points: First, we specify the ini-
tial state of the algorithm to have Gaussian weight, while [8, Sec. 6.2] suggests
to use a cropped trigonometric function; our choice makes the analysis simpler
and tighter thanks to the well known tail-cut and smoothness bounds of Ba-
naszczyk [1] and Micciancio and Regev [16]. Secondly, we do not make use of a
“remote” Fourier transform, as its advantages were unclear to us.

Our analysis is divided into two parts, which are summarized by formal state-
ments in Section 2.2 and Section 2.3. In the first part, which is the technically
more involved one, we show that the appropriately discretized and finitized, but
otherwise (almost) standard HSP quantum algorithm produces sample points in
Rm that lie close to the dual lattice Λ∗ with high probability. More precisely,
and more technically speaking, we show that the algorithm’s output is a sample
point close to `∗ ∈ Λ∗ with probability close to 〈c`∗ |c`∗〉, where the vectors |c`∗〉
are the Fourier coefficients of the function f . This is in line with the general
HSP approach, where for instance Shor’s algorithm for period finding over Z
produces a point that is close to a random multiple of the inverse period, except
with bounded probability.

In this first part (Section 4 and Section 5), we bound the complexity of
the core algorithm in terms of the error that we allow in the above context of a
sampling algorithm, and depending on the Lipschitz constant of f . In particular,
we show that the number of qubits grows as mQ, where Q, the “number of qubits
per dimension”, grows linearly in the logarithm of the Lipschitz constant of f ,
the logarithm of the inverse of the error probability and the logarithm of the
inverse of the (absolute) precision, and quasi-linearly in m. The running time of
the algorithm is then bounded by O(m2Q2).

In the second part (Section 6), we then relate the parameters of the Contin-
uous HSP instance to the number of sample points necessary, and thus to how
often the core algorithm needs to be repeated, in order to have an approximation
of the entire dual lattice Λ∗.

Remark 1. Recovering the exact hidden lattice is outside the scope of this work,
since this task is application-dependent. For instance, when applying this algo-
rithm to compute the unit group O×K of a number field K, the hidden lattice
will be the so-called Log-unit lattice which is irrational. Yet, a sufficiently good
approximation of the logarithm of a unit yields the exact underlying unit, simply
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by taking the exponential and rounding it to the closest element in the ring of
integers OK .

Remark 2. An auxiliary task that we rely upon for the first step is the prepa-
ration of (an approximation of) a quantum superposition according to Gaus-
sian weight. This task is known to take quantum polynomial time [10,14]. In
Appendix A we propose a refined analysis for the cost of the algorithm of [14],
demonstrating a complexity of O(Q+k) qubits and O(Qk3/2) for approximating
it to a precision 2−k over an interval of integers of length 2Q. This is summarized
and formalized as Theorem 3 in Section 2.4.

Acknowledgments. We would like to thank Sean Hallgren, Stacey Jeffery,
Oded Regev, Fang Song and Ronald de Wolf for helpful discussions on the topic
of this article.

2 Problem Statements and Results

2.1 Notation and Set-Up

Here and throughout the paper, H is a complex Hilbert space of dimension
N = 2n, and S is the unit sphere in H; thus, a vector in S describes the state of
a system of n qubits. For an arbitrary positive integer m, we consider a function

f : Rm → S ⊂ H , x 7→ |f(x)〉

that is periodic with respect to a full rank lattice Λ ⊂ Rm; hence, f may be
understood as a function Rm/Λ→ S. The function f is assumed to be Lipschitz
continuous with Lipschitz constant Lip(f). Later, we will also require f to be
“sufficiently non-constant”. One should think of f as an oracle that maps a
classical input x to a quantum state |f(x)〉 over n qubits.

We write Λ∗ for the dual lattice of Λ. By λ1(Λ) we denote the length of a
shortest non-zero vector of Λ, and correspondingly for λ1(Λ∗). Since Λ is typically
clear from the context, we may just write λ1 and λ∗1 instead of λ1(Λ) and λ1(Λ∗).

We denote by Br(x) = {y ∈ Rm | ‖y − x‖ < r} the open Euclidean ball
with radius r around x, and by Br(x) = Br(x) ∩ Zm its integer analogue. For
the open ball around 0 we just denote Br, and for a set X ⊂ Rm we write
Br(X) =

⋃
x Br(x) and Br(X) =

⋃
xBr(x) where the union is over all x ∈ X.

2.2 Dual Lattice Sampling Problem

Recalling from the introduction, the Continuous HSP is the problem of recov-
ering the hidden lattice Λ when given oracle access to a function f as discussed
above. For the purpose of a more modular analysis, we first consider the fol-
lowing sampling problem instead. Informally, the task is to sample points in
Rm that are respectively close to points `∗ ∈ Λ∗ that follow the distribu-
tion Dideal(`∗) = 〈c`∗ |c`∗〉, where |c`∗〉 are the vectorial Fourier coefficients of
f : Rm/Λ→ S (see Section 3).
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Problem 1 (Dual Lattice Sampling Problem). Given parameters η > 0 and
1
2 > δ > 0, and given oracle access to a function f as above, sample according
to a (finite) distribution D on Rm that satisfies, for any S ⊆ Λ∗,

pS := D
(
Bδλ∗1 (S)

)
≥

(∑
`∗∈S

〈c`∗ |c`∗〉

)
− η . (1)

In the problem statement above, D
(
Bδλ∗1 (S)

)
denotes the cumulative weight

of the set Bδλ∗1 (S) with respect to the distribution D.

Theorem 1. Algorithm 1 solves the Dual Lattice Sampling Problem with oracle
function f , error parameter η and relative distance parameter δ, using m calls
to the Gaussian superposition subroutine (see Theorem 3), one quantum oracle
call to f , O(mQ) qubits, and O(m2Q2) quantum gates, where

Q = n+m log

(
nm log

1

η

)
+ log

(
Lip(f)

η · δλ∗1

)
.

2.3 Full Dual Lattice Recovery

Recovering the full lattice (or equivalently its dual) requires an extra assumption
on the oracle function f , as captured by the third condition in the following
definition, reformatted from Definition 1.1 of [8].

Definition 1. A function f : Rm → S ⊂ H is said to be an (a, r, ε)-HSP oracle
of the full-rank lattice Λ ⊂ Rm if

– f is Λ-periodic,
– f is a-Lipschitz: Lip(f) ≤ a,
– For all x, y ∈ Rm such that dRm/Λ(x, y) ≥ r, it holds that |〈f(x)|f(y)〉| ≤ ε,

where dRm/Λ(x, y) = minv∈Λ ‖x − y − v‖ denotes the distance induced by the
Euclidean distance of Rn modulo Λ.

According to Eisentrager et al. [8], for (some undetermined) adequate pa-
rameters, the above definition ensures that the distribution on the dual lattice
Λ∗ is not concentrated on any proper sublattice, hence sufficiently many samples
will generate the lattice fully. We formalize and quantify this proof strategy, and
obtain the following quantitative conclusion. We note that the constraints on r
and ε are milder that one could think, for example ε does not need to tend to 0
as a function of n or m.

Theorem 2. Let f : Rm → S be an (a, r, ε)-HSP oracle of the full-rank lattice
Λ ⊂ Rm, with r ≤ λ1(Λ)/6 and ε ∈ [0, 1/3). Let Dideal be the distribution
supported by Λ∗, with weight 〈c`∗ |c`∗〉 at `∗ ∈ Λ∗, where |c`∗〉 are the vectorial
Fourier coefficients of the function f .
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Denote by S the random variable defined by the number of samples that needs
to be drawn from Dideal such that the samples together generate Λ∗ as a lattice.
Then, for any α > 0,

Pr

[
S > (2 + α)

t+m
1
2 −

1
4π2 − ε

]
≤ exp(−α(t+m)/2)

where t = m log2(ma2)− log2(det(L)).

The above Theorem is obtained by combining Lemmata 5 and 8 from Section 6,
instantiating the parameter R to R = ma2. This choice is somewhat arbitrary
and given for concreteness, however it does not have a critical quantitative im-
pact.

Remark 3. To optimize certain applications, it may be suboptimal to apply the
above theorem in a black-box manner. For example, when solving multiple in-
stances of the Principal Ideal Problem [2] in a fixed field K, one should note
that all instances share a common hidden sublattice, namely the Logarithmic
unit lattice LogO×K .

2.4 Gaussian State Preparation

The main algorithm of this paper requires the preparation of a multidimensional
Gaussian initial state, which can be obtained by generating the one-dimensional
Gaussian state on m parallel quantum registers. This task is known to be poly-
nomial time [10,14], and we provide a quantitative analysis in Appendix A. The
precise running time of preparing this Gaussian state is summarized below.

Theorem 3. For any positive integers q, k and for any s > 1, there exists a
quantum algorithm that prepares the one-dimensional Gaussian state

1√
ρ1/s(

1
q [q]c)

∑
x∈ 1

q [q]c

√
ρ1/s(x)|x〉 (2)

up to trace distance se−πs
2/8 + Q · 2−k using O(Q + k) qubits and O(Q · k3/2 ·

polylog(k)) quantum gates, where Q = log(q) and 1
q [q]c = [− 1

2 ,
1
2 ) ∩ 1

qZ.

The above theorem is obtained by instantiating Theorem 8 with parameters
µ = q/2 and σ =

√
2q/s and relabeling the basis states. Whenever above theorem

is used as a subroutine in Theorem 1, choosing k = log(mQ/η2) is sufficient,
causing merely an extra error of η2.

3 Preliminaries

We start with a brief introduction to Fourier analysis over arbitrary locally
compact Abelian groups. Our general treatment allows us to then apply the
general principles to the different groups that play a role in this work. For the
reader that is unfamiliar with such a general treatment, it is useful — and almost
sufficient — to think of R, of T = R/Z, and a finite group. For more details and
for the proofs we refer to [6].
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3.1 Groups

Here and below we consider a locally compact Abelian group G. Such a group
admits a Haar measure µ that is unique up to a normalization factor. The crucial
property of such a Haar measure is that it is invariant under the group action.
Simple examples are G = R with µ the Lebesgue measure, or a finite group G
with µ the counting measure.

The dual group Ĝ, consisting of the continuous group homomorphisms χ from
G into the multiplicative group of complex numbers of absolute value 1, is again
a locally compact Abelian group. As we shall see soon, for a fixed choice of the
normalization factor of the Haar measure µ for G, there is a natural choice for
the normalization factor of the Haar measure µ̂ for Ĝ.

Examples of locally compact Abelian groups that play an important role
in this work are: the m-dimensional real vector space Rm; the m-fold torus
Tm := Rm/Zm and more generally Rm/Λ for an arbitrary lattice Λ in Rm; and
the finite group Dm := 1

qZ
m/Zm ⊂ Tm (which is isomorphic to Zm/qZm) for a

positive integer q. Figure 1 below shows the corresponding dual groups as well
as the respective (dual) Haar measures as used in this paper.

G µ Ĝ µ̂

Rm λ R̂m ' Rm λ

Tm := Rm/Zm λ T̂m ' Zm #

Dm := 1
q
Zm/Zm 1

qm
# D̂m ' Zm/qZm #

Rm/Λ 1
det(Λ)

λ ̂(Rm/Λ) ' Λ∗ #

Fig. 1. Some groups G and their respective dual groups Ĝ, plus the considered (dual)
Haar measures µ and µ̂. Here, λ denotes the Lebesgue and # the counting measure.

In some cases it will be useful to identify the quotient groups Tm = Rm/Zm
and Dm = 1

qZ
m/Zm with the respective representing sets

Tmrep := [− 1
2 ,

1
2 )m ⊂ Rm and Dmrep := 1

qZ
m ∩ Tmrep ,

and similarly D̂m ' Zm/qZm with

D̂mrep := [q]mc := Zm ∩ [− q2 ,
q
2 )m .

It will be useful to understand that if H ⊂ G is a closed subgroup then G/H
and H have dual groups that satisfy the following natural isomorphisms.

Ĝ/H ' H⊥ := {χ ∈ Ĝ | χ(h) = 1∀h ∈ H} ⊂ Ĝ and Ĥ ' Ĝ/H⊥.

As we shall see soon, for any choice of the Haar measure µH for H there is a
natural choice for the Haar measure µG/H for G/H, and vice versa.
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3.2 Norms and Fourier Transforms

Let G be as above with a fixed choice for the Haar measure µ. For any p ≥ 1,
Lp(G) denotes the vector space of measurable functions f : G → C with finite
norm ‖f‖p (modulo the functions with vanishing norm), where

‖f‖pp :=

∫
g∈G
|f(g)|pdµ .

We write ‖f‖p,G if we want to make G explicit. For any function f ∈ L1(G), the
Fourier transform of f is the function

FG{f} : Ĝ→ C, χ 7→
∫
g∈G

f(g)χ̄(g)dµ ,

also denoted by f̂ when G is clear from the context. The Fourier transform of
f ∈ L1(G) is continuous, but not necessarily in L1(Ĝ).

For example, for the group Dm := 1
qZ

m/Zm with the Haar measure as fixed
in Figure 1, the L2-norm and the Fourier transform are respectively given by

‖f‖22 =
1

qm

∑
x∈Dm

|f(x)|2 and F{f}(y) =
1

qm

∑
x∈Dm

f(x)e−2πi〈x,y〉 .

We note that we use a different convention on the scaling than what is common
in the context of the quantum Fourier transform.

Given the Haar measure µ for G, there exists a unique dual Haar measure µ̂
for Ĝ with the property that, for any f ∈ L1(G), if f̂ = FG{f} ∈ L1(Ĝ), then

f = F−1G {f̂}, where

F−1G {f̂} : G→ C, g 7→
∫
χ∈Ĝ

f̂(χ)χ(g)dµ̂

is the inverse Fourier transform. From now on it is always understood that the
Haar measure of the dual group is chosen to be the dual of the Haar measure of
the primal group. With this choice, we also have the following well known fact.

Theorem 4 (Plancherel’s Identity). For all f ∈ L1(G) ∩ L2(G),

‖f‖2,G = ‖FG{f}‖2,Ĝ .

Finally, we recall the convolution theorem, which states that f̂g = f̂ ? ĝ for all
functions f, g ∈ L1(G) that have Fourier transforms f̂ , ĝ ∈ L1(G). This extends
to functions f ∈ L1(G/H) and g ∈ L1(G), with f understood as an H-periodic
function on G. Tailored to G = Rm and H = Λ, where Rm/Λ has dual group
Λ∗, it then states that

FRm{fg}(y) = FRm/Λ{f} ? FRm{g}(y) =
∑
`∗∈Λ∗

FRm/Λ{f}(`∗)FRm{g}(y − `∗)

for any y ∈ Rm.
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3.3 The Poisson Summation Formula

Poisson summation formula is well-known for the group G = R, where it states
that

∑
k∈Z f̂(k) =

∑
x∈Z f(x). In the case G = Z/NZ, it states that

N/s∑
i=0

f̂(is) =

s∑
j=1

f(jNs )

for any integer s that divides N . In order to formulate the Poisson summation
formula for an arbitrary locally compact Abelian group G, we need to introduce
the notion of restriction and periodization of functions.

Definition 2 (Restriction). Let H ⊆ G be a subset or a subgroup. For any
continuous function f : G→ C we define f

∣∣
H

: H → C, h 7→ f(h).

Definition 3 (Periodization). Let H be a closed subgroup of G with Haar
measure µH . For any function f ∈ L1(G), we define

f |G/H : G/H → C, g +H 7→
∫
h∈H

f(g + h)dµH .

For any closed subgroup of G and any choice of the Haar measure µH , there
exists a Haar measure µG/H for G/H such that the quotient integral formula∫

G/H

(∫
H

f(g + h)dµH(h)

)
dµG/H(g +H) =

∫
G

f(g)dµ(g) (3)

holds for any continuous function f : G → C with compact support (see [6,
Section 1.5]).

With this choice of Haar measure for G/H, and with the dual measures for
the respective dual groups, we are ready to state the general form of the Poisson
summation formula (obtained from [6, Section 3.6], see also Fig. 2).

Theorem 5 (Poisson Summation Formula). For continuous f ∈ L1(G),

FH{f
∣∣
H
} = FG{f}|Ĥ and FG/H{f |

G/H} = FG{f}
∣∣
Ĝ/H

.

L1(H) L1(G) L1(G/H)

L1
(
Ĝ/Ĝ/H

)
L1(Ĝ) L1

(
Ĝ/H

)
FH

∣∣
H |G/H

FG FG/H

|Ĥ
∣∣
Ĝ/H

Fig. 2. Informal illustration of Theorem 5 by means of a diagram that commutes
whenever the maps are well defined.
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Applied to G = Rm and H = Zm, so that G/H = Tm and Ĝ/H ' Zm; and
applied to G = Tm and H = Dm below, we obtain the following.

Corollary 1. For continuous h ∈ L1(Rm), we have FTm{h|T
m

} = FRm{h}
∣∣
Zm .

Corollary 2. For continuous t ∈ L1(Tm), we have FDm
{
t
∣∣
Dm
}

= FTm{t}|D̂
m

.

3.4 Trigonometric Approximation

As another application of the Poisson summation formula, we derive a relation
between the Lipschitz constant of a function on Tm and the ‘error of discretiza-
tion’ in the Fourier transform when restricting the function to Dm.

Theorem 6. For any Lipschitz function h : Tm → C with Lipschitz constant
Lip(h), and any subset C ⊆ D̂m, we have

∣∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm
∣∣ ≤ 4π

√
mLip(h)

q

Here and below, we slightly abuse notation and use 1C as indicator function
acting on D̂m and on Zm, justified by identifying D̂m with D̂mrep = [q]mc ⊂ Zm.
Also, we write FDm {h} instead of FDm {h|Dm}, taking it as understood that h
is restricted to Dm when applying FDm .

Proof. Using a result of Yudin [28, Example I after Theorem 2], there exists a
trigonometric approximation t of h, i.e. a function t : Tm → C with t̂(x) :=
FTm{t}(x) = 0 for all x 6∈ [q]mc so that ‖h− t‖∞ ≤ π

√
mLip(h)/q. Recalling

that D̂m ' Zm/qZm, the fact that t̂ : Zm → C vanishes outside of [q]mc implies
for all x ∈ [q]mc that

t̂(x) =
∑
d∈qZm

t̂(x+ d) = t̂|D̂
m

(x+ qZm) = FDm {t} (x+ qZm) ,

where the last equality is by Corollary 2 (and our convention of omitting the re-
striction to Dm). In particular, we have ‖1C ·FDm {t} ‖2,D̂m = ‖1C ·FTm{t}‖2,Zm .

Therefore, by the (reverse) triangle inequality and the linearity of the Fourier
transform, one obtains∣∣ ‖1C · FDm {h}‖2,D̂m − ‖1C · FTm{h}‖2,Zm

∣∣
≤ ‖1C · FDm {h− t}‖2,D̂m + ‖1C · FTm{h− t}‖2,Zm .

Observing that ‖1C · F{h− t}‖2 ≤ ‖F{h− t}‖2 = ‖h− t‖2 ≤ ‖h− t‖∞ for
both Dm and for Zm, this proves the claim.
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3.5 Fourier Transform on Functions with Multidimensional
Codomain

The Fourier transform as discussed above generalizes to vector-valued functions
f : G → CN simply by applying F to the N coordinate functions, resulting in
a function F{f} : Ĝ → CN . By fixing an orthonormal basis, this extends to
functions f : G → H for an arbitrary finite-dimensional complex Hilbert space,
where, by linearity of the Fourier transform, F{f} : Ĝ → H is independent of
the choice of the basis.

Important for us is the case f : Rm/Λ→ H. Spelling out the above, we get

FRm/Λ{f} : Λ∗ → H, `∗ 7→ |c`∗〉 :=
1

detΛ

∫
x∈F
|f(x)〉e−2πi〈x,`

∗〉dx ,

where the vectors |c`∗〉 are also referred to as the (vectorial) Fourier coefficients
of f . The Parseval-Plancherel identity then becomes∑

`∗∈Λ∗
〈c`∗ |c`∗〉 = ‖f‖22,Rm/Λ :=

1

detΛ

∫
x∈F
〈f(x)|f(x)〉dx .

3.6 The Gaussian function and smoothing errors

Let m be a fixed positive integer. For any parameter σ > 0, we consider the
m-dimensional Gaussian function

ρσ : Rm → C , x 7→ e−
π‖x‖2

σ2 ,

which is well known to satisfy the following basic properties.

Lemma 1. For all σ > 0, m ∈ N and x, y ∈ Rm, we have
∫
z∈Rm ρσ(z)dz = σm,

FRm{ρσ} = σmρ1/σ,
√
ρσ(x) = ρ√2σ(x) and ρσ(x)ρσ(y) = ρ σ√

2
(x+y2 )ρ σ√

2
(x−y2 ).

Remark 4. From these properties it follows that the integral of the L2-norm of

x 7→ σm/2 ·
√
ρ1/σ(x) equals 1, i.e.,

∥∥σm/2 ·√ρ1/σ(x)
∥∥2
2,Rm = 1.

The following two results (and the variations we discuss below) will play an
important role and will be used several times in this paper: Banaszczyk’s bound,
originating from [1], and the smoothing error 3 , as introduced by Micciancio
and Regev [16]. They allow us to control

ρσ(X) :=
∑
x∈X

ρσ(x) ,

3 Although most literature on lattices analyze smoothing errors in terms of the smooth-
ing parameter ηε, we chose not to do so. Instead, this paper addresses smoothing
errors in a reversed and more direct way, making the errors occurring in the later
analysis more easy to describe.
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for certain discrete subsets X ⊆ Rm. For ease of notation, we let

β(m)
z :=

(
2πez2

m

)m/2
e−πz

2

,

which decays super-exponentially in z (for fixed m). The following formulation
of Banaszczyk’s lemma is obtained from [17, Equation (1.1)].

Lemma 2 (Banaszczyk’s Bound). Whenever r/σ ≥
√

m
2π ,

ρσ
(
(Λ+ t) \ Br

)
≤ β(m)

r/σ · ρσ(Λ) ,

where Br = Br(0) = {x ∈ Rm
∣∣ |x| < r}.

Imitating techniques from [16, Lemma 3.2], we have:

Lemma 3. Let σ ≥
√
m

λ1(Λ∗)
. Then ρ1/σ(Λ∗\0) ≤ 2 · β(m)

σλ1(Λ∗)
.

As a direct corollary, we have the following result.

Corollary 3. Let σ ≥ 2
√
m, and let x ∈ Rm with ‖x‖∞ ≤ 1/2. Then

ρ1/σ
(
Zm\{0}+ x

)
≤ 2β

(m)
σ/2 .

Proof. We have ρ1/σ
(
Zm\{0}+x

)
≤ ρ1/σ

(
(Zm+x)\B 1

2

)
≤ β(m)

σ/2ρ1/σ(Zm), where

the second inequality follows from Lemma 2. Using Lemma 3 to argue that

ρ1/σ(Zm) = 1 + ρ1/σ(Zm\0) ≤ 1 + 2β
(m)
σ ≤ 2 then proves the claim.

The following lemma, which combines [16, Lemma 4.1] and [16, Lemma 3.2],
controls the fluctuation of the sum ρs(Λ+ t) for varying t ∈ Rm.

Lemma 4 (Smoothing Error). Let Λ ∈ Rm be a full rank lattice, and let
σ ≥
√
m/λ1(Λ∗). Then, for any t ∈ Rm,

(1− 2β
(m)
σλ1(Λ∗)

)
σm

detΛ
≤ ρσ(Λ+ t) ≤ (1 + 2β

(m)
σλ1(Λ∗)

)
σm

detΛ
. (4)

Corollary 4. For σ ≥
√
m

λ1(Λ∗)
and for any t ∈ Rm, we have ρσ(Λ+ t) ≤ 2 σm

detΛ .

Proof. Using Lemma 4 and noticing 2β
(m)
σλ1(Λ∗)

≤ 2β
(m)√
m
≤ 1 yields the result.

3.7 Lipschitz Condition

Theorem 7 (Rademacher’s theorem). A Lipschitz function f : Rm/Λ→ H
has weak partial derivatives ∂xjf : Rm/Λ→ H lying in L2(Rm/Λ). In particular,∥∥∂xjf ∥∥22,Rm/Λ ≤ Lip(f)2.

Proof. Combining the proof of [13, Theorem 4.1 and 4.9] and [26, Theorem 2]
on measures of compact sets, we obtain this result.
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Corollary 5. Let f : Rm/Λ → H be a Lipschitz-continuous function, and de-
note by |c`∗〉 the vectorial Fourier coefficients of f . Then,

∑
`∗∈Λ∗
‖`∗‖≥B

〈c`∗ |c`∗〉 ≤
mLip(f)2

4π2B2
.

Proof. Since f is Lipschitz, we can apply Theorem 7. Furthermore, the identity
|f(x)〉 =

∑
`∗∈Λ∗ |c`∗〉e2πi〈x,`

∗〉 implies |∂xjf(x)〉 = 2πi
∑
`∗∈Λ∗ `

∗
j |c`∗〉e2πi〈x,`

∗〉

almost everywhere ([27, Lemma V.2.11] or [23, Lemma 2.16]). Finally, given
that

∥∥∂xjf∥∥22,Rm/Λ ≤ Lip(f)2, Plancherel’s identity implies that

mLip(f)2 ≥
m∑
j=1

∥∥∂xjf∥∥22,Rm/Λ = 4π2
∑
`∗∈Λ∗

‖`∗‖22 〈c`∗ |c`∗〉

≥ 4π2
∑
`∗∈Λ∗
‖`∗‖2≥B

‖`∗‖22 〈c`∗ |c`∗〉 ≥ 4B2π2
∑
`∗∈Λ∗
‖`∗‖2≥B

〈c`∗ |c`∗〉 ,

from which the claim follows.

4 Algorithm

4.1 The Algorithm

Given a Λ-periodic function f : Rm → S as discussed in Section 2, which maps a
classical input x to a quantum state |f(x)〉, we consider the following quantum
algorithm (see Figure 3). The algorithm has oracle access to f , meaning that
it has access to a unitary that maps |x〉|0〉 to |x〉|f(x)〉. As a matter of fact,
we may obviously assume the algorithm to have oracle access to a unitary that
maps |x〉|0〉 to |x〉|f(V x)〉 for a parameter V ∈ R chosen by the algorithm. Per
se, x may be arbitrary in Rm; for any concrete algorithm it is of course necessary
to restrict x to some finite subset of Rm.

The algorithm we consider follows the blueprint of the standard hidden-
subgroup algorithm. Notable differences are that we need to discretize (and
finitize) the continuous domain Rm of the function, and the algorithm starts off
with a superposition that is not uniform but follows a (discretized and finitized)
Gaussian distribution. The reason for the latter choice is that Gaussian distri-
butions decay very fast and behave nicely under the Fourier transform (as they
are eigenfunctions of the Fourier transform).

The algorithm is given in Figure 3 below. It uses two quantum registers, each
one consisting of a certain number of qubits. Associated to the first register are
orthonormal bases {|x〉Dm}x∈Dm and {|y〉D̂m}y∈D̂m where the basis vectors are
labeled by x ∈ Dm and y ∈ D̂m, respectively, which we identify with elements
x ∈ Dmrep and y ∈ D̂mrep (see Section 3.1). The second register has state space H.
The algorithm is parameterized by q ∈ N (which determines Dm), s > 0 and

14



Algorithm 1: Quantum algorithm for the dual lattice sampling problem

1 Prepare the Gaussian state |ψ◦〉 :=
∑
x∈Dm

√
ρ1/s(x) · |x〉Dm |0〉 ;

2 Apply the f-oracle, yielding
∑
x∈Dm

√
ρ1/s(x) · |x〉Dm |f(V x)〉 ;

3 Apply the quantum Fourier transform on the first register, yielding the

unnormalized state
∑
x∈Dm

∑
y∈D̂m

√
ρ1/s(x) · e2πi〈x,y〉 · |y〉D̂m |f(V x)〉 ;

4 Measure the first register in the D̂mrep-basis yielding some y ∈ D̂mrep, and
output y

V
;

Fig. 3. The continuous-hidden-subgroup quantum algorithm.

V > 0. Intuitively, the fraction s
V is tightly related to the absolute precision of

the output, whereas q is connected with the number of qubits needed.
The description and Analysis of Step 1 is deferred to Appendix A. It will

be shown (as summarized in Theorem 3) that its cost is negligible compared to
the main cost of Algorithm 1, while contributing an error of at most o(η) in the
trace distance.

4.2 The Figure of Merit

Recall that N = dimH = 2n. Then the state after step (2) of Algorithm 1 equals,
up to normalization,

|ψ〉 := sm/2
∑
x∈Dm

√
ρ1/s(x) |x〉Dm |f(V x)〉

which we can rewrite as

|ψ〉 = sm/2
N∑
k=1

∑
x∈Dm

√
ρ1/s(x) |x〉Dm |ek〉〈ek|f(V x)〉 =

N∑
k=1

∑
x∈Dm

hk(x) |x〉Dm |ek〉

by applying the identity operator
∑N
k=1 |ek〉〈ek| and putting

hk(x) := sm/2
√
ρ1/s(x)〈ek|f(V x)〉 .

Applying the quantum Fourier transform in step (3) maps this to

|ψ̂〉 = qm/2
N∑
k=1

∑
y∈D̂m

FDm {hk} (y) |y〉D̂m |ek〉 ,

where the factor qm/2 comes from the fact that, by our convention, the Fourier
transform FDm is scaled with the factor q−m, while the quantum Fourier trans-
form comes with a scaling factor q−m/2.
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Up to normalization, the probability to observe outcome y in step (4) thus is

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉 = qm
N∑
k=1

|FDm {hk} (y)|2 ,

and so, for any “target” subset C ⊂ D̂m, the probability for the algorithm to
produce an outcome y ∈ C equals

D(C) =
∑
y∈C

〈ψ̂|(|y〉〈y| ⊗ I)|ψ̂〉
〈ψ◦|ψ◦〉

=

∑N
k=1 ‖1C · FDm {hk}‖22,D̂m
sm

qm

∑
x∈Dm ρ1/s(x)

. (5)

Intuitively, in the limit q →∞ where the grid 1
qZ

m becomes Rm, neglecting

constant factors, the function FDm {hk} is expected to converge to

FRm{ρ√2/sfk(V ·)} = ρs/
√
2 ? FRm{fk(V ·)} .

Furthermore, when V is large enough compared to s then relative to the dual
lattice V Λ∗ the Gaussian function behaves as a Dirac delta function. Thus, the
above funcion is then supported by V Λ∗ and takes on the values 〈ek|c`∗〉 . Hence,
by summing the squares over all k, we get the claimed 〈c`∗ |c`∗〉.

Below, we prove that this intuition is indeed correct, and we work out the
actual “rate of convergence”.

5 Analysis

5.1 Proof Overview

In the overview here and in the formal analysis in the next section, we consider
the case V = 1. This is without loss of generality; in order to deal with an
arbitrary V we simply apply our analysis to the function fV := f(V ·), with the
effect that in the error term, Λ∗ becomes V Λ∗ and Lip(f) becomes V Lip(f).

The error analysis (for V = 1) is divided into three parts. The first part
consists of showing that the denominator from Equation (5) satisfies

sm

qm

∑
x∈Dm

ρ1/s(x) ≈ 1 .

In the second part, which is the most technical one, we show that for any
C ⊂ D̂m, also understood as a subset of D̂mrep = [q]mc ⊂ Zm,

‖1C · FDm {hk}‖22,D̂m &
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

|〈ek|c`∗〉|2 . (6)
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We recall that |c`∗〉 are the vectorial Fourier coefficients of f and Bδλ∗1 (`∗) =
Bδλ∗1 (`∗) ∩ Zm. This approximation (6) is divided into the following five steps:

‖1CFDm {hk}‖22,D̂m
(1)
≈
∥∥∥1CFDm

{
hk|T

m
}∥∥∥2

2,D̂m

(2)
≈
∥∥∥1CFTm{hk|T

m

}
∥∥∥2
2,Zm

(3)
= ‖1CFRm{hk}‖22,Zm

(4)
≈

∑
`∗∈Λ∗

|〈ek|c`∗〉|2 · ιC(`∗)
(5)

≥
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

|〈ek|c`∗〉|2 .

It thus follows that

D(C) &
N∑
k=1

∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

|〈ek|c`∗〉|2 =
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 ,

and therefore, applied to C := Bδλ∗1 (S), that for any S ⊂ Λ∗ for which Bδλ∗1 (S) ⊂
[q]mc , requirement (1) is satisfied.

The third part of the analysis is to show that (1) is satisfied also for S ⊂ Λ∗
for which Bδλ∗1 (S) is not fully contained in [q]mc . For such S, it is then sufficient to
show that

∑
`∗∈S\S0

〈c`∗ |c`∗〉 ≈ 0 then, where S0 = {`∗ ∈ S | Bδλ∗1 (`∗) ⊆ [q]mc }.
We prove this by means of Corollary 5.

We emphasize that in the formal proof below, we explicitly follow this 3-part
structure of the proof, with part 2 being divided into 5 steps as indicated above.

5.2 Formal Analysis

Part 1 By Lemma 4, we have (whenever q/s ≥
√
m),

sm

qm

∑
x∈Dm

ρ1/s(x) ≤ sm

qm
· ρ1/s

(
1

q
Zm
)
≤ 1 + 2β

(m)
q/s . (7)

Therefore,∑N
k=1 ‖1C · FDm {hk}‖22,D̂m
sm

qm

∑
x∈Dm ρ1/s(x)

≥
N∑
k=1

‖1C · FDm {hk}‖22,D̂m − εdenom (8)

with εdenom = 2β
(m)
q/s .

Part 2 Recall that hk = sm/2 · fk · ρ√2/s is a function hk : Rm → C, where

fk(x) = 〈ek|f(x)〉. In the following, by slightly abusing notation, we also un-
derstand hk as a function hk : Tm → C by considering the restriction of hk to
Tmrep = [− 1

2 ,
1
2 )m. Similarly, we understand hk as a function hk : Dm → C by

considering its restriction to Dmrep = Tmrep ∩ 1
qZ

m.
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Step 1. Observe that∥∥∥1C · FDm {hk} − 1C · FDm
{
hk|T

m
}∥∥∥

2,D̂m
≤
∥∥∥FDm

{
hk − hk|T

m
}∥∥∥

2,D̂m
=
∥∥∥hk|Tm − hk∥∥∥

2,Dm
.

Writing out the definition of hk|T
m

and hk, we obtain (provided that s
2
√
2
≥
√
m)

∥∥∥hk|Tm − hk∥∥∥2
2,Dm

=
1

qm

∑
x∈Dm

∣∣∣∣∣∣
∑

z∈Zm\0

hk(x+ z)

∣∣∣∣∣∣
2

≤
‖fk‖2∞ sm

qm

∑
x∈Dm

( ∑
z∈Zm\0

ρ√2/s(x+ z)

)2

≤ 4 ‖fk‖2∞ sm(β
(m)

s/
√
8
)2,

as ρ√2/s

(
Zm\{0}+x

)
≤ 2β

(m)
s

2
√

2

, from Corollary 3. Therefore, noting that ‖fk‖∞ ≤
1, ∣∣∣∣‖1C · FDm {hk}‖2,D̂m −

∥∥∥1C · FDm
{
hk|T

m
}∥∥∥

2,D̂m

∣∣∣∣ ≤ 2sm/2β
(m)
s

2
√

2

=: εper

Step 2. Using Theorem 6 with hk|T
m

, one obtains∣∣∣∣∥∥∥1C · FDm
{
hk|T

m
}∥∥∥

2,D̂m
−
∥∥∥1C · FTm{hk|T

m

}
∥∥∥
2,Zm

∣∣∣∣ ≤ εlip,
where εlip = 4π

√
mLip(hk|T

m
)

q . Recall that we use 1C as indicator function acting

on Zm and on D̂m ' Zm/qZm in the obvious way.

The Lipschitz constant of hk|T
m

can be obtained by taking the maximum value
of the absolute value of the derivative.

∇
(
hk|T

m
)

= sm/2
∑
z∈Zm

(
∇fk(x+ z)ρ√2/s(x+ z) + fk(x+ z)∇ρ√2/s(x+ z)

)
The norm of this expression is bounded by

sm/2

(
Lip(f)ρ√2/s(x+ Zm) + πs2 ‖fk‖∞

∑
z∈Zm

‖x+ z‖ ρ√2/s(x+ z)

)

≤ sm/2
(
2 Lip(f) + 2πs2

)
where we used ‖∇fk‖ ≤ Lip(fk) ≤ Lip(f), ‖fk‖∞ ≤ 1, ∇ρ√2/s(x) = πs2x ·
ρ√2/s(x), ρ√2/s(x+ Zm) ≤ 2 and

∑
z∈Zm ‖x+ z‖ ρ√2/s(x+ z) ≤ 2. The second

last inequality follows from ρ√2/s(x + Zm) ≤ 1 + ρ√2/s(Zm\{0} + x) ≤ 1 +

2β
(m)
s

2
√

2

≤ 2, see Corollary 3. The last inequality can be obtained by the fact that

‖x+ z‖ ρ√2/s(x+ z) ≤ ρ√2/(s−1)(x+ z), and repeating the former argument.
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Step 3. Apply Corollary 1 to conclude that∥∥∥1C · FTm{hk|T
m

}
∥∥∥
2,Zm

= ‖1C · FRm{hk}‖2,Zm ,

where we continue to abuse notation here by identifying FRm{hk} with its re-
striction to Z.

Using |a2 − b2| = |a + b||a − b| ≤ (|a − b| + 2|a|)|a − b| and the fact that
‖1C · FDm {hk}‖2,D̂m ≤ 2 (which follows from Equation (5) and Equation (7)),
we conclude that∣∣∣‖1C · FDm {hk}‖22,D̂m − ‖1C · FRm{hk}‖22,Zm

∣∣∣ ≤ 5(εper + εlip),

where we tacitly assume that εper + εlip < 1.

Step 4. By applying the convolution theorem as outlined in Section 3.2, we see
that

FRm{hk}[y] = FRm/Λ{fk}?FRm{sm/2ρs/√2}(y) =

(
2

s

)m/2∑
`∗∈Λ∗

c`∗ρs/
√
2(y−`∗)

where c`∗ are the Fourier coefficients of fk, i.e., c`∗ = FRm/Λ[fk](`∗). Therefore,

∣∣FRm{hk}[y]
∣∣2 =

(
2

s

)m ∑
k∗∈Λ∗

∑
`∗∈Λ∗

c`∗ c̄k∗ρs/
√
2(y − `∗)ρs/√2(y − k∗)

=

(
2

s

)m ∑
u∗∈ 1

2Λ
∗

∑
v∗∈u∗+Λ∗

cv∗+u∗ c̄v∗−u∗ρs/2(u∗)ρs/2(y − v∗) ,

where the latter is obtained by the variable substitution u∗ = `∗−k∗
2 , v∗ = `∗+k∗

2 ,
and using Lemma 1. Summing over y ∈ C, setting

ιC(`∗) :=

(
2

s

)m∑
y∈C

ρs/2(y − `∗) ,

and splitting into u∗ = 0 and u∗ 6= 0, we obtain

‖1CFRm{hk}‖22,Zm =
∑
v∗∈Λ∗

|cv∗ |2 · ιC(v∗)

+
∑

u∗∈ 1
2Λ
∗\0

ρs/2(u∗)
∑

v∗∈u∗+Λ∗
cv∗+u∗ c̄v∗−u∗ · ιC(v∗)

We now bound the second term. Assuming s ≥
√
m, we have that ιC(v∗) ≤(

2
s

)m
ρs/2(Zm + t) ≤ 2 (see Corollary 4). Furthermore,∣∣∣∣∣ ∑

v∗∈u∗+Λ∗
cv∗+u∗ c̄v∗−u∗

∣∣∣∣∣ ≤ ∑
v∗∈Λ∗

|cv∗+2u∗ ||cv∗ | ≤
∑
v∗∈Λ∗

(
|cv∗+2u∗ |2 + |cv∗ |2

)
= 2 ‖fk‖22,Rm/Λ
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Finally, using Lemma 3, we have∑
u∗∈ 1

2Λ
∗\0

ρs/2(u∗) = ρs (Λ∗ \ 0) ≤ 2 · β(m)
λ∗1
s

.

Putting all together, we obtain that∣∣∣∣∣‖1CFRm{hk}‖22,Zm −
∑
`∗∈Λ∗

|c`∗ |2ιC(`∗)

∣∣∣∣∣ ≤ εdiag · ‖fk‖22,Rm/Λ ,
where εdiag = 8 · β(m)

λ∗1/s
.

Step 5. Recall the notation Bδλ∗1 (`∗) = {x ∈ Zm | |x − `∗| < δλ∗1}. Whenever
Bδλ∗1 (`∗) ⊆ C, it obviously holds that

ιC(`∗) =

(
2

s

)m∑
y∈C

ρs/2(y − v∗) ≥
(

2

s

)m ∑
y∈Bδλ∗1 (`

∗)

ρs/2(y − `∗)

≥
(

2

s

)m
ρs/2(Zm)

(
1− β(m)

2δλ∗1/s

)
≥ (1− 2 · β(m)

s/2 )(1− β(m)
2δλ∗1/s

) ,

where the second inequality follows from Banaszczyk’s bound (see Lemma 2)
and the last from Lemma 4. It follows then that∑

`∗∈Λ∗
|c`∗ |2ι(`∗) ≥ (1− εsmooth)

∑
`∗∈Λ∗

BV δ(V `
∗)⊆C

|c`∗ |2 .

where εsmooth = 2 · β(m)
s/2 + β

(m)
2δλ∗1/s

Finalizing By collecting all the error terms, we obtain that

‖1C · FDm {hk}‖22,D̂m

≥
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

|〈ek|c`∗〉|2 − (εsmooth + εdiag) ‖fk‖22,Rm/Λ − 5(εper + εlip)

whenever s, δ and λ∗1 satisfy the following:

2δλ∗1
s
≥
√
m and

s

2
√

2
≥
√
m (9)

Summing over k ∈ {1, . . . , N} yields

N∑
k=1

‖1C · FDm {hk}‖22,D̂m

≥
∑
`∗∈Λ∗

Bδλ∗1
(`∗)⊆C

〈c`∗ |c`∗〉 − (εsmooth + εdiag)− 5 ·N(εper + εlip)
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Part 3 Let D be the distribution defined by the output y of Algorithm 1 (recall
that we assumed V = 1); note that D has support only on [q]mc . Throughout
this part of the analysis, S denotes a subset of Λ∗.

By above analysis, we can conclude that whenever Bδλ∗1 (S) ⊆ [q]mc , we have
(putting C = Bδλ∗1 (S)),

pS := D(Bδλ∗1 (S)) ≥
∑
`∗∈S

〈c`∗ |c`∗〉 − η′,

where η′ = εsmooth + εdiag + εdenom + 5 ·N(εper + εlip).

For general S ⊆ Λ∗, write S = S0 ∪ S1 as a disjoint union, where S0 =
{`∗ ∈ S | Bδλ∗1 (`∗) ⊆ [q]mc }. Then it is evident that S1 ⊆ Λ∗\[− q4 ,

q
4 ]m. Then,

putting εtail = 4mLip(f)2

π2q2 ≥
∑
`∗∈Λ∗\[− q4 ,

q
4 ]
m〈c`∗ |c`∗〉 ≥

∑
`∗∈S1

〈c`∗ |c`∗〉, (see

Corollary 5), we have

D(Bδλ∗1 (S)) ≥ D(Bδλ∗1 (S0)) ≥
∑
`∗∈S0

〈c`∗ |c`∗〉 − η′ ≥
∑
`∗∈S

〈c`∗ |c`∗〉 − εtail − η′,

5.3 Tuning Parameters

The left hand side of the table in Figure 4 collects the different error terms
obtained above, considering V = 1. The general case is obtained simply by
applying the above analysis to the function fV := f(V ·). The hidden lattice
of fV is 1

V Λ, which has V Λ∗ as its dual, and the Lipschitz constant of fV is
V Lip(f). Thus, the requirements on the parameters (see Equation (9)) change
to

2δV λ∗1
s

≥
√
m and

s

2
√

2
≥
√
m, (10)

and the different error terms become as listed in the table in Figure 4.
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Error V = 1 V arbitrary

εdenom 2β
(m)

q/s 2β
(m)

q/s

εsmooth 2 · β(m)

s/2 + β
(m)

2δλ∗1/s
2 · β(m)

s/2 + β
(m)

2δV λ∗1/s

εdiag 8β
(m)

λ∗1/s
8β

(m)

V λ∗1/s

εper 2sm/2β
(m)
s

2
√

2

2sm/2β
(m)
s

2
√

2

εlip
4π
√
msm/2(2 Lip(f)+2πs2)

q

4π
√
msm/2(2V Lip(f)+2πs2)

q

εtail
mLip(f)2

π2q2
mV 2 Lip(f)2

π2q2

Fig. 4. Change of the errors when applying the analysis to fV

Recall that β
(m)
z :=

(
2πez2

m

)m/2
e−πz

2

and N = 2n. We can now choose the
parameters s, V and q of the algorithm appropriately to enforce all the error
terms to be small. In detail, we can select:

– s ∈ O(
√
nm log(η−1)) so that εper ·N ≤ η/6, and 2β

(m)
s/2 ≤ η/12 in εsmooth.

– V ∈ O(

√
m log(η−1)s

δλ∗1
) = O(m

√
n log(η−1)
δλ∗1

) so that εsmooth, εdiag ≤ η/6.

– Q = log(q) ∈ O(n + m log(s) + log(V ) + log(Lip(f)) + log(η−1)) so that
εlip ·N ≤ η/6 and εtail ≤ η/6.

Unrolling the expression of Q = log(q) and recalling that the quantum Fourier
transform requires a quadratic number of gates [20, Ch. 5], we obtain the main
theorem.

Theorem 1. Algorithm 1 solves the Dual Lattice Sampling Problem with oracle
function f , error parameter η and relative distance parameter δ, using m calls
to the Gaussian superposition subroutine (see Theorem 3), one quantum oracle
call to f , O(mQ) qubits, and O(m2Q2) quantum gates, where

Q = n+m log

(
nm log

1

η

)
+ log

(
Lip(f)

η · δλ∗1

)
.

6 From Sampling to Full Dual Lattice Recovery

We have so far focused on approximate sampling dual lattice points following
weights ‖c`∗‖2 for `∗ ∈ Λ∗, regardless of how useful this distribution may be.
Indeed, until now, it could be that the function f : Rm/Λ → S is constant,
and therefore that the weight is concentrated on 0 ∈ Λ∗. We would like now
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make sure we can reconstruct (approximately) Λ∗ from such samples, i.e., that
a sufficient number of sampled vectors from Λ∗ will generate it. Informally, an
equivalent condition is that the weight ‖c`∗‖2 is not concentrated on any proper
sublattice M∗ ( Λ∗. More formally, we give the following sufficient conditions.

Definition 4. Let L ⊆ Rm be a full-rank lattice. A distribution D on L is
called p-evenly distributed whenever Prv←D[v ∈ L′] ≤ p for any proper sublattice
L′ ( L.

Definition 5. Let L ⊆ Rm be a full-rank lattice. A distribution D on L is called
(R, q)-concentrated whenever Prv←D[‖v‖ ≥ R] ≤ q.

Lemma 5. Let L ⊆ Rm be a full-rank lattice with a p-evenly distributed and
(R, q)-concentrated distribution D. Denote by S the random variable defined by
the number of samples that needs to be drawn from D such that the samples
together generate L as a lattice. Then, for all α > 0,

Pr

[
S > (2 + α) · (t+m)

1− p− q

]
≤ exp(−α(t+m)/2)

where t = m log2(R)− log2(det(L)).

Proof. First, we define the following sublattices of L, for any v1, . . . , vj−1 ∈ L.

Lv1,...,vj−1
=

{
spanR(v1, . . . , vj−1) ∩ L if dim(spanR(v1, . . . , vj−1)) < m
〈v1, . . . , vj−1〉 otherwise.

Consider a sequence of samples (vi)i>0 (from D). We call vj ‘good’ whenever
‖vj‖ ≤ R and vj /∈ Lv1,...,vj−1

. We argue that we need at most m+t good vectors
to generate L.

Denote L′ for the lattice generated by the m+ t good vectors. Then the first
m good vectors ensure that L′ is of rank m, whereas the last t good vectors will
reduce the index of the L′ lattice in L. Calculating determinants, using the fact
that all good vectors are bounded by R, we have det(L′) ≤ Rm/2t ≤ det(L).
This yields L′ = L.

Denote by X the random variable having the negative binomial distribution
with success probability p+ q and number of ‘failures’ m+ t. That is, X is the
number of independent samples from a (p+ q)-Bernoulli distribution until m+ t
‘failures’ 4 are obtained. We argue that the random variable S is dominated by
the random variable X, i.e., Pr[S > x] ≤ Pr[X > x] for every x ∈ N.

Again, consider a sequence of samples (vi)i>0 (from D). The probability of vj
being a ‘good’ vector is at least 1−p−q, by the fact that D is (R, q)-concentrated
and p-evenly distributed. Because at most m + t ‘good’ vectors are needed to
generate the whole lattice, S is indeed dominated by X. Therefore, for any k ∈ N,

Pr

[
S >

t+m+ k

1− p− q

]
≤ Pr

[
X >

t+m+ k

1− p− q

]
≤ Pr [B < m+ t] (11)

4 In our case, the failures are the ‘good’ vectors. We nonetheless chose the word ‘failure’
because it is standard nomenclature for the negative binomial distribution.

23



≤ exp

(
−1

2

k2

t+m+ k

)
where B is binomially distributed with b t+m+k

1−p−q c trials and success probability
1 − p − q. The first inequality follows from the fact that S is upper bounded
by X. The second inequality comes from the close relationship between the
negative binomial distribution and the binomial distribution [9, Ch. 8, Ex. 17].
The last inequality follows from Chernoff’s bound. Putting k = (1 + α)(t + m)
into Equation (11) yields the claim.

We conclude by relating the parameters (a, r, ε) of the HSP oracle (Defini-
tion 1) f : Rm/Λ→ S and the assumption used in the above Lemma 5.

Lemma 6. Let Λ be a lattice, and let M ) Λ a proper super-lattice of Λ. Then
there exists a v ∈M such that d(v, Λ) ≥ λ1(Λ)/3.

Proof. Let w ∈M be the shortest non-zero vector in M and write ‖w‖ = αλ1(Λ)
for α < 1. We show that v = d 1

3αe · w ∈ M suffices. If α ≥ 1/3 this is certainly
true. For α < 1/3 it is clear that ‖v‖ ≥ λ1(Λ)/3 and ‖v‖ ≤ λ1(Λ)/3 + ‖w‖ ≤
2
3λ1(Λ). In particular, for any ` ∈ Λ \ {0}, ‖v − `‖ ≥ λ1(Λ) − ‖v‖ ≥ λ1(Λ)/3.
Therefore, d(v, Λ) ≥ λ1(Λ)/3.

Lemma 7. Let Λ be a lattice and M ) Λ a proper super-lattice of Λ. Then the
number N =

∣∣{c ∈M/Λ | d(c, Λ) < 1
6λ1(Λ)

}∣∣ of close cosets is at most 1
2 ·|M/Λ|.

Proof. By Lemma 6 there exists a v ∈M such that d(v, Λ) ≥ 1
3λ1(Λ). Denoting

T =
{
c ∈M/Λ | d(c, Λ) < 1

6λ1(Λ)
}

, we can deduce that T ∪ (T + v) is a disjoint
union in M/Λ. Indeed, elements c ∈ T satisfy d(c, Λ) ≤ 1

6λ1(Λ), whereas c′ ∈
T+v satisfy d(c′, Λ) ≥ d(v, Λ)− 1

6λ1(Λ) ≥ 1
6λ1(Λ). Therefore N = |T | ≤ 1

2 |M/Λ|.

Lemma 8. Let f : Rm → S be an (a, r, ε)-HSP oracle of the full-rank lattice
Λ ⊂ Rm, with r ≤ λ1(Λ)/6. Let Dideal be the distribution supported by Λ∗, with
weight 〈c`∗ |c`∗〉 at `∗ ∈ Λ∗, where |c`∗〉 are the vectorial Fourier coefficients of

the function f . Then Dideal is both ( 1
2 + ε)-evenly distributed and (R, ma2

4π2R2 )-
concentrated for any R > 0.

Proof. The distribution Dideal being (R, ma2

4π2R2 )-concentrated for any R > 0 is
a direct consequence of Corollary 5. For the ( 1

2 + ε)-evenly distributed part,
we argue as follows. Let M∗ be any strict sublattice of Λ∗, and let M be its

dual, which is then a superlattice of Λ. Put f |R
m/M

(x) = 1
|M/Λ|

∑
v∈M/Λ f(x +

v), the periodization of f with respect to Rm/M (c.f. Definition 3). We have
the following sequence of equalities, of which the first follows from the Poisson
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summation formula (see Theorem 5).∑
v∗∈M∗

〈cv∗ |cv∗〉 =
∥∥∥f |Rm/M∥∥∥

2,Rm/M
=

1

detM

∫
x∈Rm/M

〈
f |R

m/M ∣∣f |Rm/M〉dx,
=

1

|M/Λ|2
∑

v,w∈M/Λ

1

detM

∫
x∈Rm/M

〈f(x+ v)| f(x+ w)〉 dx︸ ︷︷ ︸
Iv,w

=
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)<r

Iv,w +
1

|M/Λ|2
∑

v,w∈M/Λ
dRm/Λ(v,w)≥r

Iv,w

By the definition of an (a, r, ε)-oracle, we have that |Iv,w| ≤ ε whenever dRm/Λ(v, w) ≥
r. In the rest of the cases we have |Iv,w| ≤ 1, because f maps to the unit sphere.

Above expression is therefore bounded by |M/Λ ∩ Br|
|M/Λ| + ε, where Br is the open

unit ball with radius r. By Lemma 7, we have |M/Λ ∩ rB|
|M/Λ| ≤ 1

2 for r ≤ λ1(Λ)/6.

Summarizing all results, we conclude that∑
v∗∈M∗

〈cv∗ |cv∗〉 ≤
1

2
+ ε.

Since M∗ was chosen arbitrarily, we can conclude that Dideal is ( 1
2 + ε)-evenly

distributed.
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A Gaussian state

A.1 Reducing to the One-Dimensional Case

In this appendix, we are going to estimate the exact quantum complexity of
obtaining an approximation (in the trace distance) of the state

1√
ρ1/s(Dmrep)

∑
x∈Dmrep

√
ρ1/s(x)|x〉, (12)

where Dmrep = 1
qZ

m ∩ [0, 1)m, and where ρ1/s is the Gaussian function (see Sec-

tion 3.6).
An element |x〉 with x = (x1, . . . , xm) ∈ Dmrep is represented as a tensor

product |x1〉 ⊗ . . . ⊗ |xm〉. As the function
√
ρ1/s(x) = ρ√2/s(x) can be writ-

ten as a product of functions with separated variables as well, we obtain that
Equation (12) equals

m⊗
j=1

1√
ρ1/s(

1
q [q]c)

∑
a∈ 1

q [q]c

√
ρ1/s(a)|a〉 (13)

where 1
q [q]c = [−1/2, 1/2) ∩ 1

qZ. Therefore, the problem of approximating the

state as in Equation (12) reduces to the one-dimensional case, i.e., as in Equa-
tion (13).

A.2 The Periodic and Non-Periodic Discrete Gaussian

To obtain a Gaussian superposition in one dimension, we follow Kitaev and
Webb [14]. Their algorithm is an improvement of that of Grover and Rudolph
[10].

Definition 6 (Gaussian function). We denote by ρµ,σ : R→ R the function

ρµ,σ(x) = e−π
(x−µ)2

σ2

The discrete Gaussian ρ̈µ,σ : Z→ R is a rescaling of ρµ,σ such that
∑
j∈Z ρ̈µ,σ(j)2 =

1. Explicitly, ρ̈µ,σ(j) = 1√
ρ2µ,σ(Z)

ρµ,σ(j).

Kitaev and Webb’s algorithm actually doesn’t compute a discrete Gaussian
quantum state, but something very close; a periodized discrete Gaussian quan-
tum state. This state has the advantage of having a more natural normalization
and having a sum decomposition. These advantages lead to a slightly more ef-
ficient algorithm [14] computing the discrete Gaussian superposition, compared
to the algorithm of Grover and Rudolph.

Definition 7 (Discrete Periodized Gaussian function). We denote by ξµ,σ,Q :
Z/2QZ→ R>0 the function defined by the following rule

ξµ,σ,Q(x)2 = ρ̈2µ,σ(x+ 2QZ) =
∑
t∈Z

ρ̈µ,σ(x+ 2Qt)2
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The discrete periodized Gaussian state is then denoted by |ξµ,σ,Q〉 :=
∑2Q−1
j=0 ξµ,σ,Q(j)|j〉.

Note that the state is already normalized. As we already mentioned, the discrete
periodized Gaussian state is very close to the discrete (non-periodized) Gaussian
state. This is formalized in the next lemma.

Lemma 9. Denote |ρ̈µ,σ〉 = 1√
cµ,σ

∑2Q−1
j=0 ρ̈µ,σ(j)·|j〉, with cµ,σ =

∑2Q−1
j=0 ρ̈µ,σ(j)2.

Then, for µ ∈ [0, 2Q − 1] and σ < 2Q−1,

D
(
|ρ̈µ,σ〉, |ξµ,σ,Q〉

)
≤ β(1)

dµ
σ

where dµ := min(µ, 2Q − µ), D is the trace distance, and β
(1)
dµ
σ

is Banaszczyk’s

function (see Section 3.6).

Proof. Since ξµ,σ,Q(j) ≥ ρ̈µ,σ(j), we have

〈ξµ,σ,Q|ρ̈µ,σ〉 =
1

√
cµ,σ

2Q−1∑
j=0

ρ̈µ,σ(j)ξµ,σ,Q(j) ≥ 1
√
cµ,σ

2Q−1∑
j=0

ρ̈µ,σ(j)2 =
√
cµ,σ

Since the trace distance between the pure states |ρ̈µ,σ〉 and |ξµ,σ,Q〉 is equal to√
1− |〈ξµ,σ,Q|ρ̈µ,σ〉|2 [20, §9.2], we obtain D

(
|ρ̈µ,σ〉, |ξµ,σ,Q〉

)
≤
√

1− cµ,σ. As

1 − cµ,σ =
ρµ,σ/

√
2(Z\{0,...,2

Q−1})
ρµ,σ/

√
2(Z)

≤ β
(1)
√

2dµ
σ

(see Lemma 2), and

√
β
(1)
z ≤ β

(1)

z/
√
2
,

we obtain the claim.

Above lemma essentially states that whenever Q is relatively large, µ is rela-
tively far away from the borders and σ is not too large, then the periodic discrete
Gaussian and the (non-periodic) discrete Gaussian are very close in total varia-
tion distance.

A.3 Computing the Periodic Gaussian State

According to the last subsection, we can compute the state |ξµ,σ,Q〉 instead
of |ρ̈µ,σ〉, as they are close to each other for a suitable choice of parameters.
As already mentioned, the quantum state |ξµ,σ,Q〉 can be decomposed into a
superposition that can be exploited algorithmically. The following lemma shows
this decomposition.

Lemma 10 (Eq. 11 in [14]).

|ξµ,σ,Q〉 = |ξµ
2 ,
σ
2 ,Q−1〉 ⊗ cosα|0〉+ |ξµ−1

2 ,σ2 ,Q−1
〉 ⊗ sinα|1〉,

with α = arccos
(√

ρµ
2 ,

σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z)
)

.
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Proof. We have

|ξµ,σ,Q〉 =

2Q−1∑
j=0

ξµ,σ,Q(j)|j〉 =

2Q−1−1∑
j=0

ξµ,σ,Q(2j)|j〉|0〉+
2Q−1−1∑
j=0

ξµ,σ,Q(2j+1)|j〉|1〉.

It remains to show that ξµ,σ,Q(2j) = cos(α) · ξµ
2 ,
σ
2 ,Q−1(j) and ξµ,σ,Q(2j + 1) =

sin(α) · ξµ−1
2 ,σ2 ,Q−1

(j). We show the equality of the latter part, as the former

part can be shown similarly.

ξµ,σ,Q(2j + 1)2 = ρ̈2µ,σ(2j + 1 + 2Q · Z) =
ρ2µ−1,σ(2j + 2Q · Z)

ρ2µ,σ(Z)

=
ρ2µ−1

2 ,σ2
(j + 2Q−1 · Z)

ρ2µ,σ(Z)
=
ρ2µ−1

2 ,σ2
(Z)

ρ2µ,σ(Z)
· ξµ

2 ,
σ
2 ,Q−1(j)2

Taking square roots, noting that ρ2µ,σ = ρµ, σ√
2

and ρµ−1
2 , σ

2
√

2

(Z) + ρµ
2 ,

σ
2
√

2
(Z) =

ρµ, σ√
2
(Z) yields the result.

This lemma directly leads to an algorithm for computing (an approximation of)
the state |ξµ,σ,Q〉, which is spelled out in Algorithm 2.

Algorithm 2: Recursive algorithm preparing the periodic Gaussian state

Input : The parameters µ, σ ∈ R>0, k ∈ N and Q ∈ N.
Output: An approximation of the state |ξµ,σ,Q〉

1 Initial state: |0k〉|µ, σ,Q〉|0Q〉 ;

2 Compute α in the first register, yielding |α〉|µ, σ, n〉|0Q〉, where

α = arccos

(√
ρµ

2
, σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z)

)
;

3 Apply the α-rotation on the last qubit, yielding

|α〉|µ, σ,Q〉|0Q−1〉 (cosα|0〉+ sinα|1〉) ;

4 Uncompute α, yielding |0k〉|µ, σ,Q〉|0Q−1〉 (cosα|0〉+ sinα|1〉) ;

5 Apply a parameter change, controlled by the last qubit yielding

cosα|0k〉|µ
2
, σ
2
, Q− 1〉|0Q−1〉|0〉+ sinα|0k〉|µ−1

2
, σ
2
, Q− 1〉|0Q−1〉|1〉 ;

6 Apply quantum recursion (step 2 - 5) on all qubits except the last,
whenever Q > 1, yielding
cosα|0k〉|µ

2
, σ
2
, Q− 1〉|ξµ

2
,σ
2
,Q−1〉|0〉+ sinα|0k〉|µ−1

2
, σ
2
, Q− 1〉|ξµ−1

2
,σ
2
,Q−1
〉|1〉 ;

7 Un-apply the parameter change, yielding

|0k〉|µ, σ,Q〉
(

cosα|ξµ
2
,σ
2
,Q−1〉|0〉+ sinα|ξµ−1

2
,σ
2
,Q−1
〉|1〉
)

= |0k〉|µ, σ,Q〉|ξµ,σ,Q〉
;
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A.4 Estimating the Complexity and Fidelity of Algorithm 2

We will discuss now how well Algorithm 2 approximates the state |ξµ,σ,Q〉. For
ease of analysis, we will assume (without loss of generality) that the operations
on the parameters µ and σ (in step 5 and 7 of Algorithm 2) are exact. Then it
turns out that the approximation error is primarily caused by the fact that the
angle α in the algorithm is computed up to precision 2−k. This is made precise
in the following lemma.

Lemma 11. Algorithm 2 with input parameters µ, σ, k,Q computes the periodic
gaussian |ξµ,σ,Q〉 within trace distance Q2−k.

Proof. The proof proceeds by induction onQ. We use the the identityD(|ψ〉, |φ〉)2+
|〈ψ|φ〉|2 = 1 (see [20, §9.2]) multiple times throughout the proof. Let α̃ be the
k-bit approximation of α, and denote

|ξ̃µ,σ,Q〉 = cos α̃|ξ̃µ
2 ,
σ
2 ,Q−1〉|0〉+ sin α̃|ξ̃µ−1

2 ,σ2 ,Q−1
〉|1〉

for the output of Algorithm 2 with input parameters µ, σ, k and Q. Then the
inner product 〈ξ̃µ,σ,Q|ξµ,σ,Q〉 equals

cos(α) cos(α̃)〈ξ̃µ
2 ,
σ
2 ,Q−1|ξµ2 ,σ2 ,Q−1〉+ sin(α) sin(α̃)〈ξ̃µ−1

2 ,σ2 ,Q−1
|ξµ−1

2 ,σ2 ,Q−1
〉.

By the induction hypothesis and the fact that the periodic Gaussian state has
only positive amplitudes, above expression is at least

(cos(α) cos(α̃)+sin(α) sin(α̃))
√

1− (Q− 1)22−2k = cos(α−α̃)
√

1− (Q− 1)22−2k

Therefore D(|ξµ,σ,Q〉, |ξ̃µ,σ,Q〉) =
√

1− |〈ξµ,σ,Q|ξ̃µ,σ,Q〉|2 ≤ sin(α − α̃) + (Q −
1)2−k ≤ Q2−k.

Lemma 12. Computing α with k-bits of precision in step 2 of Algorithm 2 can
be done within O(k3/2 · polylog(k)) operations.

Proof. Can be found in Appendix A.5.

Lemma 13. Encoding µ and σ in O(Q) bits, Algorithm 2 with input µ, σ, k and
Q, runs on O(Q+ k) qubits and uses O(Q · k3/2 · polylog(k)) quantum gates.

Proof. The number of qubits used in Algorithm 2 equals O(Q + k), because α
is stored with k bits of precision and σ and µ with O(Q) bits of precision.

For the number of gates, we go through the steps of Algorithm 2. Step 1 is the
initial state. Step 2 (and step 4) computes α with precision 2−k. By Lemma 12,
we estimate that this costs O(k3/2 polylog(k)) quantum gates. Step 3 applies the
α-rotation, which costs k quantum gates, as a sequence of controlled Rπ/2j -gates.
Step 5 (and step 7) is a parameter change, which costs a mere constant number
of gates. Step 6 applies recursion, which, by induction, costs O((Q − 1) · k3/2 ·
polylog(k)) gates. Adding all up, gives a number of O(Q ·k3/2 ·polylog(k)) gates.
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Theorem 8. For any positive integers Q, k and for any µ ∈ [0, 2Q − 1] and
any σ > 1, there exists an quantum algorithm that prepares the one-dimensional
Gaussian state

|ρ̈µ,σ〉 =

2Q−1∑
j=0

ρ̈µ,σ(j)|j〉 (14)

within trace distance β
(1)
dµ
σ

+ Q · 2−k using O(Q + k) qubits and O(Q · k3/2 ·
polylog(k)) quantum gates.

Proof. The state in Equation (14) can be approximated by running Algorithm 2
with parameters µ, σ,Q, k. Combining Lemma 9 and Lemma 11 and using the
fact that we can add trace distances [20, Ch. 9], this approximation is within

trace distance β
(1)
dµ
σ

+Q2−k. For the running time, use Lemma 13 to conclude that

Algorithm 2 with the mentioned parameters uses O(Q+k) qubits and O(Q·k3/2)
quantum gates, which proves the claim.

A.5 Proof of Lemma 12

Lemma 14. The value ρµ
2 ,

σ
2
√

2
(Z) can be computed with relative precision 2−k

within time O(k3/2 polylog(k)).

Proof. We distinguish two cases.

– σ <
√

2. Then
∣∣∣ρµ, σ√

2
(Z)− ρbµe, σ√

2
({−h, . . . , 0, . . . h})

∣∣∣ ≤ β
(1)√
2h/σ

· ρµ, σ√
2
(Z),

by Lemma 2.
– σ >

√
2. Applying the Poisson summation formula, we obtain ρµ, σ√

2
(Z) =

σ√
2

∑
t∈Z ρ0,

√
2
σ

(t)e−2πitµ. Therefore∣∣∣∣∣∣ρµ, σ√2
(Z)− σ√

2

∑
t∈{−h,...,0,...h}

ρ√2
σ

(t)e−2πitµ

∣∣∣∣∣∣ ≤ σ√
2
β
(1)

σh/
√
2
· ρ0,√2/σ(Z)

which is bounded by β
(1)

σh/
√
2
· ρ0,σ/√2(Z) ≤ 2β

(1)

σh/
√
2
· ρµ, σ√

2
(Z), by the Pois-

son summation formula and by smoothing arguments (see Lemma 4), as

ρµ,σ/
√
2(Z) ≥ (1− 2β

(1)

s/
√
2
)ρ0,σ/

√
2 ≥

1
2ρ0,σ/

√
2.

So the relative error is at most 2β
(1)
h ≤ e−(h−1)

2

for h > 2. Therefore, choosing
h = k1/2 + 1 is enough to compute ρµ

2 ,
σ

2
√

2
(Z) with relative error 2−k. Because

evaluating an exponential function takes O(k · polylog(k)) time [3], we arrive at
the claim.

Lemma 15. The fraction ρµ
2 ,

σ
2
√

2
(Z)
/
ρµ, σ√

2
(Z) can be computed with precision

2−k within time O(k3/2 · polylog(k)).
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Proof. Denote a = ρµ
2 ,

σ
2
√

2
(Z) and b = ρµ, σ√

2
(Z). Suppose we have relative errors

|ã − a| ≤ 2−ka/2 ≤ 2−kb/2, |b̃ − b| ≤ 2−kb/2 and ã/b̃ < 1, then
∣∣∣ ã
b̃
− a

b

∣∣∣ ≤
|b̃(a−ã)−ã(b−b̃)|

bb̃
≤ |a−ã|b + |b−b̃|

b ≤ 2−k. By Lemma 14, we see that both a and b

can be computed within relative precision 2−k/2 within time O(k3/2 polylog(k)).
Therefore, the fraction a/b can be computed with absolute precision 2−k within
time O(k3/2 polylog(k)).

Lemma 16. For x ∈ [0, 1− ε] and ε < 3
4 , we have

| arccos(
√
x+ ε)− arccos(

√
x)| ≤ 8

√
ε

Proof. The derivative of arccos(
√
t) equals w(t) = − 2√

(1−t)t
. Therefore

| arccos(
√
x+ ε)− arccos(

√
x)| ≤

∣∣∣∣∫ x+ε

x

w(t)dt

∣∣∣∣ ≤ ∫ x+ε

x

|w(t)|dt ≤
∫ ε

0

|w(t)|dt.

The last inequality follows from the fact that w(t) is both strictly decreasing on
[0, 1/2] and symmetric around t = 1/2. The claim then follows from the bound∫ ε
0
|w(t)|dt =

∫ ε
0

2√
(1−x)x

≤ 4
∫ ε
0
dt√
t

= 8
√
ε.

By combining Lemma 15 and Lemma 16, we obtain that the expression

arccos
√
ρµ

2 ,
σ

2
√

2
(Z)
/
ρµ, σ√

2
(Z) can be approximated with k bits of precision within

O(k3/2 · polylog(k)) time, which proves Lemma 12.
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