
Improved Algorithms for the Shortest Vector
Problem and the Closest Vector Problem in the
Infinity Norm

Divesh Aggarwal1

Centre for Quantum Technologies and School of Computing, National University of Singapore
dcsdiva@nus.edu.sg

Priyanka Mukhopadhyay2

Centre for Quantum Technologies, National University of Singapore
mukhopadhyay.priyanka@gmail.com

Abstract
Ajtai, Kumar and Sivakumar [5] gave the first 2O(n) algorithm for solving the Shortest Vector
Problem (SVP) on n-dimensional Euclidean lattices. The algorithm starts with N ∈ 2O(n) ran-
domly chosen vectors in the lattice and employs a sieving procedure to iteratively obtain shorter
vectors in the lattice, and eventually obtaining the shortest non-zero vector. The running time
of the sieving procedure is quadratic in N . Subsequent works [7, 11] generalized the algorithm
to other norms.

We study this problem for the special but important case of the `∞ norm. We give a new
sieving procedure that runs in time linear in N , thereby improving the running time of the
algorithm for SVP in the `∞ norm. As in [6, 11], we also extend this algorithm to obtain
significantly faster algorithms for approximate versions of the shortest vector problem and the
closest vector problem (CVP) in the `∞ norm.

We also show that the heuristic sieving algorithms of Nguyen and Vidick [23] and Wang et
al. [27] can also be analyzed in the `∞ norm. The main technical contribution in this part is to
calculate the expected volume of intersection of a unit ball centred at origin and another ball of
a different radius centred at a uniformly random point on the boundary of the unit ball. This
might be of independent interest.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and dis-
crete structures

Keywords and phrases Lattice, Shortest Vector Problem, Closest Vector Problem, `∞ norm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.35

Related Version A full version of the paper is available at [3], https://arxiv.org/abs/1801.
02358.

Acknowledgements We thank the anonymous referees who helped improve the draft of this
paper.

1 This research was partially funded by the Singapore Ministry of Education and the National Research
Foundation, also through the Tier 3 Grant “Random numbers from quantum processes”,MOE2012-T3-
1-009.

2 This research was funded by the National Research Foundation,Prime Minister’s Office, Singapore and
the Ministry of Education, Singapore.

© Divesh Aggarwal and Priyanka Mukhopadhyay;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/162456737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dcsdiva@nus.edu.sg
mailto:mukhopadhyay.priyanka@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2018.35
https://arxiv.org/abs/1801.02358
https://arxiv.org/abs/1801.02358
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Improved Algorithms for SVP and CVP in the Infinity Norm

1 Introduction

A lattice L is the set of all integer combinations of linearly independent vectors b1, . . . ,bn ∈
Rd, L = L(b1, . . . ,bn) := {

∑n
i=1 zibi : zi ∈ Z} .

We call n the rank of the lattice, and d the dimension of the lattice. The matrix
B = (b1, . . . ,bn) is called a basis of L, and we write L(B) for the lattice generated by B. A
lattice is said to be full-rank if n = d. In this work, we will only consider full-rank lattices
unless otherwise stated.

The two most important computational problems on lattices are the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). Given a basis for a lattice L ⊆ Rd,
SVP asks us to compute a non-zero vector in L of minimal length, and CVP asks us to compute
a lattice vector at a minimum distance to a target vector t. Typically the length/distance is
defined in terms of the `p norm for some p ∈ [1,∞], such that
‖x‖p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p for 1 ≤ p <∞ , and ‖x‖∞ := max1≤i≤d |xi| .

The most popular of these, and the most well studied is the Euclidean norm, which
corresponds to p = 2. Starting with the seminal work of [18], algorithms for solving
these problems either exactly or approximately have been studied intensely. Some classic
applications of these algorithms are in factoring polynomials over rationals [18], integer
programming [19], cryptanalysis [22], checking the solvability by radicals [17], and solving
low-density subset-sum problems [12]. More recently, many powerful cryptographic primitives
have been constructed whose security is based on the worst-case hardness of these or related
lattice problems(see for example [24] and the references therein).

One recent application that is based on the hardness of SVP in the `∞ norm is a recent
signature scheme by Ducas et al. [13]. For the security of their signature scheme, the
authors choose parameters under the assumption that SVP in the `∞ norm for an appropriate
dimension is infeasible. Due to lack of sufficient work on the complexity analysis of SVP in
the `∞ norm, they choose parameters based on the best known algorithms for SVP in the
`2 norm (which are variants of the algorithm from [23]). The rationale for this is that SVP
in `∞ norm is likely harder than in the `2 norm. Our results in this paper show that this
assumption by Ducas et al. [13] is correct, and perhaps too generous. In particular, we show
that the space and time complexity of the `∞ version of [23] is at most (4/3)n and (4/3)2n

respectively, which is significantly larger than the best known algorithms for SVP in the `2
norm.

The closest vector problem in the `∞ norm is particularly important since it is equivalent
to the integer programming problem [14]. The focus of this work is to study the complexity
of the closest vector problem and the shortest vector problem in the `∞ norm.

1.1 Prior Work

1.1.1 Algorithms in the Euclidean Norm
The fastest known algorithms for solving these problems run in time 2cn, where n is the rank
of the lattice and c is some constant. The first algorithm to solve SVP in time exponential in
the dimension of the lattice was given by Ajtai, Kumar, and Sivakumar [5] who devised a
method based on “randomized sieving,” whereby exponentially many randomly generated
lattice vectors are iteratively combined to create shorter and shorter vectors, eventually
resulting in the shortest vector in the lattice. Subsequent work has resulted in improvement
of their sieving technique thereby improving the constant c in the exponent, and the current

D. Aggarwal and P. Mukhopadhyay 35:3

fastest provable algorithm for exact SVP runs in time 2n+o(n) [1, 4], and the fastest algorithm
that gives a constant approximation runs in time 20.802n+o(n) [20]. The fastest heuristic
algorithm that is conjectured to solve SVP in practice runs in time (3/2)n/2 [9].

The CVP is considered a harder problem than SVP since there is a simple dimension and
approximation-factor preserving reduction from SVP to CVP [15]. Based on a technique due
to Kannan [16], Ajtai, Kumar, and Sivakumar [6] gave a sieving based algorithm that gives a
1 + α approximation of CVP in time (2 + 1/α)O(n). Later exact exponential time algorithms
for CVP were discovered [21, 2]. The current fastest algorithm for CVP runs in time 2n+o(n)

and is due to [2].

1.1.2 Algorithms in Other `p Norms
Blomer and Naewe [11], and then Arvind and Joglekar [7] generalised the AKS algorithm
[5] to give exact algorithms for SVP that run in time 2O(n). Additionally, [11] gave a 1 + ε

approximation algorithm for CVP for all `p norms that runs in time (2 + 1/ε)O(n). For the
special case when p = ∞, Eisenbrand et al. [14] gave a 2O(n) · (log(1/ε))n algorithm for
(1 + ε)-approx CVP.

1.2 Our contribution
1.2.1 Provable Algorithms
We modify the sieving algorithm by [5, 6] for SVP and approximate CVP for the `∞ norm
that results in substantial improvement over prior results. Before describing our idea, we give
an informal description of the sieving procedure of [5, 6]. The algorithm starts by randomly
generating a set S of N ∈ 2O(n) lattice vectors of length at most R ∈ 2O(n). It then runs a
sieving procedure a polynomial number of times. In the ith iteration the algorithm starts
with a list S of lattice vectors of length at most Ri−1 ≈ γi−1R, for some parameter γ ∈ (0, 1).
The algorithm maintains and updates a list of “centres” C, which is initialised to be the
empty set. Then for each lattice vector y in the list, the algorithm checks whether there is a
centre c at distance at most γ ·Ri−1 from this vector. If there exists such a centre pair, then
the vector y is replaced in the list by y− c, and otherwise it is deleted from S and added
to C. This results in Ni−1 − |C| lattice vectors which are of length at most Ri ≈ γRi−1,
where Ni−1 is the number of lattice vectors at the end of i− 1 sieving iterations. We mention
here that this description hides many details and in particular, in order to show that this
algorithm eventually obtains the shortest vector, we need to add a little perturbation to the
lattice vectors to start with. The details can be found in Section 3.

A crucial step in this algorithm is to find a vector c from the list of centers that is close
to y. This problem is called the nearest neighbor search (NNS) problem and has been well
studied especially in the context of heuristic algorithms for SVP (see [9] and the references
therein). A trivial bound on the running time for this is |S| · |C|, but the aforementioned
heuristic algorithms have spent considerable effort trying to improve this bound under
reasonable heuristic assumptions. Since they require heuristic assumptions, such improved
algorithms for the NNS have not been used to improve the provable algorithms for SVP.

We make a simple but powerful observation that for the special case of the `∞ norm,
if we partition the ambient space [−R,R]n into ([−R,−R + γ · R), [−R + γ · R,−R + 2γ ·
R), . . . [−R + b 2

γ c · γ · R,R])n, then it is easy to see that each such partition will contain
at most one centre. Thus, to find a centre at `∞ distance γ · R from a given vector y, we
only need to find the partition in which y belongs, and then check whether this partition
contains a centre. This can be easily done by checking the interval in which each co-ordinate

ISAAC 2018

35:4 Improved Algorithms for SVP and CVP in the Infinity Norm

of y belongs. This drastically improves the running time for the sieving procedure in the
SVP algorithm from |S| · |C| to |S| · n. Notice that we cannot expect to improve the time
complexity beyond O(|S|).

This same idea can also be used to obtain significantly faster approximation algorithms
for both SVP and CVP. It must be noted here that the prior provable algorithms using
AKS sieve lacked an explicit value of the constant in the exponent for both space and time
complexity and they used a quadratic sieve. Our modified sieving procedure is linear in the
size of the input list and thus yields a faster algorithm compared to the prior algorithms.
In order to get the best possible running time, we optimize several steps specialized to the
case of `∞ norm in the analysis of the algorithms. See Theorems 15, 17, and 18 for explicit
running times and a detailed description.

Just to emphasise that our results are nearly the best possible using these techniques,
notice that for a large enough constant τ , we obtain a running time (and space) close to
3n for τ -approximate SVP. To put things in context, the best algorithm [28] for a constant
approximate SVP in the `2 norm runs in time 20.802n and space 20.401n. Their algorithm
crucially uses the fact that 20.401n is the best known upper bound for the kissing number
of the lattice (which is the number of shortest vectors in the lattice) in `2 norm. However,
for the `∞ norm, the kissing number is 3n for Zn. So, if we would analyze the algorithm
from [28] for the `∞ norm (without our improvement), we would obtain a space complexity
3n, but time complexity 9n.

1.2.2 Heuristic Algorithms
In each sieving step of the algorithm from [5], the length of the lattice vectors reduce by a
constant factor. It seems like if we continue to reduce the length of the lattice vectors until
we get vectors of length λ1 (where λ1 is the length of the shortest vector), we should obtain
the shortest vector during the sieving procedure. However, there is a risk that all vectors
output by this sieving procedure are copies of the zero vector and this is the reason that the
AKS algorithm [5] needs to start with much more vectors in order to provably argue that we
obtain the shortest vector.

Nguyen and Vidick [23] observed that this view is perhaps too pessimistic in practice,
and that the randomness in the initial set of vectors should ensure that the basic sieving
procedure should output the shortest vector for most lattices, and in particular if the lattice
is chosen randomly as is the case in cryptographic applications. The main ingredient to
analyze the space and time complexity of their algorithm is to compute the expected number
of centres necessary so that any point in S of length at most Ri−1 is at a distance of at most
γ ·Ri−1 from one of the centres. This number is roughly the reciprocal of the fraction of the
ball B of radius Ri−1 centred at the origin covered by a ball of radius γ · Ri−1 centred at
a uniformly random point in B. Here Ri−1 is the maximum length of a lattice vector in S
after i− 1 sieving iterations.

In this work, we show that the heuristic algorithm of [23] can also be analyzed for the
`∞ norm under similar assumptions. The main technical contribution in order to analyze
the time and space complexity of this algorithm is to compute the expected fraction of an
`∞ ball B(∞) of radius Ri−1 centered at the origin covered by an `∞ ball of radius γ ·Ri−1
centered at a uniformly random point in B(∞).

In order to improve the running time of the NV sieve [23], a modified two-level sieve was
introduced by Wang et al. [27]. Here they first partition the lattice into sets of vectors of
larger norm and then within each set they carry out a sieving procedure similar to [23]. We
have analyzed this in the `∞ norm and obtain algorithms much faster than the provable

D. Aggarwal and P. Mukhopadhyay 35:5

algorithms. In particular, our two-level sieve algorithm runs in time 20.62n. We would like to
mention here that our result does not contradict the near 2n lower bound for SVP obtained
by [10] under the strong exponential time hypothesis. The reason for this is that the lattice
obtained in the reduction in [10] is not a full-rank lattice, and has a dimension significantly
larger than the rank n of the lattice. Moreover, as mentioned earlier, the heuristic algorithm
is expected to work for a random looking lattice but might not work for all lattices.

Due to space constraints, we have deferred some descriptions and analysis to the full
version of this paper [3].

1.3 Open problems
It would be interesting to see if such partitioning technique can be done for other norms
or combined with heuristic algorithms like NNS, to yield better performance for sieving
algorithms. We do not know if other provable algorithms like those based on Discrete
Gaussian sampling [1, 2], Voronoi cells [21] or other heuristic algorithms can be analysed in
other non-Euclidean norms. Another direction would be to understand the change in time
and space complexity as the number of levels for multi-level sieve increases.

1.4 Organization of the paper
In Section 2 we give some basic definitions and results used in this paper. In Section 3 we
introduce our sieving procedure and apply it to provably solve exact SVP(∞). In Section 4
we describe approximate algorithms for SVP(∞) and CVP(∞) using our sieving technique. In
Section 5 we talk about heuristic sieving algorithms for SVP(∞).

2 Preliminaries

2.1 Notations
We write ln for natural logarithm and log for logarithm to the base 2.

I Fact 1. For x ∈ Rn ‖x‖p ≤ ‖x‖2 ≤
√
n‖x‖p for p ≥ 2 and 1√

n
‖x‖p ≤ ‖x‖2 ≤ ‖x‖p for

1 ≤ p < 2.

I Definition 2 (Ball). A (closed) ball of radius r and centre at x ∈ Rn, is the set of all points
whose distance (in `p norm) from x is at most r. B

(p)
n (x, r) = {y ∈ Rn : ‖y− x‖p ≤ r}.

The following result gives a bound on the size of intersection of two balls of a given radius
in the `∞ norm.

I Lemma 3. Let v = (v1, v2, . . . , vn) ∈ Rn, and let a > 0 be such that 2a ≥ ‖v‖∞. Let
D = B

(∞)
n (0, a) ∩B(∞)

n (v, a). Then, |D| =
∏n
i=1(2a− |vi|) .

Proof. It is easy to see that the intersection of two balls in the `∞ norm, i.e., hyperrectangles,
is also a hyperrectangle. For all i, the length of the i-th side of this hyperrectangle is 2a−|vi|.
The result follows. J

2.2 Lattice
I Definition 4. A lattice L is a discrete additive subgroup of Rn. Each lattice has a basis
B = [b1,b2, . . .bn], where bi ∈ Rn and L = L(B) =

{∑n
i=1 xibi : xi ∈ Z i = 1, . . . , n

}

ISAAC 2018

35:6 Improved Algorithms for SVP and CVP in the Infinity Norm

For algorithmic purposes we can assume that L ⊆ Qd.

I Definition 5. For any lattice basis B we define the fundamental parallelepiped as:
P(B) = {Bx : x ∈ [0, 1)n}

If y ∈ P(B) then ‖y‖p ≤ n‖B‖p as can be easily seen by triangle inequality. For any z ∈ Rn

there exists a unique y ∈ P(B) such that z − y ∈ L(B). This vector is denoted by y ≡ z
mod B and it can be computed in polynomial time given B and z.

I Definition 6. For i ∈ [n], the first successive minimum is defined as the length of the
shortest non-zero vector in the lattice: λ

(p)
1 (L) = min{‖v‖p : v ∈ L \ {0}}

We consider the following lattice problems. In all the problems defined below c ≥ 1 is
some arbitrary approximation factor. We drop the subscript for exact versions (i.e. c = 1).
1. Shortest Vector Problem (SVP(p)

c) Given a lattice L, find a vector v ∈ L \ {0}
such that ‖v‖p ≤ c‖u‖p for any other u ∈ L \ {0}.

2. Closest Vector Problem (CVP(p)
c) Given a lattice L with rank n and a target

vector t ∈ Rn, find v ∈ L such that ‖v− t‖p ≤ c‖w− t‖p for all other w ∈ L.

I Lemma 7. The LLL algorithm [18] can be used to solve SVP(p)
2n−1 in polynomial time.

The following result shows that in order to solve SVP(p)
1+ε, it is sufficient to consider the

case when 2 ≤ λ(p)
1 (L) < 3. This is done by appropriately scaling the lattice.

I Lemma 8 (Lemma 4.1 in [11]). For all `p norms, if there is an algorithm A that for
all lattices L with 2 ≤ λ

(p)
1 (L) < 3 solves SVP(p)

1+ε in time T = T (n, b, ε), then there is an
algorithm A′ that solves SVP(p)

1+ε for all lattices in time O(nT + n4b).

Thus henceforth we assume 2 ≤ λ(∞)
1 (L) < 3.

3 A faster algorithm for SVP(∞)

In this section we present an algorithm for SVP(∞) that uses the framework of AKS algorithm
[5] but uses a different sieving procedure that yields a faster running time. Using Lemma 7,
we can obtain an estimate λ∗ of λ(∞)

1 (L) such that λ(∞)
1 (L) ≤ λ∗ ≤ 2n · λ(∞)

1 (L). Thus, if
we try different values of λ = (1 + 1/n)−iλ∗, for 0 ≤ i ≤ 10n2, then for one of them, we have
λ

(∞)
1 (L) ≤ λ ≤ (1 + 1/n) · λ(∞)

1 (L) For the rest of this section, we assume that we know a
guess λ of the length of the shortest vector in L, which is correct upto a factor 1 + 1/n.

As in the AKS algorithm, we start by generating a set S of many vector pairs (e,y),
where the perturbation vectors e are uniformly sampled from B

(∞)
n (ξλ) (ξ > 1/2), and

y ∈ e mod P(B) which has length at most R, where
R ≤ nmaxi ‖bi‖ and y − e ∈ L. The desired situation is that after a polynomial number
of such sieving iterations (sieve) we are left with a set of vector pairs (e′,y′) such that
y′ − e′ ∈ L ∩B(∞)

n (O(λ(∞)
1 (L))). Finally we take pair-wise differences of the lattice vectors

corresponding to the remaining vector pairs and output the one with the smallest non-zero
norm. It was shown in [5] that with overwhelming probability, this algorithm outputs the
shortest vector in the lattice.

An iteration of the sieving procedure on the pairs of vectors S does the following. We
partition the interval [−R,R] into ` = 1 +

⌊
2
γ

⌋
intervals of length γR. The intervals are

[−R,−R+ γR), [−R+ γR,−R+ 2γR), . . . [−R+ (`− 1)γR,R]. (Note that the last interval
may be smaller than the rest.) The ball [−R,R]n can thus be partitioned into

(
1 +

⌊
2
γ

⌋)n

D. Aggarwal and P. Mukhopadhyay 35:7

Algorithm 1: An exact algorithm for SVP(∞).
Input: (i) A basis B = [b1, . . .bn] of a lattice L, (ii) 0 < γ < 1, (iii) ξ > 1/2, (iv)

λ ≈ λ(∞)
1 (L) ,(v) N ∈ N

Output: A shortest vector of L
1 S ← ∅ ;
2 for i = 1 to N do
3 ei ←uniform B

(∞)
n (0, ξλ) ;

4 yi ← ei mod P(B) ;
5 S ← S ∪ {(ei,yi)} ;
6 end
7 R← nmaxi ‖bi‖∞ ;
8 for j = 1 to k =

⌈
logγ

(
ξ

nR(1−γ)

)⌉
do

9 S ← sieve(S, γ,R, ξ) ;
10 R← γR+ ξλ ;
11 end
12 Compute the non-zero vector v0 in {(yi − ei)− (yj − ej) : (ei,yi), (ej ,yj) ∈ S} with

the smallest `∞ norm ;
13 return v0 ;

regions, such that no two vectors in a region are at a distance greater than γR in the `∞
norm. The sieving procedure maintains an n-dimensional array with an entry corresponding
to each of these

(
1 +

⌊
2
γ

⌋)n
regions. Each position in the array contains the description of

one pair (e,y) ∈ S called a center, if y belongs to that region. For every other vector pair
(e,y) ∈ S that is not a center, we find the corresponding region and hence the corresponding
center (ec, c) such that ‖y− c‖∞ ≤ γR. We then add (e,y− c + ec) to the output list S′.
Finally we return S′. It is easy to see that the number of center pairs in each iteration is at
most |C| ≤ 2ccn where cc = log

(
1 +

⌊
2
γ

⌋)
.

I Claim 9. The following two invariants are maintained in Algorithm 1:
1. ∀(e,y) ∈ S, y− e ∈ L
2. ∀(e,y) ∈ S, ||y||∞ ≤ R

Since the length of the vectors decrease until R > γR+ ξλ, the following is easy to see.

I Lemma 10. At the end of k iterations in Algorithm 1 the length of lattice vectors
‖y− e‖∞ ≤ ξ(2−γ)λ

1−γ + γξ
n(1−γ) =: R′.

Assuming λ(∞)
1 ≤ λ ≤ λ

(∞)
1 (1 + 1/n) we get an upper bound on the number of lattice

vectors of length at most R′, i.e. |B(∞)
n (R′)∩L| ≤ 2cbn+o(n), where cb = log

(
1 +

⌊
2ξ(2−γ)

1−γ

⌋)
.

The above lemma along with the invariants imply that at the beginning of step 12 in
Algorithm 1 we have “short” lattice vectors with norm bounded by R′. Using the randomness
in the sampling of the initial set of vectors, we want to ensure that we do not end up with
all zero vectors at the end of the sieving iterations. For this we use the idea of perturbing
the vectors due to Ajtai, Kumar, Sivakumar, and the current formulation by Regev [26].

Let u ∈ L such that ‖u‖∞ = λ
(∞)
1 (L) ≈ λ (where 2 < λ

(∞)
1 (L) ≤ 3), D1 = B

(∞)
n (ξλ) ∩

B
(∞)
n (−u, ξλ) and D2 = B

(∞)
n (ξλ) ∩ B(∞)

n (u, ξλ). Define a bijection σ on B
(∞)
n (ξλ) that

maps D1 to D2, D2 \D1 to D1 \D2 and B(∞)
n (ξλ) \ (D1 ∪D2) to itself.

ISAAC 2018

35:8 Improved Algorithms for SVP and CVP in the Infinity Norm

For the analysis of the algorithm, we assume that for each perturbation vector e chosen
by our algorithm, we replace e by σ(e) with probability 1/2 and it remains unchanged with
probability 1/2. We call this procedure tossing the vector e. Further, we assume that this
replacement of the perturbation vectors happens at the step where for the first time this has
any effect on the algorithm. In particular, in the sieving algorithm, after we have identified a
centre (ec, c) we apply σ on ec with probability 1/2. Then at the beginning of step 12 in
Algorithm 1 we apply σ to e for all pairs (e,y) ∈ S. The distribution of y remains unchanged
by this procedure because y ≡ e mod P(B) and y − e ∈ L. A somewhat more detailed
explanation of this can be found in the following result of [11].

I Lemma 11 (Theorem 4.5 in [11] (re-stated)). The modification outlined above does not
change the output distribution of the actual procedure.

The following lemma will help us estimate the number of vector pairs to sample at the
beginning of the algorithm.

I Lemma 12 (Lemma 4.7 in [11]). Let N ∈ N and q denote the probability that a random
point in B(∞)

n (ξλ) is contained in D1 ∪D2. If N points x1, . . .xN are chosen uniformly at
random in B(∞)

n (ξλ), then with probability larger than 1− 4
qN , there are at least qN

2 points
xi ∈ {x1, . . .xN} with the property xi ∈ D1 ∪D2.

Using Lemma 3, it can be shown that q ≥ 2−csn where cs = − log
(

1− 1
2ξ

)
.

Thus with probability at least 1− 4
qN we have at least 2−csnN pairs (ei,yi) before the sieving

iterations such that ei ∈ D1 ∪D2.

I Lemma 13. If N ≥ 2
q (k|C| + 2cbn + 1), then with probability at least 1/2 Algorithm 1

outputs a shortest non-zero vector in L with respect to `∞ norm.

Proof. Of the N vector pairs (e,y) sampled in steps 2-6 of Algorithm 1, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs with
probability at least 1− 4

qN . We remove |C| vector pairs in each of the k sieve iterations. So
at step 12 of Algorithm 1 we have N ′ ≥ 2cbn + 1 pairs (e,y) to process.

By Lemma 10 each of them is contained within a ball of radius R′ which can have at most
2cbn lattice vectors. So there exists at least one lattice vector w for which the perturbation
is in D1 ∪D2 and it appears twice in S at the beginning of step 12. With probability 1/2 it
remains w or with the same probability it becomes either w + u or w−u. Thus after taking
pair-wise difference at step 12 with probability at least 1/2 we find the shortest vector. J

Thus, the space complexity of our algorithm is N · poly(n), and the time complexity
for the sieving step is N · poly(n) and for computing the pairwise differences at the end is
22cbn · poly(n), thus giving the following result.

I Theorem 14. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm for SVP(∞) with success probability at least 1/2, space complexity
at most 2cspacen+o(n) and running time at most 2ctimen+o(n), where cspace = cs + max(cc, cb)
and ctime = max(cspace, 2cb), where cc = log

(
1 +

⌊
2
γ

⌋)
, cs = − log

(
1− 1

2ξ

)
and cb =

log
(

1 +
⌊

2ξ(2−γ)
1−γ

⌋)
.

D. Aggarwal and P. Mukhopadhyay 35:9

3.1 Improvement using the birthday paradox
The crucial step that ensures that Algorithm 1 outputs a shortest vector in the lattice is that
at step 12, we should have enough vectors to make sure that two vectors are equal (before
the tossing step). Pujol and Stehle [25] observed that by the birthday paradox, we only need
2cbn/2+o(n) independent and identically distributed vectors to ensure this. Though their idea
was described for the `2 norm, we show that the idea can be used to improve the time and
space complexity of our algorithm for the `∞ norm [3]. We thus obtain the following result.

I Theorem 15. Let γ ∈ (0, 1), and let ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm for SVP(∞) with success probability at least 1/2, space complexity
at most 2cspacen+o(n) and running time at most 2ctimen+o(n), where cspace = cs + max(cc, cb

2)
and ctime = max(cspace, cb), where cc = log

(
1 +

⌊
2
γ

⌋)
, cs = − log

(
1− 1

2ξ

)
and cb =

log
(

1 +
⌊

2ξ(2−γ)
1−γ

⌋)
.

In particular for γ = 0.67 and ξ = 0.868 the algorithm has time and space complexity
22.82n+o(n).

4 Faster Approximation Algorithms

4.1 Algorithm for Approximate SVP
Notice that Algorithm 1, at the end of the sieving procedure, obtains lattice vectors of length
at most R′ = ξ(2−γ)λ

1−γ +O(λ/n). So, as long as we can ensure that one of the vectors obtained
at the end of the sieving procedure is non-zero, we obtain a τ = ξ(2−γ)

1−γ + o(1)-approximation
of the shortest vector. Consider a new algorithm A that is identical to Algorithm 1, except
that Step 12 is replaced by the following:

Find a non-zero vector v0 in {(yi − ei) : (ei,yi) ∈ S}.

We now show that if we start with sufficiently many vectors, we must obtain a non-zero
vector.

I Lemma 16. If N ≥ 2
q (k|C|+ 1), then with probability at least 1/2 Algorithm A outputs a

non-zero vector in L of length at most ξ(2−γ)λ
1−γ +O(λ/n) with respect to `∞ norm.

Proof. Of the N vector pairs (e,y) sampled in steps 2-6 of Algorithm A, we consider those
such that e ∈ (D1 ∪ D2). We have already seen there are at least qN

2 such pairs with
probability at least 1− 4

qN . We remove |C| vector pairs in each of the k sieve iterations. So
at step 12 of Algorithm 1 we have N ′ ≥ 1 pairs (e,y) to process.

With probability 1/2, e, and hence w = y−e is replaced by either w + u or w−u. Thus,
the probability that this vector is the zero vector is at most 1/2. J

We thus obtain the following:

I Theorem 17. Let γ ∈ (0, 1) and ξ > 1/2. Given a full rank lattice L ⊂ Qn there is
a randomized algorithm that, for τ = ξ(2−γ)

1−γ + o(1), approximates SVP(∞) with success
probability at least 1/2, space and time complexity 2(cs+cc)n+o(n), where cc = log

(
1 +

⌊
2
γ

⌋)
,

and cs = − log
(

1− 1
2ξ

)
. In particular, for γ = 2/3 + o(1), ξ = τ/4, the algorithm runs in

time 3n ·
(

τ
τ−2

)n
.

ISAAC 2018

35:10 Improved Algorithms for SVP and CVP in the Infinity Norm

4.2 Algorithm for Approximate CVP
Given a lattice L and a target vector t, let d denote the distance of the closest vector in L
to t. Just as in Section 3, we assume that we know the value of d within a factor of 1 + 1/n.
We can get rid of this assumption by using Babai’s [8] algorithm to guess the value of d
within a factor of 2n, and then run our algorithm for polynomially many values of d each
within a factor 1 + 1/n of the previous one.

For τ > 0 define the following (n + 1)-dimensional lattice : L′ = L
(
{(v, 0) : v ∈

L} ∪ {(t, τd/2)}
)
. Let z∗ ∈ L be the lattice vector closest to t. Then u = (z∗ − t,−τd/2) ∈

L′ \ (L − kt, 0) for some k ∈ Z.
We sample N vector pairs (e,y) ∈ B

(∞)
n (ξd) × P(B′), like in steps 2-6 of Algorithm

1, where B′ = [(b1, 0), . . . , (bn, 0), (t, τd/2)] is a basis for L′. Next we run a polynomial
number of iterations of the sieving algorithm (sieve) to get a number of vector pairs such
that ‖y‖∞ ≤ R = ξd

1−γ + o(1).

From Lemma 10 we have seen that after dlogγ
(

ξ
nR0(1−γ)

)
e iterations (where R0 =

n · maxi ‖bi‖∞) R ≤ ξγ
n(1−γ) + ξd

1−γ

[
1 − ξ

nR0(1−γ)

]
. Thus after the sieving iterations the

set S′ consists of vector pairs such that the corresponding lattice vector v has ‖v‖∞ ≤
ξd

1−γ + ξd+ c = ξ(2−γ)d
1−γ + o(1).

In order to ensure that our sieving algorithm doesn’t return vectors from (L, 0)−(kt, kτd/2)
for some k such that |k| ≥ 2, we choose our parameter as : ξ < (1−γ)τ

2−γ − o(1).
Then every vector has ‖v‖∞ < τd and so either v = ±(z′ − t, 0) or v = ±(z− t,−τd/2)

for some lattice vector z, z′ ∈ L. We denote this set of vectors by S′′.
We need to argue that we must have at least some vectors in S′′ \ (L ± t, 0) after the

sieving iterations. To do so, we again use the tossing argument from Section 3. Let z∗ ∈ L
be the lattice vector closest to t. Then let u = (z∗ − t,−τd/2) ∈ S′′ \ (L ± t, 0). Let
D1 = B

(∞)
n (ξd) ∩B(∞)

n (−u, ξd) and D2 = B
(∞)
n (ξd) ∩B(∞)

n (u, ξd).
From Lemma 3, we have that the probability q that a random perturbation vector is in

D1 ∪D2 is at least 2−csn ·
(

1− τ
4ξ

)
where cs = − log

(
1− 1

2ξ

)
Thus, as long as ξ > max(1/2, τ/4) , we have at least 2−csn+o(n)N pairs (ei,yi) before

the sieving iterations such that ei ∈ D1 ∪D2.
Thus, using the same argument as in Section 4.1, we obtain the following:

I Theorem 18. Let γ ∈ (0, 1), and for any τ > 1 let ξ > max(1/2, τ/4). Given a full rank
lattice L ⊂ Qn there is a randomized algorithm that, for τ = ξ(2−γ)

1−γ + o(1), approximates
CVP(∞) with success probability at least 1/2, space and time complexity 2(cs+cc)n+o(n), where
cc = log

(
1 +

⌊
2
γ

⌋)
and cs = − log

(
1− 1

2ξ

)
. In particular, for γ = 1/2 + o(1) and ξ = τ/3,

the algorithm runs in time 4n ·
(

2τ
2τ−3

)n
.

5 Heuristic algorithm for SVP(∞)

Nguyen and Vidick [23] introduced a heuristic variant of the AKS sieving algorithm. We
have used it to solve SVP(∞). A brief outline of the algorithm is given in this section while a
more detailed description along with the analysis is deferred to the full version [3].

The basic framework is similar to AKS, except that here we do not work with perturbation
vectors. We start with a set S of uniformly sampled lattice vectors of norm 2O(n)λ

(∞)
1 (L).

These are iteratively fed into a sieving procedure which when provided with a list of lattice

D. Aggarwal and P. Mukhopadhyay 35:11

vectors of norm, say R, will return a list of lattice vectors of norm at most γR. In each
iteration of the sieve a number of vectors are identified as centres. If a vector is within
distance γR from a centre, we subtract it from the centre and add the resultant to the output
list. The iterations continue till the list S of vectors currently under consideration is empty.
After a linear number of iterations we expect to be left with a list of very short vectors and
then we output the one with the minimum norm. Here we have to ensure that we do not
end up with a list of all zero-vectors much before we get these short vectors.

So we make the following assumption about the distribution of vectors at any stage of
the algorithm.

I Heuristic 19. At any stage of the algorithm the vectors in S ∩B(∞)
n (γR,R) are uniformly

distributed in B(∞)
n (γR,R) = {x ∈ Rn : γR < ‖x‖∞ ≤ R}.

In the literature, such assumption has been made for `2 norm. We have extended the
same assumption to `∞ norm, because we could not find evidence that it does not hold here.

Now after each sieving iteration we get a zero vector if there is a “collision” of a vector
with a centre vector. With the above assumption we can have following estimate about the
expected number of collisions.

I Lemma 20 ([23]). Let p vectors are randomly chosen with replacement from a set of
cardinality N . Then the expected number of different vectors picked is N −N(1− 1

N)p.
So the expected number of vectors lost through collisions is p−N +N(1− 1

N)p.

This number is negligible for p <<
√
N . Since the expected number of lattice points inside a

ball of radius R/λ(∞)
1 is O(Rn), the effect of collisions remain negligible till R/λ(∞)

1 < |S|2/n.
It can be shown that it is sufficient to take |S| ≈ (4/3)n, which gives R/λ(∞)

1 ≈ 16/9. So
collisions are expected to become significant only when we already have a good estimate of
λ

(∞)
1 , and even then collisions will imply we had a good proportion of lattice vectors in the

previous iteration and thus with good probability we expect to get the shortest vector or a
constant approximation of it.

Choosing γ = 1− 1/n, our algorithm has space complexity
(

4
3

)n+o(n)
= 20.415n+o(n) and

time complexity
(

4
3

)2n+o(n)
= 20.83n+o(n).

In order to improve the running time, which is mostly dictated by the number of centres,
Wang et al. [27] introduced a two-level sieving procedure that improves upon the NV sieve
for large n. Here in the first level we identify a set of centres C1 and to each c ∈ C1 we
associate vectors within a distance γ1R from it. Now within each such γ1R radius “big ball”
we have another set of vectors Cc

2 , which we call the second-level centre. From each c′ ∈ Cc
2

we subtract those vectors which are in B(∞)
n (c′, γ2R) and add the resultant to the output

list.
We have analysed this two-level sieve in the `∞ norm and also found similar improvement

in the running time. For suitable choice of parameters we achieve a space and time complexity
of at most 20.415n+o(n) and 20.62n+o(n) respectively.

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving

the Shortest Vector Problem in 2n time via Discrete Gaussian Sampling. In STOC, 2015.
Full version available at https://arxiv.org/abs/1412.7994.

2 Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the Closest
Vector Problem in 2ˆ n Time–The Discrete Gaussian Strikes Again! In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 563–582. IEEE,
2015.

ISAAC 2018

https://arxiv.org/abs/1412.7994

35:12 Improved Algorithms for SVP and CVP in the Infinity Norm

3 Divesh Aggarwal and Priyanka Mukhopadhyay. Faster algorithms for SVP and CVP in
the `∞ norm. arXiv preprint, 2018. arXiv:1801.02358.

4 Divesh Aggarwal and Noah Stephens-Davidowitz. Just Take the Average! An Embar-
rassingly Simple 2n-Time Algorithm for SVP (and CVP). arXiv preprint, 2017. arXiv:
1709.01535.

5 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest Lattice
Vector Problem. In STOC, pages 601–610, 2001. doi:10.1145/380752.380857.

6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In CCC, pages 41–45, 2002.

7 Vikraman Arvind and Pushkar S Joglekar. Some sieving algorithms for lattice problems.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 2. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2008.

8 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986. doi:10.1007/BF02579403.

9 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 10–24. Society for
Industrial and Applied Mathematics, 2016.

10 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the Quantitative
Hardness of CVP. arXiv preprint, 2017. arXiv:1704.03928.

11 Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest
vectors and successive minima. Theoretical Computer Science, 410(18):1648–1665, 2009.

12 Matthijs J Coster, Antoine Joux, Brian A LaMacchia, Andrew M Odlyzko, Claus-Peter
Schnorr, and Jacques Stern. Improved low-density subset sum algorithms. computational
complexity, 2(2):111–128, 1992.

13 Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS–Dilithium: Digital Signatures from Module Lattices. Technical
report, IACR Cryptology ePrint Archive, 2017: 633, 2017.

14 Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest
vector problem. In Proceedings of the twenty-seventh annual symposium on Computational
geometry, pages 417–423. ACM, 2011.

15 O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice
vectors is not harder than approximating closest lattice vectors. Information Processing
Letters, 71(2):55–61, 1999. doi:10.1016/S0020-0190(99)00083-6.

16 Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics
of Operations Research, 12(3):pp. 415–440, 1987. URL: http://www.jstor.org/stable/
3689974.

17 Susan Landau and Gary Lee Miller. Solvability by radicals is in polynomial time. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 140–
151. ACM, 1983.

18 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982. doi:10.1007/BF01457454.

19 Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of operations research, 8(4):538–548, 1983.

20 Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in
the presence of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

21 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time al-
gorithm for most lattice problems based on Voronoi cell computations. SIAM Journal on
Computing, 42(3):1364–1391, 2013.

http://arxiv.org/abs/1801.02358
http://arxiv.org/abs/1709.01535
http://arxiv.org/abs/1709.01535
http://dx.doi.org/10.1145/380752.380857
http://dx.doi.org/10.1007/BF02579403
http://arxiv.org/abs/1704.03928
http://dx.doi.org/10.1016/S0020-0190(99)00083-6
http://www.jstor.org/stable/3689974
http://www.jstor.org/stable/3689974
http://dx.doi.org/10.1007/BF01457454

D. Aggarwal and P. Mukhopadhyay 35:13

22 Phong Q Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Crypto-
graphy and lattices, pages 146–180. Springer, 2001.

23 Phong Q Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

24 Chris Peikert et al. A decade of lattice cryptography. Foundations and Trends® in Theor-
etical Computer Science, 10(4):283–424, 2016.

25 Xavier Pujol and Damien Stehlé. Solving the Shortest Lattice Vector Problem in Time
22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

26 Oded Regev. Lecture notes on lattices in computer science, 2009.
27 Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved Nguyen-Vidick

heuristic sieve algorithm for shortest vector problem. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pages 1–9. ACM,
2011.

28 Wei Wei, Mingjie Liu, and Xiaoyun Wang. Finding Shortest Lattice Vectors in the Presence
of Gaps. In Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings, pages 239–257,
2015. doi:10.1007/978-3-319-16715-2_13.

ISAAC 2018

http://dx.doi.org/10.1007/978-3-319-16715-2_13

	Introduction
	Prior Work
	Algorithms in the Euclidean Norm
	Algorithms in Other l_p Norms

	Our contribution
	Provable Algorithms
	Heuristic Algorithms

	Open problems
	Organization of the paper

	Preliminaries
	Notations
	Lattice

	A faster algorithm for SVP^{(infty)}
	Improvement using the birthday paradox

	Faster Approximation Algorithms
	Algorithm for Approximate SVP
	Algorithm for Approximate CVP

	Heuristic algorithm for SVP^{(infty)}

