9 research outputs found

    Non-Cooperative Scheduling of Multiple Bag-of-Task Applications

    Get PDF
    Multiple applications that execute concurrently on heterogeneous platforms compete for CPU and network resources. In this paper we analyze the behavior of KK non-cooperative schedulers using the optimal strategy that maximize their efficiency while fairness is ensured at a system level ignoring applications characteristics. We limit our study to simple single-level master-worker platforms and to the case where each scheduler is in charge of a single application consisting of a large number of independent tasks. The tasks of a given application all have the same computation and communication requirements, but these requirements can vary from one application to another. In this context, we assume that each scheduler aims at maximizing its throughput. We give closed-form formula of the equilibrium reached by such a system and study its performance. We characterize the situations where this Nash equilibrium is optimal (in the Pareto sense) and show that even though no catastrophic situation (Braess-like paradox) can occur, such an equilibrium can be arbitrarily bad for any classical performance measure

    Euro-Par 2006 Parallel Processing

    Full text link

    Independent and Divisible Task Scheduling on Heterogeneous Star-shaped Platforms with Limited Memory

    Get PDF
    In this paper, we consider the problem of allocating and scheduling a collection of independent, equal-sized tasks on heterogeneous star-shaped platforms. We also address the same problem for divisible tasks. For both cases, we take memory constraints into account. We prove strong NP-completeness results for different objective functions, namely makespan minimization and throughput maximization, on simple star-shaped platforms. We propose an approximation algorithm based on the unconstrained version (with unlimited memory) of the problem. We introduce several heuristics, which are evaluated and compared through extensive simulations. An unexpected conclusion drawn from these experiments is that classical scheduling heuristics that try to greedily minimize the completion time of each task are outperformed by the simple heuristic that consists in assigning the task to the available processor that has the smallest communication time, regardless of computation power (hence a "bandwidth-centric" distribution).Dans ce rapport, nous nous intéressons au problème de l’allocation d’un grand nombre de taches indépendantes et de taille identiques sur des plateformes de calcul hétérogènes organisées en étoile. Nous nous intéressons également au modèle des tâches divisibles. Pour ces deux modèles, nous prenons en compte les contraintes mémoires et démontrons des résultats de NP-complétude pour diverses métriques (le «makespakan» et le débit). Nous proposons un algorithme d’approximation basé sur la version non-contrainte (c’est-`a-dire avec une mémoire infinie) du problème. Nous proposons également d’autres heuristiques que nous évaluons à l’aide d’un grand nombre de simulations. Une conclusion inattendue qui ressort de ces expériences est que les heuristiques de listes classiques qui essaient de minimiser gloutonnement la durée de l’ordonnancement sont bien moins performantes que l’heuristique toute simple consistant à envoyer les tâches aux processeurs disponibles ayant le temps de communication le plus faible, sans même tenir compte de leur puissance de calcu

    Scheduling and data redistribution strategies on star platforms

    Get PDF
    In this work we are interested in the problem of scheduling and redistributing data on master-slave platforms. We consider the case were the workers possess initial loads, some of which having to be redistributed in order to balance their completion times. We examine two different scenarios. The first model assumes that the data consists of independent and identical tasks. We prove the NP-completeness in the strong sense for the general case, and we present two optimal algorithms for special platform types. Furthermore we propose three heuristics for the general case. Simulations consolidate the theoretical results. The second data model is based on Divisible Load Theory. This problem can be solved in polynomial time by a combination of linear programming and simple analytical manipulations

    Scheduling and data redistribution strategies on star platforms

    Get PDF
    In this work we are interested in the problem of scheduling and redistributing data on master-slave platforms. We consider the case were the workers possess initial loads, some of which having to be redistributed in order to balance their completion times. We examine two different scenarios. The first model assumes that the data consists of independent and identical tasks. We prove the NP-completeness in the strong sense for the general case, and we present two optimal algorithms for special platform types. Furthermore we propose three heuristics for the general case. Simulations consolidate the theoretical results. The second data model is based on Divisible Load Theory. This problem can be solved in polynomial time by a combination of linear programming and simple analytical manipulations.Dans ce travail on s’intéresse au problème d’ordonnancement et de redistribution de données sur plates-formes maître-esclaves. On considère le cas où les esclaves possèdent des données initiales, dont quelques-unes doivent être redistribuées pour équilibrer leur dates de fin.On examine deux scénarios différents. Le premier modèle suppose que les données sont des tâches indépendantes identiques. On prouve la NP-complétude dans le sens fort pour le cas général, et on présente deux algorithmes pour des plates-formes spéciales.De plus on propose trois heuristiques pour le cas général. Des résultats expérimentaux obtenus par simulation viennent à l’appui des résultats théoriques

    Complexity of master-slave tasking on heterogeneous trees

    Get PDF
    In this paper, we consider the problem of scheduling independent identical tasks on heterogeneous processors and network, where processing times and communications times are different. We assume that communication-computation overlap is possible for every processor, but only allow one send and one receive at a time. In this model, we prove that scheduling on a tree network is NP-hard in the strong sense, reducing the problem to the well-known 3-partition problem.
    corecore