
Scheduling and data redistribution strategies on star

platforms

Loris Marchal, Veronika Rehn, Yves Robert, Frédéric Vivien

To cite this version:

Loris Marchal, Veronika Rehn, Yves Robert, Frédéric Vivien. Scheduling and data redistri-
bution strategies on star platforms. [Research Report] RR-6005, INRIA. 2006, pp.42. <inria-
00108518v2>

HAL Id: inria-00108518

https://hal.inria.fr/inria-00108518v2

Submitted on 26 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52329933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00108518v2

in
ria

-0
01

08
51

8,
 v

er
si

on
 2

 -
 2

6
O

ct
 2

00
6

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
60

05
--

F
R

+
E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scheduling and data redistribution strategies on star
platforms

Loris Marchal — Veronika Rehn — Yves Robert — Frédéric Vivien

N° 6005
October 2006

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

S
heduling and data redistribution strategies on starplatformsLoris Mar
hal, Veronika Rehn, Yves Robert, Frédéri
 VivienThème NUM � Systèmes numériquesProjet GRAALRapport de re
her
he n° 6005 � O
tober 2006 � 39 pages
Abstra
t: In this work we are interested in the problem of s
heduling and redistributing dataon master-slave platforms. We
onsider the
ase were the workers possess initial loads, some ofwhi
h having to be redistributed in order to balan
e their
ompletion times.We examine two di�erent s
enarios. The �rst model assumes that the data
onsists of inde-pendent and identi
al tasks. We prove the NP-
ompleteness in the strong sense for the general
ase, and we present two optimal algorithms for spe
ial platform types. Furthermore we proposethree heuristi
s for the general
ase. Simulations
onsolidate the theoreti
al results.The se
ond data model is based on Divisible Load Theory. This problem
an be solved inpolynomial time by a
ombination of linear programming and simple analyti
al manipulations.Key-words: Master-slave platform, s
heduling, data redistribution, one-port model, indepen-dent tasks, divisible load theory.

Stratégies d'ordonnan
ement et de redistribution de donnéessur plate-formes en étoileRésumé : Dans
e travail on s'interesse au problème d'ordonnan
ement et de redistributionde données sur plates-formes maître-es
laves. On
onsidère le
as où les es
laves possèdent desdonnées initiales, dont quelques-unes doivent être redistribuées pour équilibrer leur dates de �n.On examine deux s
énarios di�érents. Le premier modèle suppose que les données sont destâ
hes indépendantes identiques. On prouve la NP-
omplétude dans le sens fort pour le
asgénéral, et on présente deux algorithmes pour des plates-formes spé
iales. De plus on propose troisheuristiques pour le
as général. Des résultats expérimentaux obtenus par simulation viennent àl'appui des résultats théoriques.Mots-
lés : Plate-forme maître-es
lave, ordonnan
ement, équilibrage de
harge, modèle un-port,tâ
hes indépendantes, tâ
hes divisibles.

S
heduling and data redistribution strategies on star platforms 3Contents1 Introdu
tion 42 Related work 53 Load balan
ing of independent tasks using the one-port bidire
tional model 63.1 Framework . 63.2 General platforms . 63.2.1 Polynomiality when
omputations are negle
ted 73.2.2 NP-
ompleteness of the original problem . 93.3 An algorithm for s
heduling on homogeneous star platforms: the best-balan
e al-gorithm . 123.3.1 Notations used in BBA . 133.3.2 The Best Balan
e Algorithm - BBA . 133.4 S
heduling on platforms with homogeneous
ommuni
ation links and heterogeneous
omputation
apa
ities . 203.4.1 Moore's algorithm . 203.4.2 Framework and notations for MBBSA . 213.4.3 Moore based binary sear
h algorithm - MBBSA 213.5 Heuristi
s for heterogeneous platforms . 264 Simulations 264.1 The simulations . 264.2 Tra
e tests . 284.3 Distan
e from the best . 294.4 Mean distan
e and standard deviation . 345 Load balan
ing of divisible loads using the multiport swit
h-model 345.1 Framework . 345.2 Redistribution strategy . 356 Con
lusion 38

RR n° 6005

4 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien1 Introdu
tionIn this work we
onsider the problem of s
heduling and redistributing data on master-slave ar-
hite
tures in star topologies. Be
ause of variations in the resour
e performan
e (CPU speed or
ommuni
ation bandwidth), or be
ause of unbalan
ed amounts of
urrent load on the workers,data must be redistributed between the parti
ipating pro
essors, so that the updated load is betterbalan
ed in terms that the overall pro
essing �nishes earlier.We adopt the following abstra
t view of our problem. There are m+1 parti
ipating pro
essors
P0, P1, . . . , Pm, where P0 is the master. Ea
h pro
essor Pk, 1 ≤ k ≤ m initially holds Lk dataitems. During our s
heduling pro
ess we try to determine whi
h pro
essor Pi should send somedata to another worker Pj to equilibrate their �nishing times. The goal is to minimize the globalmakespan, that is the time until ea
h pro
essor has �nished to pro
ess its data. Furthermorewe suppose that ea
h
ommuni
ation link is fully bidire
tional, with the same bandwidth forre
eptions and sendings. This assumption is quite realisti
 in pra
ti
e, and does not
hange the
omplexity of the s
heduling problem, whi
h we prove NP-
omplete in the strong sense.We examine two di�erent s
enarios for the data items that are situated at the workers. The�rst model supposes that these data items
onsist in independent and uniform tasks, while theother model uses the Divisible Load Theory paradigm (DLT) [4℄.The
ore of DLT is the following: DLT assumes that
ommuni
ation and
omputation loads
an be fragmented into parts of arbitrary size and then distributed arbitrarily among di�erentpro
essors to be pro
essed there. This
orresponds to perfe
t parallel jobs: They
an be split intoarbitrary subtasks whi
h
an be pro
essed in parallel in any order on any number of pro
essors.Beaumont, Mar
hal, and Robert [2℄ treat the problem of divisible loads with return messageson heterogeneous master-worker platforms (star networks). In their framework, all the initial loadis situated at the master and then has to be distributed to the workers. The workers
ompute theiramount of load and return their results to the master. The di�
ulty of the problem is to de
ideabout the sending order from the master and, at the same time, about the re
eiving order. In thispaper problems are formulated in terms of linear programs. Using this approa
h the authors wereable to
hara
terize optimal LIFO1 and FIFO2 strategies, whereas the general
ase is still open.Our problem is di�erent, as in our
ase the initial load is already situated at the workers. To thebest of our knowledge, we are the �rst to ta
kle this kind of problem.Having dis
ussed the reasons and ba
kground of DLT, we dwell on the interest of the datamodel with uniform and independent tasks. Contrary to the DLT model, where the size of load
an be diversi�ed, the size of the tasks has to be �xed at the beginning. This leads to the �rstpoint of interest: When tasks have di�erent sizes, the problem is NP
omplete be
ause of an ob-vious redu
tion to 2-partition [12℄. The other point is a positive one: there exists lots of pra
ti
alappli
ations who use �xed identi
al and independent tasks. A famous example is BOINC [5℄,the Berkeley Open Infrastru
ture for Network Computing, an open-sour
e software platform forvolunteer
omputing. It works as a
entralized s
heduler that distributes tasks for parti
ipatingappli
ations. These proje
ts
onsists in the treatment of
omputation extensive and expensive s
i-enti�
 problems of multiple domains, su
h as biology,
hemistry or mathemati
s. SETI�home [22℄for example uses the a

umulated
omputation power for the sear
h of extraterrestrial intelligen
e.In the astrophysi
al domain, Einstein�home [11℄ sear
hes for spinning neutron stars using datafrom the LIGO and GEO gravitational wave dete
tors. To get an idea of the task dimensions, inthis proje
t a task is about 12 MB and requires between 5 and 24 hours of dedi
ated
omputation.As already mentioned, we suppose that all data are initially situated on the workers, whi
hleads us to a kind of redistribution problem. Existing redistribution algorithms have a di�erentobje
tive. Neither do they
are how the degree of imbalan
e is determined, nor do they in
ludethe
omputation phase in their optimizations. They expe
t that a load-balan
ing algorithm hasalready taken pla
e. With help of these results, a redistribution algorithm determines the required
ommuni
ations and organizes them in minimal time. Renard, Robert, and Vivien present some1Last In First Out2First In First Out INRIA

S
heduling and data redistribution strategies on star platforms 5optimal redistribution algorithms for heterogeneous pro
essor rings in [20℄. We
ould use thisapproa
h and redistribute the data �rst and then enter in a
omputation phase. But our problemis more
ompli
ated as we suppose that
ommuni
ation and
omputation
an overlap, i.e., everyworker
an start
omputing its initial data while the redistribution pro
ess takes pla
e.To summarize our problem: as the parti
ipating workers are not equally
harged and/or be-
ause of di�erent resour
e performan
e, they might not �nish their
omputation pro
ess at thesame time. So we are looking for me
hanisms on how to redistribute the loads in order to �nishthe global
omputation pro
ess in minimal time under the hypothesis that
harged workers
an
ompute at the same time as they
ommuni
ate.The rest of this report is organized as follows: Se
tion 2 presents some related work. Thedata model of independent and identi
al tasks is treated in Se
tion 3: In Se
tion 3.2 we dis
ussthe
ase of general platforms. We are able to prove the NP-
ompleteness for the general
aseof our problem, and the polynomiality for a restri
ted problem. The following se
tions
onsidersome parti
ular platforms: an optimal algorithm for homogeneous star networks is presented inSe
tion 3.3, Se
tion 3.4 treats platforms with homogenous
ommuni
ation links and heteroge-neous workers. The presentation of some heuristi
s for heterogeneous platforms is the subje
tin Se
tion 3.5. Simulative test results are shown in Se
tion 4. Se
tion 5 is devoted to the DLTmodel. We propose a linear program to solve the s
heduling problem and propose formulas forthe redistribution pro
ess.2 Related workOur work is prin
ipally related with three key topi
s. Sin
e the early nineties Divisible LoadTheory (DLT) has been assessed to be an interesting method of distributing load in parallel
omputer systems. The out
ome of DLT is a huge variety of s
heduling strategies on how todistribute the independent parts to a
hieve maximal results. As the DLT model
an be used on avast variety of inter
onne
tion topologies like trees, buses, hyper
ubes and so on, in the literaturetheoreti
al and appli
ative elements are widely dis
ussed. In his arti
le Robertazzi gives Ten Rea-sons to Use Divisible Load Theory [21℄, like s
alability or extending realism. Probing strategies[13℄ were shown to be able to handle unknown platform parameters. In [8℄ evaluations of e�
ien
yof DLT are
ondu
ted. The authors analyzed the relation between the values of parti
ular pa-rameters and the e�
ien
y of parallel
omputations. They demonstrated that several parametersin parallel systems are mutually related, i.e., the
hange of one of these parameters should bea

ompanied by the
hanges of the other parameters to keep e�
ien
y. The platform used in thisarti
le is a star network and the results are for appli
ations with no return messages. Optimals
heduling algorithms in
luding return messages are presented in [1℄. The authors are treatingthe problem of pro
essing digital video sequen
es for digital TV and intera
tive multimedia. As aresult, they propose two optimal algorithms for real time frame-by-frame pro
essing. S
hedulingproblems with multiple sour
es are examined [17℄. The authors propose
losed form solutions fortree networks with two load originating pro
essors.Redistribution algorithms have also been well studied in the literature. Unfortunatelyalready simple redistribution problems are NP
omplete [15℄. For this reason, optimal algorithms
an be designed only for parti
ular
ases, as it is done in [20℄. In their resear
h, the authorsrestri
t the platform ar
hite
ture to ring topologies, both uni-dire
tional and bidire
tional. In thehomogeneous
ase, they were able to prove optimality, but the heterogenous
ase is still an openproblem. In spite of this, other e�
ient algorithms have been proposed. For topologies like treesor hyper
ubes some results are presented in [25℄.The load balan
ing problem is not dire
tly dealt with in this paper. Anyway we wantto quote some key referen
es to this subje
t, as the results of these algorithms are the startingpoint for the redistribution pro
ess. Generally load balan
ing te
hniques
an be
lassi�ed intotwo
ategories. Dynami
 load balan
ing strategies and stati
 load balan
ing. Dynami
 te
hniquesmight use the past for the predi
tion of the future as it is the
ase in [7℄ or they suppose that theload varies permanently [14℄. That is why for our problem stati
 algorithms are more interesting:RR n° 6005

6 L. Mar
hal, V. Rehn, Y. Robert and F. Vivienwe are only treating star-platforms and as the amount of load to be treated is known a priorywe do not need predi
tion. For homogeneous platforms, the papers in [23℄ survey existing results.Heterogeneous solutions are presented in [19℄ or [3℄. This last paper is about a dynami
 loadbalan
ing method for data parallel appli
ations,
alled the working-manager method: themanager is supposed to use its idle time to pro
ess data itself. So the heuristi
 is simple: whenthe manager does not perform any
ontrol task it has to work, otherwise it s
hedules.3 Load balan
ing of independent tasks using the one-portbidire
tional model3.1 FrameworkIn this part we will work with a star network S = P0, P1, . . . , Pm shown in Figure 1. The pro
essor
P0 is the master and the m remaining pro
essors Pi, 1 ≤ i ≤ m, are workers. The initial data aredistributed on the workers, so every worker Pi possesses a number Li of initial tasks. All tasksare independent and identi
al. As we assume a linear
ost model, ea
h worker Pi has a (relative)
omputing power wi for the
omputation of one task: it takes X.wi time units to exe
ute X taskson the worker Pi. The master P0
an
ommuni
ate with ea
h worker Pi via a
ommuni
ation link.A worker Pi
an send some tasks via the master to another worker Pj to de
rement its exe
utiontime. It takes X.ci time units to send X units of load from Pi to P0 and X.cj time units to sendthese X units from P0 to a worker Pj . Without loss of generality we assume that the master isnot
omputing, and only
ommuni
ating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2Figure 1: Example of a star network.The platforms dealt with in se
tions 3.3 and 3.4 are a spe
ial
ase of a star network: all
ommuni
ation links have the same
hara
teristi
s, i.e., ci = c for ea
h pro
essor Pi, 1 ≤ i ≤ k.Su
h a platform is
alled a bus network as it has homogeneous
ommuni
ation links.We use the bidire
tional one-port model for
ommuni
ation. This means, that the master
an only send data to, and re
eive data from, a single worker at a given time-step. But it
ansimultaneously re
eive a data and send one. A given worker
annot start an exe
ution before ithas terminated the re
eption of the message from the master; similarly, it
annot start sendingthe results ba
k to the master before �nishing the
omputation.The obje
tive fun
tion is to minimize the makespan, that is the time at whi
h all loads havebeen pro
essed. So we look for a s
hedule σ that a

omplishes our obje
tive.3.2 General platformsUsing the notations and the platform topology introdu
ed in Se
tion 3.1, we now formally presentthe S
heduling Problem for Master-Slave Tasks on a Star of Heterogeneous Pro-
essors (SPMSTSHP).
INRIA

S
heduling and data redistribution strategies on star platforms 7
Worker
 w load
P1 1 1 13
P2 8 1 13
P3 1 9 0
P4 1 10 0Figure 2: Platform parameters. P4

t = 0 t = M

P2

P3

P1

Figure 3: Example of an optimal s
hedule on aheterogeneous platform, where a sending workeralso re
eives a task.De�nition 1 (SPMSTSHP).Let N be a star-network with one spe
ial pro
essor P0
alled �master" and m workers. Let
n be the number of identi
al tasks distributed to the workers. For ea
h worker Pi, let wi be the
omputation time for one task. Ea
h
ommuni
ation link, linki, has an asso
iated
ommuni
ationtime ci for the transmission of one task. Finally let T be a deadline.The question asso
iated to the de
ision problem of SPMSTSHP is: �Is it possible to redistributethe tasks and to pro
ess them in time T?�.One of the main di�
ulties seems to be the fa
t that we
annot partition the workers into dis-joint sets of senders and re
eivers. There exists situations where, to minimize the global makespan,it is useful, that sending workers also re
eive tasks. (You will see later in this report that we
ansuppose this distin
tion when
ommuni
ations are homogeneous.)We
onsider the following example. We have four workers (see Figure 2 for their parameters)and a makespan �xed to M = 12. An optimal solution is shown in Figure 3: Workers P3 and P4 donot own any task, and they are
omputing very slowly. So ea
h of them
an
ompute exa
tly onetask. Worker P1, who is a fast pro
essor and
ommuni
ator, sends them their tasks and re
eiveslater another task from worker P2 that it
an
ompute just in time. Note that worker P1 is bothsending and re
eiving tasks. Trying to solve the problem under the
onstraint that no workeralso sends and re
eives, it is not feasible to a
hieve a makespan of 12. Worker P2 has to sendone task either to worker P3 or to worker P4. Sending and re
eiving this task takes 9 time units.Consequently the pro
essing of this task
an not �nish earlier than time t = 18.Another di�
ulty of the problem is the overlap of
omputation and the redistribution pro
ess.Subsequently we examine our problem negle
ting the
omputations. We are going to prove anoptimal polynomial algorithm for this problem.3.2.1 Polynomiality when
omputations are negle
tedExamining our original problem under the supposition that
omputations are negligible, we geta
lassi
al data redistribution problem. Hen
e we eliminate the original di�
ulty of the overlapof
omputation with the data redistribution pro
ess. We suppose that we already know theimbalan
e of the system. So we adopt the following abstra
t view of our new problem: the mparti
ipating workers P1, P2, . . . Pm hold their initial uniform tasks Li, 1 ≤ i ≤ m. For a worker Pithe
hosen algorithm for the
omputation of the imbalan
e has de
ided that the new load shouldbe Li − δi. If δi > 0, this means that Pi is overloaded and it has to send δi tasks to some otherpro
essors. If δi < 0, Pi is underloaded and it has to re
eive −δi tasks from other workers. Wehave heterogeneous
ommuni
ation links and all sent tasks pass by the master. So the goal is todetermine the order of senders and re
eivers to redistribute the tasks in minimal time.RR n° 6005

8 L. Mar
hal, V. Rehn, Y. Robert and F. VivienAs all
ommuni
ations pass by the master, workers
an not start re
eiving until tasks havearrived on the master. So to minimize the redistribution time, it is important to
harge the masteras fast as possible. Ordering the senders by non-de
reasing ci-values makes the tasks at the earliestpossible time available.Suppose we would order the re
eivers in the same manner as the senders, i.e., by non-de
reasing
ci-values. In this
ase we
ould start ea
h re
eption as soon as possible, but always with therestri
tion that ea
h task has to arrive �rst at the master (see Figure 4(b)). So it
an happen thatthere are many idle times between the re
eptions if the tasks do not arrive in time on the master.That is why we
hoose to order the re
eiver in reversed order, i.e., by non-in
reasing ci-values (
f.Figure 4(
)), to let the tasks more time to arrive. In the following lemma we even prove optimalityof this ordering.

P1 P2 P4

P0

P3

δ1 = 3 δ4 = −2

c4 = 3

δ2 = 1

c2 = 5 c3 = 1

c1 = 2

δ3 = −2(a) Example of load imbalan
eon a heterogeneous platformwith 4 workers. T = 14

{

{

P1

P2

P3

P4

senders

receivers(b) The re
eivers are ordered by non-de
reasing order of their ci-values.
{

T = 12

{

P1

P2

P3

P4

receivers

senders

(
) The re
eivers are ordered by non-in
reasing order of their ci-values.Figure 4: Comparison of the ordering of the re
eivers.Theorem 1. Knowing the imbalan
e δi of ea
h pro
essor, an optimal solution for heteroge-neous star-platforms is to order the senders by non-de
reasing ci-values and the re
eivers by non-in
reasing order of ci-values.Proof. To prove that the s
heme des
ribed by Theorem 1 returns an optimal s
hedule, we takea s
hedule S′
omputed by this s
heme. Then we take any other s
hedule S. We are going totransform S in two steps into our s
hedule S′ and prove that the makespans of the both s
heduleshold the following inequality: M(S′) ≤M(S).In the �rst step we take a look at the senders. The sending from the master
an not startbefore tasks are available on the master. We do not know the ordering of the senders in S butwe know the ordering in S′: all senders are ordered in non-de
reasing order of their ci-values. Let
i0 be the �rst task sent in S where the sender of task i0 has a bigger ci-value than the senderof the (i0 + 1)-th task. We then ex
hange the senders of task i0 and task (i0 + 1) and
all thisnew s
hedule Snew. Obviously the re
eption time for the se
ond task is still the same. But asINRIA

S
heduling and data redistribution strategies on star platforms 9you
an see in Figure 5, the time when the �rst task is available on the master has
hanged: afterthe ex
hange, the �rst task is available earlier and ditto ready for re
eption. Hen
e this ex
hangeimproves the availability on the master (and redu
es possible idle times for the re
eivers). We usethis me
hanism to transform the sending order of S in the sending order of S′ and at ea
h timethe availability on the master is improved. Hen
e at the end of the transformation the makespanof Snew is smaller than or equal to that of S and the sending order of Snew and S′ is the same.
t t

Pi0

Pi0+1

Pi0

Pi0+1Figure 5: Ex
hange of the sending order makes tasks available earlier on the master.In the se
ond step of the transformation we take
are of the re
eivers (
f. Figures 6 and 7).Having already
hanged the sending order of S by the �rst transformation of S into Snew , we starthere dire
tly by the transformation of Snew. Using the same me
hanism as for the senders, we
all
j0 the �rst task su
h that the re
eiver of task j0 has a smaller ci-value than the re
eiver of task
j0 + 1. We ex
hange the re
eivers of the tasks j0 and j0 + 1 and
all the new s
hedule Snew(1) .
j0 is sent at the same time than previously, and the pro
essor re
eiving it, re
eives it earlier thanit re
eived j0+1 in Snew. j0+1 is sent as soon as it is available on the master and as soon as the
ommuni
ation of task j0 is
ompleted. The �rst of these two
onditions had also to be satis�edby Snew. If the se
ond
ondition is delaying the beginning of the sending of the task j0 + 1 fromthe master, then this
ommuni
ation ends at time tin + cπ′(j0) + cπ′(j0+1) = tin + cπ(j0+1) + cπ(j0)and this
ommuni
ation ends at the same time than under the s
hedule Snew (here π(j0) (π′(j0))denotes the re
eiver of task j0 in s
hedule Snew (Snew(1) , respe
tively)). Hen
e the �nish time ofthe
ommuni
ation of task j0 + 1 in s
hedule Snew(1) is less than or equal to the �nish time inthe previous s
hedule. In all
ases, M(Snew(1)) ≤ M(Snew). Note that this transformation doesnot
hange anything for the tasks re
eived after j0+1 ex
ept that we always perform the s
heduled
ommuni
ations as soon as possible. Repeating the transformation for the rest of the s
hedule
Snew we redu
e all idle times in the re
eptions as far as possible. We get for the makespanof ea
h s
hedule Snew(k) : M(Snew(k)) ≤ M(Snew) ≤ M(S). As after these (�nite number of)transformations the order of the re
eivers will be in non-de
reasing order of the ci-values, there
eiver order of Snew(∞) is the same as the re
eiver order of S′ and hen
e we have Snew(∞) = S′.Finally we
on
lude that the makespan of S′ is smaller than or equal to any other s
hedule S andhen
e S′ is optimal.

t tidle idle{ {

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)Figure 6: Ex
hange of the re
eiving order suits better with the available tasks on the master.3.2.2 NP-
ompleteness of the original problemNow we are going to prove the NP-
ompleteness in the strong sense of the general problem. Forthis we were strongly inspired by the proof of Dutot [10, 9℄ for the S
heduling Problem forMaster-Slave Tasks on a Tree of Heterogeneous Pro
essors (SPMSTTHP). This proofRR n° 6005

10 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien
t tidle{

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)Figure 7: Deletion of idle time due to the ex
hange of the re
eiving order.uses a two level tree as platform topology and we are able to asso
iate the stru
ture on our star-platform. We are going to re
all the 3-partition problem whi
h is NP-
omplete in the strong sense[12℄.De�nition 2 (3-Partition).Let S and n be two integers, and let (yi)i∈1..3n be a sequen
e of 3n integers su
h that for ea
h
i, S

4 < yi < S
2 .The question of the 3-partition problem is �Can we partition the set of the yi in n triples su
hthat the sum of ea
h triple is exa
tly S?".Theorem 2. SPMSTSHP is NP-
omplete in the strong sense.Proof. We take an instan
e of 3-partition. We de�ne some real numbers xi, 1 ≤ i ≤ 3n, by

xi = 1
4S + yi

8 . If a triple of yi has the sum S, the
orresponding triple of xi
orresponds to the sum
7S
8 and vi
e versa. A partition of yi in triples is thus equivalent to a partition of the xi in triplesof the sum 7S

8 . This modi�
ation allows us to guarantee that the xi are
ontained in a smallerinterval than the interval of the yi. E�e
tively the xi are stri
tly in
luded between 9S
32 and 5S

16 .Redu
tion. For our redu
tion we use the star-network shown in Figure 8. We
onsider thefollowing instan
e of SPMTSHP: Worker P owns 4n tasks, the other 4n workers do not holdany task. We work with the deadline T = E + nS + S
4 , where E is an enormous time �xed to

E = (n + 1)S. The
ommuni
ation link between P and the master has a c-value of S
4 . So it
ansend a task all S

4 time units. Its
omputation time is T + 1, so worker P has to distribute all itstasks as it
an not �nish pro
essing a single task by the deadline. Ea
h of the other workers isable to pro
ess one single task, as its
omputation time is at least E and we have 2E > T , whatmakes it impossible to pro
ess a se
ond task by the deadline.
P0

P

T+1 E

Q0Q1

E+SE+(n−1)S

Qn−1

S
8

S
8

S
4

EEEE

P2

E

P1 Pi

x1 x2 x3n−1 x3n

S
8

P3n−1 P3n

xi

Figure 8: Star platform used in the redu
tion. INRIA

S
heduling and data redistribution strategies on star platforms 11This stru
ture of the star-network is parti
ularly
onstru
ted to reprodu
e the 3-partitionproblem in the s
ope of a s
heduling problem. We are going to use the bidire
tional 1-port
onstraint to
reate our triplets.Creation of a s
hedule out of a solution to 3-partition. First we show how to
onstru
ta valid s
hedule of 4n tasks in time S
4 + nS + E out of a 3-partition solution. To fa
ilitate thele
ture, the pro
essors Pi are ordered by their xi-values in the order that
orresponds to thesolution of 3-partition. So, without loss of generality, we assume that for ea
h j ∈ [0, n − 1],

x3j+1 + x3j+2 + x3j+3 = 7S
8 . The s
hedule is of the following form:1. Worker P sends its tasks as soon as possible to the master, i.e., every S

4 time units. So it isguaranteed that the 4n tasks are sent in nS time units.2. The master sends the tasks as soon as possible in in
oming order to the workers. The re
eiverorder is the following (for all j ∈ [0, n− 1]):� Task 4j + 1, over link of
ost x3j+1, to pro
essor P3j+1.� Task 4j + 2, over link of
ost x3j+2, to pro
essor P3j+2.� Task 4j + 3, over link of
ost x3j+3, to pro
essor P3j+3.� Task 4j + 4, over link of
ost S
8 , to pro
essor Qn−1−j.The distribution of the four tasks, 4j + 1, 4j + 2, 4j + 3, 4j + 4, takes exa
tly S time unitsand the master needs also S time units to re
eive four tasks from pro
essor P . Furthermore, ea
h

xi is larger than S
4 . Therefore, after the �rst task is sent, the master always �nishes to re
eive anew task before its outgoing port is available to send it. The �rst task arrives at time S

4 at themaster, whi
h is responsible for the short idle time at the beginning. The last task arrives at itsworker at time S
4 + nS and hen
e it rests exa
tly E time units for the pro
essing of this task. Forthe workers Pi, 1 ≤ i ≤ 3n, we know that they
an �nish to pro
ess their tasks in time as theyall have a
omputation power of E. The
omputation power of the workers Qi, 0 ≤ i ≤ n− 1, is

E + i× S and as they re
eive their task at time S
4 + (n− i− 1)× S + 7S

8 , they have exa
tly thetime to �nish their task.Getting a solution for 3-partition out of a s
hedule. Now we prove that ea
h s
hedule of
4n tasks in time T
reates a solution to the 3-partition problem.As already mentioned, ea
h worker besides worker P
an pro
ess at most one task. Hen
e dueto the number of tasks in the system, every worker has to pro
ess exa
tly one task. Furthermorethe minimal time needed to distribute all tasks from the master and the minimal pro
essing timeon the workers indu
es that there is no idle time in the emissions of the master, otherwise thes
hedule would take longer than time T .We also know that worker P is the only sending worker:Lemma 1. No worker besides worker P sends any task.Proof. Due to the platform
on�guration and the total number of tasks, worker P has to sendall its tasks. This takes at least nS time units. The total emission time for the master is also nStime units: as ea
h worker must pro
ess a task, ea
h of them must re
eive one. So the emissiontime for the master is larger than or equal to ∑n

i=1 xi + n× S
8 = nS. As the master
annot startsending the �rst task before time S

4 and as the minimum
omputation power is E, then if themaster sends exa
tly one task to ea
h slave, the makespan is greater than or equal to T and if oneworker besides P sends a task, the master will at least send one additional task and the makespanwill be stri
tly greater than T .Now we are going to examine the worker Qn−1 and the task he is asso
iated to.Lemma 2. The task asso
iated to worker Qn−1 is one of the �rst four tasks sent by worker P .RR n° 6005

12 L. Mar
hal, V. Rehn, Y. Robert and F. VivienProof. The
omputation time of worker Qn−1 is E + (n − 1)S, hen
e its task has to arrive nolater than time S + S
4 . The �fth task arrives at the soonest at time 5S

4 + S
8 as worker P has tosend �ve tasks as the shortest
ommuni
ation time is S

8 . The following tasks arrive later than the
5-th task, so the task for worker Qn−1 has to be one of the �rst four tasks.Lemma 3. The �rst three tasks are sent to some worker Pi, 1 ≤ i ≤ 3n.Proof. As already mentioned, the master has to send without any idle time besides the initialone. Hen
e we have to pay attention that the master always possesses a task to send when he�nishes to send a task. While the master is sending to a worker Pi, worker P has the time to sendthe next task to the master. But, if at least one of the �rst three tasks is sent to a worker Qi, thesending time of the �rst three tasks is stri
tly inferior to S

8 + 5
16S + 5

16S = 3
4S. Hen
e there isobligatory an idle time in the emission of the master. This pause makes the s
hedule of 4n tasksin time T infeasible.A dire
t
on
lusion of the two pre
edent lemmas is that the 4-th task is sent to worker Qn−1.Lemma 4. The �rst three tasks sent by worker P have a total
ommuni
ation time of 7

8S timeunits.Proof. Worker Qn−1 has a
omputation time of E + (n− 1)S, it has to re
eive its task no laterthan time 5
4S. This implies that the �rst three tasks are sent in a time no longer than 7

8S.On the other side, the 5-th task arrives at the master no sooner than time 5
4S. As the master hasto send without idle time, the emission to worker Qn−1 has to persist until this date. Ne
essarilythe �rst three emissions of the master take at minimum a time 7

8S.Lemma 5. S
heduling 4n tasks in a time T = S
4 + nS + E units of time allows to re
onstru
t aninstan
e of the asso
iated 3-partition problem.Proof. In what pre
edes, we proved that the �rst three tasks sent by the master
reate a triplewhose sum is exa
tly 7

8 . Using this property re
ursively on j for the triple 4j + 1, 4j + 2 and
4j + 3, we show that we must send the tasks 4j + 4 to the worker Qn−1−j. With this methodwe
onstru
t a partition of the set of xi in triples of sum 7

8 . These triples are a solution to theasso
iated 3-partition problem.Having proven that we
an
reate a s
hedule out of a solution of 3-partition and also that we
an get a solution for 3-partition out of a s
hedule, the proof is now
omplete.3.3 An algorithm for s
heduling on homogeneous star platforms: thebest-balan
e algorithmIn this se
tion we present the Best-Balan
e Algorithm (BBA), an algorithm to s
hedule onhomogeneous star platforms. As already mentioned, we use a bus network with
ommuni
ationspeed c, but additionally we suppose that the
omputation powers are homogeneous as well. Sowe have wi = w for all i, 1 ≤ i ≤ m.The idea of BBA is simple: in ea
h iteration, we look if we
ould �nish earlier if we redistributea task. If so, we s
hedule the task, if not, we stop redistributing. The algorithm has polynomialrun-time. It is a natural intuition that BBA is optimal on homogeneous platforms, but the formalproof is rather
ompli
ated, as
an be seen in Se
tion 3.3.2. INRIA

S
heduling and data redistribution strategies on star platforms 133.3.1 Notations used in BBABBA s
hedules one task per iteration i. Let L
(i)
k denote the number of tasks of worker k afteriteration i, i.e., after i tasks were redistributed. The date at whi
h the master has �nished re
eivingthe i-th task is denoted by master_in(i). In the same way we
all master_out(i) the date at whi
hthe master has �nished sending the i-th task. Let end

(i)
k be the date at whi
h worker k would �nishto pro
ess the load it would hold if exa
tly i tasks are redistributed. The worker k in iteration iwith the biggest �nish time end

(i)
k , who is
hosen to send one task in the next iteration, is
alled

sender. We
all receiver the worker k with smallest �nish time end
(i)
k in iteration i who is
hosento re
eive one task in the next iteration.In iteration i = 0 we are in the initial
on�guration: All workers own their initial tasks

L
(0)
k = Lk and the makespan of ea
h worker k is the time it needs to
ompute all its tasks:

end
(0)
k = L

(0)
k × w. master_in(0) = master_out(0) = 0.3.3.2 The Best Balan
e Algorithm - BBAWe �rst sket
h BBA:In ea
h iteration i do:� Compute the time end

(i−1)
k it would take worker k to pro
ess L

(i−1)
k tasks.� A worker with the biggest �nish time end

(i−1)
k is arbitrarily
hosen as sender, he is
alled

sender.� Compute the temporary �nish times ẽnd
(i)

k of ea
h worker if it would re
eive from senderthe i-th task.� A worker with the smallest temporary �nish time ẽnd
(i)

k will be the re
eiver,
alled receiver.If there are multiple workers with the same temporary �nish time ẽnd
(i)

k , we take the workerwith the smallest �nish time end
(i−1)
k .� If the �nish time of sender is stri
tly larger than the temporary �nish time ẽnd

(i)

sender of
sender, sender sends one task to receiver and iterate. Otherwise stop.Lemma 6. On homogeneous star-platforms, in iteration i the Best-Balan
e Algorithm (Al-gorithm 1) always
hooses as re
eiver a worker whi
h �nishes pro
essing the �rst in iteration

i− 1.Proof. As the platform is homogeneous, all
ommuni
ations take the same time and all
ompu-tations take the same time. In Algorithm 1 the master
hooses as re
eiver in iteration i the worker
k that would end the earliest the pro
essing of the i-th task sent. To prove that worker k is alsothe worker whi
h �nishes pro
essing in iteration i− 1 �rst, we have to
onsider two
ases:� Task i arrives when all workers are still working.As all workers are still working when the master �nishes to send task i, the master
hoosesas re
eiver a worker whi
h �nishes pro
essing the �rst, be
ause this worker will also �nishpro
essing task i �rst, as we have homogeneous
onditions. See Figure 9(a) for an example:the master
hooses worker k as in iteration i− 1 it �nishes before worker j and it
an thusstart
omputing task i + 1 earlier than worker j
ould do.� Task i arrives when some workers have �nished working.If some workers have �nished working when the master
an �nish to send task i, we arein the situation of Figure 9(b): All these workers
ould start pro
essing task i at the sametime. As our algorithm
hooses in this
ase a worker whi
h �nished pro
essing �rst (see line13 in Algorithm 1), the master
hooses worker k in the example.RR n° 6005

14 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien
Pj

Pk

ẽnd
(i)

j

end
(i−1)
k

end
(i)
k

ẽnd
(i−1)

j

omputation
ommuni
ationi + 1

i + 1

i + 1

i + 1(a) All workers are still pro
essing
Pj

Pk

end
(i−1)
k

end
(i−1)
j

ẽnd
(i)

j = ẽnd
(i)

k

i + 1

i + 1

i + 1

i + 1(b) Some workers have already�nished pro
essingFigure 9: In iteration i: The master
hooses whi
h worker will be the re
eiver of task i.The aim of these s
hedules is always to minimize the makespan. So workers who take a longtime to pro
ess their tasks are interested in sending some tasks to other workers whi
h are less
harged in order to de
rease their pro
essing time. If a weakly
harged worker sends some tasksto another worker this will not de
rease the global makespan, as a strongly
harged worker hasstill its long pro
essing time or its pro
essing time might even have in
reased if it was the re
eiver.So it might happen that the weakly
harged worker who sent a task will re
eive another task inanother s
heduling step. In the following lemma we will show that this kind of s
hedule, wheresending workers also re
eive tasks,
an be transformed in a s
hedule where this e�e
t does notappear.Lemma 7. On a platform with homogeneous
ommuni
ations, if there exists a s
hedule S withmakespan M , then there also exists a s
hedule S′ with a makespan M ′ ≤ M su
h that no workerboth sends and re
eives tasks.Proof. We will prove that we
an transform a s
hedule where senders might re
eive tasks in as
hedule with equal or smaller makespan where senders do not re
eive any tasks.
sk

rj

sk

rj

si si

Figure 10: S
heme on how to break up sending
hains.If the master re
eives its i-th task from pro
essor Pj and sends it to pro
essor Pk, we say that
Pk re
eives this task from pro
essor Pj .Whatever the s
hedule, if a sender re
eives a task we have the situation of a sending
hain (seeFigure 10): at some step of the s
hedule a sender si sends to a sender sk, while in another step ofthe s
hedule the sender sk sends to a re
eiver rj . So the master is o

upied twi
e. As all re
eiversre
eive in fa
t their tasks from the master, it does not make a di�eren
e for them whi
h sendersent the task to the master. So we
an break up the sending
hain in the following way: We lookfor the earliest time, when a sending worker, sk, re
eives a task from a sender, si. Let rj be are
eiver that re
eives a task from sender sk. There are two possible situations: INRIA

S
heduling and data redistribution strategies on star platforms 151. Sender si sends to sender sk and later sender sk sends to re
eiver rj , see Figure 11(a). This
ase is simple: As the
ommuni
ation from si to sk takes pla
e �rst and we have homogeneous
ommuni
ation links, we
an repla
e this
ommuni
ation by an emission from sender si tore
eiver rj and just delete the se
ond
ommuni
ation.2. Sender sk sends to re
eiver rj and later sender si sends to sender sk, see Figure 11(b). In this
ase the re
eption on re
eiver rj happens earlier than the emission of sender si, so we
annot use exa
tly the same me
hanism as in the previous
ase. But we
an use our hypothesisthat sender sk is the �rst sender that re
eives a task. Therefore, sender si did not re
eive anytask until sk re
eives. So at the moment when sk sends to rj , we know that sender si alreadyowns the task that it will send later to sender sk. As we use homogeneous
ommuni
ations,we
an s
hedule the
ommuni
ation si → rj when the
ommuni
ation sk → rj originallytook pla
e and delete the sending from si to sk.As in both
ases we gain in
ommuni
ation time, but we keep the same
omputation time, wedo not in
rease the makespan of the s
hedule, but we transformed it in a s
hedule with one lesssending
hain. By repeating this pro
edure for all sending
hains, we transform the s
hedule S ina s
hedule S′ without sending
hains while not in
reasing the makespan.
rj

si

sk

time time(a) Sender si sends to re
eiving sender sk andthen sender sk sends to re
eiver rj . rj

si

sk

time time(b) Sender sk sends �rst to re
eiver rj andthen re
eives from sender si.Figure 11: How to break up sending
hains, dark
olored
ommuni
ations are emissions, light
olored
ommuni
ations represent re
eptions.Proposition 1. Best-Balan
e Algorithm (Algorithm 1)
al
ulates an optimal s
hedule S ona homogeneous star network, where all tasks are initially lo
ated on the workers and
ommuni
ation
apabilities as well as
omputation
apabilities are homogeneous and all tasks have the same size.Proof. To prove that BBA is optimal, we take a s
hedule Salgo
al
ulated by Algorithm 1. Thenwe take an optimal s
hedule Sopt. (Be
ause of Lemma 7 we
an assume that in the s
hedule Soptno worker both sends and re
eives tasks.) We are going to transform by indu
tion this optimals
hedule into our s
hedule Salgo.As we use a homogeneous platform, all workers have the same
ommuni
ation time c. Withoutloss of generality, we
an assume that both algorithms do all
ommuni
ations as soon as possible(see Figure 12). So we
an divide our s
hedule Salgo in sa steps and Sopt in so steps. A step
orresponds to the emission of one task, and we number in this order the tasks sent. A

ordinglythe s-th task is the task sent during step s and the a
tual s
hedule
orresponds to the loaddistribution after the s �rst tasks. We start our s
hedule at time T = 0.Let S(i) denote the worker re
eiving the i-th task under s
hedule S. Let i0 be the �rst stepwhere Sopt di�ers from Salgo, i.e., Salgo(i0) 6= Sopt(i0) and ∀i < i0, Salgo(i) = Sopt(i). We look fora step j > i0, if it exists, su
h that Sopt(j) = Salgo(i0) and j is minimal.We are in the following situation: s
hedule Sopt and s
hedule Salgo are the same for all tasks
[1..(i0 − 1)]. As worker Salgo(i0) is
hosen at step i0, then, by de�nition of Algorithm 1, thismeans that this worker �nishes �rst its pro
essing after the re
eption of the (i0 − 1)-th tasks (
f.RR n° 6005

16 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien
Algorithm 1 Best-Balan
e Algorithm1: /* initialization */2: i← 03: master_in(i) ← 04: master_out(i) ← 05: ∀k L

(0)
k ← Lk6: end

(0)
k ← L

(0)
k × w7: /* the s
heduling */8: while true do9: sender← maxk end

(i)
k10: master_in(i+1) ← master_in(i) + c11: task_arrival_worker = max(master_in(i+1), master_out(i)) + c12: ∀k ẽnd

(i+1)

k ← max(end
(i+1)
k , task_arrival_worker) + w13: sele
t receiver su
h that ẽnd

(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several pro
essors withthe same minimum ẽnd
(i+1)

k ,
hoose one with the smallest end
(i)
k14: if end

(i)
sender ≤ ẽnd

(k+1)

receiver then15: /* we
an not improve the makespan anymore */16: break17: else18: /* we improve the makespan by sending the task to the receiver */19: master_out(i+1) ← task_arrival_worker20: end
(i+1)
sender ← end

(i)
sender − w21: L

(i+1)
sender ← L

(i)
sender − 122: end

(i+1)
receiver ← ẽnd

(i+1)

receiver23: L
(i+1)
receiver ← L

(i)
receiver + 124: for all j 6= receiver and j 6= sender do25: end

(i+1)
j ← end

(i)
j26: L

(i+1)
j ← L

(i)
j27: end for28: i← i + 129: end if30: end while

INRIA

S
heduling and data redistribution strategies on star platforms 17
T = 0

1 2 3 n

1 2 n− 1 n

re
eptions by the master:sendings from the master:Figure 12: O

upation of the master.Lemma 6). As Sopt and Salgo di�er in step i0, we know that Sopt
hooses worker Sopt(i0) that�nishes the s
hedule of its load after step (i0 − 1) no sooner than worker Salgo(i0).Case 1: Let us �rst
onsider the
ase where there exists su
h a step j. So Salgo(i0) = Sopt(j)and j > i0. We know that worker Sopt(j) under s
hedule Sopt does not re
eive any task betweenstep i0 and step j as j is
hosen minimal.We use the following notations for the s
hedule Sopt, depi
ted on Figures 13, 14, and 15:
Tj: the date at whi
h the re
eption of task j is �nished on worker Sopt(j), i.e., Tj = j× c+ c (thetime it takes the master to re
eive the �rst task plus the time it takes him to send j tasks).
Ti0 : the date at whi
h the re
eption of task i0 is �nished on worker Sopt(i0), i.e., Ti0 = i0× c + c.
Fpred(j): time when
omputation of task pred(j) is �nished, where task pred(j) denotes the lasttask whi
h is
omputed on worker Sopt(j) before task j is
omputed.
Fpred(i0): time when
omputation of task pred(i0) is �nished, where task pred(i0) denotes thelast task whi
h is
omputed on worker Sopt(i0) before task i0 is
omputed.We have to
onsider two sub-
ases:� Tj ≤ Fpred(i0) (Figure 13(a)).This means that we are in the following situation: the re
eption of task j on worker Sopt(j)has already �nished when worker Sopt(i0) �nishes the work it has been s
heduled until step

i0 − 1.In this
ase we ex
hange the tasks i0 and j of s
hedule Sopt and we
reate the followings
hedule S′
opt:

S′
opt(i0) = Sopt(j) = Salgo(i0),

S′
opt(j) = Sopt(i0)and ∀i 6= i0, j, S′

opt(i) = Sopt(i). The s
hedule of the other workers is kept un
hanged. Alltasks are exe
uted at the same date than previously (but maybe not on the same pro
essor).
Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0

Fpred(j)

Tj

Fpred(i0)

j + 1

i0i0

j + 1

i0 + k

j

j

i0 + k

i0

(a) Before the ex
hange. Fpred(i0)

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0
Tj

Tpred(j)

j

j + 1

i0

i0

j i0 + k

i0 + k

j + 1

i0(b) After ex
hange.Figure 13: S
hedule Sopt before and after ex
hange of tasks i0 and j.RR n° 6005

18 L. Mar
hal, V. Rehn, Y. Robert and F. VivienNow we prove that this kind of ex
hange is possible.We know that worker Sopt(j) is not s
heduled any task later than step i0 − 1 and beforestep j, by de�nition of j. So we know that this worker
an start pro
essing task j whentask j has arrived and when it has �nished pro
essing its amount of work s
heduled untilstep i0 − 1. We already know that worker Sopt(j) = Salgo(i0) �nishes pro
essing its taskss
heduled until step i0 − 1 at a time earlier than or equal to that of worker Sopt(i0) (
f.Lemma 6). As we are in homogeneous
onditions,
ommuni
ations and pro
essing of a tasktakes the same time on all pro
essors. So we
an ex
hange the destinations of steps i0 and
j and keep the same moments of exe
ution, as both tasks will arrive in time to be pro
essedon the other worker: task i0 will arrive at worker Sopt(j) when it is still pro
essing and thesame for task j on worker Sopt(i0). Hen
e task i0 will be sent to worker Sopt(j) = Salgo(i0)and worker Sopt(i0) will re
eive task j. So s
hedule Sopt and s
hedule Salgo are the same forall tasks [1..i0] now. As both tasks arrive in time and
an be exe
uted instead of the othertask, we do not
hange anything in the makespan M . And as Sopt is optimal, we keep theoptimal makespan.� Tj ≥ Fpred(i0) (Figure 14(a)).In this
ase we have the following situation: task j arrives on worker Sopt(j), when worker
Sopt(i0) has already �nished pro
essing its tasks s
heduled until step i0 − 1.In this
ase we ex
hange the s
hedule destinations i0 and j of s
hedule Sopt beginning attasks i0 and j (see Figure 14). In other words we
reate a s
hedule S′

opt:
∀i ≥ i0 su
h that Sopt(i) = Sopt(i0): S′

opt(i) = Sopt(j) = Salgo(i0)
∀i ≥ j su
h that Sopt(i) = Sopt(j): S′

opt(i) = Sopt(i0)and ∀i ≤ i0 S′
opt(i) = Sopt(i). The s
hedule Sopt of the other workers is kept un
hanged. Were
ompute the �nish times F

(s)
Sopt

(j) of workers Sopt(j) and Sopt(i0) for all steps s > i0.
Ti0

Fpred(j)

Tj

Fpred(i0)

Salgo(i0) = Sopt(j)

Sopt(i0)

i0 i0 + k

i0 i0 + k

j

j + 1j

j + 1(a) Before ex
hange. Tj

Fpred(i0)Fpred(j)

Ti0

Sopt(i0)

Salgo(i0) = Sopt(j)

i0

j + 1

i0 + k

j

i0j j + 1

i0 + ki0(b) After ex
hange.Figure 14: S
hedule Sopt before and after ex
hange of lines i0 and j.Now we prove that this kind of ex
hange is possible. First of all we know that worker Salgo(i0)is the same as the worker
hosen in step j under s
hedule Sopt and so Salgo(i0) = Sopt(j).We also know that worker Sopt(j) is not s
heduled any tasks later than step i0−1 and beforestep j, by de�nition of j. Be
ause of the
hoi
e of worker Salgo(i0) = Sopt(j) in Salgo, weknow that worker Sopt(j) has �nished working when task j arrives: at step i0 worker Sopt(j)�nishes earlier than or at the same time as worker Sopt(i0) (Lemma 6) and as we are in the
ase where Tj ≥ Fpred(i0), Sopt(j) has also �nished when j arrives. So we
an ex
hange thedestinations of the workers Sopt(i0) and Sopt(j) in the s
hedule steps equal to, or later than,step i0 and pro
ess them at the same time as we would do on the other worker. As we haveshown that we
an start pro
essing task j on worker Sopt(i0) at the same time as we didon worker Sopt(j), and the same for task i0, we keep the same makespan. And as Sopt isoptimal, we keep the optimal makespan.Case 2: If there does not exist a j, i.e., we
an not �nd a s
hedule step j > i0 su
h that worker
Salgo(i0) is s
heduled a task under s
hedule Sopt, so we know that no other task will be s
heduledINRIA

S
heduling and data redistribution strategies on star platforms 19on worker Salgo(i0) under the s
hedule Sopt. As our algorithm
hooses in step s the worker that�nishes task s+1 the �rst, we know that worker Salgo(i0) �nishes at a time earlier or equal to thatof Sopt. Worker Salgo(i0) will be idle in the s
hedule Sopt for the rest of the algorithm, be
ause oth-erwise we would have found a step j. As we are in homogeneous
onditions, we
an simply displa
etask i0 from worker Sopt(i0) to worker Salgo(i0) (see Figure 15). As we have Sopt(i0) 6= Salgo(i0)and with Lemma 6 we know that worker Salgo(i0) �nishes pro
essing its tasks until step i0 − 1 ata time earlier than or equal to Sopt(i0), and we do not downgrade the exe
ution time be
ause weare in homogeneous
onditions.
Ti0

F
(pred(i0))
Salgo

(Salgo(i0)) F
pred((i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

i0

i0 + ki0

i0 + ki0

(a) Before displa
ing Ti0

F
(pred(i0))
Sopt

(Sopt(i0))

Sopt(i0)

Salgo(i0)

F
(pred(i0))
Salgo

(Salgo(i0))

i0i0 + k

i0 + k

i0

i0(b) After displa
ingFigure 15: S
hedule Sopt before and after displa
ing task i0.On
e we have done the ex
hange of task i0, the s
hedules Sopt and Salgo are the same for alltasks [1..i0]. We restart the transformation until Sopt = Salgo for all tasks [1.. min(sa, so)] s
hed-uled by Salgo.Now we will prove by
ontradi
tion that the number of tasks s
heduled by Salgo, sa, and Sopt,
so, are the same. After min(sa, so) transformation steps Sopt = Salgo for all tasks [1.. min(sa, so)]s
heduled by Salgo. So if after these steps Sopt = Salgo for all n tasks, both algorithms redistributedthe same number of tasks and we have �nished.We now
onsider the
ase sa 6= so. In the
ase of sa > so, Salgo s
hedules more tasks than Sopt.At ea
h step of our algorithm we do not in
rease the makespan. So if we do more steps than Sopt,this means that we s
heduled some tasks without
hanging the global makespan. Hen
e Salgo isoptimal.If sa < so, this means that Sopt s
hedules more tasks than Salgo does. In this
ase, after satransformation steps, Sopt still s
hedules tasks. If we take a look at the s
hedule of the (sa +1)-thtask in Sopt: regardless whi
h re
eiver Sopt
hooses, it will in
rease the makespan as we provenow. In the following we will
all salgo the worker our algorithm would have
hosen to be thesender, ralgo the worker our algorithm would have
hosen to be the re
eiver. sopt and ropt arethe sender and re
eiver
hosen by the optimal s
hedule. Indeed, in our algorithm we would have
hosen salgo as sender su
h that it is a worker whi
h �nishes last. So the time worker salgo �nishespro
essing is Fsalgo

= M(Salgo). Salgo
hooses the re
eiver ralgo su
h that it �nishes pro
essingthe re
eived task the earliest of all possible re
eivers and su
h that it also �nishes pro
essing there
eiving task at the same time or earlier than the sender would do. As Salgo did not de
ide tosend the (sa +1)-th task, this means, that it
ould not �nd a re
eiver whi
h �tted. Hen
e we know,regardless whi
h re
eiver Sopt
hooses, that the makespan will stri
tly in
rease (as Salgo = Sopt forall [1..sa]). We take a look at the makespan of Salgo if we would have s
heduled the (sa+1)-th task.We know that we
an not de
rease the makespan anymore, be
ause in our algorithm we de
idedto keep the s
hedule un
hanged. So after the emission of the (sa +1)-th task, the makespan wouldbe
ome M(Salgo) = Fralgo
≥ Fsalgo

. And Fralgo
≤ Fropt

, be
ause of the de�nition of re
eiver ralgo.As M(sopt) ≥ Fropt
, we have M(Salgo) ≤ M(Sopt). But we de
ided not to do this s
hedule asRR n° 6005

20 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien
M(Salgo) is smaller before the s
hedule of the (sa + 1)-th task than afterwards. Hen
e we getthat M(Salgo) < M(Sopt). So the only possibility why Sopt sends the (sa + 1)-th task and stillbe optimal is that, later on, ropt sends a task to some other pro
essor rk. (Note that even if we
hoose Sopt to have no su
h
hains in the beginning, some might have appeared be
ause of ourprevious transformations). In the same manner as we transformed sending
hains in Lemma 7,we
an suppress this sending
hain, by sending task (sa + 1) dire
tly to rk instead of sending to
ropt. With the same argumentation, we do this by indu
tion for all tasks k, (sa + 1) ≤ k ≤ so,until s
hedule Sopt and Salgo have the same number so = sa and so Sopt = Salgo and hen
e
M(Sopt) = M(Salgo).Complexity: The initialization phase is in O(m), as we have to
ompute the �nish times forea
h worker. The while loop
an be run at maximum n times, as we
an not redistribute morethan the n tasks of the system. Ea
h iteration is in the order of O(m), whi
h leads us to a totalrun time of O(m× n).3.4 S
heduling on platforms with homogeneous
ommuni
ation linksand heterogeneous
omputation
apa
itiesIn this se
tion we present an algorithm for star-platforms with homogeneous
ommuni
ations andheterogeneous workers, the Moore Based Binary-Sear
h Algorithm (MBBSA). For a givenmakespan, we
ompute if there exists a possible s
hedule to �nish all work in time. If there is one,we optimize the makespan by a binary sear
h. The plan of the se
tion is as follows: In Se
tion 3.4.1we present an existing algorithm whi
h will be the basis of our work. The framework and someusefull notations are introdu
ed in Se
tion 3.4.2, whereas the real algorithm is the subje
t ofSe
tion 3.4.3.3.4.1 Moore's algorithmIn this se
tion we present Moore's algorithm [6, 18℄, whose aim is to maximize the numberof tasks to be pro
essed in-time, i.e., before tasks ex
eed their deadlines. This algorithm gives asolution to the 1||

∑
Uj problem when the maximum number, among n tasks, has to be pro
essedin time on a single ma
hine. Ea
h task k, 1 ≤ k ≤ n, has a pro
essing time wk and a deadline dk,before whi
h it has to be pro
essed.Moore's algorithm works as follows: All tasks are ordered in non-de
reasing order of theirdeadlines. Tasks are added to the solution one by one in this order as long as their deadlines aresatis�ed. If a task k is out of time, the task j in the a
tual solution with the largest pro
essingtime wj is deleted from the solution.Algorithm 2 [6, 18℄ solves in O(n log n) the 1||

∑
Uj problem: it
onstru
ts a maximal set σ ofearly jobs.Algorithm 2 Moore's algorithm1: Order the jobs by non-de
reasing deadlines: d1 ≤ d2 ≤ · · · ≤ dd2: σ ← ∅; t← 03: for i := 1 to n do4: σ ← σ ∪ {i}5: t← t + wi6: if t > di then7: Find job j in σ with largest wj value8: σ ← σ\{j}9: t← t− wj10: end if11: end for

INRIA

S
heduling and data redistribution strategies on star platforms 213.4.2 Framework and notations for MBBSAWe keep the star network of Se
tion 3.1 with homogeneous
ommuni
ation links. In
ontrastto Se
tion 3.3 we suppose m heterogeneous workers who own initially a number Li of identi
alindependent tasks.Let M denote the obje
tive makespan for the sear
hed s
hedule σ and fi the time needed byworker i to pro
ess its initial load. During the algorithm exe
ution we divide all workers in twosubsets, where S is the set of senders (si ∈ S if fi > M) and R the set of re
eivers (ri ∈ Rif fi < M). As our algorithm is based on Moore's, we need a notation for deadlines. Let d
(k)
ribe the deadline to re
eive the k-th task on re
eiver ri. lsi

denotes the number of tasks sender
i sends to the master and lri

stores the number of tasks re
eiver i is able to re
eive from themaster. With help of these values we
an determine the total amount of tasks that must be sentas Lsend =
∑

si
lsi
. The total amount of task if all re
eivers re
eive the maximum amount of tasksthey are able to re
eive is Lrecv =

∑
ri

lri
. Finally, let Lsched be the maximal amount of tasksthat
an be s
heduled by the algorithm.3.4.3 Moore based binary sear
h algorithm - MBBSAPrin
iple of the algorithm: Considering the given makespan we determine over
harged work-ers, whi
h
an not �nish all their tasks within this makespan. These over
harged workers willthen send some tasks to under
harged workers, su
h that all of them
an �nish pro
essing withinthe makespan. The algorithm solves the following two questions: Is there a possible s
hedule su
hthat all workers
an �nish in the given makespan? In whi
h order do we have to send and re
eiveto obtain su
h a s
hedule?The algorithm
an be divided into four phases:Phase 1 de
ides whi
h of the workers will be senders and whi
h re
eivers, depending of thegiven makespan (see Figure 16). Senders are workers whi
h are not able to pro
ess all theirinitial tasks in time, whereas re
eivers are workers whi
h
ould treat more tasks in the givenmakespan M than they hold initially. So sender Pi has a �nish time fi > M , i.e., the timeneeded to
ompute their initial tasks is larger than the given makespan M . Conversely, Piis a re
eiver if it has a �nish time fi < M . So the set of senders in the example of Figure 16
ontains s1 and sv, and the set of re
eivers r1, r2, and ru.

T = 0 T = M

r1

s1

r2

ru

sv

tasks whi
h
an not be
omputed in timetasks whi
h
an be
omputed in time

Figure 16: Initial distribution of the tasks to the workers, dark
olored tasks
an be
omputedin-time, light
olored tasks will be late and have to be s
heduled on some other workers.Phase 2 �xes how many transfers have to be s
heduled from ea
h sender su
h that the sendersall �nish their remaining tasks in time. Sender si will have to send an amount of tasks
lsi

=
⌈

fsi
−T

wsi

⌉ (i.e., the number of light
olored tasks of a sender in Figure 16).RR n° 6005

22 L. Mar
hal, V. Rehn, Y. Robert and F. VivienPhase 3
omputes for ea
h re
eiver the deadline of ea
h of the tasks it
an re
eive, i.e., a pair
(d

(i)
rj , rj) that denotes the i-th deadline of re
eiver rj . Beginning at the makespan M onemeasures when the last task has to arrive on the re
eiver su
h that it
an be pro
essed intime. So the latest moment that a task
an arrive so that it
an still be
omputed on re
eiver

rj is T − wrj
, and so on. See Figure 17 for an example.

omputation of initial tasks Lri

Frj

re
eiver rj

T − 1× wrj
T − (lrj

− 1)× wrj

T − lrj
× wrj

T − 2× wrj

MT = 0

d
(lrj

)
rj d

(lrj
−1)

rj d
(1)
rjd

(2)
rjFigure 17: Computation of the deadlines d
(k)
rj for worker rj .Phase 4 is the proper s
heduling step: The master de
ides whi
h tasks have to be s
heduled onwhi
h re
eivers and in whi
h order. In this phase we use Moore's algorithm. Starting attime t = c (this is the time, when the �rst task arrives at the master), the master
an starts
heduling the tasks on the re
eivers. For this purpose the deadlines (d, rj) are ordered bynon-de
reasing d-values. In the same manner as in Moore's algorithm, an optimal s
hedule

σ is
omputed by adding one by one tasks to the s
hedule: if we
onsider the deadline (d, rj),we add a task to pro
essor rj . The
orresponding pro
essing time is the
ommuni
ation time
c of rj . So if a deadline is not met, the last re
eption is suppressed from σ and we
ontinue.If the s
hedule is able to send at least Lsend tasks the algorithm su

eeds, otherwise it fails.Algorithm 3 des
ribes MBBSA in pseudo-
ode. Note that the algorithm is written for heteroge-neous
onditions, but here we study it for homogeneous
ommuni
ation links.Theorem 3. MBBSA (Algorithm 3) su

eeds to build a s
hedule σ for a given makespan M , ifand only if there exists a s
hedule with makespan less than or equal to M , when the platformis made of one master, several workers with heterogeneous
omputation power but homogeneous
ommuni
ation
apabilities.Proof. Algorithm 2 (Moore's Algorithm)
onstru
ts a maximal set σ of early jobs on a singlema
hine s
heduling problem. So we are going to show that our algorithm
an be redu
ed to thisproblem.As we work with a platform with homogeneous
ommuni
ations, we do not have to
are aboutthe arrival times of jobs at the master, apart from the �rst job. Our deadlines
orrespond to thelatest moments, at whi
h tasks
an arrive on the workers su
h that they
an be pro
essed in-time(see Figure 17). So we have a
ertain number Lrecv of possible re
eptions for all re
eivers.Phases 1 to 3 prepare our s
heduling problem to be similar to the situation in Algorithm 2 andthus to be able to use it.In phase 1 we distinguish whi
h pro
essors have to be senders, whi
h have to be re
eivers.With Lemma 7 we know that we
an partition our workers in senders and re
eivers (and workerswhi
h are none of both), be
ause senders will never re
eive any tasks. Phase 2
omputes thenumber of tasks Lsend that has to be s
heduled. Phase 3
omputes the (d

(k)
rj , rj)-values, i.e., thedeadlines d

(k)
rj for ea
h re
eiver rj . Step 4 is the proper s
heduling step and it
orresponds toMoore's algorithm. It
omputes a maximal set σ of in-time jobs, where Lsched is the number ofs
heduled tasks.The algorithm returns true if the number of s
heduled tasks Lsched is bigger than, or equalto, the number of tasks to be sent Lsend.Now we will prove that if there exists a s
hedule whose makespan is less than, or equal to, M ,Algorithm 3 builds one and returns true. Consider an optimal s
hedule σ∗ with a makespan M .We will prove that Algorithm 3 will return true. INRIA

S
heduling and data redistribution strategies on star platforms 23
Algorithm 3 Algorithm for star-platforms with homogeneous
ommuni
ations and heterogeneousworkers1: /* Phase 1: Initialization */2: initialize fi for all workers i, fi = Li × wi3:
ompute R and S, order S by non-de
reasing values ci su
h that cs1 ≤ cs2 ≤ . . .4: /* Phase 2: Preparing the senders */5: for all si ∈ S do6: lsi

←
⌈

fsi
−T

wsi

⌉7: if ⌊ T
csi

⌋
< lsi

then8: /* M too small */9: return (false, ∅)10: end if11: end for12: total number of tasks to send: Lsend ←
∑

si
lsi13: /* Phase 3: Preparing the re
eivers */14: D ← ∅15: for all ri ∈ R do16: lri

← 017: while fri
≤M − (lri

+ 1)× wri
do18: lri

← lri
+ 119: d

(lri
)

ri ←M − (lri
× wri

)20: D ← D ∪ (d
(lri

)
ri , ri)21: end while22: end for23: number of tasks that
an be re
eived: Lrecv ←

∑
ri

lri24: /* Phase 4: The master s
hedules */25: senders send in non-de
reasing order of values csi
to the master26: order deadline-list D by non-de
reasing values of deadlines dri

and rename the deadlines inthis order from 1 to Lrecv27: σ ← ∅; t← cs1 ; Lsched = 0;28: for i = 1 to Lrecv do29: (di, ri)← i-th element (d
(j)
rk , rk) of D30: σ ← σ ∪ {ri}31: t← t + cri32: Lsched ← Lsched + 133: if t > di then34: Find (dj , rj) in σ su
h that crj

value is largest35: σ ← σ\{(dj , rj)}36: t← t− crj37: Lsched ← Lsched − 138: end if39: end for40: return ((Lsched ≥ Lsend), σ)

RR n° 6005

24 L. Mar
hal, V. Rehn, Y. Robert and F. VivienWe have
omputed, for ea
h re
eiver rj , lrj
the maximal number of tasks rj
an pro
ess afterhaving �nished to pro
ess its initial load. Let Nrj

denote the number of tasks re
eived by rjin σ∗, Nrj
≤ lrj

. For all re
eivers rj we know the number Nrj
of s
heduled tasks. So we have

L∗
sched =

∑
rj

Nrj
. As in an optimal s
hedule all tasks sent by the senders are pro
essed onthe re
eivers, we know that L∗

sched = L∗
send. Let us denote D the set of deadlines
omputed inour algorithm for the s
heduling problem of whi
h σ∗ is an optimal solution. We also de�ne thefollowing set D∗ =

⋃
i

⋃
1≤j≤Nri

(M − j × wri
, ri) of the Nrj

latest deadlines for ea
h re
eiver rj .Obviously D∗ ⊆ D. The set of tasks in σ∗ is exa
tly a set of tasks that respe
ts the deadlines in
D∗. The appli
ation of the algorithm of Moore on the same problem returns a maximal solutionif there exists a solution. With D∗ ⊂ D, we already know that there exists a solution with L∗

scheds
heduled tasks. So Moore's algorithm will return a solution with Lsched ≥ Lsched∗, as there aremore possible deadlines. On the other side, we have L∗
send ≥ Lsend as Lsend is the minimal numberof tasks that have to be sent to �t in the given makespan. So we get that Lsched ≥ Lsend. Aswe return true in our algorithm if Lsched ≥ Lsend, we will return true whenever there exists as
hedule whose makespan is less than, or equal to, M .

Frj

re
eiver rj

T = 0

omputation of initial tasks Lri

M
d

(1)
rjd

(2)
rjd

(3)
rjd

(4)
rjd

(5)
rj

nrj
= 1 nrj

= 2 nrj
= 3

nrj
= 3nrj

= 2nrj
= 1

Figure 18: Number of loads s
heduled to re
eiver rj in order to its deadlines.Now we prove that if Algorithm 3 returns true there exists a s
hedule whose makespan isless than, or equal to, M . Our algorithm returns true, if it has found a s
hedule σ where
Lsched ≥ Lsend. If Lsched = Lsend then the s
hedule σ found by our algorithm is a s
hedule whosemakespan is less than, or equal to, M . If Lsched > Lsend, we take the Lsend �rst elements of σ,whi
h still de�nes a s
hedule whose makespan is less than, or equal to, M .Proposition 2. Algorithm 4 returns in polynomial time an optimal s
hedule σ for the followings
heduling problem: minimizing the makespan on a star-platform with homogeneous
ommuni
a-tion links and heterogeneous workers where the initial tasks are lo
ated on the workers.Proof. We perform a binary sear
h for a solution in a starting interval of [min(fi), max(fi)]. Aswe are in heterogeneous
omputation
onditions, we have heterogeneous wi-values, 1 ≤ i ≤ m,
wi ∈ Q. The
ommuni
ations instead are homogeneous, so we have ci = c, 1 ≤ i ≤ m, c ∈ Q. Letthe representation of the values be of the following form:

wi =
αi

βi

, αi, βi ∈ N× N∗,where αi and βi are prime between ea
h other,
ci = c =

γ

δ
, γ, δ ∈ N× N∗,where γ and δ are prime between ea
h other.Let λ be the least
ommon multiple of the denominators βi and δi, λ = l
m{βi, δ}, 1 ≤ i ≤ m.As a
onsequen
e for any i in [1..m] λ×wi ∈ N, λ× ci ∈ N. Now we have to
hoose the pre
isionwhi
h allows us to stop our binary sear
h. For this, we take a look at the possible �nish times ofthe workers: all of them are linear
ombinations of the di�erent ci and wi-values. So if we multiplyall values with λ we get integers for all values and the smallest gap between two �nish times is atleast 1. So the pre
ision p, i.e., the minimal gap between two feasible �nish times, is p = 1

λ
.
INRIA

S
heduling and data redistribution strategies on star platforms 25Algorithm 4 Algorithm to optimize the makespan.
/∗ idea: make a binary sear
h of M ∈ [min(fi), max(fi)] ∗/input: wi = αi

βi
, αi, βi ∈ N× N∗, ci = γi

δi
, γi, δi ∈ N× N∗

λ← l
m{βi, δi}, 1 ≤ i ≤ m
precision← 1

λ

lo← min(fi); hi← max(fi);pro
edure binary-Sear
h(lo, hi):
gap← |lo− hi|while gap > precision do

M ← (lo + hi)/2
found← MBBSA (M)if 6 found then/* M is too small */

lo←Melse/* M is maybe too big */
hi←M
σ ← found s
heduleend if

gap← |lo− hi|end whilereturn σComplexity: The maximal number of di�erent values M we have to try
an be
omputed asfollows: we examine our algorithm in the interval [min(fi).. max(fi)]. The possible values have anin
rement of 1
λ
. So there are (max(fi)−min(fi))× λ possible values for M .So the
omplexity of the binary sear
h is O(log((max(fi) − min(fi)) × λ)). Now we have toprove that we stay in the order of the size of our problem. Our platform parameters c and wi aregiven in the form wi = αi

βi
and c = γi

δ
. So it takes log(αi)+log(βi) to store a wi and log(γ)+log(δ)to store a c. So our entry E has the following size:

E =
∑

i

log(αi) +
∑

i

log(βi) + log(γ) + log(δ) +
∑

i

log(Li)We
an do the following estimation:
E≥

∑

i

log(βi) + log(δ) = log

(
∏

i

βi × δ

)
≥ log(λ)So we already know that our
omplexity is bounded by O(|E|+ log(max(fi)−min(fi))). We
ansimplify this expression: O(|E|+ log(max(fi)−min(fi))) ≤ O(|E|+ log(max(fi))). It remains toupperbound log(max(fi)).Remember max(fi) is de�ned as max(fi) = maxi(Li × wi) = Li0 × wi0 . Thus log(max(fi)) =

log(Li0)+log(wi0). Li0 is a part of the input and hen
e its size
an be upper-bounded by the size ofthe input E. In the same manner we
an upperbound log(wi0) by log(wi0) = log(αi0)+ log(βi0) ≤
E. Assembling all these upperbounds, we get O(log((max(fi) − min(fi)) × λ)) ≤ O(3|E|) andhen
e our proposed algorithm needs O(|E|) steps for the binary sear
h. The total
omplexity�nally is O(|E| ×max(nm, n2)), where n is the number of s
heduled tasks and m the number ofworkers.
RR n° 6005

26 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien3.5 Heuristi
s for heterogeneous platformsAs there exists no optimal algorithm to build a s
hedule in polynomial runtime (unless P = NP) forheterogeneous platforms, we propose three heuristi
s. A
omparative study is done in Se
tion 4.� The �rst heuristi

onsists in the use of the optimal algorithm for homogeneous platformsBBA (see Algorithm 1). On heterogeneous platforms, at ea
h step BBA optimizes the lo
almakespan.� Another heuristi
 is the utilization of the optimal algorithm for platforms with homogeneous
ommuni
ation links MBBSA (see Algorithm 3). The reason why MBBSA is not optimal onheterogeneous platforms is the following: Moore's algorithm, that is used for the s
hedulingstep,
ares about the tasks already on the master, but it does not assert if the tasks havealready arrived. The use of homogeneous
ommuni
ation links eliminated this di�
ulty. We
an observe that in the
ases where the over
harged workers (i.e., the senders)
ommuni
atefaster than the under
harged workers (i.e., the re
eivers), MBBSA is also optimal. However,the problem with this statement is that we do not know a priori whi
h pro
essors will workas senders. So in the
ase of heterogeneous platforms, where sending workers have faster
ommuni
ation links than re
eiving ones, the results will be optimal.� We propose a third heuristi
: the Reversed Binary-Sear
h Algorithm (see Algorithm 5for details). This algorithm
opies the idea of the introdu
tion of deadlines. Contraryto MBBSA this algorithm traverses the deadlines in reversed order, wherefrom the name.Starting at a given makespan, R-BSA s
hedules all tasks as late as possible until no moretask
an be s
heduled.R-BSA
an be divided into four phases:Phase 1 is the same as in MBBSA. It de
ides whi
h of the workers will be senders andwhi
h re
eivers, depending of the given makespan (see Figure 16).Phase 2 �xes how many transfers have to be s
heduled from ea
h sender su
h that thesenders all �nish their remaining tasks in time. This phase is also identi
al to MBBSA.Phase 3
omputes for ea
h re
eiver at whi
h time it
an start with the
omputation of theadditional tasks, this is in general the given makespan.Phase 4 again is the proper s
heduling step: Beginning at the makespan we �ll ba
kwardthe idle times of the re
eiving workers. So the master de
ides whi
h tasks have to bes
heduled on whi
h re
eivers and in whi
h order. The master
hooses a worker that
an start to re
eive the task as late as possible and still �nish it in time.4 SimulationsIn this se
tion we present the results of our simulation experien
es of the presented algorithmsand heuristi
s on multiple platforms. We study the heuristi
s that we presented in Se
tion 3.5.4.1 The simulationsAll simulations were made with SimGrid [16, 24℄. SimGrid is a toolkit that provides several fun
-tionalities for the simulation of distributed appli
ations in heterogeneous distributed environments.The toolkit is distributed into several layers and o�ers several programming environments, su
h asXBT, the
ore toolbox of SimGrid or SMPI, a library to run MPI appli
ations on top of a virtualenvironment. The a

ess to the di�erent
omponents is ensured via Appli
ation ProgrammingInterfa
es (API). We use the module MSG to
reate our entities. INRIA

S
heduling and data redistribution strategies on star platforms 27
Algorithm 5 Reversed Binary-Sear
h Algorithm1: /* Phase 1: Initialization */2: T ←M ; Lsched ← 0; σ ← ∅3: ∀k L

(0)
k ← Lk4: initialize endi for all workers i: endi = Li × wi5:
ompute R and S, order S by non-de
reasing values ci: cs1 ≤ cs2 ≤ . . .6: master_in← cs17: /* Phase 2: Preparing the senders */8: for all si ∈ S do9: lsi
←
⌈

endsi
−T

wsi

⌉10: if ⌊ T
csi

⌋
< lsi

then11: /* M too small */12: return (false, ∅)13: end if14: end for15: total number of tasks to be sent: Lsend ←
∑

si
lsi16: /* Phase 3: Determination of the last deadline */17: for all ri ∈ R do18: if endri

≤ T then19: beginri
← T20: end if21: end for22: /* Phase 4: The s
heduling */23: while true do24:
hoose receiver su
h that it is the worker that
an start re
eiving it as late as possible, i.e.,

maxi (min(begini − wi, T))− ci is maximal and that the s
hedule is feasible: the task must�t in the idle gap of the worker: (beginreceiver − wreceiver ≥ endreceiver) and the task hasto be arrived at the master: (beginreceiver − wreceiver − creceiver ≥ master_in).25: if no receiver′ found then26: return ((Lsched ≤ Lsend), σ)27: end if28: beginreceiver ← beginreceiver − wreceiver29: T ← beginreceiver − creceiver30: Lsched ← Lsched + 131: σ ← σ ∪ {receiver}32: i← i + 133: end while

RR n° 6005

28 L. Mar
hal, V. Rehn, Y. Robert and F. VivienThe simulations were made on automati
ally
reated random platforms of four types: Weanalyze the behavior on fully homogeneous and fully heterogeneous platforms and the mixture ofboth, i.e., platforms with homogeneous
ommuni
ation links and heterogeneous workers and the
onverse. For every platform type 1000 instan
es were
reated with the following
hara
teristi
s:In absolute random platforms, the random values for ci and wi vary between 1 and 100, whereasthe number of tasks is at least 50. In another test series we make some
onstraints on the
ommuni
ation and
omputation powers. In the �rst one, we de
ide the
ommuni
ation powerto be inferior to the
omputation power. In this
ase the values for the
ommuni
ation powervary between 20 and 50 and the
omputation powers
an take values between 50 and 80. In theopposite
ase, where
ommuni
ation power is supposed to be superior to the
omputation power,these rates are
onversed.4.2 Tra
e testsTo verify the right behavior of the algorithms, we made some tra
e tests. So the visualization ofthe runs on a small test platform are shown in this se
tion.We use a small platform with homogeneous
ommuni
ation links, c = 2, so the bandwidth is
0.5. We use four heterogeneous workers with the following w-values: P1 and P2
ompute faster,so we set w1 = w2 = 3. Worker P3 and P4 are slower ones with w3 = w4 = 4. P1 owns 8 tasksat the beginning, P2 and P3 respe
tively one task, whereas worker P4 has no initial work. Theoptimal makespan is M = 13, as we
omputed by permutation over all possible s
hedules.In the following �gures,
omputation are indi
ated in bla
k. White re
tangles denote inter-nal blo
kings of SimGrid in the
ommuni
ation pro
ess of a worker. These blo
kings appearwhen
ommuni
ation pro
esses remark that the a
tual message is not destined for them. Greyre
tangles represent idle time in the
omputation pro
ess. The light grey �elds �nally show the
ommuni
ation pro
esses between the pro
essors.The s
hedule of BBA
an be seen in Figure 19. Evidently the worker with the latest �nish timeis P1, worker P2
an �nish the �rst sent task earlier than workers P3 and P4, so it is the re
eiverfor the �rst task. In this solution, worker P1 sends four tasks, whi
h are re
eived by P2, P4, P2and on
e again P4. The makespan is 14, so the s
hedule is not optimal. This does not
ontradi
tour theoreti
al results, as we proved optimality of BBA only on homogeneous platforms.

Figure 19: Tra
e of the simulation of BBA.MBBSA a
hieves as expe
ted the optimal makespan of 13 (see Figure 20). As you
an see by
omparing Figures 19 and 20, the se
ond task s
heduled by MBBSA (to worker P2) is �nished pro-
essing later than in the s
hedule of BBA. So MBBSA, while globally optimal, does not minimizethe
ompletion time of ea
h task.R-BSA �nds also an optimal s
hedule (
f. Figure 21). Even in this small test the di�eren
e ofR-BSA and MBBSA is remarkable: R-BSA tries to s
hedule the most tasks as possible by �llingidle times starting at the makespan. MBBSA
ontrarily tries to s
hedule tasks as soon as possiblebefore their deadlines are expired. INRIA

S
heduling and data redistribution strategies on star platforms 29

Figure 20: Tra
e of the simulation of MBBSA.

Figure 21: Tra
e of the simulation of R-BSA.4.3 Distan
e from the bestWe made a series of distan
e tests to get some information of the mean qualitiy of our algorithms.For this purpose we ran all algorithms on 1000 di�erent random platforms of the ea
h type, i.e.,homogeneous and heterogeneous, as well as homogeneous
ommuni
ation links with heterogeneousworkers and the
onverse. We normalized the measured s
hedule makespans over the best resultfor a given instan
e. In the following �gures we plot the a

umulated number of platforms thathave a normalized distan
e less than the indi
ated distan
e. This means, we
ount on how manyplatforms a
ertain algorithm a
hieves results that do not di�er more than X% from the bests
hedule. For exemple in Figure 22(b): The third point of the R-BSA-line signi�
ates that about93% of the s
hedules of R-BSA di�er less than 3% from the best s
hedule.Our results on homogeneous platforms
an be seen in Figures 22. As expe
ted from thetheoreti
al results, BBA and MBBSA a
hieve the same results and behave equally well on allplatforms. R-BSA in
ontrast shows a sensibility on the platform
hara
teristi
s. When the
ommuni
ation power is less than the
omputation power, i.e. the ci-values are bigger, R-BSAbehaves as good as MBBSA and BBA. But in the
ase of small ci-values or on homogeneousplatforms without
onstraints on the power rates, R-BSA a
hieves worse results.The simulation results on platforms with homogeneous
ommuni
ation links and heterogeneous
omputation powers (
f. Figure 23)
onsolidate the theoreti
al predi
tions: Independently of theplatform parameters, MBBSA always obtains optimal results, BBA di�ers slightly when highpre
ision is demanded. The behavior of R-BSA strongly depends on the platform parameters:when
ommuni
ations are slower than
omputations, it a
hieves good results.On platforms with heterogeneous
ommuni
ation links and homogeneous workers, BBA hasby far the poorest results, whereas R-BSA shows a good behavior (see Figure 24). In general itoutperforms MBBSA, but when the
ommuni
ation links are fast, MBBSA is the best.The results on heterogeneous platforms are equivalent to these on platforms with heterogeneous
ommuni
ation links and homogeneous workers, as
an be seen in Figure 25. R-BSA seems to bea good
andidate, whereas BBA is to avoid as the gap is up to more than 40%.RR n° 6005

30 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform

BBA
MBBSA
R-BSA(a) Homogeneous platform (general
ase).

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform -comms smaller than comps

BBA
MBBSA
R-BSA(b) Homogeneous platform, faster
ommuni
ating.

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous platform -comms bigger than comps

BBA
MBBSA
R-BSA(
) Homogeneous platform, faster
omputing.Figure 22: Frequen
y of the distan
e to the best on homogeneous platforms.

INRIA

S
heduling and data redistribution strategies on star platforms 31

 70

 75

 80

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - homogeneous comms,heterogeneous calcs

BBA
MBBSA
R-BSA(a) General platform.

 70

 75

 80

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - hom het platform -comms smaller than comps

BBA
MBBSA
R-BSA(b) Faster
ommuni
ating.

 70

 75

 80

 85

 90

 95

 100

 105

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - hom het platform -comms bigger than comps

BBA
MBBSA
R-BSA(
) Faster
omputing.Figure 23: Frequen
y of the distan
e to the best on platforms with homogeneous
ommuni
ationlinks and heterogeneous
omputation power.

RR n° 6005

32 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous comms,homogeneous calcs

BBA
MBBSA
R-BSA(a) General platform.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - het hom platform -comms smaller than comps

BBA
MBBSA
R-BSA(b) Faster
ommuni
ating.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - het hom platform -comms bigger than comps

BBA
MBBSA
R-BSA(
) Faster
omputing.Figure 24: Frequen
y of the distan
e to the best on platforms with heterogeneous
ommuni
ationlinks and homogeneous
omputation power.

INRIA

S
heduling and data redistribution strategies on star platforms 33

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform

BBA
MBBSA
R-BSA(a) Heterogeneous platform (general
ase).

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform -comms smaller than comps

BBA
MBBSA
R-BSA(b) Heterogeneous platform, faster
ommuni
ating.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

ac
cu

m
ul

at
ed

 fr
eq

ue
nc

y
[%

]

distance [%]

frequency of the distances to the best - heterogeneous platform -comms bigger than comps

BBA
MBBSA
R-BSA(
) Heterogeneous platform, faster
omputing.Figure 25: Frequen
y of the distan
e to the best on heterogeneous platforms.

RR n° 6005

34 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien4.4 Mean distan
e and standard deviationWe also
omputed for every algorithm the mean distan
e from the best on ea
h platform type.These
al
ulations are based on the simulation results on the 1000 random platforms of Se
tion 4.3.As you
an see in Table 1 in general MBBSA a
hieves the best results. On homogeneous platformsBBA behaves just as well as MBBSA and on platforms with homogeneous
ommuni
ation linksit also performs as well. When
ommuni
ation links are heterogeneous and there is no knowledgeabout platform parameters, R-BSA outperforms the other algorithms and BBA is by far the worse
hoi
e. Platform type Mean distan
e Standard deviationComm. Comp. BBA MBBSA R-BSA BBA MBBSA R-BSAHom Hom 1 1 1.0014 0 0 0.0107Hom Hom c ≤ w 1 1 1.0061 0 0 0.0234Hom Hom c ≥ w 1 1 1 0 0 0Hom Het 1.0000 1 1.0068 0.0006 0 0.0181Hom Het c ≤ w 1.0003 1 1.0186 0.0010 0 0.0395Hom Het c ≥ w 1 1 1.0017 0 0 0.0040Het Hom 1.1894 1.0074 1.0058 0.4007 0.0208 0.0173Het Hom c ≤ w 1.0318 1.0049 1.0145 0.0483 0.0131 0.0369Het Hom c ≥ w 1.0291 1.0025 1.0024 0.0415 0.0097 0.0095Het Het 1.2100 1.0127 1.0099 0.3516 0.0327 0.0284Het Het c ≤ w 1.0296 1.0055 1.0189 0.0450 0.0127 0.0407Het Het c ≥ w 1.0261 1.0045 1.0046 0.0384 0.0118 0.0121Table 1: Mean distan
e from the best and standard deviation of the di�erent algorithms on ea
hplatform type.The standard deviations of all algorithms over the 1000 platforms are shown in the right partof Table 1. These values mirror exa
tly the same
on
lusions as the listing of the mean distan
esin the left part, so we do not
omment on them parti
ularly. We only want to point out thatthe standard deviation of MBBSA always keeps small values, whereas in
ase of heterogeneous
ommuni
ation links BBA-heuristi
 is not re
ommendable.5 Load balan
ing of divisible loads using the multiport swit
h-model5.1 FrameworkIn this se
tion we work with a heterogeneous star network. But in di�eren
e to Se
tion 3 werepla
e the master by a swit
h. So we have m workers whi
h are inter
onne
ted by a swit
h and
m heterogenous links. Link i is the link that
onne
ts worker Pi to the swit
h. Its bandwidth isdenoted by bi. In the same way si denotes the
omputation speed of worker Pi. Every worker
Pi possesses an amount of initial load αi. Contrarily to the previous se
tion, this load is not
onsidered to
onsist of identi
al and independent tasks but of divisible loads. This means thatan amount of load X
an be divided into an arbitrary number of tasks of arbitrary size. Asalready mentioned, this approa
h is
alled Divisible Load Theory - DLT [4℄. The
ommuni
ationmodel used in this
ase is an overlapped unbounded swit
hed-multiport model. This means all
ommuni
ations pass by a
entralized swit
h that has no throughput limitations. So all workers
an
ommuni
ate at the same time and a given worker
an start exe
uting as soon as it re
eivesthe �rst bit of data. As we use a model with overlap,
ommuni
ation and
omputation
an takepla
e at the same time.As in the previous se
tion our obje
tive is to balan
e the load over the parti
ipating workersto minimize the global makespan M . INRIA

S
heduling and data redistribution strategies on star platforms 355.2 Redistribution strategyLet σ be a solution of our problem that takes a time T . In this solution, there is a set of sendingworkers S and a set of re
eiving workers R. Let sendi denote the amount of load sent by sender
Pi and recvj be the amount of load re
eived by re
eiver Pj , with sendi ≥ 0, recvj ≥ 0. As all loadthat is sent has to be re
eived by another worker, we have the following equation:

∑

i∈S

sendi =
∑

j∈R

recvj = L. (1)In the following we des
ribe the properties of the senders: As the solution σ takes a time T , theamount of load a sender
an send depends on its bandwidth: So it is bounded by the time-slot of
∀ senderi ∈ S,

sendi

bi

≤ T. (2)Besides, it has to send at least the amount of load that it
an not �nish pro
essing in time T .This lowerbound
an be expressed by
∀ senderi ∈ S, sendi ≥ αi − T × si. (3)The properties for re
eiving workers are similar. The amount of load a worker
an re
eive isdependent of its bandwidth. So we have:
∀ re
eiverj ∈ R,

recvj

bj

≤ T. (4)Additionally it is dependent of the amount of load it already possesses and of its
omputationspeed. It must have the time to pro
ess all its load, the initial one plus the re
eived one. That iswhy we have a se
ond upperbound:
∀ re
eiverj ∈ S,

αj + recvj

sj

≤ T. (5)For the rest of our paper we introdu
e a new notation: Let δi denote the imbalan
e of a worker.We will de�ne it as follows:
δi =

{
sendi if i ∈ S

−recvi if i ∈ R. With the help of this new notation we
an re-
hara
terize the imbalan
e of all workers:� This imbalan
e is bounded by
|δi| ≤ bi × T.� If i ∈ S, worker Pi is a sender, and this statement is true be
ause of inequality 2.� If i ∈ R, worker Pi is a re
eiver and the statement is true as well, be
ause of inequality 4.� Furthermore, we lower-bound the imbalan
e of a worker by

δi ≥ αi − T × si. (6)� If i ∈ S, we are in the
ase where δi = sendi and hen
e this it true be
ause of equation 3.� If i ∈ R, we have δi = −recvi ≤ 0. Hen
e we get that (6) is equal to −recvi ≥ αi−T×siwhi
h in turn is equivalent to (5).� Finally we know as well that ∑i δi = 0 be
ause of equation 1.RR n° 6005

36 L. Mar
hal, V. Rehn, Y. Robert and F. VivienIf we
ombine all these
onstraints we get the following linear program (LP), with the additionof our obje
tive to minimize the makespan T . This
ombination of all properties into a LP ispossible be
ause we
an use the same
onstraints for senders and re
eivers. As you may havenoti
ed, a worker will have the fun
tionality of a sender if its imbalan
e δi is positive, re
eiversbeing
hara
terized by negative δi-values.Minimize T,under the
onstraints



(7a) |δi| ≤ T × bi(7b) δi ≥ αi − T × si(7
) ∑

i

δi = 0

(7)All the
onstraints of the LP are satis�ed for the (δi, T)-values of any s
hedule solution of theinitial problem. We
all T0 the solution of the LP for a given problem. As the LP minimizes thetime T , we have T0 ≤ T for all valid s
hedule and hen
e we have found a lower-bound for theoptimal makespan.Now we prove that we
an �nd a feasible s
hedule with makespan T0. We start from anoptimal solution of the LP, i.e., T0 and the δi-values
omputed by some LP solvers, su
h as Mapleor MuPAD. With the help of these found values we are able to des
ribe the s
hedule:1. Every sender i sends a fra
tion of load to ea
h re
eiver j. We de
ide that ea
h sender sendsto ea
h re
eiver a fra
tion of the senders load proportional to what we denote by
fi,j = δi ×

δj∑
k∈R δk

= δi ×
δj

−L
(8)the fra
tion of load that a sender Pi sends to a re
eiver Pj . In other words we have fi,j =

δi ×
−recvi∑

k∈R(−recvk) .2. During the whole s
hedule we use
onstant
ommuni
ation rates, i.e., worker j will re
eiveits fra
tion of load fi,j from sender i with a �xed re
eiving rate, whi
h is denoted by λi,j :
λi,j =

fi,j

T0
. (9)3. A s
hedule starts at time t = 0 and ends at time t = T0.We have to verify that ea
h sender
an send its amount of load in time T0 and that the re
eivers
an re
eive it as well and
ompute it afterwards.Let us take a look at a sender Pi: the total amount it will send is∑j∈R fi,j =

∑
j∈R

δi×δj∑
k∈R

δk
=

δi = sendi and as we started by a solution of our LP, δi respe
ts equations 7a and 7b, thus sendirespe
ts the
onstraints 2 and 3 as well, i.e., sendi ≤ T × bi and sendi ≥ αi − T × si.Now we
onsider a re
eiver Pj : the total amount it will re
eive is∑i∈S fi,j =
∑

i∈S
δi×δj∑
k∈R δk

=

−δj = recvj . Worker Pi
an re
eive the whole amount of recvi load in time T0 as it starts there
eption at time t = 0 and recvi respe
ts
onstraints 7a and 7b, who in turn respe
t the initial
onstraints 4 and 5, i.e., recvi ≤ T × bi and recvi ≤ T × si − αi. Now we examine if worker
Pi
an �nish
omputing all its work in time. As we use the divisible load model, worker Pi
anstart
omputing its additional amount of load as soon as it has re
eived its �rst bit and providedthe
omputing rate is inferior to the re
eiving rate. Figure 26 illustrates the
omputing pro
essof a re
eiver. There are two possible s
hedules: the worker
an allo
ate a
ertain per
entage ofits
omputing power for ea
h stream of loads and pro
ess them in parallel. This is shown inFigure 26(a). Pro
essor Pi starts immediately pro
essing all in
oming load. For doing so, everystream is allo
ated a
ertain
omputing rate γi,j , where i is the sending worker and j the re
eiver.We have to verify that the
omputing rate is inferior or equal to the re
eiving rate. INRIA

S
heduling and data redistribution strategies on star platforms 37The initial load αj of re
eiver Pj owns at minimum a
omputing rate su
h that it �nishes rightin time T0: γj,j =
αj

T0
. The
omputing rate γi,j , for all pairs (i, j), i ∈ S, j ∈ R, has to verify thefollowing
onstraints:� The sum of all
omputing rates does not ex
eed the
omputing power sj of the worker Pj :

(
∑

i∈S

γi,j

)
+

αj

T0
≤ sj , (10)� The
omputing rate for the amount of load fi,j has to be su�
iently big to �nish in time

T0:
γi,j ≥

fi,j

T0
, (11)� The
omputing rate has to be inferior or equal to the re
eiving rate of the amount fi,j :

γi,j ≤ λi,j , (12)Now we prove that γi,j =
fi,j

T0
is a valid solution that respe
ts
onstraints (10), (11), and (12):Equation (10) We have (∑i∈S γi,j

)
+

αj

T0
=
(∑

i∈S
fi,j

T0

)
+

αj

T0
=
(

−δj

T0

)
+

αj

T0
=

αj−δj

T0
. Transform-ing Equation (7b) in αj−δj ≤ T0×sj and using this upperbound we get αj−δj

T0
≤ T0×sj

T0
= sj .Hen
e this
onstraint holds true.Equation (11) By de�nition of γi,j this holds true.Equation (12) By the de�nitions of γi,j and λi,j this holds true.In the other possible s
hedule, all in
oming load streams are pro
essed in parallel after havingpro
essed the initial amount of load as shown in Figure 26(b). In fa
t, this modeling is equivalentto the pre
edent one, be
ause we use the DLT paradigm. We used this model in equations 3 and 5.

T0
0

1

fk,j γk,j

γj,jαj

fi,j

fl,j

{

{(a) Parallel pro
essing. 0
T0

1

γj,j=1 fk,jαj γk,j





fi,j

fl,j

{

(b) Sequential and parallel pro
essing.Figure 26: Di�erent s
hedules to pro
ess the re
eived load.The following theorem summarizes our
ognitions:Theorem 4. The
ombination of the linear program 7 with equations 8 and 9 returns an optimalsolution for makespan minimization of a load balan
ing problem on a heterogeneous star platformusing the swit
h model and initial loads on the workers.RR n° 6005

38 L. Mar
hal, V. Rehn, Y. Robert and F. Vivien6 Con
lusionIn this report we were interested in the problem of s
heduling and redistributing data on master-slave platforms. We
onsidered two types of data models.Supposing independent and identi
al tasks, we were able to prove the NP
ompleteness in thestrong sense for the general
ase of
ompletely heterogeneous platforms. Therefore we restri
tedthis
ase to the presentation of three heuristi
s. We have also proved that our problem is polyno-mial when
omputations are negligible. Treating some spe
ial topologies, we were able to presentoptimal algorithms for totally homogeneous star-networks and for platforms with homogeneous
ommuni
ation links and heterogeneous workers. Both algorithms required a rather
ompli
atedproof.The simulative experiments
onsolidate our theoreti
al results of optimality. On homogeneousplatforms, BBA is to privilege over MBBSA, as the
omplexity is remarkably lower. The tests onheterogeneous platforms show that BBA performs rather poorly in
omparison to MBBSA andR-BSA. MBBSA in general a
hieves the best results, it might be outperformed by R-BSA whenplatform parameters have a
ertain
onstellation, i.e., when workers
ompute faster than they are
ommuni
ating.Dealing with divisible loads as data model, we were able to solve the fully heterogeneousproblem. We presented the
ombination of a linear program with simple
omputation formulas to
ompute the imbalan
e in a �rst step and the
orresponding s
hedule in a se
ond step.A natural extension of this work would be the following: for the model with independent tasks,it would be ni
e to derive approximation algorithms, i.e., heuristi
s whose worst-
ase is guaranteedwithin a
ertain fa
tor to the optimal, for the fully heterogeneous
ase. However, it is often the
ase in s
heduling problems for heterogeneous platforms that approximation ratios
ontain thequotient of the largest platform parameter by the smallest one, thereby leading to very pessimisti
results in pra
ti
al situations.More generally, mu
h work remains to be done along the same lines of load-balan
ing andredistributing while
omputation goes on. We
an envision dynami
 master-slave platforms whose
hara
teristi
s vary over time, or even where new resour
es are enrolled temporarily in the exe
u-tion. We
an also deal with more
omplex inter
onne
tion networks, allowing slaves to
ir
umventthe master and ex
hange data dire
tly.Referen
es[1℄ D. Altilar and Y. Paker. Optimal s
heduling algorithms for
ommuni
ation
onstrained par-allel pro
essing. In Euro-Par 2002, LNCS 2400, pages 197�206. Springer Verlag, 2002.[2℄ O. Beaumont, L. Mar
hal, and Y. Robert. S
heduling divisible loads with return messages onheterogeneous master-worker platforms. Te
hni
al Report 2005-21, LIP, ENS Lyon, Fran
e,May 2005.[3℄ A. Bevila
qua. A dynami
 load balan
ing method on a heterogeneous
luster of workstations.Informati
a, 23(1):49�56, 1999.[4℄ V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible load theory: a new paradigm for loads
heduling in distributed systems. Cluster Computing, 6(1):7�17, 2003.[5℄ Berkeley Open Infrastru
ture for Network Computing. http://boin
.berkeley.edu.[6℄ P. Bru
ker. S
heduling Algorithms. Springer-Verlag New York, In
., Se
au
us, NJ, USA,2004.[7℄ M. Cierniak, M. Zaki, and W. Li. Customized dynami
 load balan
ing for a network ofworkstations. Journal of Parallel and Distributed Computing, 43:156�162, 1997. INRIA

http://boinc.berkeley.edu

S
heduling and data redistribution strategies on star platforms 39[8℄ M. Drozdowski and L. Wielebski. E�
ien
y of divisible load pro
essing. In PPAM, pages175�180, 2003.[9℄ P. Dutot. Algorithmes d'ordonnan
ement pour les nouveaux supports d'exé
ution. PhD thesis,Laboratoire ID-IMAG, Institut National Polyte
hnique de Grenoble, 2004.[10℄ P. Dutot. Complexity of master-slave tasking on heterogeneous trees. European Journal ofOperational Resear
h, 164:690�695, 2005.[11℄ Einstein�Home. http://einstein.phys.usm.edu.[12℄ M. R. Garey and D. S. Johnson. Computers and Intra
tability, a Guide to the Theory ofNP-Completeness. W.H. Freeman and Company, 1979.[13℄ D. Ghose. Feedba
k strategy for load allo
ation in workstation
lusters with unknown networkresour
e
apabilities using the DLT paradigm. In Pro
eedings of the Parallel and DistributedPro
essing Te
hniques and Appli
ations (PDPTA'02), volume 1, pages 425�428. CSREAPress, 2002.[14℄ M. Hamdi and C. Lee. Dynami
 load balan
ing of data parallel appli
ations on a distributednetwork. In 9th International Conferen
e on Super
omputing ICS'95, pages 170�179. ACMPress, 1995.[15℄ U. Kremer. NP-Completeness of dynami
 remapping. In Pro
eedings of the Fourth Workshopon Compilers for Parallel Computers, Delft, The Netherlands, 1993. Also available as Ri
eTe
hni
al Report CRPC-TR93330-S.[16℄ A. Legrand, L.Mar
hal, and H. Casanova. S
heduling Distributed Appli
ations: The SimGridSimulation Framework. In Pro
eedings of the Third IEEE International Symposium on ClusterComputing and the Grid (CCGrid'03), pages 138�145, May 2003.[17℄ M. A. Moges, T. G. Robertazzi, and D. Wu. Divisible load s
heduling with multiple sour
es:Closed form solutions. In T. J. H. University, editor, Conferen
e on Infomation S
ien
es andSystems, Mar
h 2005.[18℄ J. Moore. An n job, one ma
hine sequen
ing algorithm for minimizing the number of latejobs. Management S
ien
e, 15(1), Sept. 1968.[19℄ M. Nibhanupudi and B. Szymanski. Bsp-based adaptive parallel pro
essing. In R. Buyya,editor, High Performan
e Cluster Computing. Volume 1: Ar
hite
ture and Systems, pages702�721. Prenti
e-Hall, 1999.[20℄ H. Renard, Y. Robert, and F. Vivien. Data redistribution algorithms for heterogeneouspro
essor rings. Resear
h Report RR-2004-28, LIP, ENS Lyon, Fran
e, May 2004. Availableat the url http://graal.ens-lyon.fr/~yrobert.[21℄ T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63�68, 2003.[22℄ SETI. URL: http://setiathome.ssl.berkeley.edu.[23℄ B. A. Shirazi, A. R. Hurson, and K. M. Kavi. S
heduling and load balan
ing in parallel anddistributed systems. IEEE Computer S
ien
e Press, 1995.[24℄ SimGrid. URL: http://simgrid.gforge.inria.fr.[25℄ M.-Y. Wu. On runtime parallel s
heduling for pro
essor load balan
ing. IEEE Trans. Paralleland Distributed Systems, 8(2):173�186, 1997.
RR n° 6005

http://einstein.phys.usm.edu
http://graal.ens-lyon.fr/~yrobert
http://setiathome.ssl.berkeley.edu
http://simgrid.gforge.inria.fr

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

