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Abstrat: In this work we are interested in the problem of sheduling and redistributing dataon master-slave platforms. We onsider the ase were the workers possess initial loads, some ofwhih having to be redistributed in order to balane their ompletion times.We examine two di�erent senarios. The �rst model assumes that the data onsists of inde-pendent and idential tasks. We prove the NP-ompleteness in the strong sense for the generalase, and we present two optimal algorithms for speial platform types. Furthermore we proposethree heuristis for the general ase. Simulations onsolidate the theoretial results.The seond data model is based on Divisible Load Theory. This problem an be solved inpolynomial time by a ombination of linear programming and simple analytial manipulations.Key-words: Master-slave platform, sheduling, data redistribution, one-port model, indepen-dent tasks, divisible load theory.



Stratégies d'ordonnanement et de redistribution de donnéessur plate-formes en étoileRésumé : Dans e travail on s'interesse au problème d'ordonnanement et de redistributionde données sur plates-formes maître-eslaves. On onsidère le as où les eslaves possèdent desdonnées initiales, dont quelques-unes doivent être redistribuées pour équilibrer leur dates de �n.On examine deux sénarios di�érents. Le premier modèle suppose que les données sont destâhes indépendantes identiques. On prouve la NP-omplétude dans le sens fort pour le asgénéral, et on présente deux algorithmes pour des plates-formes spéiales. De plus on propose troisheuristiques pour le as général. Des résultats expérimentaux obtenus par simulation viennent àl'appui des résultats théoriques.Mots-lés : Plate-forme maître-eslave, ordonnanement, équilibrage de harge, modèle un-port,tâhes indépendantes, tâhes divisibles.
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4 L. Marhal, V. Rehn, Y. Robert and F. Vivien1 IntrodutionIn this work we onsider the problem of sheduling and redistributing data on master-slave ar-hitetures in star topologies. Beause of variations in the resoure performane (CPU speed orommuniation bandwidth), or beause of unbalaned amounts of urrent load on the workers,data must be redistributed between the partiipating proessors, so that the updated load is betterbalaned in terms that the overall proessing �nishes earlier.We adopt the following abstrat view of our problem. There are m+1 partiipating proessors
P0, P1, . . . , Pm, where P0 is the master. Eah proessor Pk, 1 ≤ k ≤ m initially holds Lk dataitems. During our sheduling proess we try to determine whih proessor Pi should send somedata to another worker Pj to equilibrate their �nishing times. The goal is to minimize the globalmakespan, that is the time until eah proessor has �nished to proess its data. Furthermorewe suppose that eah ommuniation link is fully bidiretional, with the same bandwidth forreeptions and sendings. This assumption is quite realisti in pratie, and does not hange theomplexity of the sheduling problem, whih we prove NP-omplete in the strong sense.We examine two di�erent senarios for the data items that are situated at the workers. The�rst model supposes that these data items onsist in independent and uniform tasks, while theother model uses the Divisible Load Theory paradigm (DLT) [4℄.The ore of DLT is the following: DLT assumes that ommuniation and omputation loadsan be fragmented into parts of arbitrary size and then distributed arbitrarily among di�erentproessors to be proessed there. This orresponds to perfet parallel jobs: They an be split intoarbitrary subtasks whih an be proessed in parallel in any order on any number of proessors.Beaumont, Marhal, and Robert [2℄ treat the problem of divisible loads with return messageson heterogeneous master-worker platforms (star networks). In their framework, all the initial loadis situated at the master and then has to be distributed to the workers. The workers ompute theiramount of load and return their results to the master. The di�ulty of the problem is to deideabout the sending order from the master and, at the same time, about the reeiving order. In thispaper problems are formulated in terms of linear programs. Using this approah the authors wereable to haraterize optimal LIFO1 and FIFO2 strategies, whereas the general ase is still open.Our problem is di�erent, as in our ase the initial load is already situated at the workers. To thebest of our knowledge, we are the �rst to takle this kind of problem.Having disussed the reasons and bakground of DLT, we dwell on the interest of the datamodel with uniform and independent tasks. Contrary to the DLT model, where the size of loadan be diversi�ed, the size of the tasks has to be �xed at the beginning. This leads to the �rstpoint of interest: When tasks have di�erent sizes, the problem is NP omplete beause of an ob-vious redution to 2-partition [12℄. The other point is a positive one: there exists lots of pratialappliations who use �xed idential and independent tasks. A famous example is BOINC [5℄,the Berkeley Open Infrastruture for Network Computing, an open-soure software platform forvolunteer omputing. It works as a entralized sheduler that distributes tasks for partiipatingappliations. These projets onsists in the treatment of omputation extensive and expensive si-enti� problems of multiple domains, suh as biology, hemistry or mathematis. SETI�home [22℄for example uses the aumulated omputation power for the searh of extraterrestrial intelligene.In the astrophysial domain, Einstein�home [11℄ searhes for spinning neutron stars using datafrom the LIGO and GEO gravitational wave detetors. To get an idea of the task dimensions, inthis projet a task is about 12 MB and requires between 5 and 24 hours of dediated omputation.As already mentioned, we suppose that all data are initially situated on the workers, whihleads us to a kind of redistribution problem. Existing redistribution algorithms have a di�erentobjetive. Neither do they are how the degree of imbalane is determined, nor do they inludethe omputation phase in their optimizations. They expet that a load-balaning algorithm hasalready taken plae. With help of these results, a redistribution algorithm determines the requiredommuniations and organizes them in minimal time. Renard, Robert, and Vivien present some1Last In First Out2First In First Out INRIA



Sheduling and data redistribution strategies on star platforms 5optimal redistribution algorithms for heterogeneous proessor rings in [20℄. We ould use thisapproah and redistribute the data �rst and then enter in a omputation phase. But our problemis more ompliated as we suppose that ommuniation and omputation an overlap, i.e., everyworker an start omputing its initial data while the redistribution proess takes plae.To summarize our problem: as the partiipating workers are not equally harged and/or be-ause of di�erent resoure performane, they might not �nish their omputation proess at thesame time. So we are looking for mehanisms on how to redistribute the loads in order to �nishthe global omputation proess in minimal time under the hypothesis that harged workers anompute at the same time as they ommuniate.The rest of this report is organized as follows: Setion 2 presents some related work. Thedata model of independent and idential tasks is treated in Setion 3: In Setion 3.2 we disussthe ase of general platforms. We are able to prove the NP-ompleteness for the general aseof our problem, and the polynomiality for a restrited problem. The following setions onsidersome partiular platforms: an optimal algorithm for homogeneous star networks is presented inSetion 3.3, Setion 3.4 treats platforms with homogenous ommuniation links and heteroge-neous workers. The presentation of some heuristis for heterogeneous platforms is the subjetin Setion 3.5. Simulative test results are shown in Setion 4. Setion 5 is devoted to the DLTmodel. We propose a linear program to solve the sheduling problem and propose formulas forthe redistribution proess.2 Related workOur work is prinipally related with three key topis. Sine the early nineties Divisible LoadTheory (DLT) has been assessed to be an interesting method of distributing load in parallelomputer systems. The outome of DLT is a huge variety of sheduling strategies on how todistribute the independent parts to ahieve maximal results. As the DLT model an be used on avast variety of interonnetion topologies like trees, buses, hyperubes and so on, in the literaturetheoretial and appliative elements are widely disussed. In his artile Robertazzi gives Ten Rea-sons to Use Divisible Load Theory [21℄, like salability or extending realism. Probing strategies[13℄ were shown to be able to handle unknown platform parameters. In [8℄ evaluations of e�ienyof DLT are onduted. The authors analyzed the relation between the values of partiular pa-rameters and the e�ieny of parallel omputations. They demonstrated that several parametersin parallel systems are mutually related, i.e., the hange of one of these parameters should beaompanied by the hanges of the other parameters to keep e�ieny. The platform used in thisartile is a star network and the results are for appliations with no return messages. Optimalsheduling algorithms inluding return messages are presented in [1℄. The authors are treatingthe problem of proessing digital video sequenes for digital TV and interative multimedia. As aresult, they propose two optimal algorithms for real time frame-by-frame proessing. Shedulingproblems with multiple soures are examined [17℄. The authors propose losed form solutions fortree networks with two load originating proessors.Redistribution algorithms have also been well studied in the literature. Unfortunatelyalready simple redistribution problems are NP omplete [15℄. For this reason, optimal algorithmsan be designed only for partiular ases, as it is done in [20℄. In their researh, the authorsrestrit the platform arhiteture to ring topologies, both uni-diretional and bidiretional. In thehomogeneous ase, they were able to prove optimality, but the heterogenous ase is still an openproblem. In spite of this, other e�ient algorithms have been proposed. For topologies like treesor hyperubes some results are presented in [25℄.The load balaning problem is not diretly dealt with in this paper. Anyway we wantto quote some key referenes to this subjet, as the results of these algorithms are the startingpoint for the redistribution proess. Generally load balaning tehniques an be lassi�ed intotwo ategories. Dynami load balaning strategies and stati load balaning. Dynami tehniquesmight use the past for the predition of the future as it is the ase in [7℄ or they suppose that theload varies permanently [14℄. That is why for our problem stati algorithms are more interesting:RR n° 6005



6 L. Marhal, V. Rehn, Y. Robert and F. Vivienwe are only treating star-platforms and as the amount of load to be treated is known a priorywe do not need predition. For homogeneous platforms, the papers in [23℄ survey existing results.Heterogeneous solutions are presented in [19℄ or [3℄. This last paper is about a dynami loadbalaning method for data parallel appliations, alled the working-manager method: themanager is supposed to use its idle time to proess data itself. So the heuristi is simple: whenthe manager does not perform any ontrol task it has to work, otherwise it shedules.3 Load balaning of independent tasks using the one-portbidiretional model3.1 FrameworkIn this part we will work with a star network S = P0, P1, . . . , Pm shown in Figure 1. The proessor
P0 is the master and the m remaining proessors Pi, 1 ≤ i ≤ m, are workers. The initial data aredistributed on the workers, so every worker Pi possesses a number Li of initial tasks. All tasksare independent and idential. As we assume a linear ost model, eah worker Pi has a (relative)omputing power wi for the omputation of one task: it takes X.wi time units to exeute X taskson the worker Pi. The master P0 an ommuniate with eah worker Pi via a ommuniation link.A worker Pi an send some tasks via the master to another worker Pj to derement its exeutiontime. It takes X.ci time units to send X units of load from Pi to P0 and X.cj time units to sendthese X units from P0 to a worker Pj . Without loss of generality we assume that the master isnot omputing, and only ommuniating.

P1

P0

PiP2 Pm

w1 wm

cmc1

wi

cic2

w2Figure 1: Example of a star network.The platforms dealt with in setions 3.3 and 3.4 are a speial ase of a star network: allommuniation links have the same harateristis, i.e., ci = c for eah proessor Pi, 1 ≤ i ≤ k.Suh a platform is alled a bus network as it has homogeneous ommuniation links.We use the bidiretional one-port model for ommuniation. This means, that the masteran only send data to, and reeive data from, a single worker at a given time-step. But it ansimultaneously reeive a data and send one. A given worker annot start an exeution before ithas terminated the reeption of the message from the master; similarly, it annot start sendingthe results bak to the master before �nishing the omputation.The objetive funtion is to minimize the makespan, that is the time at whih all loads havebeen proessed. So we look for a shedule σ that aomplishes our objetive.3.2 General platformsUsing the notations and the platform topology introdued in Setion 3.1, we now formally presentthe Sheduling Problem for Master-Slave Tasks on a Star of Heterogeneous Pro-essors (SPMSTSHP).
INRIA



Sheduling and data redistribution strategies on star platforms 7
Worker  w load
P1 1 1 13
P2 8 1 13
P3 1 9 0
P4 1 10 0Figure 2: Platform parameters. P4

t = 0 t = M

P2

P3

P1

Figure 3: Example of an optimal shedule on aheterogeneous platform, where a sending workeralso reeives a task.De�nition 1 (SPMSTSHP).Let N be a star-network with one speial proessor P0 alled �master" and m workers. Let
n be the number of idential tasks distributed to the workers. For eah worker Pi, let wi be theomputation time for one task. Eah ommuniation link, linki, has an assoiated ommuniationtime ci for the transmission of one task. Finally let T be a deadline.The question assoiated to the deision problem of SPMSTSHP is: �Is it possible to redistributethe tasks and to proess them in time T?�.One of the main di�ulties seems to be the fat that we annot partition the workers into dis-joint sets of senders and reeivers. There exists situations where, to minimize the global makespan,it is useful, that sending workers also reeive tasks. (You will see later in this report that we ansuppose this distintion when ommuniations are homogeneous.)We onsider the following example. We have four workers (see Figure 2 for their parameters)and a makespan �xed to M = 12. An optimal solution is shown in Figure 3: Workers P3 and P4 donot own any task, and they are omputing very slowly. So eah of them an ompute exatly onetask. Worker P1, who is a fast proessor and ommuniator, sends them their tasks and reeiveslater another task from worker P2 that it an ompute just in time. Note that worker P1 is bothsending and reeiving tasks. Trying to solve the problem under the onstraint that no workeralso sends and reeives, it is not feasible to ahieve a makespan of 12. Worker P2 has to sendone task either to worker P3 or to worker P4. Sending and reeiving this task takes 9 time units.Consequently the proessing of this task an not �nish earlier than time t = 18.Another di�ulty of the problem is the overlap of omputation and the redistribution proess.Subsequently we examine our problem negleting the omputations. We are going to prove anoptimal polynomial algorithm for this problem.3.2.1 Polynomiality when omputations are negletedExamining our original problem under the supposition that omputations are negligible, we geta lassial data redistribution problem. Hene we eliminate the original di�ulty of the overlapof omputation with the data redistribution proess. We suppose that we already know theimbalane of the system. So we adopt the following abstrat view of our new problem: the mpartiipating workers P1, P2, . . . Pm hold their initial uniform tasks Li, 1 ≤ i ≤ m. For a worker Pithe hosen algorithm for the omputation of the imbalane has deided that the new load shouldbe Li − δi. If δi > 0, this means that Pi is overloaded and it has to send δi tasks to some otherproessors. If δi < 0, Pi is underloaded and it has to reeive −δi tasks from other workers. Wehave heterogeneous ommuniation links and all sent tasks pass by the master. So the goal is todetermine the order of senders and reeivers to redistribute the tasks in minimal time.RR n° 6005



8 L. Marhal, V. Rehn, Y. Robert and F. VivienAs all ommuniations pass by the master, workers an not start reeiving until tasks havearrived on the master. So to minimize the redistribution time, it is important to harge the masteras fast as possible. Ordering the senders by non-dereasing ci-values makes the tasks at the earliestpossible time available.Suppose we would order the reeivers in the same manner as the senders, i.e., by non-dereasing
ci-values. In this ase we ould start eah reeption as soon as possible, but always with therestrition that eah task has to arrive �rst at the master (see Figure 4(b)). So it an happen thatthere are many idle times between the reeptions if the tasks do not arrive in time on the master.That is why we hoose to order the reeiver in reversed order, i.e., by non-inreasing ci-values (f.Figure 4()), to let the tasks more time to arrive. In the following lemma we even prove optimalityof this ordering.

P1 P2 P4

P0

P3

δ1 = 3 δ4 = −2

c4 = 3

δ2 = 1

c2 = 5 c3 = 1

c1 = 2

δ3 = −2(a) Example of load imbalaneon a heterogeneous platformwith 4 workers. T = 14

{

{

P1

P2

P3

P4

senders

receivers(b) The reeivers are ordered by non-dereasing order of their ci-values.
{

T = 12

{

P1

P2

P3

P4

receivers

senders

() The reeivers are ordered by non-inreasing order of their ci-values.Figure 4: Comparison of the ordering of the reeivers.Theorem 1. Knowing the imbalane δi of eah proessor, an optimal solution for heteroge-neous star-platforms is to order the senders by non-dereasing ci-values and the reeivers by non-inreasing order of ci-values.Proof. To prove that the sheme desribed by Theorem 1 returns an optimal shedule, we takea shedule S′ omputed by this sheme. Then we take any other shedule S. We are going totransform S in two steps into our shedule S′ and prove that the makespans of the both sheduleshold the following inequality: M(S′) ≤M(S).In the �rst step we take a look at the senders. The sending from the master an not startbefore tasks are available on the master. We do not know the ordering of the senders in S butwe know the ordering in S′: all senders are ordered in non-dereasing order of their ci-values. Let
i0 be the �rst task sent in S where the sender of task i0 has a bigger ci-value than the senderof the (i0 + 1)-th task. We then exhange the senders of task i0 and task (i0 + 1) and all thisnew shedule Snew. Obviously the reeption time for the seond task is still the same. But asINRIA



Sheduling and data redistribution strategies on star platforms 9you an see in Figure 5, the time when the �rst task is available on the master has hanged: afterthe exhange, the �rst task is available earlier and ditto ready for reeption. Hene this exhangeimproves the availability on the master (and redues possible idle times for the reeivers). We usethis mehanism to transform the sending order of S in the sending order of S′ and at eah timethe availability on the master is improved. Hene at the end of the transformation the makespanof Snew is smaller than or equal to that of S and the sending order of Snew and S′ is the same.
t t

Pi0

Pi0+1

Pi0

Pi0+1Figure 5: Exhange of the sending order makes tasks available earlier on the master.In the seond step of the transformation we take are of the reeivers (f. Figures 6 and 7).Having already hanged the sending order of S by the �rst transformation of S into Snew , we starthere diretly by the transformation of Snew. Using the same mehanism as for the senders, we all
j0 the �rst task suh that the reeiver of task j0 has a smaller ci-value than the reeiver of task
j0 + 1. We exhange the reeivers of the tasks j0 and j0 + 1 and all the new shedule Snew(1) .
j0 is sent at the same time than previously, and the proessor reeiving it, reeives it earlier thanit reeived j0+1 in Snew. j0+1 is sent as soon as it is available on the master and as soon as theommuniation of task j0 is ompleted. The �rst of these two onditions had also to be satis�edby Snew. If the seond ondition is delaying the beginning of the sending of the task j0 + 1 fromthe master, then this ommuniation ends at time tin + cπ′(j0) + cπ′(j0+1) = tin + cπ(j0+1) + cπ(j0)and this ommuniation ends at the same time than under the shedule Snew ( here π(j0) (π′(j0))denotes the reeiver of task j0 in shedule Snew (Snew(1) , respetively)). Hene the �nish time ofthe ommuniation of task j0 + 1 in shedule Snew(1) is less than or equal to the �nish time inthe previous shedule. In all ases, M(Snew(1)) ≤ M(Snew). Note that this transformation doesnot hange anything for the tasks reeived after j0+1 exept that we always perform the sheduledommuniations as soon as possible. Repeating the transformation for the rest of the shedule
Snew we redue all idle times in the reeptions as far as possible. We get for the makespanof eah shedule Snew(k) : M(Snew(k)) ≤ M(Snew) ≤ M(S). As after these (�nite number of)transformations the order of the reeivers will be in non-dereasing order of the ci-values, thereeiver order of Snew(∞) is the same as the reeiver order of S′ and hene we have Snew(∞) = S′.Finally we onlude that the makespan of S′ is smaller than or equal to any other shedule S andhene S′ is optimal.

t tidle idle{ {

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)Figure 6: Exhange of the reeiving order suits better with the available tasks on the master.3.2.2 NP-ompleteness of the original problemNow we are going to prove the NP-ompleteness in the strong sense of the general problem. Forthis we were strongly inspired by the proof of Dutot [10, 9℄ for the Sheduling Problem forMaster-Slave Tasks on a Tree of Heterogeneous Proessors (SPMSTTHP). This proofRR n° 6005



10 L. Marhal, V. Rehn, Y. Robert and F. Vivien
t tidle{

tin tin

Pπ(j0)

Pπ(j0+1)

Pπ(j0)

Pπ(j0+1)Figure 7: Deletion of idle time due to the exhange of the reeiving order.uses a two level tree as platform topology and we are able to assoiate the struture on our star-platform. We are going to reall the 3-partition problem whih is NP-omplete in the strong sense[12℄.De�nition 2 (3-Partition).Let S and n be two integers, and let (yi)i∈1..3n be a sequene of 3n integers suh that for eah
i, S

4 < yi < S
2 .The question of the 3-partition problem is �Can we partition the set of the yi in n triples suhthat the sum of eah triple is exatly S?".Theorem 2. SPMSTSHP is NP-omplete in the strong sense.Proof. We take an instane of 3-partition. We de�ne some real numbers xi, 1 ≤ i ≤ 3n, by

xi = 1
4S + yi

8 . If a triple of yi has the sum S, the orresponding triple of xi orresponds to the sum
7S
8 and vie versa. A partition of yi in triples is thus equivalent to a partition of the xi in triplesof the sum 7S

8 . This modi�ation allows us to guarantee that the xi are ontained in a smallerinterval than the interval of the yi. E�etively the xi are stritly inluded between 9S
32 and 5S

16 .Redution. For our redution we use the star-network shown in Figure 8. We onsider thefollowing instane of SPMTSHP: Worker P owns 4n tasks, the other 4n workers do not holdany task. We work with the deadline T = E + nS + S
4 , where E is an enormous time �xed to

E = (n + 1)S. The ommuniation link between P and the master has a c-value of S
4 . So it ansend a task all S

4 time units. Its omputation time is T + 1, so worker P has to distribute all itstasks as it an not �nish proessing a single task by the deadline. Eah of the other workers isable to proess one single task, as its omputation time is at least E and we have 2E > T , whatmakes it impossible to proess a seond task by the deadline.
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Figure 8: Star platform used in the redution. INRIA



Sheduling and data redistribution strategies on star platforms 11This struture of the star-network is partiularly onstruted to reprodue the 3-partitionproblem in the sope of a sheduling problem. We are going to use the bidiretional 1-portonstraint to reate our triplets.Creation of a shedule out of a solution to 3-partition. First we show how to onstruta valid shedule of 4n tasks in time S
4 + nS + E out of a 3-partition solution. To failitate theleture, the proessors Pi are ordered by their xi-values in the order that orresponds to thesolution of 3-partition. So, without loss of generality, we assume that for eah j ∈ [0, n − 1],

x3j+1 + x3j+2 + x3j+3 = 7S
8 . The shedule is of the following form:1. Worker P sends its tasks as soon as possible to the master, i.e., every S

4 time units. So it isguaranteed that the 4n tasks are sent in nS time units.2. The master sends the tasks as soon as possible in inoming order to the workers. The reeiverorder is the following (for all j ∈ [0, n− 1]):� Task 4j + 1, over link of ost x3j+1, to proessor P3j+1.� Task 4j + 2, over link of ost x3j+2, to proessor P3j+2.� Task 4j + 3, over link of ost x3j+3, to proessor P3j+3.� Task 4j + 4, over link of ost S
8 , to proessor Qn−1−j.The distribution of the four tasks, 4j + 1, 4j + 2, 4j + 3, 4j + 4, takes exatly S time unitsand the master needs also S time units to reeive four tasks from proessor P . Furthermore, eah

xi is larger than S
4 . Therefore, after the �rst task is sent, the master always �nishes to reeive anew task before its outgoing port is available to send it. The �rst task arrives at time S

4 at themaster, whih is responsible for the short idle time at the beginning. The last task arrives at itsworker at time S
4 + nS and hene it rests exatly E time units for the proessing of this task. Forthe workers Pi, 1 ≤ i ≤ 3n, we know that they an �nish to proess their tasks in time as theyall have a omputation power of E. The omputation power of the workers Qi, 0 ≤ i ≤ n− 1, is

E + i× S and as they reeive their task at time S
4 + (n− i− 1)× S + 7S

8 , they have exatly thetime to �nish their task.Getting a solution for 3-partition out of a shedule. Now we prove that eah shedule of
4n tasks in time T reates a solution to the 3-partition problem.As already mentioned, eah worker besides worker P an proess at most one task. Hene dueto the number of tasks in the system, every worker has to proess exatly one task. Furthermorethe minimal time needed to distribute all tasks from the master and the minimal proessing timeon the workers indues that there is no idle time in the emissions of the master, otherwise theshedule would take longer than time T .We also know that worker P is the only sending worker:Lemma 1. No worker besides worker P sends any task.Proof. Due to the platform on�guration and the total number of tasks, worker P has to sendall its tasks. This takes at least nS time units. The total emission time for the master is also nStime units: as eah worker must proess a task, eah of them must reeive one. So the emissiontime for the master is larger than or equal to ∑n

i=1 xi + n× S
8 = nS. As the master annot startsending the �rst task before time S

4 and as the minimum omputation power is E, then if themaster sends exatly one task to eah slave, the makespan is greater than or equal to T and if oneworker besides P sends a task, the master will at least send one additional task and the makespanwill be stritly greater than T .Now we are going to examine the worker Qn−1 and the task he is assoiated to.Lemma 2. The task assoiated to worker Qn−1 is one of the �rst four tasks sent by worker P .RR n° 6005



12 L. Marhal, V. Rehn, Y. Robert and F. VivienProof. The omputation time of worker Qn−1 is E + (n − 1)S, hene its task has to arrive nolater than time S + S
4 . The �fth task arrives at the soonest at time 5S

4 + S
8 as worker P has tosend �ve tasks as the shortest ommuniation time is S

8 . The following tasks arrive later than the
5-th task, so the task for worker Qn−1 has to be one of the �rst four tasks.Lemma 3. The �rst three tasks are sent to some worker Pi, 1 ≤ i ≤ 3n.Proof. As already mentioned, the master has to send without any idle time besides the initialone. Hene we have to pay attention that the master always possesses a task to send when he�nishes to send a task. While the master is sending to a worker Pi, worker P has the time to sendthe next task to the master. But, if at least one of the �rst three tasks is sent to a worker Qi, thesending time of the �rst three tasks is stritly inferior to S

8 + 5
16S + 5

16S = 3
4S. Hene there isobligatory an idle time in the emission of the master. This pause makes the shedule of 4n tasksin time T infeasible.A diret onlusion of the two preedent lemmas is that the 4-th task is sent to worker Qn−1.Lemma 4. The �rst three tasks sent by worker P have a total ommuniation time of 7

8S timeunits.Proof. Worker Qn−1 has a omputation time of E + (n− 1)S, it has to reeive its task no laterthan time 5
4S. This implies that the �rst three tasks are sent in a time no longer than 7

8S.On the other side, the 5-th task arrives at the master no sooner than time 5
4S. As the master hasto send without idle time, the emission to worker Qn−1 has to persist until this date. Neessarilythe �rst three emissions of the master take at minimum a time 7

8S.Lemma 5. Sheduling 4n tasks in a time T = S
4 + nS + E units of time allows to reonstrut aninstane of the assoiated 3-partition problem.Proof. In what preedes, we proved that the �rst three tasks sent by the master reate a triplewhose sum is exatly 7

8 . Using this property reursively on j for the triple 4j + 1, 4j + 2 and
4j + 3, we show that we must send the tasks 4j + 4 to the worker Qn−1−j. With this methodwe onstrut a partition of the set of xi in triples of sum 7

8 . These triples are a solution to theassoiated 3-partition problem.Having proven that we an reate a shedule out of a solution of 3-partition and also that wean get a solution for 3-partition out of a shedule, the proof is now omplete.3.3 An algorithm for sheduling on homogeneous star platforms: thebest-balane algorithmIn this setion we present the Best-Balane Algorithm (BBA), an algorithm to shedule onhomogeneous star platforms. As already mentioned, we use a bus network with ommuniationspeed c, but additionally we suppose that the omputation powers are homogeneous as well. Sowe have wi = w for all i, 1 ≤ i ≤ m.The idea of BBA is simple: in eah iteration, we look if we ould �nish earlier if we redistributea task. If so, we shedule the task, if not, we stop redistributing. The algorithm has polynomialrun-time. It is a natural intuition that BBA is optimal on homogeneous platforms, but the formalproof is rather ompliated, as an be seen in Setion 3.3.2. INRIA



Sheduling and data redistribution strategies on star platforms 133.3.1 Notations used in BBABBA shedules one task per iteration i. Let L
(i)
k denote the number of tasks of worker k afteriteration i, i.e., after i tasks were redistributed. The date at whih the master has �nished reeivingthe i-th task is denoted by master_in(i). In the same way we all master_out(i) the date at whihthe master has �nished sending the i-th task. Let end

(i)
k be the date at whih worker k would �nishto proess the load it would hold if exatly i tasks are redistributed. The worker k in iteration iwith the biggest �nish time end

(i)
k , who is hosen to send one task in the next iteration, is alled

sender. We all receiver the worker k with smallest �nish time end
(i)
k in iteration i who is hosento reeive one task in the next iteration.In iteration i = 0 we are in the initial on�guration: All workers own their initial tasks

L
(0)
k = Lk and the makespan of eah worker k is the time it needs to ompute all its tasks:

end
(0)
k = L

(0)
k × w. master_in(0) = master_out(0) = 0.3.3.2 The Best Balane Algorithm - BBAWe �rst sketh BBA:In eah iteration i do:� Compute the time end

(i−1)
k it would take worker k to proess L

(i−1)
k tasks.� A worker with the biggest �nish time end

(i−1)
k is arbitrarily hosen as sender, he is alled

sender.� Compute the temporary �nish times ẽnd
(i)

k of eah worker if it would reeive from senderthe i-th task.� A worker with the smallest temporary �nish time ẽnd
(i)

k will be the reeiver, alled receiver.If there are multiple workers with the same temporary �nish time ẽnd
(i)

k , we take the workerwith the smallest �nish time end
(i−1)
k .� If the �nish time of sender is stritly larger than the temporary �nish time ẽnd

(i)

sender of
sender, sender sends one task to receiver and iterate. Otherwise stop.Lemma 6. On homogeneous star-platforms, in iteration i the Best-Balane Algorithm (Al-gorithm 1) always hooses as reeiver a worker whih �nishes proessing the �rst in iteration

i− 1.Proof. As the platform is homogeneous, all ommuniations take the same time and all ompu-tations take the same time. In Algorithm 1 the master hooses as reeiver in iteration i the worker
k that would end the earliest the proessing of the i-th task sent. To prove that worker k is alsothe worker whih �nishes proessing in iteration i− 1 �rst, we have to onsider two ases:� Task i arrives when all workers are still working.As all workers are still working when the master �nishes to send task i, the master hoosesas reeiver a worker whih �nishes proessing the �rst, beause this worker will also �nishproessing task i �rst, as we have homogeneous onditions. See Figure 9(a) for an example:the master hooses worker k as in iteration i− 1 it �nishes before worker j and it an thusstart omputing task i + 1 earlier than worker j ould do.� Task i arrives when some workers have �nished working.If some workers have �nished working when the master an �nish to send task i, we arein the situation of Figure 9(b): All these workers ould start proessing task i at the sametime. As our algorithm hooses in this ase a worker whih �nished proessing �rst (see line13 in Algorithm 1), the master hooses worker k in the example.RR n° 6005



14 L. Marhal, V. Rehn, Y. Robert and F. Vivien
Pj

Pk

ẽnd
(i)

j

end
(i−1)
k

end
(i)
k

ẽnd
(i−1)

j

omputationommuniationi + 1

i + 1

i + 1

i + 1(a) All workers are still proessing
Pj

Pk

end
(i−1)
k

end
(i−1)
j

ẽnd
(i)

j = ẽnd
(i)

k

i + 1

i + 1

i + 1

i + 1(b) Some workers have already�nished proessingFigure 9: In iteration i: The master hooses whih worker will be the reeiver of task i.The aim of these shedules is always to minimize the makespan. So workers who take a longtime to proess their tasks are interested in sending some tasks to other workers whih are lessharged in order to derease their proessing time. If a weakly harged worker sends some tasksto another worker this will not derease the global makespan, as a strongly harged worker hasstill its long proessing time or its proessing time might even have inreased if it was the reeiver.So it might happen that the weakly harged worker who sent a task will reeive another task inanother sheduling step. In the following lemma we will show that this kind of shedule, wheresending workers also reeive tasks, an be transformed in a shedule where this e�et does notappear.Lemma 7. On a platform with homogeneous ommuniations, if there exists a shedule S withmakespan M , then there also exists a shedule S′ with a makespan M ′ ≤ M suh that no workerboth sends and reeives tasks.Proof. We will prove that we an transform a shedule where senders might reeive tasks in ashedule with equal or smaller makespan where senders do not reeive any tasks.
sk

rj

sk

rj

si si

Figure 10: Sheme on how to break up sending hains.If the master reeives its i-th task from proessor Pj and sends it to proessor Pk, we say that
Pk reeives this task from proessor Pj .Whatever the shedule, if a sender reeives a task we have the situation of a sending hain (seeFigure 10): at some step of the shedule a sender si sends to a sender sk, while in another step ofthe shedule the sender sk sends to a reeiver rj . So the master is oupied twie. As all reeiversreeive in fat their tasks from the master, it does not make a di�erene for them whih sendersent the task to the master. So we an break up the sending hain in the following way: We lookfor the earliest time, when a sending worker, sk, reeives a task from a sender, si. Let rj be areeiver that reeives a task from sender sk. There are two possible situations: INRIA



Sheduling and data redistribution strategies on star platforms 151. Sender si sends to sender sk and later sender sk sends to reeiver rj , see Figure 11(a). Thisase is simple: As the ommuniation from si to sk takes plae �rst and we have homogeneousommuniation links, we an replae this ommuniation by an emission from sender si toreeiver rj and just delete the seond ommuniation.2. Sender sk sends to reeiver rj and later sender si sends to sender sk, see Figure 11(b). In thisase the reeption on reeiver rj happens earlier than the emission of sender si, so we annot use exatly the same mehanism as in the previous ase. But we an use our hypothesisthat sender sk is the �rst sender that reeives a task. Therefore, sender si did not reeive anytask until sk reeives. So at the moment when sk sends to rj , we know that sender si alreadyowns the task that it will send later to sender sk. As we use homogeneous ommuniations,we an shedule the ommuniation si → rj when the ommuniation sk → rj originallytook plae and delete the sending from si to sk.As in both ases we gain in ommuniation time, but we keep the same omputation time, wedo not inrease the makespan of the shedule, but we transformed it in a shedule with one lesssending hain. By repeating this proedure for all sending hains, we transform the shedule S ina shedule S′ without sending hains while not inreasing the makespan.
rj

si

sk

time time(a) Sender si sends to reeiving sender sk andthen sender sk sends to reeiver rj . rj

si

sk

time time(b) Sender sk sends �rst to reeiver rj andthen reeives from sender si.Figure 11: How to break up sending hains, dark olored ommuniations are emissions, lightolored ommuniations represent reeptions.Proposition 1. Best-Balane Algorithm (Algorithm 1) alulates an optimal shedule S ona homogeneous star network, where all tasks are initially loated on the workers and ommuniationapabilities as well as omputation apabilities are homogeneous and all tasks have the same size.Proof. To prove that BBA is optimal, we take a shedule Salgo alulated by Algorithm 1. Thenwe take an optimal shedule Sopt. (Beause of Lemma 7 we an assume that in the shedule Soptno worker both sends and reeives tasks.) We are going to transform by indution this optimalshedule into our shedule Salgo.As we use a homogeneous platform, all workers have the same ommuniation time c. Withoutloss of generality, we an assume that both algorithms do all ommuniations as soon as possible(see Figure 12). So we an divide our shedule Salgo in sa steps and Sopt in so steps. A steporresponds to the emission of one task, and we number in this order the tasks sent. Aordinglythe s-th task is the task sent during step s and the atual shedule orresponds to the loaddistribution after the s �rst tasks. We start our shedule at time T = 0.Let S(i) denote the worker reeiving the i-th task under shedule S. Let i0 be the �rst stepwhere Sopt di�ers from Salgo, i.e., Salgo(i0) 6= Sopt(i0) and ∀i < i0, Salgo(i) = Sopt(i). We look fora step j > i0, if it exists, suh that Sopt(j) = Salgo(i0) and j is minimal.We are in the following situation: shedule Sopt and shedule Salgo are the same for all tasks
[1..(i0 − 1)]. As worker Salgo(i0) is hosen at step i0, then, by de�nition of Algorithm 1, thismeans that this worker �nishes �rst its proessing after the reeption of the (i0 − 1)-th tasks (f.RR n° 6005



16 L. Marhal, V. Rehn, Y. Robert and F. Vivien
Algorithm 1 Best-Balane Algorithm1: /* initialization */2: i← 03: master_in(i) ← 04: master_out(i) ← 05: ∀k L

(0)
k ← Lk6: end

(0)
k ← L

(0)
k × w7: /* the sheduling */8: while true do9: sender← maxk end

(i)
k10: master_in(i+1) ← master_in(i) + c11: task_arrival_worker = max(master_in(i+1), master_out(i)) + c12: ∀k ẽnd

(i+1)

k ← max(end
(i+1)
k , task_arrival_worker) + w13: selet receiver suh that ẽnd

(i+1)

receiver = mink ẽnd
(i+1)

k and if there are several proessors withthe same minimum ẽnd
(i+1)

k , hoose one with the smallest end
(i)
k14: if end

(i)
sender ≤ ẽnd

(k+1)

receiver then15: /* we an not improve the makespan anymore */16: break17: else18: /* we improve the makespan by sending the task to the receiver */19: master_out(i+1) ← task_arrival_worker20: end
(i+1)
sender ← end

(i)
sender − w21: L

(i+1)
sender ← L

(i)
sender − 122: end

(i+1)
receiver ← ẽnd

(i+1)

receiver23: L
(i+1)
receiver ← L

(i)
receiver + 124: for all j 6= receiver and j 6= sender do25: end

(i+1)
j ← end

(i)
j26: L

(i+1)
j ← L

(i)
j27: end for28: i← i + 129: end if30: end while

INRIA



Sheduling and data redistribution strategies on star platforms 17
T = 0

1 2 3 n

1 2 n− 1 n

reeptions by the master:sendings from the master:Figure 12: Oupation of the master.Lemma 6). As Sopt and Salgo di�er in step i0, we know that Sopt hooses worker Sopt(i0) that�nishes the shedule of its load after step (i0 − 1) no sooner than worker Salgo(i0).Case 1: Let us �rst onsider the ase where there exists suh a step j. So Salgo(i0) = Sopt(j)and j > i0. We know that worker Sopt(j) under shedule Sopt does not reeive any task betweenstep i0 and step j as j is hosen minimal.We use the following notations for the shedule Sopt, depited on Figures 13, 14, and 15:
Tj: the date at whih the reeption of task j is �nished on worker Sopt(j), i.e., Tj = j× c+ c (thetime it takes the master to reeive the �rst task plus the time it takes him to send j tasks).
Ti0 : the date at whih the reeption of task i0 is �nished on worker Sopt(i0), i.e., Ti0 = i0× c + c.
Fpred(j): time when omputation of task pred(j) is �nished, where task pred(j) denotes the lasttask whih is omputed on worker Sopt(j) before task j is omputed.
Fpred(i0): time when omputation of task pred(i0) is �nished, where task pred(i0) denotes thelast task whih is omputed on worker Sopt(i0) before task i0 is omputed.We have to onsider two sub-ases:� Tj ≤ Fpred(i0) (Figure 13(a)).This means that we are in the following situation: the reeption of task j on worker Sopt(j)has already �nished when worker Sopt(i0) �nishes the work it has been sheduled until step

i0 − 1.In this ase we exhange the tasks i0 and j of shedule Sopt and we reate the followingshedule S′
opt:

S′
opt(i0) = Sopt(j) = Salgo(i0),

S′
opt(j) = Sopt(i0)and ∀i 6= i0, j, S′

opt(i) = Sopt(i). The shedule of the other workers is kept unhanged. Alltasks are exeuted at the same date than previously (but maybe not on the same proessor).
Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0

Fpred(j)

Tj

Fpred(i0)

j + 1

i0i0

j + 1

i0 + k

j

j

i0 + k

i0

(a) Before the exhange. Fpred(i0)

Sopt(i0)

Salgo(i0) = Sopt(j)

Ti0
Tj

Tpred(j)

j

j + 1

i0

i0

j i0 + k

i0 + k

j + 1

i0(b) After exhange.Figure 13: Shedule Sopt before and after exhange of tasks i0 and j.RR n° 6005



18 L. Marhal, V. Rehn, Y. Robert and F. VivienNow we prove that this kind of exhange is possible.We know that worker Sopt(j) is not sheduled any task later than step i0 − 1 and beforestep j, by de�nition of j. So we know that this worker an start proessing task j whentask j has arrived and when it has �nished proessing its amount of work sheduled untilstep i0 − 1. We already know that worker Sopt(j) = Salgo(i0) �nishes proessing its taskssheduled until step i0 − 1 at a time earlier than or equal to that of worker Sopt(i0) (f.Lemma 6). As we are in homogeneous onditions, ommuniations and proessing of a tasktakes the same time on all proessors. So we an exhange the destinations of steps i0 and
j and keep the same moments of exeution, as both tasks will arrive in time to be proessedon the other worker: task i0 will arrive at worker Sopt(j) when it is still proessing and thesame for task j on worker Sopt(i0). Hene task i0 will be sent to worker Sopt(j) = Salgo(i0)and worker Sopt(i0) will reeive task j. So shedule Sopt and shedule Salgo are the same forall tasks [1..i0] now. As both tasks arrive in time and an be exeuted instead of the othertask, we do not hange anything in the makespan M . And as Sopt is optimal, we keep theoptimal makespan.� Tj ≥ Fpred(i0) (Figure 14(a)).In this ase we have the following situation: task j arrives on worker Sopt(j), when worker
Sopt(i0) has already �nished proessing its tasks sheduled until step i0 − 1.In this ase we exhange the shedule destinations i0 and j of shedule Sopt beginning attasks i0 and j (see Figure 14). In other words we reate a shedule S′

opt:
∀i ≥ i0 suh that Sopt(i) = Sopt(i0): S′

opt(i) = Sopt(j) = Salgo(i0)
∀i ≥ j suh that Sopt(i) = Sopt(j): S′

opt(i) = Sopt(i0)and ∀i ≤ i0 S′
opt(i) = Sopt(i). The shedule Sopt of the other workers is kept unhanged. Wereompute the �nish times F

(s)
Sopt

(j) of workers Sopt(j) and Sopt(i0) for all steps s > i0.
Ti0

Fpred(j)

Tj

Fpred(i0)

Salgo(i0) = Sopt(j)

Sopt(i0)

i0 i0 + k

i0 i0 + k

j

j + 1j

j + 1(a) Before exhange. Tj

Fpred(i0)Fpred(j)

Ti0

Sopt(i0)

Salgo(i0) = Sopt(j)

i0

j + 1

i0 + k

j

i0j j + 1

i0 + ki0(b) After exhange.Figure 14: Shedule Sopt before and after exhange of lines i0 and j.Now we prove that this kind of exhange is possible. First of all we know that worker Salgo(i0)is the same as the worker hosen in step j under shedule Sopt and so Salgo(i0) = Sopt(j).We also know that worker Sopt(j) is not sheduled any tasks later than step i0−1 and beforestep j, by de�nition of j. Beause of the hoie of worker Salgo(i0) = Sopt(j) in Salgo, weknow that worker Sopt(j) has �nished working when task j arrives: at step i0 worker Sopt(j)�nishes earlier than or at the same time as worker Sopt(i0) (Lemma 6) and as we are in thease where Tj ≥ Fpred(i0), Sopt(j) has also �nished when j arrives. So we an exhange thedestinations of the workers Sopt(i0) and Sopt(j) in the shedule steps equal to, or later than,step i0 and proess them at the same time as we would do on the other worker. As we haveshown that we an start proessing task j on worker Sopt(i0) at the same time as we didon worker Sopt(j), and the same for task i0, we keep the same makespan. And as Sopt isoptimal, we keep the optimal makespan.Case 2: If there does not exist a j, i.e., we an not �nd a shedule step j > i0 suh that worker
Salgo(i0) is sheduled a task under shedule Sopt, so we know that no other task will be sheduledINRIA



Sheduling and data redistribution strategies on star platforms 19on worker Salgo(i0) under the shedule Sopt. As our algorithm hooses in step s the worker that�nishes task s+1 the �rst, we know that worker Salgo(i0) �nishes at a time earlier or equal to thatof Sopt. Worker Salgo(i0) will be idle in the shedule Sopt for the rest of the algorithm, beause oth-erwise we would have found a step j. As we are in homogeneous onditions, we an simply displaetask i0 from worker Sopt(i0) to worker Salgo(i0) (see Figure 15). As we have Sopt(i0) 6= Salgo(i0)and with Lemma 6 we know that worker Salgo(i0) �nishes proessing its tasks until step i0 − 1 ata time earlier than or equal to Sopt(i0), and we do not downgrade the exeution time beause weare in homogeneous onditions.
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(a) Before displaing Ti0

F
(pred(i0))
Sopt

(Sopt(i0))
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Salgo(i0)

F
(pred(i0))
Salgo

(Salgo(i0))

i0i0 + k

i0 + k

i0

i0(b) After displaingFigure 15: Shedule Sopt before and after displaing task i0.One we have done the exhange of task i0, the shedules Sopt and Salgo are the same for alltasks [1..i0]. We restart the transformation until Sopt = Salgo for all tasks [1.. min(sa, so)] shed-uled by Salgo.Now we will prove by ontradition that the number of tasks sheduled by Salgo, sa, and Sopt,
so, are the same. After min(sa, so) transformation steps Sopt = Salgo for all tasks [1.. min(sa, so)]sheduled by Salgo. So if after these steps Sopt = Salgo for all n tasks, both algorithms redistributedthe same number of tasks and we have �nished.We now onsider the ase sa 6= so. In the ase of sa > so, Salgo shedules more tasks than Sopt.At eah step of our algorithm we do not inrease the makespan. So if we do more steps than Sopt,this means that we sheduled some tasks without hanging the global makespan. Hene Salgo isoptimal.If sa < so, this means that Sopt shedules more tasks than Salgo does. In this ase, after satransformation steps, Sopt still shedules tasks. If we take a look at the shedule of the (sa +1)-thtask in Sopt: regardless whih reeiver Sopt hooses, it will inrease the makespan as we provenow. In the following we will all salgo the worker our algorithm would have hosen to be thesender, ralgo the worker our algorithm would have hosen to be the reeiver. sopt and ropt arethe sender and reeiver hosen by the optimal shedule. Indeed, in our algorithm we would havehosen salgo as sender suh that it is a worker whih �nishes last. So the time worker salgo �nishesproessing is Fsalgo

= M(Salgo). Salgo hooses the reeiver ralgo suh that it �nishes proessingthe reeived task the earliest of all possible reeivers and suh that it also �nishes proessing thereeiving task at the same time or earlier than the sender would do. As Salgo did not deide tosend the (sa +1)-th task, this means, that it ould not �nd a reeiver whih �tted. Hene we know,regardless whih reeiver Sopt hooses, that the makespan will stritly inrease (as Salgo = Sopt forall [1..sa]). We take a look at the makespan of Salgo if we would have sheduled the (sa+1)-th task.We know that we an not derease the makespan anymore, beause in our algorithm we deidedto keep the shedule unhanged. So after the emission of the (sa +1)-th task, the makespan wouldbeome M(Salgo) = Fralgo
≥ Fsalgo

. And Fralgo
≤ Fropt

, beause of the de�nition of reeiver ralgo.As M(sopt) ≥ Fropt
, we have M(Salgo) ≤ M(Sopt). But we deided not to do this shedule asRR n° 6005



20 L. Marhal, V. Rehn, Y. Robert and F. Vivien
M(Salgo) is smaller before the shedule of the (sa + 1)-th task than afterwards. Hene we getthat M(Salgo) < M(Sopt). So the only possibility why Sopt sends the (sa + 1)-th task and stillbe optimal is that, later on, ropt sends a task to some other proessor rk. (Note that even if wehoose Sopt to have no suh hains in the beginning, some might have appeared beause of ourprevious transformations). In the same manner as we transformed sending hains in Lemma 7,we an suppress this sending hain, by sending task (sa + 1) diretly to rk instead of sending to
ropt. With the same argumentation, we do this by indution for all tasks k, (sa + 1) ≤ k ≤ so,until shedule Sopt and Salgo have the same number so = sa and so Sopt = Salgo and hene
M(Sopt) = M(Salgo).Complexity: The initialization phase is in O(m), as we have to ompute the �nish times foreah worker. The while loop an be run at maximum n times, as we an not redistribute morethan the n tasks of the system. Eah iteration is in the order of O(m), whih leads us to a totalrun time of O(m× n).3.4 Sheduling on platforms with homogeneous ommuniation linksand heterogeneous omputation apaitiesIn this setion we present an algorithm for star-platforms with homogeneous ommuniations andheterogeneous workers, the Moore Based Binary-Searh Algorithm (MBBSA). For a givenmakespan, we ompute if there exists a possible shedule to �nish all work in time. If there is one,we optimize the makespan by a binary searh. The plan of the setion is as follows: In Setion 3.4.1we present an existing algorithm whih will be the basis of our work. The framework and someusefull notations are introdued in Setion 3.4.2, whereas the real algorithm is the subjet ofSetion 3.4.3.3.4.1 Moore's algorithmIn this setion we present Moore's algorithm [6, 18℄, whose aim is to maximize the numberof tasks to be proessed in-time, i.e., before tasks exeed their deadlines. This algorithm gives asolution to the 1||

∑
Uj problem when the maximum number, among n tasks, has to be proessedin time on a single mahine. Eah task k, 1 ≤ k ≤ n, has a proessing time wk and a deadline dk,before whih it has to be proessed.Moore's algorithm works as follows: All tasks are ordered in non-dereasing order of theirdeadlines. Tasks are added to the solution one by one in this order as long as their deadlines aresatis�ed. If a task k is out of time, the task j in the atual solution with the largest proessingtime wj is deleted from the solution.Algorithm 2 [6, 18℄ solves in O(n log n) the 1||

∑
Uj problem: it onstruts a maximal set σ ofearly jobs.Algorithm 2 Moore's algorithm1: Order the jobs by non-dereasing deadlines: d1 ≤ d2 ≤ · · · ≤ dd2: σ ← ∅; t← 03: for i := 1 to n do4: σ ← σ ∪ {i}5: t← t + wi6: if t > di then7: Find job j in σ with largest wj value8: σ ← σ\{j}9: t← t− wj10: end if11: end for

INRIA



Sheduling and data redistribution strategies on star platforms 213.4.2 Framework and notations for MBBSAWe keep the star network of Setion 3.1 with homogeneous ommuniation links. In ontrastto Setion 3.3 we suppose m heterogeneous workers who own initially a number Li of identialindependent tasks.Let M denote the objetive makespan for the searhed shedule σ and fi the time needed byworker i to proess its initial load. During the algorithm exeution we divide all workers in twosubsets, where S is the set of senders (si ∈ S if fi > M) and R the set of reeivers (ri ∈ Rif fi < M). As our algorithm is based on Moore's, we need a notation for deadlines. Let d
(k)
ribe the deadline to reeive the k-th task on reeiver ri. lsi

denotes the number of tasks sender
i sends to the master and lri

stores the number of tasks reeiver i is able to reeive from themaster. With help of these values we an determine the total amount of tasks that must be sentas Lsend =
∑

si
lsi
. The total amount of task if all reeivers reeive the maximum amount of tasksthey are able to reeive is Lrecv =

∑
ri

lri
. Finally, let Lsched be the maximal amount of tasksthat an be sheduled by the algorithm.3.4.3 Moore based binary searh algorithm - MBBSAPriniple of the algorithm: Considering the given makespan we determine overharged work-ers, whih an not �nish all their tasks within this makespan. These overharged workers willthen send some tasks to underharged workers, suh that all of them an �nish proessing withinthe makespan. The algorithm solves the following two questions: Is there a possible shedule suhthat all workers an �nish in the given makespan? In whih order do we have to send and reeiveto obtain suh a shedule?The algorithm an be divided into four phases:Phase 1 deides whih of the workers will be senders and whih reeivers, depending of thegiven makespan (see Figure 16). Senders are workers whih are not able to proess all theirinitial tasks in time, whereas reeivers are workers whih ould treat more tasks in the givenmakespan M than they hold initially. So sender Pi has a �nish time fi > M , i.e., the timeneeded to ompute their initial tasks is larger than the given makespan M . Conversely, Piis a reeiver if it has a �nish time fi < M . So the set of senders in the example of Figure 16ontains s1 and sv, and the set of reeivers r1, r2, and ru.

T = 0 T = M

r1

s1

r2

ru

sv

tasks whih an not be omputed in timetasks whih an be omputed in time

Figure 16: Initial distribution of the tasks to the workers, dark olored tasks an be omputedin-time, light olored tasks will be late and have to be sheduled on some other workers.Phase 2 �xes how many transfers have to be sheduled from eah sender suh that the sendersall �nish their remaining tasks in time. Sender si will have to send an amount of tasks
lsi

=
⌈

fsi
−T

wsi

⌉ (i.e., the number of light olored tasks of a sender in Figure 16).RR n° 6005



22 L. Marhal, V. Rehn, Y. Robert and F. VivienPhase 3 omputes for eah reeiver the deadline of eah of the tasks it an reeive, i.e., a pair
(d

(i)
rj , rj) that denotes the i-th deadline of reeiver rj . Beginning at the makespan M onemeasures when the last task has to arrive on the reeiver suh that it an be proessed intime. So the latest moment that a task an arrive so that it an still be omputed on reeiver

rj is T − wrj
, and so on. See Figure 17 for an example.

omputation of initial tasks Lri

Frj

reeiver rj

T − 1× wrj
T − (lrj

− 1)× wrj

T − lrj
× wrj

T − 2× wrj

MT = 0

d
(lrj

)
rj d

(lrj
−1)

rj d
(1)
rjd

(2)
rjFigure 17: Computation of the deadlines d
(k)
rj for worker rj .Phase 4 is the proper sheduling step: The master deides whih tasks have to be sheduled onwhih reeivers and in whih order. In this phase we use Moore's algorithm. Starting attime t = c (this is the time, when the �rst task arrives at the master), the master an startsheduling the tasks on the reeivers. For this purpose the deadlines (d, rj) are ordered bynon-dereasing d-values. In the same manner as in Moore's algorithm, an optimal shedule

σ is omputed by adding one by one tasks to the shedule: if we onsider the deadline (d, rj),we add a task to proessor rj . The orresponding proessing time is the ommuniation time
c of rj . So if a deadline is not met, the last reeption is suppressed from σ and we ontinue.If the shedule is able to send at least Lsend tasks the algorithm sueeds, otherwise it fails.Algorithm 3 desribes MBBSA in pseudo-ode. Note that the algorithm is written for heteroge-neous onditions, but here we study it for homogeneous ommuniation links.Theorem 3. MBBSA (Algorithm 3) sueeds to build a shedule σ for a given makespan M , ifand only if there exists a shedule with makespan less than or equal to M , when the platformis made of one master, several workers with heterogeneous omputation power but homogeneousommuniation apabilities.Proof. Algorithm 2 (Moore's Algorithm) onstruts a maximal set σ of early jobs on a singlemahine sheduling problem. So we are going to show that our algorithm an be redued to thisproblem.As we work with a platform with homogeneous ommuniations, we do not have to are aboutthe arrival times of jobs at the master, apart from the �rst job. Our deadlines orrespond to thelatest moments, at whih tasks an arrive on the workers suh that they an be proessed in-time(see Figure 17). So we have a ertain number Lrecv of possible reeptions for all reeivers.Phases 1 to 3 prepare our sheduling problem to be similar to the situation in Algorithm 2 andthus to be able to use it.In phase 1 we distinguish whih proessors have to be senders, whih have to be reeivers.With Lemma 7 we know that we an partition our workers in senders and reeivers (and workerswhih are none of both), beause senders will never reeive any tasks. Phase 2 omputes thenumber of tasks Lsend that has to be sheduled. Phase 3 omputes the (d

(k)
rj , rj)-values, i.e., thedeadlines d

(k)
rj for eah reeiver rj . Step 4 is the proper sheduling step and it orresponds toMoore's algorithm. It omputes a maximal set σ of in-time jobs, where Lsched is the number ofsheduled tasks.The algorithm returns true if the number of sheduled tasks Lsched is bigger than, or equalto, the number of tasks to be sent Lsend.Now we will prove that if there exists a shedule whose makespan is less than, or equal to, M ,Algorithm 3 builds one and returns true. Consider an optimal shedule σ∗ with a makespan M .We will prove that Algorithm 3 will return true. INRIA



Sheduling and data redistribution strategies on star platforms 23
Algorithm 3 Algorithm for star-platforms with homogeneous ommuniations and heterogeneousworkers1: /* Phase 1: Initialization */2: initialize fi for all workers i, fi = Li × wi3: ompute R and S, order S by non-dereasing values ci suh that cs1 ≤ cs2 ≤ . . .4: /* Phase 2: Preparing the senders */5: for all si ∈ S do6: lsi

←
⌈

fsi
−T

wsi

⌉7: if ⌊ T
csi

⌋
< lsi

then8: /* M too small */9: return (false, ∅)10: end if11: end for12: total number of tasks to send: Lsend ←
∑

si
lsi13: /* Phase 3: Preparing the reeivers */14: D ← ∅15: for all ri ∈ R do16: lri

← 017: while fri
≤M − (lri

+ 1)× wri
do18: lri

← lri
+ 119: d

(lri
)

ri ←M − (lri
× wri

)20: D ← D ∪ (d
(lri

)
ri , ri)21: end while22: end for23: number of tasks that an be reeived: Lrecv ←

∑
ri

lri24: /* Phase 4: The master shedules */25: senders send in non-dereasing order of values csi
to the master26: order deadline-list D by non-dereasing values of deadlines dri

and rename the deadlines inthis order from 1 to Lrecv27: σ ← ∅; t← cs1 ; Lsched = 0;28: for i = 1 to Lrecv do29: (di, ri)← i-th element (d
(j)
rk , rk) of D30: σ ← σ ∪ {ri}31: t← t + cri32: Lsched ← Lsched + 133: if t > di then34: Find (dj , rj) in σ suh that crj

value is largest35: σ ← σ\{(dj , rj)}36: t← t− crj37: Lsched ← Lsched − 138: end if39: end for40: return ((Lsched ≥ Lsend), σ)
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24 L. Marhal, V. Rehn, Y. Robert and F. VivienWe have omputed, for eah reeiver rj , lrj
the maximal number of tasks rj an proess afterhaving �nished to proess its initial load. Let Nrj

denote the number of tasks reeived by rjin σ∗, Nrj
≤ lrj

. For all reeivers rj we know the number Nrj
of sheduled tasks. So we have

L∗
sched =

∑
rj

Nrj
. As in an optimal shedule all tasks sent by the senders are proessed onthe reeivers, we know that L∗

sched = L∗
send. Let us denote D the set of deadlines omputed inour algorithm for the sheduling problem of whih σ∗ is an optimal solution. We also de�ne thefollowing set D∗ =

⋃
i

⋃
1≤j≤Nri

(M − j × wri
, ri) of the Nrj

latest deadlines for eah reeiver rj .Obviously D∗ ⊆ D. The set of tasks in σ∗ is exatly a set of tasks that respets the deadlines in
D∗. The appliation of the algorithm of Moore on the same problem returns a maximal solutionif there exists a solution. With D∗ ⊂ D, we already know that there exists a solution with L∗

schedsheduled tasks. So Moore's algorithm will return a solution with Lsched ≥ Lsched∗, as there aremore possible deadlines. On the other side, we have L∗
send ≥ Lsend as Lsend is the minimal numberof tasks that have to be sent to �t in the given makespan. So we get that Lsched ≥ Lsend. Aswe return true in our algorithm if Lsched ≥ Lsend, we will return true whenever there exists ashedule whose makespan is less than, or equal to, M .

Frj

reeiver rj

T = 0

omputation of initial tasks Lri

M
d

(1)
rjd

(2)
rjd

(3)
rjd
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Figure 18: Number of loads sheduled to reeiver rj in order to its deadlines.Now we prove that if Algorithm 3 returns true there exists a shedule whose makespan isless than, or equal to, M . Our algorithm returns true, if it has found a shedule σ where
Lsched ≥ Lsend. If Lsched = Lsend then the shedule σ found by our algorithm is a shedule whosemakespan is less than, or equal to, M . If Lsched > Lsend, we take the Lsend �rst elements of σ,whih still de�nes a shedule whose makespan is less than, or equal to, M .Proposition 2. Algorithm 4 returns in polynomial time an optimal shedule σ for the followingsheduling problem: minimizing the makespan on a star-platform with homogeneous ommunia-tion links and heterogeneous workers where the initial tasks are loated on the workers.Proof. We perform a binary searh for a solution in a starting interval of [min(fi), max(fi)]. Aswe are in heterogeneous omputation onditions, we have heterogeneous wi-values, 1 ≤ i ≤ m,
wi ∈ Q. The ommuniations instead are homogeneous, so we have ci = c, 1 ≤ i ≤ m, c ∈ Q. Letthe representation of the values be of the following form:

wi =
αi

βi

, αi, βi ∈ N× N∗,where αi and βi are prime between eah other,
ci = c =

γ

δ
, γ, δ ∈ N× N∗,where γ and δ are prime between eah other.Let λ be the least ommon multiple of the denominators βi and δi, λ = lm{βi, δ}, 1 ≤ i ≤ m.As a onsequene for any i in [1..m] λ×wi ∈ N, λ× ci ∈ N. Now we have to hoose the preisionwhih allows us to stop our binary searh. For this, we take a look at the possible �nish times ofthe workers: all of them are linear ombinations of the di�erent ci and wi-values. So if we multiplyall values with λ we get integers for all values and the smallest gap between two �nish times is atleast 1. So the preision p, i.e., the minimal gap between two feasible �nish times, is p = 1

λ
.
INRIA



Sheduling and data redistribution strategies on star platforms 25Algorithm 4 Algorithm to optimize the makespan.
/∗ idea: make a binary searh of M ∈ [min(fi), max(fi)] ∗/input: wi = αi

βi
, αi, βi ∈ N× N∗, ci = γi

δi
, γi, δi ∈ N× N∗

λ← lm{βi, δi}, 1 ≤ i ≤ m
precision← 1

λ

lo← min(fi); hi← max(fi);proedure binary-Searh(lo, hi):
gap← |lo− hi|while gap > precision do

M ← (lo + hi)/2
found← MBBSA (M)if 6 found then/* M is too small */

lo←Melse/* M is maybe too big */
hi←M
σ ← found sheduleend if

gap← |lo− hi|end whilereturn σComplexity: The maximal number of di�erent values M we have to try an be omputed asfollows: we examine our algorithm in the interval [min(fi).. max(fi)]. The possible values have aninrement of 1
λ
. So there are (max(fi)−min(fi))× λ possible values for M .So the omplexity of the binary searh is O(log((max(fi) − min(fi)) × λ)). Now we have toprove that we stay in the order of the size of our problem. Our platform parameters c and wi aregiven in the form wi = αi

βi
and c = γi

δ
. So it takes log(αi)+log(βi) to store a wi and log(γ)+log(δ)to store a c. So our entry E has the following size:

E =
∑

i

log(αi) +
∑

i

log(βi) + log(γ) + log(δ) +
∑

i

log(Li)We an do the following estimation:
E≥

∑

i

log(βi) + log(δ) = log

(
∏

i

βi × δ

)
≥ log(λ)So we already know that our omplexity is bounded by O(|E|+ log(max(fi)−min(fi))). We ansimplify this expression: O(|E|+ log(max(fi)−min(fi))) ≤ O(|E|+ log(max(fi))). It remains toupperbound log(max(fi)).Remember max(fi) is de�ned as max(fi) = maxi(Li × wi) = Li0 × wi0 . Thus log(max(fi)) =

log(Li0)+log(wi0). Li0 is a part of the input and hene its size an be upper-bounded by the size ofthe input E. In the same manner we an upperbound log(wi0 ) by log(wi0 ) = log(αi0 )+ log(βi0) ≤
E. Assembling all these upperbounds, we get O(log((max(fi) − min(fi)) × λ)) ≤ O(3|E|) andhene our proposed algorithm needs O(|E|) steps for the binary searh. The total omplexity�nally is O(|E| ×max(nm, n2)), where n is the number of sheduled tasks and m the number ofworkers.
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26 L. Marhal, V. Rehn, Y. Robert and F. Vivien3.5 Heuristis for heterogeneous platformsAs there exists no optimal algorithm to build a shedule in polynomial runtime (unless P = NP) forheterogeneous platforms, we propose three heuristis. A omparative study is done in Setion 4.� The �rst heuristi onsists in the use of the optimal algorithm for homogeneous platformsBBA (see Algorithm 1). On heterogeneous platforms, at eah step BBA optimizes the loalmakespan.� Another heuristi is the utilization of the optimal algorithm for platforms with homogeneousommuniation links MBBSA (see Algorithm 3). The reason why MBBSA is not optimal onheterogeneous platforms is the following: Moore's algorithm, that is used for the shedulingstep, ares about the tasks already on the master, but it does not assert if the tasks havealready arrived. The use of homogeneous ommuniation links eliminated this di�ulty. Wean observe that in the ases where the overharged workers (i.e., the senders) ommuniatefaster than the underharged workers (i.e., the reeivers), MBBSA is also optimal. However,the problem with this statement is that we do not know a priori whih proessors will workas senders. So in the ase of heterogeneous platforms, where sending workers have fasterommuniation links than reeiving ones, the results will be optimal.� We propose a third heuristi: the Reversed Binary-Searh Algorithm (see Algorithm 5for details). This algorithm opies the idea of the introdution of deadlines. Contraryto MBBSA this algorithm traverses the deadlines in reversed order, wherefrom the name.Starting at a given makespan, R-BSA shedules all tasks as late as possible until no moretask an be sheduled.R-BSA an be divided into four phases:Phase 1 is the same as in MBBSA. It deides whih of the workers will be senders andwhih reeivers, depending of the given makespan (see Figure 16).Phase 2 �xes how many transfers have to be sheduled from eah sender suh that thesenders all �nish their remaining tasks in time. This phase is also idential to MBBSA.Phase 3 omputes for eah reeiver at whih time it an start with the omputation of theadditional tasks, this is in general the given makespan.Phase 4 again is the proper sheduling step: Beginning at the makespan we �ll bakwardthe idle times of the reeiving workers. So the master deides whih tasks have to besheduled on whih reeivers and in whih order. The master hooses a worker thatan start to reeive the task as late as possible and still �nish it in time.4 SimulationsIn this setion we present the results of our simulation experienes of the presented algorithmsand heuristis on multiple platforms. We study the heuristis that we presented in Setion 3.5.4.1 The simulationsAll simulations were made with SimGrid [16, 24℄. SimGrid is a toolkit that provides several fun-tionalities for the simulation of distributed appliations in heterogeneous distributed environments.The toolkit is distributed into several layers and o�ers several programming environments, suh asXBT, the ore toolbox of SimGrid or SMPI, a library to run MPI appliations on top of a virtualenvironment. The aess to the di�erent omponents is ensured via Appliation ProgrammingInterfaes (API). We use the module MSG to reate our entities. INRIA



Sheduling and data redistribution strategies on star platforms 27
Algorithm 5 Reversed Binary-Searh Algorithm1: /* Phase 1: Initialization */2: T ←M ; Lsched ← 0; σ ← ∅3: ∀k L

(0)
k ← Lk4: initialize endi for all workers i: endi = Li × wi5: ompute R and S, order S by non-dereasing values ci: cs1 ≤ cs2 ≤ . . .6: master_in← cs17: /* Phase 2: Preparing the senders */8: for all si ∈ S do9: lsi
←
⌈

endsi
−T

wsi

⌉10: if ⌊ T
csi

⌋
< lsi

then11: /* M too small */12: return (false, ∅)13: end if14: end for15: total number of tasks to be sent: Lsend ←
∑

si
lsi16: /* Phase 3: Determination of the last deadline */17: for all ri ∈ R do18: if endri

≤ T then19: beginri
← T20: end if21: end for22: /* Phase 4: The sheduling */23: while true do24: hoose receiver suh that it is the worker that an start reeiving it as late as possible, i.e.,

maxi (min(begini − wi, T ))− ci is maximal and that the shedule is feasible: the task must�t in the idle gap of the worker: (beginreceiver − wreceiver ≥ endreceiver) and the task hasto be arrived at the master: (beginreceiver − wreceiver − creceiver ≥ master_in).25: if no receiver′ found then26: return ((Lsched ≤ Lsend), σ)27: end if28: beginreceiver ← beginreceiver − wreceiver29: T ← beginreceiver − creceiver30: Lsched ← Lsched + 131: σ ← σ ∪ {receiver}32: i← i + 133: end while
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28 L. Marhal, V. Rehn, Y. Robert and F. VivienThe simulations were made on automatially reated random platforms of four types: Weanalyze the behavior on fully homogeneous and fully heterogeneous platforms and the mixture ofboth, i.e., platforms with homogeneous ommuniation links and heterogeneous workers and theonverse. For every platform type 1000 instanes were reated with the following harateristis:In absolute random platforms, the random values for ci and wi vary between 1 and 100, whereasthe number of tasks is at least 50. In another test series we make some onstraints on theommuniation and omputation powers. In the �rst one, we deide the ommuniation powerto be inferior to the omputation power. In this ase the values for the ommuniation powervary between 20 and 50 and the omputation powers an take values between 50 and 80. In theopposite ase, where ommuniation power is supposed to be superior to the omputation power,these rates are onversed.4.2 Trae testsTo verify the right behavior of the algorithms, we made some trae tests. So the visualization ofthe runs on a small test platform are shown in this setion.We use a small platform with homogeneous ommuniation links, c = 2, so the bandwidth is
0.5. We use four heterogeneous workers with the following w-values: P1 and P2 ompute faster,so we set w1 = w2 = 3. Worker P3 and P4 are slower ones with w3 = w4 = 4. P1 owns 8 tasksat the beginning, P2 and P3 respetively one task, whereas worker P4 has no initial work. Theoptimal makespan is M = 13, as we omputed by permutation over all possible shedules.In the following �gures, omputation are indiated in blak. White retangles denote inter-nal blokings of SimGrid in the ommuniation proess of a worker. These blokings appearwhen ommuniation proesses remark that the atual message is not destined for them. Greyretangles represent idle time in the omputation proess. The light grey �elds �nally show theommuniation proesses between the proessors.The shedule of BBA an be seen in Figure 19. Evidently the worker with the latest �nish timeis P1, worker P2 an �nish the �rst sent task earlier than workers P3 and P4, so it is the reeiverfor the �rst task. In this solution, worker P1 sends four tasks, whih are reeived by P2, P4, P2and one again P4. The makespan is 14, so the shedule is not optimal. This does not ontraditour theoretial results, as we proved optimality of BBA only on homogeneous platforms.

Figure 19: Trae of the simulation of BBA.MBBSA ahieves as expeted the optimal makespan of 13 (see Figure 20). As you an see byomparing Figures 19 and 20, the seond task sheduled by MBBSA (to worker P2) is �nished pro-essing later than in the shedule of BBA. So MBBSA, while globally optimal, does not minimizethe ompletion time of eah task.R-BSA �nds also an optimal shedule (f. Figure 21). Even in this small test the di�erene ofR-BSA and MBBSA is remarkable: R-BSA tries to shedule the most tasks as possible by �llingidle times starting at the makespan. MBBSA ontrarily tries to shedule tasks as soon as possiblebefore their deadlines are expired. INRIA
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Figure 20: Trae of the simulation of MBBSA.

Figure 21: Trae of the simulation of R-BSA.4.3 Distane from the bestWe made a series of distane tests to get some information of the mean qualitiy of our algorithms.For this purpose we ran all algorithms on 1000 di�erent random platforms of the eah type, i.e.,homogeneous and heterogeneous, as well as homogeneous ommuniation links with heterogeneousworkers and the onverse. We normalized the measured shedule makespans over the best resultfor a given instane. In the following �gures we plot the aumulated number of platforms thathave a normalized distane less than the indiated distane. This means, we ount on how manyplatforms a ertain algorithm ahieves results that do not di�er more than X% from the bestshedule. For exemple in Figure 22(b): The third point of the R-BSA-line signi�ates that about93% of the shedules of R-BSA di�er less than 3% from the best shedule.Our results on homogeneous platforms an be seen in Figures 22. As expeted from thetheoretial results, BBA and MBBSA ahieve the same results and behave equally well on allplatforms. R-BSA in ontrast shows a sensibility on the platform harateristis. When theommuniation power is less than the omputation power, i.e. the ci-values are bigger, R-BSAbehaves as good as MBBSA and BBA. But in the ase of small ci-values or on homogeneousplatforms without onstraints on the power rates, R-BSA ahieves worse results.The simulation results on platforms with homogeneous ommuniation links and heterogeneousomputation powers (f. Figure 23) onsolidate the theoretial preditions: Independently of theplatform parameters, MBBSA always obtains optimal results, BBA di�ers slightly when highpreision is demanded. The behavior of R-BSA strongly depends on the platform parameters:when ommuniations are slower than omputations, it ahieves good results.On platforms with heterogeneous ommuniation links and homogeneous workers, BBA hasby far the poorest results, whereas R-BSA shows a good behavior (see Figure 24). In general itoutperforms MBBSA, but when the ommuniation links are fast, MBBSA is the best.The results on heterogeneous platforms are equivalent to these on platforms with heterogeneousommuniation links and homogeneous workers, as an be seen in Figure 25. R-BSA seems to bea good andidate, whereas BBA is to avoid as the gap is up to more than 40%.RR n° 6005
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34 L. Marhal, V. Rehn, Y. Robert and F. Vivien4.4 Mean distane and standard deviationWe also omputed for every algorithm the mean distane from the best on eah platform type.These alulations are based on the simulation results on the 1000 random platforms of Setion 4.3.As you an see in Table 1 in general MBBSA ahieves the best results. On homogeneous platformsBBA behaves just as well as MBBSA and on platforms with homogeneous ommuniation linksit also performs as well. When ommuniation links are heterogeneous and there is no knowledgeabout platform parameters, R-BSA outperforms the other algorithms and BBA is by far the worsehoie. Platform type Mean distane Standard deviationComm. Comp. BBA MBBSA R-BSA BBA MBBSA R-BSAHom Hom 1 1 1.0014 0 0 0.0107Hom Hom c ≤ w 1 1 1.0061 0 0 0.0234Hom Hom c ≥ w 1 1 1 0 0 0Hom Het 1.0000 1 1.0068 0.0006 0 0.0181Hom Het c ≤ w 1.0003 1 1.0186 0.0010 0 0.0395Hom Het c ≥ w 1 1 1.0017 0 0 0.0040Het Hom 1.1894 1.0074 1.0058 0.4007 0.0208 0.0173Het Hom c ≤ w 1.0318 1.0049 1.0145 0.0483 0.0131 0.0369Het Hom c ≥ w 1.0291 1.0025 1.0024 0.0415 0.0097 0.0095Het Het 1.2100 1.0127 1.0099 0.3516 0.0327 0.0284Het Het c ≤ w 1.0296 1.0055 1.0189 0.0450 0.0127 0.0407Het Het c ≥ w 1.0261 1.0045 1.0046 0.0384 0.0118 0.0121Table 1: Mean distane from the best and standard deviation of the di�erent algorithms on eahplatform type.The standard deviations of all algorithms over the 1000 platforms are shown in the right partof Table 1. These values mirror exatly the same onlusions as the listing of the mean distanesin the left part, so we do not omment on them partiularly. We only want to point out thatthe standard deviation of MBBSA always keeps small values, whereas in ase of heterogeneousommuniation links BBA-heuristi is not reommendable.5 Load balaning of divisible loads using the multiport swith-model5.1 FrameworkIn this setion we work with a heterogeneous star network. But in di�erene to Setion 3 wereplae the master by a swith. So we have m workers whih are interonneted by a swith and
m heterogenous links. Link i is the link that onnets worker Pi to the swith. Its bandwidth isdenoted by bi. In the same way si denotes the omputation speed of worker Pi. Every worker
Pi possesses an amount of initial load αi. Contrarily to the previous setion, this load is notonsidered to onsist of idential and independent tasks but of divisible loads. This means thatan amount of load X an be divided into an arbitrary number of tasks of arbitrary size. Asalready mentioned, this approah is alled Divisible Load Theory - DLT [4℄. The ommuniationmodel used in this ase is an overlapped unbounded swithed-multiport model. This means allommuniations pass by a entralized swith that has no throughput limitations. So all workersan ommuniate at the same time and a given worker an start exeuting as soon as it reeivesthe �rst bit of data. As we use a model with overlap, ommuniation and omputation an takeplae at the same time.As in the previous setion our objetive is to balane the load over the partiipating workersto minimize the global makespan M . INRIA



Sheduling and data redistribution strategies on star platforms 355.2 Redistribution strategyLet σ be a solution of our problem that takes a time T . In this solution, there is a set of sendingworkers S and a set of reeiving workers R. Let sendi denote the amount of load sent by sender
Pi and recvj be the amount of load reeived by reeiver Pj , with sendi ≥ 0, recvj ≥ 0. As all loadthat is sent has to be reeived by another worker, we have the following equation:

∑

i∈S

sendi =
∑

j∈R

recvj = L. (1)In the following we desribe the properties of the senders: As the solution σ takes a time T , theamount of load a sender an send depends on its bandwidth: So it is bounded by the time-slot of
∀ senderi ∈ S,

sendi

bi

≤ T. (2)Besides, it has to send at least the amount of load that it an not �nish proessing in time T .This lowerbound an be expressed by
∀ senderi ∈ S, sendi ≥ αi − T × si. (3)The properties for reeiving workers are similar. The amount of load a worker an reeive isdependent of its bandwidth. So we have:
∀ reeiverj ∈ R,

recvj

bj

≤ T. (4)Additionally it is dependent of the amount of load it already possesses and of its omputationspeed. It must have the time to proess all its load, the initial one plus the reeived one. That iswhy we have a seond upperbound:
∀ reeiverj ∈ S,

αj + recvj

sj

≤ T. (5)For the rest of our paper we introdue a new notation: Let δi denote the imbalane of a worker.We will de�ne it as follows:
δi =

{
sendi if i ∈ S

−recvi if i ∈ R. With the help of this new notation we an re-haraterize the imbalane of all workers:� This imbalane is bounded by
|δi| ≤ bi × T.� If i ∈ S, worker Pi is a sender, and this statement is true beause of inequality 2.� If i ∈ R, worker Pi is a reeiver and the statement is true as well, beause of inequality 4.� Furthermore, we lower-bound the imbalane of a worker by

δi ≥ αi − T × si. (6)� If i ∈ S, we are in the ase where δi = sendi and hene this it true beause of equation 3.� If i ∈ R, we have δi = −recvi ≤ 0. Hene we get that (6) is equal to −recvi ≥ αi−T×siwhih in turn is equivalent to (5).� Finally we know as well that ∑i δi = 0 beause of equation 1.RR n° 6005



36 L. Marhal, V. Rehn, Y. Robert and F. VivienIf we ombine all these onstraints we get the following linear program (LP), with the additionof our objetive to minimize the makespan T . This ombination of all properties into a LP ispossible beause we an use the same onstraints for senders and reeivers. As you may havenotied, a worker will have the funtionality of a sender if its imbalane δi is positive, reeiversbeing haraterized by negative δi-values.Minimize T,under the onstraints



(7a) |δi| ≤ T × bi(7b) δi ≥ αi − T × si(7) ∑

i

δi = 0

(7)All the onstraints of the LP are satis�ed for the (δi, T )-values of any shedule solution of theinitial problem. We all T0 the solution of the LP for a given problem. As the LP minimizes thetime T , we have T0 ≤ T for all valid shedule and hene we have found a lower-bound for theoptimal makespan.Now we prove that we an �nd a feasible shedule with makespan T0. We start from anoptimal solution of the LP, i.e., T0 and the δi-values omputed by some LP solvers, suh as Mapleor MuPAD. With the help of these found values we are able to desribe the shedule:1. Every sender i sends a fration of load to eah reeiver j. We deide that eah sender sendsto eah reeiver a fration of the senders load proportional to what we denote by
fi,j = δi ×

δj∑
k∈R δk

= δi ×
δj

−L
(8)the fration of load that a sender Pi sends to a reeiver Pj . In other words we have fi,j =

δi ×
−recvi∑

k∈R(−recvk) .2. During the whole shedule we use onstant ommuniation rates, i.e., worker j will reeiveits fration of load fi,j from sender i with a �xed reeiving rate, whih is denoted by λi,j :
λi,j =

fi,j

T0
. (9)3. A shedule starts at time t = 0 and ends at time t = T0.We have to verify that eah sender an send its amount of load in time T0 and that the reeiversan reeive it as well and ompute it afterwards.Let us take a look at a sender Pi: the total amount it will send is∑j∈R fi,j =

∑
j∈R

δi×δj∑
k∈R

δk
=

δi = sendi and as we started by a solution of our LP, δi respets equations 7a and 7b, thus sendirespets the onstraints 2 and 3 as well, i.e., sendi ≤ T × bi and sendi ≥ αi − T × si.Now we onsider a reeiver Pj : the total amount it will reeive is∑i∈S fi,j =
∑

i∈S
δi×δj∑
k∈R δk

=

−δj = recvj . Worker Pi an reeive the whole amount of recvi load in time T0 as it starts thereeption at time t = 0 and recvi respets onstraints 7a and 7b, who in turn respet the initialonstraints 4 and 5, i.e., recvi ≤ T × bi and recvi ≤ T × si − αi. Now we examine if worker
Pi an �nish omputing all its work in time. As we use the divisible load model, worker Pi anstart omputing its additional amount of load as soon as it has reeived its �rst bit and providedthe omputing rate is inferior to the reeiving rate. Figure 26 illustrates the omputing proessof a reeiver. There are two possible shedules: the worker an alloate a ertain perentage ofits omputing power for eah stream of loads and proess them in parallel. This is shown inFigure 26(a). Proessor Pi starts immediately proessing all inoming load. For doing so, everystream is alloated a ertain omputing rate γi,j , where i is the sending worker and j the reeiver.We have to verify that the omputing rate is inferior or equal to the reeiving rate. INRIA



Sheduling and data redistribution strategies on star platforms 37The initial load αj of reeiver Pj owns at minimum a omputing rate suh that it �nishes rightin time T0: γj,j =
αj

T0
. The omputing rate γi,j , for all pairs (i, j), i ∈ S, j ∈ R, has to verify thefollowing onstraints:� The sum of all omputing rates does not exeed the omputing power sj of the worker Pj :

(
∑

i∈S

γi,j

)
+

αj

T0
≤ sj , (10)� The omputing rate for the amount of load fi,j has to be su�iently big to �nish in time

T0:
γi,j ≥

fi,j

T0
, (11)� The omputing rate has to be inferior or equal to the reeiving rate of the amount fi,j :

γi,j ≤ λi,j , (12)Now we prove that γi,j =
fi,j

T0
is a valid solution that respets onstraints (10), (11), and (12):Equation (10) We have (∑i∈S γi,j

)
+

αj

T0
=
(∑

i∈S
fi,j

T0

)
+

αj

T0
=
(

−δj

T0

)
+

αj

T0
=

αj−δj

T0
. Transform-ing Equation (7b) in αj−δj ≤ T0×sj and using this upperbound we get αj−δj

T0
≤ T0×sj

T0
= sj .Hene this onstraint holds true.Equation (11) By de�nition of γi,j this holds true.Equation (12) By the de�nitions of γi,j and λi,j this holds true.In the other possible shedule, all inoming load streams are proessed in parallel after havingproessed the initial amount of load as shown in Figure 26(b). In fat, this modeling is equivalentto the preedent one, beause we use the DLT paradigm. We used this model in equations 3 and 5.

T0
0

1

fk,j γk,j

γj,jαj

fi,j

fl,j

{

{(a) Parallel proessing. 0
T0

1

γj,j=1 fk,jαj γk,j





fi,j

fl,j

{

(b) Sequential and parallel proessing.Figure 26: Di�erent shedules to proess the reeived load.The following theorem summarizes our ognitions:Theorem 4. The ombination of the linear program 7 with equations 8 and 9 returns an optimalsolution for makespan minimization of a load balaning problem on a heterogeneous star platformusing the swith model and initial loads on the workers.RR n° 6005



38 L. Marhal, V. Rehn, Y. Robert and F. Vivien6 ConlusionIn this report we were interested in the problem of sheduling and redistributing data on master-slave platforms. We onsidered two types of data models.Supposing independent and idential tasks, we were able to prove the NP ompleteness in thestrong sense for the general ase of ompletely heterogeneous platforms. Therefore we restritedthis ase to the presentation of three heuristis. We have also proved that our problem is polyno-mial when omputations are negligible. Treating some speial topologies, we were able to presentoptimal algorithms for totally homogeneous star-networks and for platforms with homogeneousommuniation links and heterogeneous workers. Both algorithms required a rather ompliatedproof.The simulative experiments onsolidate our theoretial results of optimality. On homogeneousplatforms, BBA is to privilege over MBBSA, as the omplexity is remarkably lower. The tests onheterogeneous platforms show that BBA performs rather poorly in omparison to MBBSA andR-BSA. MBBSA in general ahieves the best results, it might be outperformed by R-BSA whenplatform parameters have a ertain onstellation, i.e., when workers ompute faster than they areommuniating.Dealing with divisible loads as data model, we were able to solve the fully heterogeneousproblem. We presented the ombination of a linear program with simple omputation formulas toompute the imbalane in a �rst step and the orresponding shedule in a seond step.A natural extension of this work would be the following: for the model with independent tasks,it would be nie to derive approximation algorithms, i.e., heuristis whose worst-ase is guaranteedwithin a ertain fator to the optimal, for the fully heterogeneous ase. However, it is often thease in sheduling problems for heterogeneous platforms that approximation ratios ontain thequotient of the largest platform parameter by the smallest one, thereby leading to very pessimistiresults in pratial situations.More generally, muh work remains to be done along the same lines of load-balaning andredistributing while omputation goes on. We an envision dynami master-slave platforms whoseharateristis vary over time, or even where new resoures are enrolled temporarily in the exeu-tion. We an also deal with more omplex interonnetion networks, allowing slaves to irumventthe master and exhange data diretly.Referenes[1℄ D. Altilar and Y. Paker. Optimal sheduling algorithms for ommuniation onstrained par-allel proessing. In Euro-Par 2002, LNCS 2400, pages 197�206. Springer Verlag, 2002.[2℄ O. Beaumont, L. Marhal, and Y. Robert. Sheduling divisible loads with return messages onheterogeneous master-worker platforms. Tehnial Report 2005-21, LIP, ENS Lyon, Frane,May 2005.[3℄ A. Bevilaqua. A dynami load balaning method on a heterogeneous luster of workstations.Informatia, 23(1):49�56, 1999.[4℄ V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible load theory: a new paradigm for loadsheduling in distributed systems. Cluster Computing, 6(1):7�17, 2003.[5℄ Berkeley Open Infrastruture for Network Computing. http://boin.berkeley.edu.[6℄ P. Bruker. Sheduling Algorithms. Springer-Verlag New York, In., Seauus, NJ, USA,2004.[7℄ M. Cierniak, M. Zaki, and W. Li. Customized dynami load balaning for a network ofworkstations. Journal of Parallel and Distributed Computing, 43:156�162, 1997. INRIA

http://boinc.berkeley.edu


Sheduling and data redistribution strategies on star platforms 39[8℄ M. Drozdowski and L. Wielebski. E�ieny of divisible load proessing. In PPAM, pages175�180, 2003.[9℄ P. Dutot. Algorithmes d'ordonnanement pour les nouveaux supports d'exéution. PhD thesis,Laboratoire ID-IMAG, Institut National Polytehnique de Grenoble, 2004.[10℄ P. Dutot. Complexity of master-slave tasking on heterogeneous trees. European Journal ofOperational Researh, 164:690�695, 2005.[11℄ Einstein�Home. http://einstein.phys.usm.edu.[12℄ M. R. Garey and D. S. Johnson. Computers and Intratability, a Guide to the Theory ofNP-Completeness. W.H. Freeman and Company, 1979.[13℄ D. Ghose. Feedbak strategy for load alloation in workstation lusters with unknown networkresoure apabilities using the DLT paradigm. In Proeedings of the Parallel and DistributedProessing Tehniques and Appliations (PDPTA'02), volume 1, pages 425�428. CSREAPress, 2002.[14℄ M. Hamdi and C. Lee. Dynami load balaning of data parallel appliations on a distributednetwork. In 9th International Conferene on Superomputing ICS'95, pages 170�179. ACMPress, 1995.[15℄ U. Kremer. NP-Completeness of dynami remapping. In Proeedings of the Fourth Workshopon Compilers for Parallel Computers, Delft, The Netherlands, 1993. Also available as RieTehnial Report CRPC-TR93330-S.[16℄ A. Legrand, L.Marhal, and H. Casanova. Sheduling Distributed Appliations: The SimGridSimulation Framework. In Proeedings of the Third IEEE International Symposium on ClusterComputing and the Grid (CCGrid'03), pages 138�145, May 2003.[17℄ M. A. Moges, T. G. Robertazzi, and D. Wu. Divisible load sheduling with multiple soures:Closed form solutions. In T. J. H. University, editor, Conferene on Infomation Sienes andSystems, Marh 2005.[18℄ J. Moore. An n job, one mahine sequening algorithm for minimizing the number of latejobs. Management Siene, 15(1), Sept. 1968.[19℄ M. Nibhanupudi and B. Szymanski. Bsp-based adaptive parallel proessing. In R. Buyya,editor, High Performane Cluster Computing. Volume 1: Arhiteture and Systems, pages702�721. Prentie-Hall, 1999.[20℄ H. Renard, Y. Robert, and F. Vivien. Data redistribution algorithms for heterogeneousproessor rings. Researh Report RR-2004-28, LIP, ENS Lyon, Frane, May 2004. Availableat the url http://graal.ens-lyon.fr/~yrobert.[21℄ T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63�68, 2003.[22℄ SETI. URL: http://setiathome.ssl.berkeley.edu.[23℄ B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Sheduling and load balaning in parallel anddistributed systems. IEEE Computer Siene Press, 1995.[24℄ SimGrid. URL: http://simgrid.gforge.inria.fr.[25℄ M.-Y. Wu. On runtime parallel sheduling for proessor load balaning. IEEE Trans. Paralleland Distributed Systems, 8(2):173�186, 1997.
RR n° 6005

http://einstein.phys.usm.edu
http://graal.ens-lyon.fr/~yrobert
http://setiathome.ssl.berkeley.edu
http://simgrid.gforge.inria.fr


Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


