13 research outputs found

    Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions

    Get PDF
    I show that there exist universal constants C(r)<∞C(r) < \infty such that, for all loopless graphs GG of maximum degree ≤r\le r, the zeros (real or complex) of the chromatic polynomial PG(q)P_G(q) lie in the disc ∣q∣<C(r)|q| < C(r). Furthermore, C(r)≤7.963906...rC(r) \le 7.963906... r. This result is a corollary of a more general result on the zeros of the Potts-model partition function ZG(q,ve)Z_G(q, {v_e}) in the complex antiferromagnetic regime ∣1+ve∣≤1|1 + v_e| \le 1. The proof is based on a transformation of the Whitney-Tutte-Fortuin-Kasteleyn representation of ZG(q,ve)Z_G(q, {v_e}) to a polymer gas, followed by verification of the Dobrushin-Koteck\'y-Preiss condition for nonvanishing of a polymer-model partition function. I also show that, for all loopless graphs GG of second-largest degree ≤r\le r, the zeros of PG(q)P_G(q) lie in the disc ∣q∣<C(r)+1|q| < C(r) + 1. Along the way, I give a simple proof of a generalized (multivariate) Brown-Colbourn conjecture on the zeros of the reliability polynomial for the special case of series-parallel graphs.Comment: 47 pages (LaTeX). Revised version contains slightly simplified proofs of Propositions 4.2 and 4.5. Version 3 fixes a silly error in my proof of Proposition 4.1, and adds related discussion. To appear in Combinatorics, Probability & Computin

    Approximate inference on graphical models: message-passing, loop-corrected methods and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Parallel local search

    Get PDF

    Critical phenomena in complex networks

    Full text link
    The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, researchers have made important steps toward understanding the qualitatively new critical phenomena in complex networks. We review the results, concepts, and methods of this rapidly developing field. Here we mostly consider two closely related classes of these critical phenomena, namely structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. We also discuss systems where a network and interacting agents on it influence each other. We overview a wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, k-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks. We also discuss strong finite size effects in these systems and highlight open problems and perspectives.Comment: Review article, 79 pages, 43 figures, 1 table, 508 references, extende

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    RANDOM COMBINATORIAL OPTIMIZATION PROBLEMS: MEAN FIELD AND FINITE-DIMENSIONAL RESULTS

    Get PDF
    Until the introduction of the first spin glass model by Edwards and Anderson in 1975, the research area of disordered systems has undergone a huge progress, thanks to the introduction of new analytical techniques and numerical tools, as long as the development of novel concepts and ideas. In particular, the rich phenomenology found by the extensive study of mean field spin glass models, not only proved to be the basis for an explanation of many different physical phenomena and permitted to strengthen the traditional relationship between physics and mathematics, but also it allowed physicist to apply those concepts to research areas that were thought to be completely disconnected from physics before. In this thesis I will analyze combinatorial optimization problems, from a physics point of view. In the first two chapters I will review some basic notions of statistical physics of disordered systems, such as random graph theory, the mean-field approximation, spin glasses and combinatorial optimization. The replica method will also be introduced and applied to the Sherrington-Kirkpatrick model, one of the simplest mean-field models of spin-glasses. The second part of the thesis deals with mean-field combinatorial optimization problems. The attention will be focused on finite-size corrections of random integer matching problems (chapter 3) and fractional ones (chapter 4). In chapter 5 I will discuss a very general relation connecting multi-overlaps and the moments of the cavity magnetization distribution. In the third part the Euclidean counterparts of random optimization problems are considered. I will start solving the traveling-salesman-problem (TSP) in one dimension both in its bipartite and monopartite version (chapter 6). In chapter 7 I will discuss the possible optimal solutions of the 2-factor problem. In chapter 8 I will solve the bipartite TSP in two dimensions, in the limit of large number of points. Chapter 9 contain some conclusions
    corecore