
 

Parallel local search

Citation for published version (APA):
Verhoeven, M. G. A. (1996). Parallel local search. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR456244

DOI:
10.6100/IR456244

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR456244
https://doi.org/10.6100/IR456244
https://research.tue.nl/en/publications/9e918527-2390-4eaa-8633-6da3d86f40df




Parallel Local Search 



CIP-DATA KONINKLUKE BIDLIOTHEEK., DEN HAAG 

Verhoeven, Marcus Gerardus Aldegonda 
Parallel Local Search I Marcus Gerardus Aldegonda Verhoeven. -
Eindhoven: Eindhoven University of Technology 
Thesis Technische Universiteit Eindhoven. -
With index, ref. - With summary in Dutch 
ISBN 90-386-0247-2 
Subject headings: parallelism, local search. 

druk: Universitaire Drukkerij, Eindhoven 
foto omslag: Theo Audenaerd 

1be work in this tbesls has been carried out under !be auspices of !be research school IPA 
(Institute for Ptogrammtngresearcb and Algcrlllun!cs). 

@1996 by M.G.A. Verhoeven, Eindhoven, The Netherlands 

All rights reserved. No part of tills publlcatiou may be reproduced, stored in a retrieval system, or ttausmitted, in any form or by any means, 
electronic, mecbanlcal, photocopying, recording or otl:terwise. without prior permlssiou of !be author. 



Parallel Local Search 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor aan de 
Technische Universiteit Eindhoven, op gezag van 
de Rector Magnificus, prof.dr. J.H. van Lint, 
voor een commissie aangewezen door het College 
van Dekanen in het openbaar te verdedigen op 

donderdag 7 maart 1996 om 16.00 uur 

door 

Marcus Gerardus Aldegonda Verhoeven 

geboren te Eindhoven 



Dit proefschrift is goedgekeurd 
door de promotoren: 

prof.dr. E.H.L. Aarts 

en 

prof.dr. J.K. Lenstra 



para M aria de los Milagros 



Contents 

1. Introduction 1 

1.1 Combinatorial optimization 1 
1.2 Parallel processing 4 
1.3 Thesis outline 8 

2. Local Search 9 

2.1 Computational complexity of local search 11 
2.2 Local search variants 12 

3. Concepts of Parallel Local Search 11 

3.1 Multiple-walk parallelism 19 
3.2 Single-walk parallelism 25 
3.3 Complexity issues ofparallellocal search 34 

4. Multiple Independent Walks 31 

4.1 A probabilistic analysis for the 2-opt neighborhood 38 
4.2 A semi-empirical analysis of iterated local search 45 
4.3 Parallel iterated local search 48 

5. The Traveling Salesman Problem 51 

5.1 Local search for the traveling salesman 51 
5.2 Parallel2-opt and 3-opt algorithms 53 
5.3 The Lin-Kemighan neighborhood 62 
5.4 A parallel Lin-Kemighan algorithm 72 

6. The Steiner Tree Problem 83 

6.1 Local search for the Steiner tree problem 83 
6.2 Parallel local search for the Steiner tree problem 95 

7. Scheduling 105 

7.1 Job shop scheduling 105 
7.2 Resource-constrained scheduling 111 

vii 



viii 

Bibliography 125 

Index 133 

Samenvatting 135 

Contents 



1 
Introduction 

A wide variety of problems in practical planning and design situations is con­
cerned with the choice of the best solution from a finite, possibly large, number of 
alternatives. Many of these problems can be modelled as combinatorial optimiza­
tion problems. Combinatorial optimization problems are often computationally 
intractable and, consequently, larger instances of such problems can typically be 
solved only to proximity. 

Local search is a generally applicable approximation technique for combina­
torial optimization problems that is able to find good quality solutions, albeit at 
the expense of substantial running times. It is often argued that parallelism can 
be used to reduce these running times, which makes it possible to handle larger 
instances in a given amount of running time, or to find better solutions for a given 
instance in an equal amount of running time. In this thesis we investigate the po­
tentials of parallel processing for local search. 

1.1 Combinatorial optimization 

In this section we give a brief introduction to combinatorial optimization. More 
elaborate introductions can be found in [Papadimitriou & Steiglitz, 1982; Nem­
hauser & Wolsey, 1988]. A combinatorial optimization problem is either a min­
imization problem or a maximization problem consisting of a set of problem in­
stances. Without loss of generality, we consider only minimization problems. 

1 



2 Introduction 

Definition 1.1. An instance of a combinatorial optimization problem is a pair 
(S, f), where S is a finite set of solutions, and f : S --+ 7L. is a function that 
gives the cost of a solution. The objective is to find a solution in S with minimal 
cost. CJ 

The size of an instance/, denoted by size(!), is defined as the number of sym­
bols needed to encode I in a compact way. The finiteness of the set S suggests 
that an instance ( S, f) can be solved by examining all solutions and selecting the 
one with minimal cost. Such an enumeration approach is only practical for very 
small instances if the size of S, which is denoted by I SI, grows superpolynomially 
with the instance size. The time complexity function lA : IN --+ IN of an algorithm 
A gives for each instance size the largest running time needed by A for solving 
an instance of that size, where running time is measured in the number of ele­
mentary operations such as assignments, comparisons, etc. Hence, tA(size(l)) 
is an upper bound on the running time needed to solve an instance I. To compare 
algorithms, one is often interested in the order of their complexity functions. A 
function f is CJ(f') with f, f' : IN --+ IN if there exist constants c, mE IN such 
that f(n) :::; c · f'(n) for all n > m. f is Q(f') if there exist constants c, m EIN 
such that f(n) 2: c · f'(n) for all n > m, and f is E>(f') if f is both Q(f') 
and CJ(f'). An algorithm A is a polynomial-time algorithm if lA = O(f) for 
some polynomial function f. Otherwise A is a superpolynomial-time algorithm. 
Problems for which a polynomial-time algorithm is known, which implies that 
instances I can be solved in size(I)0 (1) time, are often called 'easy'. For many 
other problems no such algorithms are known despite considerable effort to find 
them. The difference between these kinds of problems is formalized by the theory 
of NP-completeness. Garey & Johnson [1979] present an overview of the NP­
completeness theory. This theory is based on decision problems in which one is 
asked to determine whether there exists a solution with cost of at most k E 7L.. A 
decision problem has only two possible solutions, either 'yes' or 'no'. With each 
optimization problem a decision problem can be associated. Next, two classes of 
problems are introduced, called P and NP, with P s; NP. These classes are used to 
distinguish between easy and hard problems. 

Definition 1.2. P is the class of decision problems for which each instance can 
be solved by a polynomial-time algorithm. CJ 

A concise certificate for an instance I is an amount of data with size polynomial 
in size(!). The class NP can now be defined as follows. 

Definition 1.3. NP is the class of decision problems for which each instance I 
with answer 'yes' has a concise certificate c such that a 'yes' answer for I can be 
verified by a polynomial-time algorithm using c. CJ 
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The concept of reducibility has been proven useful for relating the computational 
complexity of two decision problems. 

Definition 1.4. Problem n is polynomially reducible to problem n' if a polyno­
mial-time algorithm exists that maps each instance I of n onto instance I' of n' 
such that I is a 'yes' instance of n if and only if I' is a 'yes' instance of n 1

• o 

If n is polynomially reducible ton', then n' is at least as difficult as n. This leads . 
to a class of problems in NP that can be considered as the most difficult ones in 
NP. These problems are called NP-complete. 

Definition 1.5. A problem n E NP is NP-complete if each problem in NP is poly­
nomially reducible ton. The class ofNP-complete problems is called NPC. o 

Reducibility can be used to prove that a problem n is NP-complete. From Defini­
tions 1.4 and 1.5 it follows that in order to prove that n is NP-complete it suffices 
to show that n E NP and that a problem n' E NPC is polynomially reducible 
to n. Note that, if one NP-complete problem can be solved in polynomial time, 
then all NP-complete problems can be solved in polynomial time. However, so 
far no polynomial-time algorithm has been designed for any NP-complete prob­
lem and it is widely believed that NP-complete problems are intractable-that 
is, any algorithm that solves each instance of an NP-complete problem requires 
superpolynomial running time. 

Finally, a problem is NP -hard if it is as least as difficult as any problem in NP, 
i.e., any problem in NP is polynomially reducible to it Hence, each NP-complete 
problem is NP-hard, and if the decision variant of a combinatorial optimization 
problem is NP-complete, then the optimization problem is NP-hard. 

Handling NP-hard problems. Two approaches can be distinguished to handle 
NP-hard problems. Either one searches for optimal solutions, at the risk of very 
large, possibly excessive, running times, or one is satisfied with relatively quickly 
obtainable solutions at the risk of sub-optimality. The first approach finds optimal 
solutions and accepts the possibility of superpolynomial running times. It seeks 
to achieve as much improvement as possible over straightforward enumeration, 
because often many solutions can be discarded as non-optimal without enumerat­
ing them explicitly. Dynamic programming, branch-and-bound, and branch-and­
cut algorithms are examples of such implicit enumeration techniques. 

For many NP-hard optimization problems one has to resort to approximation 
algorithms since larger instances cannot be solved optimally in acceptable run­
ning times. Approximation algorithms aim to find good-quality suboptimal so­
lutions in a moderate amount of time. Two classes of approximation algorithms 
can be distinguished, viz. constructive algorithms and local search algorithms. 
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Constructive algorithms build a solution by starting with an empty solution and 
consecutively adding elements to the partial solution until a complete solution is 
obtained. Constructive algorithms typically run in polynomial time as each step 
requires polynomial time and the total number of steps is also bounded polyno­
mially, but they may find solutions of mediocre quality. Local search algorithms 
constitute a class of approximation algorithms that are based on repeatedly re­
placing a solution by a neighboring solution. They often find good-quality so­
lutions but may require substantial running times. Local search is discussed in 
more detail in Chapter 2. · 

Analysis of algorithms. The quality of an approximation algorithm is judged 
by the quality of the solutions it produces, its effectiveness, and by the time it re­
quires to obtain them, its efficiency. The quality of solutions is measured by their 
excess ratio, the relative deviation of the costs of solutions from optimal solu­
tions. Both effectiveness and efficiency can be considered from a worst-case and 
an average-case point of view. Worst-case analysis gives upper bounds on the 
average-case performance. Two approaches can be used to study the average-case 
behavior, namely, probabilistic or empirical analysis. A probabilistic average­
case analysis aims at determining the expected performance of an algorithm by 
presupposing a probability distribution over the set of problem instances. An em­
pirical analysis is based on a large number of numerical experiments on a set of 
benchmark instances either originating from practice or randomly generated ac­
cording to some probability distribution. If optimal solutions are not known, the 
excess ratio is usually computed using a lower bound for the optimal solution, 
which establishes an upper bound for the empirical average-case performance. 
For many approximation algorithms a worst-case or average-case analysis is quite 
complicated and, therefore, one often resorts to an empirical average-case anal­
ysis. Another option is to compare the performance of an algorithm with that of 
other algorithms in order to determine a relative ranking of algorithms. Here it is 
essential that a challenging set oftest instances is available. 

1.2 Parallel processing 

In this section we discuss some preliminaries for parallel processing that are rel­
evant for the work described in this thesis. A more elaborate introduction into 
parallel processing can be found in [Bertsekas & Tsitsiklis, 1989]. 

1.2.1 Parallel machines 

We first discuss some issues related to parallel machine architectures. Our dis­
cussion is mainly based on the classification of parallel architectures presented 
by Bertsekas & Tsitsiklis [1989]. 
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Over 1he years many parallel machine models have been proposed. Unfortu­
nately, no 1heoretical model effectively describes 1he full spectrum of parallel ma­
chines. Some models are based on technological developments, while o1hers are 
based on theoretical observations. The most widely used classification of paral­
lel computers is based on 1he distinction between single instruction, multiple data 
(SIMD) and multiple instruction, multiple data (MIMD) machines. In SIMD ma­
chines one global instruction is performed at a time, possibly on different data 
elements. In MIMD machines different instructions on different data elements 
can be performed simultaneously. Most modern parallel computers belong to the 
class of MIMD machines. 

Based on the timing of instructions on different processing units it is possible 
to distinguish between synchronous and asynchronous machines. A synchronous 
machine uses one global clocking scheme to synchronize instructions among pro­
cessors. If several local clocking schemes exist in a parallel machine, typically 
one per processing unit, 1he system is called asynchronous. SIMD machines are 
synchronous by definition. while MIMD machines are mainly asynchronous. 

The above model does not address the way information is exchanged between 
processors. There are two possibilities for exchanging information. In shared­
memory systems processors may read and write in a common memory acces­
sible by each processor. In message-passing systems processors exchange data 
1hrough messages. Message-passing systems can be characterized by their inter­
connection network topology 1hat describes how processors are connected. The 
most common topologies are 1he ring and 1he torus. In a ring each processor is 
connected wi1h two other processors such that a cycle is formed. In a torus pro­
cessors are positioned in a two-dimensional grid. Processors are connected to 
four other processors, and each row and column forms a ring. 01her frequently 
used topologies are 1he tree, and 1he hypercube. Some parallel computing envi­
ronments permit 1he usage of virtual topologies in which topologies are simulated 
on the machine at han'd in a user transparent way. It is of course important for 
1he system's performance 1hat 1he virtual topology is mapped efficiently onto the 
physical topology. 

Other distinctions made between parallel machines are based on the amount 
of data each processor can handle and the number of processors. In fine-grained 
systems each processor can handle only a small amount of data, while in coarse­
grained systems each processor deals with a large amount of data. Massively par­
allel systems consist of a large number of, usually relatively simple, processors. 
Massively parallel systems are typically fine-grained. 

An important class of machine models in parallel complexity 1heory is 1he 
parallel random access machine (PRAM) model. A concurrent read, concurrent 
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write PRAM is a shared memory machine in which all processors can simulta­
neously read from and write to the same memory locations. A concurrent read, 
exclusive write PRAM is a shared memory machine in which all processors can 
simultaneously read from the same memory location, but exclusive access to a 
memory location is required for writing. Although none of the currently available 
parallel machines are true PRAM's, this model supports the study of the intrinsic 
parallelism in problems and provides theoretical lower bounds for the time com­
plexity of many parallel algorithms. The PRAM model can be adapted to capture 
features of more realistic parallel machines by considering memory partitioning, 
communication latency, and sparse network topologies, which all result in less 
powerful variants of the above PRAM model. 

Features of a parallel machine at hand, besides the computational power of 
processors, can have a large influence on the performance of algorithms when 
executed on that machine. Important properties of a message-passing MIMD ma­
chine are the latency for starting up communication, and the throughput of com­
munication between processors, which also depends on the interconnection net­
work topology. For shared-memory MIMD machines the access time to various 
parts of memory plays an important role. Computational experiments are there­
fore important in the study of parallelism. 

1.2.2 Parallel algorithms 

Useful criteria to evaluate a parallel algorithm for a given problem are its speed­
up and efficiency. The speed-up is the running time of the best known sequential 
algorithm for this problem divided by the parallel running time, and the efficiency 
is the speed-up divided by the number of processors [Barr & Hickman, 1993]. 
Another important issue is the scalability of an algorithm, which refers to its per­
formance for increasing number of processors. 

It is usually required that the output of parallel algorithms is independent of 
the number of employed processors. In our research, however, the number of em­
ployed processors may determine the part of the solution space that is explored, 
which may affect the output. Furthermore, we consider randomized algorithms 
for which different runs may require different running times. As the quality of 
the output of the local search algorithms we study is measured using the relative 
excess of final solutions over global minima, we define speed-up as follows. 

Definition 1.6. Let tA,€(1) be the average time to find a solution with a relative 
excess E over the global minimum using sequential algorithm A and let tB,li(P) 
be the average time for this using parallel algorithm B on machine M with P 
processors, then the speed-up of B over A on M is given by t A,€ (1) I tB ,€ ( P). D 

Other useful criteria, besides speed-up and efficiency, for judging the quality of 



1.2. Parallel processing 7 

the parallel algorithms we study in this thesis are the extend in which these paral­
lel algorithms are able to find better quality solutions than sequential algorithms 
in a given amount of time. Also the instance sizes that can be handled by sequen­
tial and parallel algorithms in a given amount of time may be of interest. These 
criteria are of course closely related to the speed-up of algorithms as algorithms 
with a large speed-up can typically find better quality solutions in a given amount 
of time since more solutions can be explored. The reduction of running times for 
given instance sizes can also be employed to handle larger instances in a given 
amount of time. 

Two issues are important in designing parallel algorithms with a good speed­
up, viz., communication overhead and load balancing. On most parallel machines 
communication is costly compared to computation operations, so attention has to 
be paid to the communication behavior of parallel algorithms. Load balancing is 
important to achieve that no processor ever becomes idle while others are work­
ing. 

1.2.3 Parallel complexity 

It is often attempted to define a class of problems for which parallel processing 
can be profitable. A traditional example is the complexity class NC that consists 
of the problems that can be solved on a PRAM with a polynomial number of pro­
cessors n°<1> in polylogarithmic time (log n)0 (1), i.e., a time bounded by a poly­
nomial in the logarithm of the instance size n. Furthermore, a class of P -complete 
problems is identified that contains problems that are believed to be among the 
hardest problems in P. A problem is P-complete if it belongs to P and any other 
problem in P can be transformed to it using polylogarithmic time and polynomi­
ally many processors [Greenlaw, Hoover & Ruzzo, 1995]. It is conjectured that 
the class ofP-complete problems is disjoint from the class NC, and consequently 
it is believed that P-complete problems cannot be solved in polylogarithmic time. 

In practical situations one is often interested in parallel algorithms that solve 
an instance roughly P times faster when using P processors. Such algorithms 
may still exist for P-complete problems. So the distinction between P-complete 
problems and problems in NC is inadequate to capture the informal notion of 
problems that are amenable for parallel processing. Kruskal, Rudolph & Snir 
[1990] introduce a class EP of efficient parallel algorithms, in which they measure 
the performance of parallel algorithms relative to that of sequential algorithms. 
The usual yardstick is the best existing sequential algorithm for a given problem. 
EP is defined as follows. 

Definition 1.7. Let the time complexity of a sequential algorithm and a paral­
lel algorithm using P(n) processors for instances of size n be given by t(n) and 
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T (n), respectively. An algorithm is polynomial! y fast and has constant efficiency, 
if T(n) = O(t(n)") with E < 1 and T(n) · P(n) = CJ(t(n)). The class that con­
tains these algorithms is called EP. D 

Although the class EP does not define strict complexity classes for problems since 
it depends on a particular sequential algorithm, it provides a practically relevant 
classification of parallel algorithms. 

1.3 Thesis outline 

The objective of the research described in this thesis is to design parallel local 
search algorithms that can handle large problem instances and that are competi­
tive with the best known sequential algorithms both with respect to running time 
and quality of final solutions. For this, we study general approaches that can be 
applied to a wide variety of problems, as well as tailored approaches in which 
problem characteristics are exploited. Computational experiments on parallel ma­
chines are considered as an important aspect of this research. 

The remainder ofthis thesis is organized as follows. Chapter 2 deals with lo­
cal search. In Chapter 3 we introduce the concepts for designing parallel local 
search algorithms. This chapter is based on [Verhoeven & Aarts, 1995a]. Chap­
ter 4 presents some results for the speed-up that can be obtained by performing 
several independent runs of a local search algorithm in parallel. These results are 
based on a probabilistic analysis of local search that can also be found in [Ten 
Eikelder, Verhoeven, Vossen &Aarts, 1996]. Chapters 5, 6, and 7 discuss tailored 
approaches to design parallel local search algorithms for some well-studied com­
binatorial optimization problems. In Chapter 5 we study the traveling salesman 
problem, in Chapter 6 the Steiner tree problem in graphs, and in Chapter 7 job 
shop scheduling. Chapter 7, furthermore, discusses sequential and parallel local 
search for resource-constrained project scheduling. These chapters are based on 
[Verhoeven, Aarts, Van de Sluis & Vaessens, 1992; Verhoeven & Aarts, 1994; 
Verhoeven, Aarts & Swinkels, 1995], [Verhoeven, Aarts & Severens, 1995], and 
[Verhoeven & Aarts, 1995b], respectively. 

The main conclusion that can be drawn from the work described in this thesis 
is thatlocal search algorithms for a wide variety of problems can be sped up sig­
nificantly using parallelism based on hybrids of the approaches to parallel local 
search proposed in this thesis. 



2 
Local Search 

Local search algorithms constitute a class of approximation algorithms for hard 
combinatorial optimization problems that are based on the exploration of neigh­
borhoods of solutions. They have shown to be successfully applicable to a wide 
range of problems, giving good-quality solutions [Aarts & Lenstra, 1996]. The 
basic local search algorithm is the so-called iterative improvement algorithm. An 
iterative improvement algorithm starts off with an initial solution constructed by 
some heuristic. Next, the algorithm repeatedly tries to improve the current solu­
tion by replacing it with a lower-cost neighbor. If a solution has been reached that 
has no neighbors with lower cost, a local minimum has been found. An essential 
concept in local search algorithms is the notion of a neighborhood structure. 

Definition 2.1. Let (S, f) be an instance of a combinatorial optimization prob­
lem. Then a neighborhood structure N: S-+ P(S) assigns to each solution in 
S a set of solutions, called a neighborhood. A solution s E S is a local minimum 
of N if f(s') :::: f(s) for each s' E N(s). D 

The neighbors of a solution are not given explicitly but are to be constructed by 
a function. Most neighborhoods are based on the replacement of a few elements 
that constitute a solution. For this we introduce the following definition in which 
we assume that solutions are sets. The set of building elements that constitute 
solutions inS is then given by£ = {e I e E s 1\ s E S}. 

9 
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proc lterativeJmprovement (s : S) 
var w: P(S); 
begin 

w :=0; 
while N(s) \ w =P 0 do 

s' E N(s) \ w; 
if f(s') ;::: f(s) then w := w U {s'} 
else s := s'; w := 0 fi 

od {s is a local minimum of N} 
end 

Figure 2.1: An iterative improvement algorithm. 

Local Search 

Definition 2.2. Let the exchange function T:r : s X er ~ s be a partial function 
with r E IN. Then, an r-exchange neighborhood structure Nr associated with <r 
is defined by Nr(s) = {r:r(s, et. ... , er) I e1, ... , er E s} fors E S. D 

According to Definition 2.2 neighbors of a solutions can be constructed by apply­
ing the exchange function to s and a subset et •... , er of the building elements 
of s. Below, we give an example of an exchange function and a neighborhood 
for one of the best-known combinatorial optimization problems, viz. the travel­
ing salesman problem (TSP). In the TSP a salesman wishes to visit all cities in a 
given set once and return to the starting point, in such a way that the total distance 
covered is as short as possible. 

Example 2.1 (traveling salesman problem). Given is a complete weighted graph 
(V, V x V), where V is a set of N vertices and dii E IN gives the distance between 
each i, j E V. A tour t is a set of N directed edges {et. ... , eN} that constitutes 
a Hamiltonian cycle, a cycle that visits each vertex in this graph precisely once. 
The solution space S of a TSP instance is the set of all tours. The cost function 
f is given by 

t<t) = :L dij· 
(i,j) Et 

The problem is to find a tour t E S for which f(t) is minimal. The exchange 
function r:z :Sx(VxV)2 ~ S gives for each tour anew tour obtained by replacing 
two edges with two other edges. The well-known 2-exchange neighborhood of 
Lin [1965] is defined by Nz(t) = { r:z(t, ei, ej) 11 ::;:i < j::;: N}. D 

Figure 2.1 presents a schematic description of an iterative improvement algorithm. 
A single iteration of an iterative improvement algorithm, which we call a step, 
consists of the following actions. First, aneighbor is constructed by applying the 
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exchange function to the current solution. Subsequently, the cost of the neigh­
bor is evaluated. If the neighbor has lower cost, it replaces the current solution 
by effectuating the proposed exchange. Otherwise the search is continued with 
the old current solution. A pivoting rule [Yannakakis, 1990] determines which 
neighbor will be the new current solution. Well-known pivoting rules are first 
improvement, which replaces the current solution with the first lower-cost neigh­
bor that is found, and best improvement, which uses the solution that has lowest 
cost among all neighbors. 

For practical reasons it is often required that each local search step can be 
done in polynomial time. For this it is necessary that neighbors can be selected 
in polynomial time, which requires that the exchange function associated with 
a neighborhood structure has polynomial time complexity, and that the cost dif­
ference f(s')- f(s) of two neighboring solutions sands' can be computed in 
polynomial time. 

2.1 Computational complexity of local search 

Unless a neighborhood is exact, i.e., each local minimum is a global minimum, 
it is generally not possible to give a fixed upper bound on the relative excess of 
local minima. Moreover, for the iterative improvement algorithm of Figure 2.1 
it is in general not possible to give a non-trivial upper bound on the number of 
steps needed to find a local minimum. Examples are known of problem instances 
for which the number of steps cannot be bounded by a polynomial in the size 
of the instance. Therefore, the question has been raised whether this is a gen­
eral property of local search algorithms. Johnson, Papadimitriou & Yannakakis 
[1988] have formalized the question of the worst-case behavior of local search 
algorithms by introducing a new complexity class PLS. A local search problem 
n is a set of problem instances of which each instance is characterized by a triple 
( S, f, N), where S is the set of solutions, f the cost function, and A( the neigh­
borhood structure. The question is to find a local optimum of N. The class PLS 
is then defined as follows. 

Definition 2.3. A local search problem n is in PLS if polynomially computable 
functions g and g' exist such that for an instance I of n, g(I) returns a start so­
lution, g'(I, s) returns a solutions' E Af(s) with f(s') < f(s) fors E Sand if 
no such solution exists, g' returns s, which is then a local minimum of N. o 

Informally stated, PLS is the class of local search problems for which each local 
search step requires polynomial time. The notion of PLS-reducibility has been 
introduced in order to define PLS-complete problems. 
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Definition 2.4. A local search problem n is PIS-reducible to a local search prob­
lem n' ifthere exists a polynomially computable function h that maps instances 
I of n onto instances I' of n' and a polynomial function h' that maps pairs of the 
form (solution of h(I), I) onto solutions of I such that, ifs is a local optimum 
for h(I), then h'(s, I) is locally optimal for I. o 

Definition 2.5. A local search problem n E PLS is PIS-complete if each prob­
lem in PLS is PLS-reducible ton. 0 

To prove that a local search problem n is PLS-complete it suffices to show that 
n is included in PLS and that there exists a known PLS-complete problem n' 
that can be PLS-reduced to n. The generic PLS-complete problem is FLIP. The 
class ofPLS-complete problems contains the hardest problems in PLS, and if one 
of these problems can be solved in polynomial time, then all others can. It is, 
however, conjectured that Psis a strict subset of PLS, where Ps is the class of 
search problems that can be solved in polynomial time [Yannakakis, 1996]. Con­
sequently, if this conjecture holds, superpolynomial running times might be re­
quired by any algorithm to find a local optimum for the PLS-complete problems. 

2.2 Local search variants 

A neighborhood structure imposes a directed graph on the solution space. The 
vertices of this neighborhood graph are the solutions, and there is an edge from a 
vertex to another vertex if this vertex is a neighbor of the first vertex. The course 
of a local search algorithm is characterized by a walk in this graph. Starting in 
some vertex, the costs of neighbors are evaluated, and a step to some neighbor is 
made. This process is repeated until some stop criterion is met. The effectiveness 
of local search depends on both the structure of the neighborhood graph, which is 
determined by the neighborhood structure, and the way the neighborhood graph 
is traversed, which is determined by the type of local search that is used. A neigh­
borhood is sufficiently connected if there is a path in the neighborhood graph to 
an optimal solution from any solution, and it is completely connected if there is 
a path to each solution from any other solution. 

A drawback of iterative improvement is that it may get stuck in poor-quality 
local minima. To overcome this drawback, one can either modify the neighbor­
hood structure, or change the way the neighborhood graph is traversed. The first 
approach is problem specific, whereas the latter one is less problem dependent. 

Most neighborhood structures are based on exchange functions that modify 
only a few elements, which results in small neighborhoods. In order to avoid 
the risk of getting stuck in a poor-quality local minimum, one may increase the 
size of the neighborhood by exchanging more elements. Another option is to 
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exploit characteristics of the problem at hand to tailor the neighborhood to this 
problem. Examples of this approach are variable-depth neighborhood structures 
[Kernighan & Lin, 1970; Lin & Kernighan, 1973] and the quite similar ejection 
chain approach in [Reeves, 1993]. Variable-depth neighborhoods are based on 
a simple exchange function. A neighbor is obtained by constructing a sequence 
of exchanges, instead of a single exchange. An algorithm that uses a variable­
depth neighborhood is often no longer regarded as a basic iterative improvement 
algorithm since it actually generates a sequence of solutions, which may contain 
solutions with higher cost than a preceding solution. The solution that eventually 
replaces the current solution is the solution in this sequence with minimal cost. 
The algorithm stops if this neighbor has higher cost than the current solution. 

Another approach to escape from local minima is to accept neighbors with 
cost higher than that of the current solution. We mention the following local search 
variants, sometimes called meta heuristics, which all traverse the neighborhood 
graph in a different way to escape from local minima. 

Iterated local search [Johnson, 1990; Martin, Otto & Felten, 1991] uses two 
neighborhoods Nand N'. The search starts with the first neighborhood N until a 
local minimum of N is found. If this local minimum has lower cost than the best 
solution found so far, this local minimum replaces it. Then, a neighbor of the best 
solution found so far is chosen from a second neighborhood N'. Subsequently, 
the search is restarted from this neighbor using the first neighborhood. In this way 
local search is performed at two levels. At the lower level regular local search 
steps are made in the neighborhood graph induced by N, but at the higher level 
large steps between local minima of N are made. 

Thbu search [Glover, 1989; Glover, Taillard & De Werra, 1993] tries to direct 
the search into unexplored areas of the solution space once a local minimum is 
found, by memorizing the course of the search. To this end, a finite list of the most 
recently visited solutions, the tabu list, is constructed, whose length is given by 
the tabu tenure. In each step of a tabu search algorithm a neighbor s' is chosen 
from the neighborhood N (s) of the current solutions such that s' is not included 
in the tabu list. Subsequently, s is added to the tabu list. Hence, the set from which 
a neighbor s' of s is chosen depends on how s is reached, and no s' is chosen that 
has been visited in the k most recent steps, if the tabu tenure is k. By choosing 
solutions not on the trajectory to recently visited local minima, tabu search can 
be directed into other areas of the solution space. 

Rather than storing complete solutions that have been visited in the tabu list, 
building elements associated with exchanges that have led to these solutions are 
included in the tabu list If a step is made from a solution s to s' with s' = r (s, e), 
where r is an exchange function and e a building element of a solution, then an 
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element e' for which s = r (s', e') is added to the tabu list. If the tabu list is full, 
its oldest element is removed. Neighbors are obtained by performing exchanges 
that act on building elements that do not occur in the tabu list. An exchange is not 
permissible, or tabu, if it occurs on this list. In this way, the implicitly defined set 
of tabu solutions includes the k most recently visited solutions. 

Most tabu search algorithms select the lowest-cost non-tabu neighbor in the 
neighborhood as the new current solution. If all neighbors are tabu, then the old­
est element on the tabu list is removed, until a permissible neighbor can be se­
lected. Since such a pivoting rule can be computationally expensive candidate 
sets can be used. Candidate sets are subsets of neighborhoods in which it is at­
tempted to exclude high-cost neighbors from a neighborhood without exploring 
them explicitly. Aspiration criteria can be used to overrule the tabu status of an 
exchange when it seems promising in some sense, e.g., if it leads to a solution 
with lower cost than the best solution found so far. 

The effectiveness of many tabu search algorithms is significantly increased 
by incorporating intensification and diversification of the search. Intensification 
of the search around good-quality local minima is used to search promising areas 
of the solution space more thoroughly. This can be implemented by keeping track 
of the best solutions found in the course of the search. If no improvement of the 
best solution is achieved for a number of steps, the search is restarted with one 
of these best solutions, where the search is forced to follow a different trajectory 
from this solution by associating a tabu status with each attempted exchange for 
this solution. This requires storage of tabu lists associated with the best solutions 
found in the course of the search. 

Search diversification is used to ensure that other regions of the solution space 
are searched as well. Diversification of the search can be achieved by adding 
penalties to the cost of solutions if some of its elements occur frequently in the 
current solution or are included in the current solution for a large number of local 
search steps. 

Simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983; Aarts & Korst, 1989] 
probabilistically accepts neighbors with higher costs, in addition to lower-cost 
neighbors, which are always accepted. To this end, an acceptance probability is 
used that is reversely related to the size of the cost increase. The acceptance prob­
ability of cost-increasing exchanges is given by 

exp(- (f(s')- f(s))) 
c 

for solutions s and s' with f (s') > f (s). The control parameter c is used to lower 
the acceptance probability in the course of the search. 

A simulated annealing algorithm can be outlined as follows. First, an initial 
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value for the control parameter c is chosen. For each value of c a number of ran­
domly chosen exchanges is attempted, where proposed exchanges are accepted 
according to the above acceptance probability, after which the control parame­
ter is lowered. If the control parameter c drops below a given value the search 
is ended. A cooling schedule determines how the control parameter c is decre­
mented. In many practical simulated annealing algorithms a geometric cooling 
schedule is used in which c is decremented by multiplication with a constant fac­
tor a, with a < 1. 

Using finite Markov chain theory, it has been proven that simulated annealing 
converges to a global minimum if the acceptance probability is lowered slowly 
enough, provided that the employed neighborhood is at least sufficiently con­
nected. This connectivity condition is not hard to meet for many problems. 

Genetic local search [Mtihlenbein, Gorges-Schleuter & Kramer, 1988; Aarts 
& Verhoeven, 1996] incorporates local search into genetic algorithms. In genetic 
local search, a population of solutions is explored, instead of only a single solu­
tion. A genetic local search algorithm starts with a population of p initial solu­
tions. This population is augmented with q solutions obtained as follows. 1\vo 
parent solutions are selected from the population. Using these two parent solu­
tions a new solution is constructed by applying cross-over. In a cross-over opera­
tion building elements of two solutions are combined to one solution. This newly 
constructed solution is then improved using a local search algorithm and added to 
the population. The augmented population is subsequently reduced to its original 
size using concepts from biological evolution strategies. 

Evidently, the cross-over operation is important, since here one must try to 
take advantage of the availability of more than one local minimum by exploiting 
their structure. Mutation in a traditional genetic algorithms corresponds with the 
part of the above algorithmic concept in which local search is applied to the so­
lution resulting from the cross-over operation. 

Widely recognized advantages oflocal search are its general applicability, its fiex­
ibility, and its ease of implementation. Only a specification of solutions, a cost 
function, and a neighborhood structure are required, which can easily be defined 
for many problems. Furthermore, practical experience in scheduling, layouting, 
and routing applications has revealed that the average-case performance of local 
search is quite good in the sense that high-quality solutions can be found within 
acceptable running times. Tills has led to the conviction that local search is a pow­
erful technique to handle complex real-world combinatorial optimization prob­
lems that arise in management science and engineering. For more extensive over­
views on local search in which the above variants are discussed in more detail we 
refer to [Yannakakis, 1990; Reeves, 1993; Aarts & Lenstra, 1996]. 
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3 
Concepts of Parallel Local Search 

Although local search algorithms may find good-quality solutions, they require 
substantial amounts of running time for the larger instances of some combina­
torial optimization problems; see for instance [Sechen, 1988], who reports run­
ning times of 24 hours for his simulated annealing based cell-placement algo­
rithm when applied to real-life problem instances. To cope with this drawback, 
several approaches have been proposed in the literature to implement these al­
gorithms on parallel machines. Other goals of these parallel approaches to local 
search are to find better quality solutions in a given amount of time or to enable 
handling of larger problem instances. In this chapter we try to disclose the under­
lying concepts on which these approaches are based. In this discussion we try to 
abstract from implementation issues that depend on the machine model at hand. 
Furthermore, we study some complexity issues of parallel local search. 

Much effort in the field of parallel local search has concentrated on the de­
sign of parallel simulated annealing algorithms [Aarts & Korst, 1989; Azencott, 
1992]. For an overview of parallel simulated annealing, we refer to [Greening, 
1990]. More recently, also parallel approaches to other local search algorithms, 
such as tabu search and genetic local search, have been reported. Voss [1993] 
presents a classification of parallel tabu search algorithms based on the use of 
different search strategies and starting solutions. Crainic, Toulouse & Gendreau 
[1993b] extended this classification with dimensions based on communication or­
ganization and information handling. 

17 
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We distinguish between tailored and general approaches. A tailored approach 
can be applied only to a specific problem, whereas a general approach can be ap­
plied to a wide variety of problems. Furthermore, we distinguish between single­
walk and multiple-walk parallelism and between asynchronous and synchronous 
algorithms. In the class of single-walk algorithms,. we distinguish between multi­
pie-step and single-step parallelism. 

Tailored approaches. A tailored approach to incorporate parallelism in local 
search requires parallel execution of a problem specific part of the algorithm. Cost 
computation is a typical problem dependent part of a local search algorithm. Also 
operations on the data structures used to represent a solution are problem specific. 
If one of these problem dependent parts is very time consuming, the running time 
of the local search algorithm can be decreased substantially by efficient parallel 
execution of this part. 

Kravitz & Rutenbar [1987] apply a tailored approach to their local search al­
gorithm for the standard cell placement problem. They compute the cost of a 
neighbor in parallel. Another example of parallel cost computation is given by 
Taillard [1994], who uses a parallel longest path algorithm to compute the length 
of a schedule in the job shop scheduling problem. 

Tailored approaches have limited applicability because they strongly depend 
on the problem at hand. Therefore, we discard these approaches here and concen­
trate on techniques that can be applied to a wide variety of local search problems. 

General approaches. A general approach can be applied to a broad class of 
local search problems. We can distinguish between two approaches: single-walk 
and multiple-walk parallel local search. In a single-walk algorithm only a single 
walk in the neighborhood graph is carried out, whereas in a multiple-walk algo­
rithm several walks are performed simultaneously. 

Within the class of multiple-walk algorithms we can distinguish between al­
gorithms that perform interacting walks and algorithms that perform multiple in­
dependent walks. The latter can be considered as the most straightforward ap­
proach to introduce parallelism in local search. 

In single-walk parallel local search a single walk is carried out in parallel. 
Typically, this requires some distribution of a solution or elements of a solution 
over a number of processors. Furthermore, we distinguish between single-step 
and multiple-step parallelism. The idea of single-step parallelism is to evaluate 
neighbors simultaneously and subsequently make a single step. Th this end, the 
neighborhood of a solution is partitioned into subsets that are searched in parallel. 
In an algorithm with multiple-step parallelism several consecutive steps through 
the neighborhood graph are made simultaneously. Figure 3.1 shows neighbor­
hood graphs that illustrate the idea of single-step and multiple-step parallelism. 
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Figure 3.1: Local search with single-step parallelism (left) and multiple-step parallelism 
(right) in a neighborhood graph. Dotted edges connect neighbors and a solid arc repre­
sents a step made by a local search algorithm. 

Finally, in both single-walk and multiple-walk parallel local search we dis­
tinguish between synchronous and asynchronous algorithms. In a synchronous 
algorithm one or more steps of the algorithm are performed simultaneously by all 
processors. Synchronous parallelism requires a global clocking scheme or token­
passing mechanism that guarantees that communication occurs at given points in 
time. In asynchronous parallelism no such global clocking mechanism exists. 

A multiple-walk algorithm performs multiple single walks. Hence, it is pos­
sible to combine multiple-walk and single-walk parallelism in the design of par­
allellocal search algorithms. Also tailored approaches can be incorporated into 
general approaches resulting in all kinds of hybrid approaches, but the items in 
our classification are the basic concepts of such algorithms. 

The remainder of this chapter is organized as follows. In Section 3.1 we dis­
cuss multiple-walk parallelism. Section 3.2.1 discusses single-step parallelism, 
and Section 3.2.2 discusses multiple-step parallelism in more detail. Finally, Sec­
tion 3.3 discusses some complexity issues of parallel local search. 

3.1 Multiple-walk parallelism 

Multiple-walk algorithms have inherent parallelism, which can be exploited by 
distributing the walks over a number of processors and performing them simulta­
neously. We distinguish between algorithms that perform multiple independent 
walks and algorithms that perform multiple interacting walks. The first class of 
algorithms is the simplest one, since no complex parallelization scheme is re­
quired. In order to describe algorithms with multiple interacting walks more pre­
cisely, we extend the notion of neighborhood structures to hyper neighborhood 
structures. Neighborhood structures define neighbors for a single solution; hyper 
neighborhood structures define neighbors for a set of solutions [Vaessens, 1995]. 
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proc Multiple_ Walks (s1, . . . , s p E S) 
begin 

stop_criterion := false; 
while ....., stop_criterion do 

od 
end 

par p E Q do 
lterativeJmprovement(sp); 
Sp E H(shp(l)• ... , shp(M)) 

rap 

Concepts of Parallel Local Search 

Figure 3.2: A multiple-walk parallel local search algorithm. 

Definition 3.1. Let M :::: 1. Then, a hyper neighborhood structure 1{ : sM ~ 
P(S) assigns to a set of M solutions inS, a subset of solutions inS. o 

Let Q = {1, ... , P} be a set of P processors, and let hp: {1, ... , M}~ Q be 
a function for each p E Q, where hp(i) denotes the i-th processor with which p 
communicates. hP gives, for each processor p, M other processors with which 
interaction takes place in order to construct a hyper neighbor. 

Using the concept of hyper neighborhood structures, we can formulate the 
template presented in Figure 3.2 that describes algorithms with interacting mul­
tiple-walk parallelism. The set of current solutions s1, . • • , s p is often called the 
population. A current solution sp is assigned to processor p. All processors per­
form simultaneously a walk in the neighborhood graph by executing an iterative 
improvement algorithm, or some other local search algorithm. After a number 
of local search steps, a hyper neighbor is constructed, which requires interac­
tion with M other processors hp(l), ... , hp(M). This process is continued until 
some stop criterion is met. 

3.1.1 Multiple independent walks 

A trivial approach to parallel local search is to perform a number of independent 
walks in parallel, since this requires no communication between different runs. 
The speed-up one hopes to achieve by using such an approach is based on the 
following property for random walks in a neighborhood graph. 

Theorem 3.1. Let Qp(t) be the probability of not having found a solution with 
relative excess E in t time units with p independent walks, and let Q1 (t) =e-M 
with A. eiR+, i.e., Q1 is distributed exponentially. Then, Qp(t) = Q1 (pt). D 
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Hence, it is possible to achieve linear speed-up with multiple independent walks if 
tbe probability to find an optimal (or suboptimal) solution within a given amount 
of time units is distributed exponentially. An appropriate time measure for local 
search algorithms is the number of solutions of which the cost has been evaluated. 
Theorem 3.1 states that the probability to find a (sub)optimal solution in t time 
units and P processors is equal to the probability to find a (sub)optimal solution 
in Pt time with a single processor, if this probability is distributed exponentially. 
So in that case, a linear speed-up and an efficiency equal to one is reached with 
multiple independent walks. 

Several authors have studied the probabilistic behavior of local search algo­
rithms for various problems to investigate whether the condition of Theorem 3.1 
holds in practice. Battiti & Tecchiolli [1992] empirically investigate the behavior 
of tabu search for randomly generated instances of the quadratic assignment prob­
lem. They observe that the probability of finding a (sub)optimal solution with a 
tabu search algorithm is indeed distributed exponentially, provided that the search 
is started with a local minimum. This indicates that good efficiencies can be ob­
tained with multiple independent parallel walks in tabu search, if the time needed 
to find the first local minimum is relatively small compared to the time spent in 
the remainder of the search process. Thillard [1991] also shows that tbe probabil­
ity of finding an optimal solution for quadratic assignment problems with a tabu 
search algorithm fits well with an exponential distribution. Dodd [1990] empiri­
cally shows that a similar conclusion. also holds for simulated annealing. For the 
problem and parameter setting that he used an efficiency of one could be obtained 
with a maximum of 16 processors. Osbome & Gillett [1991] investigate the em­
pirical behavior of simulated annealing for the Steiner tree problem in graphs. 
They also observe that tbe probability of finding a near-optimal solution is dis­
tributed exponentially. Chapter 4 presents some results for the average-case be­
havior of iterated local search algorithms for the traveling salesman problem. It is 
shown that the probability of finding a solution with a small excess over the global 
minimum using an iterated local search algorithm can be described by a geomet­
rical distribution, which is the discrete counterpart of an exponential distribution, 
somewhat translated to compensate for the time needed to find the first local min­
imum. Good efficiencies can be obtained with multiple-walk parallelism but the 
amount of speed-up depends on the time needed to find the first local minimum, 
the time needed to find subsequent local minima, and the desired solution quality. 

Shonkwiler & Van Vleck [1994] present a theoretical analysis of the speed-up 
with multiple independent stochastic walks using Markov-chain analysis. They 
show that the speed-up is given by \·:_'(_ sP-1 where p is the number of walks and 
s and A.· are parameters that are related to the search process at hand. They claim 
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that nearly always A ~ 1 so then the speed-up is equal to psP-1. They present 
some artificial problems for which they are able to determine the parameters s 
and A, and for some of these problems even superlinear speed-ups are achieved 
with multiple independent stochastic walks. Ferreira & Zerovnik [1993] give an­
other theoretical result which shows that multiple independent walks can be prof­
itable. They show that, after a certain amount of time, the probability to find a 
(sub)optimal solution with multiple runs of an iterative improvement algorithm 
is larger than the probability that it is found by a single simulated annealing run 
in the same amount of time. 

The inherent parallelism of genetic algorithms is also based on Theorem 3.1, 
although in genetic algorithms the walks interact to combine good parts of in­
dividual solutions. The population size is therefore an important parameter of a 
parallel genetic algorithm, because it determines the speed-up and efficiency that 
can be obtained ultimately. 

3.1.2 Multiple interacting walks 

Interaction of walks can be used to faster direct the search into promising areas 
of the solution space. Th model the interaction between parallel walks we use 
the concept of hyper neighborhoods. Hyper neighborhoods can be based on se­
lection of a single solution from a set of solutions. Such hyper neighborhoods 
assign the same solution to different processors and are useful only if the walks 
performed by processors follow different paths from this solution. This can be 
achieved by either introducing randomization in walks or by enforcing different 
directions for walks. Other hyper neighborhoods are based on combining parts 
of different solutions to new solutions. 

Processors exchange information when walks interact. Titis information, such 
as the occurrence oflow-cost solutions in a population or the availability of multi­
ple good parts of individual solutions; can be used to speed up the search. A pos­
sible way to use the additional information resulting from interaction of walks, is 
indicated by Lin & Kemighan [1973] and Kirkpatrick & Toulouse [1985], who 
observe that local minima often have many elements in common. These elements 
can be identified as the good parts of solutions. So the availability of multiple 
local minima allows fast identification of good parts of individual solutions that 
should not be changed in the course of the search. This then leads to a reduction 
of the sizes of neighborhoods. 

Implementation issues. First, we discuss asynchronous and synchronous mul­
tiple walks. In synchronous multiple-walk parallelism, walks are synchronized 
at certain points in time-that is, the construction of a hyper neighbor can only 
be done in a state that depends on the state of all processors. In asynchronous 
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multiple-walk parallelism construction or selection of a hyper neighbor is not 
synchronized at a point in time. Here, the number of processors with which a 
processor interacts to construct a hyper neighbor is typically a subset of all pro­
cessors. In that case a processor can resume searching as soon as communication 
with that subset of processors has taken place, and it does not need to wait for 
other processors. 

The amount of communication overhead involved with multiple-walk paral­
lelism depends on how often a hyper neighbor is constructed, the hyper neighbor­
hood structure at hand, the machine architecture, and on the mapping of walks 
on to processors. It is preferable to map interacting walks on to the individual 
processors of a given machine such that the resulting communication overhead is 
minimal. Load balancing is done by specifying an equal amount of work that is to 
be performed in between two interactions of walks. This can be done by fixing 
the number of steps between two communications, which typically means that 
hyper neighbors are not always constructed from local minima, since the num­
ber of steps to find a local minimum is not equal in each walk. An advantage of 
asynchronous walks over synchronous walks is their reduced load imbalance. 

Examples. Parallel genetic local search algorithms are typical examples of lo­
cal search algorithms with multiple-walk parallelism. The following hyper neigh­
borhood is used in genetic algorithms. 1\vo parent solutions, selected from -a 
subset of- the current population, are used in a cross-over operation to construct 
a new solution. In a cross-over operation good parts of individual solutions are 
combined. Both synchronous and asynchronous multiple-walk parallelism can 
be applied in genetic algorithms. Asynchronous parallel genetic algorithms are 
mostly based on an island model in which parents are chosen from a subset of the 
population instead of from the entire population. Here, we do not further elabo­
rate on parallel genetic algorithms; for more details we refer the reader to [Jog, 
Suh & Van Gucht, 1991; Michalewicz, 1992; Mtihlenbein, 1992]. 

Several authors have applied multiple-walk parallelism to simulated anneal­
ing and tabu search. A hyper neighborhood of a population of solutions that is 
often used here is the selection of the best solution in the population. In a tabu 
search algorithm different paths from this solution should be followed by differ­
ent processors. This can by done by blocking certain exchanges or by using dif­
ferent search parameters for different processors. Note that in this way an inten­
sification of the search around good solutions is achieved. Additional diversifi­
cation can be achieved by combining long-term memory of different walks. 

Malek, Guruswamy & Pandya [1989] present tabu search and simulated an­
nealing algorithms with synchronous multiple-walk parallelism in which the best 
solution in the population is communicated to all processors after a fixed number 
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of steps of the simulated annealing or tabu search algorithm. In their algorithm 
the hyper neighborhood of a solution consists of a single element, viz., the best 
solution come across in the entire population. Different parameter settings are 
used to guarantee that different paths are followed by processors. They obtain a 
good speed-up for seven processors. 

Crainic, Toulouse & Gendreau [1995] present various synchronous multiple­
walk tabu search algOrithms. They propose two hyper neighborhoods: one in 
which the best solution in the entire population is selected by all processors, and 
one in which each of the P processors selects a different solution among the P 
best solutions come across since the previous interaction. Different paths are fol­
lowed by choosing a different parameter setting for processors. 'JYpically, the 
best-quality solutions are found by multiple independent walks. Crainic, Thulouse 
& Gendreau [1993a] also present asynchronous multiple-walk parallel tabu search 
algorithms. They propose two hyper neighborhoods in which processors interact 
asynchronously with a central processor that keeps track of either the best solu­
tion or the P best solutions found in the search process, where P is the number of 
processors. In the first hyper neighborhood this overall best solution is selected 
as hyper neighbor, and in the latter hyper neighborhood a hyper neighbor is ran­
domly chosen from the P best solutions found. Compared to their synchronous 
algorithms they obtain slightly better final solutions. Although actual running 
times of the various synchronous and asynchronous algorithms are not presented, 
the number of iterations after which the overall best solution is found implies that 
the algorithms display little speed-up. 

Aarts, De Bont, Habers & Van Laarhoven [1986] present parallel simulated 
annealing algorithms based on a combination of multiple interacting walks and 
single-step parallelism in which the size of the population is gradually decreased 
in the course of the search. They propose the following two hyper neighborhoods. 
In the first one the best solution from the entire population is chosen (M = P), 
and in the second one a solution is randomly chosen from two solutions (M = 2). 
The first hyper neighborhood results in synchronous multiple-walk parallelism, 
the second one in asynchronous multiple-walk parallelism. Similar algorithms 
using these hyper neighborhoods are implemented by Diekmann, Lilling & Si­
mon [1993], who obtain a speed-up of 85 on a network of 120 transputers for the 
traveling salesman problem. 

Moscato [1993] and Fox [1993] present parallel algorithms that combine ge­
netic algorithms, simulated annealing, and tabu search. They claim a linear speed­
up, but no empirical evidence is given. Mahfoud & Goldberg [1995] propose a 
combination of genetic algorithms and simulated annealing, but so far they do not 
present results for combinatorial optimization problems. 
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3.2 Single-walk parallelism 

In this section we discuss a template that captures local search algorithms with 
single-walk parallelism. In an algorithm with single-walk parallelism one or more 
consecutive steps in the neighborhood graph are made in parallel. To this end, ap­
plications of the exchange function, which we call exchanges, are proposed that 
all act on the same solution. Since effectuation of a proposed exchange can pro­
hibit effectuation of other exchanges, the proposed exchanges are combined in 
such a way that a feasible solution is constructed, which can imply that not all 
proposed exchanges can be effectuated. Let r be an exchange function as defined 
in Definition 2.2. Then a single-walk parallel local search algorithm consists of 
the following steps. 

(1) Partition the domain {(s, e1, ... , er) I et. ... , er E s} of the exchange 
function r for a given current solutions E S. 

(2) Propose exchanges for each subdomain simultaneously. 

(3) Effectuate -a subset of-the profitable exchanges found in step (2), which 
results in a new solution s'. 

(4) Replaces by s', and continue steps (1) to (3) until some stopping criterion 
is met. 

Single-step parallel local search, which is based on parallel neighborhood explo­
ration, is a special case of the above concept. In single-step parallelism each pro­
cessor examines a part of the neighborhood of the current solutions, and only a 
single exchange is effectuated in step (3). So speed-up is achieved only in step (2). 
Single-step parallelism implies that, in terms of a walk in the neighborhood graph, 
only a single step is made as solution s' is obtained from s by applying a single 
exchange. In an algorithm with multiple-step parallelism several exchanges are 
effectuated in step (3), which implies that a solutions' is constructed that can only 
be reached from s by performing multiple steps in the neighborhood graph-that 
is, multiple exchanges have to be performed to obtains' from s; see Figure 3.1. 

Below, we present a machine-independent template for single-walk parallel 
local search algorithms. First we introduce the concept of distributed neighbor­
hood structures, which have to deal with the following issues. A distributed neigh­
borhood has to specify how solutions and domains of the exchange function are 
decomposed. Furthermore, it has to specify how proposed exchanges are com­
bined. These aspects are captured in the following definitions. 

Definition 3.2. Let Q = { 1, ... , P} be a set of processors, S the set of solutions, 
andU =Uses P(s) the set of partial solutions. A solution distribution o gives 
a partial solution o P for each processor p E Q. A local neighborhood structure 
£ : U 1-+ P(U) gives sets of partial solutions for partial solutions. D 
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Similar to conventional neighborhoods, local neighborhoods are not given ex­
plicitly but are constructed using an exchange function. The following definition 
states how this is done. 

Definition 3.3. Let r : U x £' t-+ U be an exchange function that can be applied 
to partial solutions. A domain distribution "Ap : U t-+ 'P(£') gives for each pro­
cessor p E Q and partial solution u E U a set of arguments, chosen from u, for the 
exchange function r. A local neighborhood .C(u) is equal to {'r(u, et. ... , e,) I 
(et, ... , er) E A.p(u)} for u EU. 0 

The domain distribution describes which elements of partial solutions are the ar­
guments used by the exchange function to construct local neighbors. If solutions 
are decomposed, exchanges involving elements of different partial solutions can­
not occur, and therefore several decompositions need to be examined. This issue 
is also described in the following definition of a distributed neighborhood. 

Definition 3.4. Let S be a set of solutions, U the set of partial solutions, Q a set 
of P processors, and r an exchange function. Then, a distributed neighborhood 
structure V is a triple ( ~, A, 4>) defined as follows. A distribution structure ~ 
gives for each solution s and set of processors Q a set of solution distributions, 
with ~(s, 0) ~ {o E Q-+ U I Upen op = s}. A. gives for eachp E Q a 
domain distribution Ap :Ut-+ 'P(£') with r E IN+, where A. gives the arguments 
of the exchange function r used to construct the local neighborhood .C(op) of a 
partial solution op. A combination function</> :uP t-+ S combines P partial 
solutions to a feasible solution. o 

A distributed neighborhood structure consists of a distribution structure that spec­
ifies how solutions are distributed over processors, a domain distribution that de­
fines local neighborhoods, and a combination function that specifies how pro­
posed exchanges have to be combined. Note that only a subset of the proposed 
exchanges might be effectuated by the combination function, since effectuating 
all proposed exchanges might lead to infeasible solutions. Next, we formalize the 
notion of local optimality for a distributed neighborhood structure. 

Definition 3.5. Given are an instance (S, f), with f : U t-+ lL., a distributed 
neighborhood structure V = (~.A,</>), and processor set 0. Then, a solution 
s E S is a local minimum of V if for each solution distribution o E ~(s, Q), 
processor p E 0, and partial neighbor o~ E .C(op) holds f(o~) 2:: f(op). o 

Using the concept of distributed neighborhood structures we can formulate the 
template for single-walk parallel local search given in Figure 3.3. In this algo­
rithm first a distribution of the current solution is chosen. Then, all processors 
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proc Single_ Walk (s : S) 
var o : 0 -+ U; D : P(O -+ U); 
begin 

D:=0; 
while ~(s, 0) \ D i= 0 do 

o E ~(s, 0) \ D; 
par p E 0 do IterativeJmprovement (op) rap; 
if gain found then D := 0; s := t/J(8t, ... , op) 
else D :~ DU {8} fi 

od { s is a local minimum of V} 
end 

Figure 3.3: A single-walk parallel local search algorithm. 
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simultaneously propose exchanges. Subsequently, a subset of the proposed ex­
changes is effectuated to obtain a new feasible solution. 1bis process is repeated 
until no solution distribution of the current solution can be improved upon, at 
which point a local minimum has been found. 

To guarantee termination of the algorithm, t/J should combine a set of neigh­
hors of s in such a way that, if any neighbor has lower cost than s, their combina­
tion also has lower cost than s. We define this termination condition as follows .. 

Definition 3.6. Given are a problem instance (S, f), a distributed neighborhood 
structure V = ( ~, )... , t/J), and a set of processors 0. Then, the combination func­
tion t/J is called progressive, if for all o E ~(s, 0), p E 0, and s E S holds that 
3a~E£(!,p)/(8~) < f(op) => f(t/J(o}, ... , oj,)) < f(s). o 

An important issue is raised by the question how we can compare a distributed 
neighborhood structure V with a conventional neighborhood structure N. This 
enables a comparison of the solutions found by a parallel local search algorithm 
with those found by a sequential local search algorithm. The following definition 
is useful for such a comparison. 

Definition 3.7. Given are a problem instance (S, f), a neighborhood structure 
N, and a distributed neighborhood structure V for this problem. Then, V is called 
isomorphic withN if, for any set of processors 0, holds that each local minimum 
of N is a local minimum of V, and vice versa. D 

If a distributed neighborhood structure V is isomorphic with a neighborhood struc­
ture N. then the expected average cost of final solutions found by sequential and 
parallel algorithms, are equal, provided that sequential and parallel algorithms 
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have equal probabilities for finding given local minima. 

Implementation issues. First, we discuss synchronous and asynchronous sin­
gle-walk parallel algorithms. In an algorithm with synchronous single-walk par­
allelism some step of the algorithm can be performed only in a state dependent 
on the state of all processors. 1bis can occur for example when global commu­
nication has to take place before a next step of the algorithm can be performed. 
Synchronization is typically required in a decentralized algorithm in which each 
processor has a copy of the current solution. In order to update all local copies of 
the current solution after some exchanges have been proposed, global communi­
cation is required. If there is a central control mechanism that manages access to 
the current solution, no inconsistencies in the current solution can occur. So pro­
cessors can then proceed independently from each other, although it may occur 
that some of the proposed exchanges cannot be effectuated because the current 
solution has already been altered by another processor. The choice between syn­
chronous or asynchronous parallelism is often determined by characteristics of 
the parallel machine at hand, such as the availability of common memory or the 
configurability of a machine in a master/slave model. As we want to abstract from 
machine-dependent issues, we do not further elaborate on this subject. 

The speed-up obtained with asynchronous and synchronous single-walk par­
allelism depends on problem characteristics and on the architecture of the target 
machine. 1\vo important issues to obtain a good speed-up are load balancing and 
communication overhead, which we briefly address below. 

In many single-walk parallel local search algorithms global communication 
is necessary because effectuation of an exchange has a global impact on the char­
acteristics of solution. If a machine allows direct communication with a central 
processor, or if it has common memory from which all processors can read effi­
ciently, then the overhead of asynchronous global communication is limited. In 
many other cases, however, global communication between all processors causes 
a substantial communication overhead. 

Load balancing is needed to reduce the amount of time processors are idle. In 
synchronous parallelism load balancing must be done by assigning equal amounts 
of work to all processors in between synchronization points. In asynchronous 
single-walk parallelism load balancing is needed only for processors that interact. 

Finally, the efficiency of single-walk parallelism is also determined by the ra­
tio between the time needed to evaluate the cost of a neighbor and to combinate 
and effectuate proposed exchanges. For this reason the data structures used to 
represent a solution are important, since these data structures determine the effi­
ciency of operations that have to be performed to effectuate proposed exchanges. 
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3.2.1 Single-step parallelism 

In the previous section, we have introduced a template to capture single-walk par­
allellocal search algorithms. In order to apply single-step parallelism to a given 
problem, the distributed neighborhood of Definition 3.4 is instantiated as follows. 
The distribution structure is chosen as .6-(s, Q) = {o : Q ---+ S I op = s for all 
p E Q} and the combination function is given by </>(St. ... , sp) E {si I 1 :::; 
i < P}. Moreover, it is not difficult to define a domain distribution that parti­
tion..~ a conventional neighborhood, which guarantees that the distributed neigh­
borhood is isomorphic with it. The distributed neighborhood of Definition 3.4 is 
now straightforward, since a complete solution is assigned to each processor, and 
the combination function effectuates one of the proposed exchanges. This means 
that the combination function only has to select a neighbor from the proposed 
neighbors. 

An advantage of single-step parallelism is its general applicability. Moreover, 
it results in a distributed neighborhood structure that is isomorphic with a conven­
tional neighborhood structure that uses the same exchange function. So, under 
mild conditions, it is guaranteed that the parallel algorithm finds the same qual­
ity solutions as a sequential algorithm. 

A disadvantage of single-step parallelism is the amount of speed-up that can 
be obtained. A local search algorithm with single-step parallelism explores neigh­
hors of a solution simultaneously. Subsequently, one of the neighbors replaces 
the current solution, which results in a single step in the neighborhood graph. The 
amount of speed-up that can be obtained by single-step parallelism strongly de­
pends on the number of exchanges that has to be examined before a proposed ex­
change is accepted. If best improvement is used as pivoting rule, then single-step 
parallelism gives good speed-up, because finding the neighbor with lowest cost 
requires scanning of the entire neighborhood of a solution. Best improvement is 
often used in tabu search, so single-step parallelism can be effectively applied in 
tabu search algorithms. However, best improvement is not always the most ef­
fective pivoting rule since for many problems the same quality solutions can be 
found with first improvement in smaller running times. 

For algorithms with first improvement the amount of speed-up that can be 
obtained by single-step parallelism depends on the stage of the search process 
that has been reached by the algorithm. If the current solution has few lower-cost 
neighbors, a situation arises that is almost similar to best improvement, since then 
it is more likely that a large proportion of neighbors has to be examined before a 
solution with lower cost is found. If the proportion of neighbors that would be ac­
cepted by a local search algorithm at a certain stage of the search process is given 
by a, then the maximum speed-up with single-step parallelism is ~, regardless of 
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the number of processors; see also [Roussel-Ragot & Dreyfus, 1990; Azencott, 
1992] for a theoretical analysis of the speed-up that can be obtained by single-step 
parallelism in simulated annealing. Generally, a is large in the beginning of the 
search process, and consequently the resulting speed-up is small at first. As the 
cost of the current solution decreases, a increases and thus the resulting speed­
up. So for a local search algorithm with first improvement, single-step parallel­
ism can typically be applied efficiently only in a later stage of a local search walk 
when low-cost solutions are reached. 

Examples. One the first examples of single-step parallelism in the literature is 
the algorithm ofKravitz & Rutenbar [1987] who apply asynchronous single-step 
parallelism to simulated annealing for the cell placement problem. They report a 
speed-up of 2.5 on a shared memory machine with four processors. Diekmann, 
Ltiling & Simon [1993] present asynchronous and synchronous single-step par­
allel simulated annealing algorithms for the traveling salesman problem and the 
link assignment problem. Their algorithms are implemented on a network of 120 
transputers. They obtain a speed-up of 35 for the traveling salesman problem 
and a speed-up of 70 for the link assignment problem. Kindervater, Lenstra & 
Savelsbergh [1993] present a local search algorithm with synchronous single-step 
parallelism for the time-constrained traveling salesman problem. Verification of 
local optimality can be done in O(log N) time with O(N2 I log N) processors on 
a PRAM machine, but no empirical results on a parallel machine are given. Syn­
chronous single-step parallelism is used by Ravikumar [1992] in an iterative best 
improvement algorithm for the traveling salesman problem. 

As already mentioned, many tabu search algorithms also use best improve­
ment as pivoting rule. Synchronous single-step parallelism can then be applied 
effectively, as is shown by Thillard [1990, 1991] for the flow shop sequencing 
problem and the quadratic assignment problem. Chakrapani & Skorin-Kapov 
[1993a, 1993b] use synchronous single-step parallelism in combination with best 
improvement for the traveling salesman problem and the quadratic assignment 
problem, respectively. Their algorithm is implemented on a massively parallel 
Connection Machine with 16,384 processors, but running times are compared to 
an implementation on a workstation only. They also report that 55 percent of the 
running time is spent for communication. Li & Pardalos [1992] use synchronous 
single-step parallelism in a parallel variable depth algorithm for the quadratic as­
signment problem. 

3.2.2 Multiple-step parallelism 

Essential to achieve a good speed-up with multiple-step parallelism is that a large 
proportion of the proposed exchanges can be effectuated in the combination step. 
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The applicability of multiple-step parallelism therefore strongly depends on tbe 
problem at hand, as the problem must allow effectuation of several proposed ex­
changes for a given solution. 

1\vo approaches to design distributed neighborhood structures can be distin­
guished based on whether or not solutions are decomposed into partial solutions. 
If the cost difference between two neighboring solutions can be computed using 
only information on the removed and inserted parts of a solution, then it might 
be profitable to decompose a solution and assign each partial solution to a pro­
cessor. This enables an efficient implementation of the combination function be­
cause a new solution can then be constructed without global communication. A 
disadvantage, however, is that exchanges that involve elements of different par­
tial solutions cannot be proposed. In order to find the same quality solutions as 
a sequential local search algorit:hm. different distributions have to be examined, 
which might lead to a complex distribution structure. 

Another approach in the design of distributed neighborhood structures is to 
provide each processor with a copy of the current solution and to define an appro­
priate domain distribution. This often leads to a distributed neighborhood that is 
isomorphic with a conventional neighborhood that uses the same exchange func­
tion. To achieve speed-up, however, an effective combination function is essen­
tial because effectuation of an exchange can prohibit effectuation of other ex­
changes to guarantee feasibility of solutions. Furthermore, global communica­
tion is often required in the combination function, which can lead to a large com­
munication overhead depending on tbe target machine's architecture. 

Examples. The traveling salesman problem of Example 2.1 is a typical exam­
ple of a problem for which decomposition of a solution is often used. Here a 
solution is a Hamiltonian cycle, and the cost difference between neighbors can 
be computed using only the lengths of removed and inserted edges. Moreover, 
it is possible to combine proposed exchanges without extensive communication. 
Most of the examples we discuss below are implemented on a distributed-memory 
MIMD machine and use synchronous parallelism. 

One of the first applications of multiple-step parallelism to the TSP is pre­
sented by Felten, Karlin & Otto [1985], who divide a tour in consecutive paths. 
Each path is assigned to a different processor. A new distribution is obtained by 
assigning adjacent edges that are assigned to different processors to the same pro­
cessor. Fiechter [1994] presents a parallel tabu search algorithm for the TSP that 
uses a similar solution distribution. Partial solutions that are assigned to proces­
sors consist of one path in the tour. New distributions of a tour are obtained by 
assigning different paths to processors. 

Allwright & Carpenter [1989] present a parallel simulated annealing algo-
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rithm for the TSP based on a distribution of a tour over a linear array of proces­
sors. A partial solution in this distribution consists of two non-adjacent paths in 
the tour. Edges are randomly reassigned to processors to obtain a new distribu­
tion. In Chapter 5 we present distributed neighborhood structures for the TSP 
based on a similar solution distribution. We prove that our distributed neighbor­
hoods are isomorphic with the well-known 2-exchange and 3-exchange neighbor­
hoods. Here, a new distribution is obtained by assigning a single edge to a new 
processor, which leads to synchronization between processors. In Chapter 5 we 
also present a parallel Lin-Kernighan algorithm based on domain decomposition. 
Each processor works on a copy of the entire tour, and the proposed exchanges 
are subsequent! y combined to a new tour, where as many as possible exchanges 
are effectuated in the combination function. 

Bachem, Steckemetz & Wottawa [1994] propose a solution distribution based 
on a geometric partition of the cities in a TSP instance. The partial solutions, 
which consist of Hamiltonian paths, are combined by a tour construction heuris­
tic. A new distribution is obtained by choosing a new geometric partition. 

Applications of multiple-step parallelism can also be found in the placement 
of cells in circuit layouting. Shahookar & Mazunder [1991] present an overview 
of this field. In most of the examples simulated annealing is used. For cell place­
ment problems a local change might have a global impact on a solution, since the 
cost of a solution is determined by the relative position of pairs of cells. If no re­
strictions are imposed, effectuation of proposed exchanges can lead to erroneous 
cost computation. Erroneous cost computation changes the convergence behav­
ior of simulated annealing, but various empirical results in the papers below show 
that simulated annealing for cell placement is rather robust to errors in the cost 
evaluation. Romeo & Sangiovanni-Vincentelli [1991] present some theoretical 
results on erroneous cost evaluation in simulated annealing. 

Darema, Kirkpatrick & Norton [1987] use a solution distribution in which 
they assign the cells to processors, so each partial solution consists of a subset 
of the set of cells, and all proposed exchanges are accepted by the combination 
function. A new distribution is obtained by randomly reassigning different cells 
to each processor. They compare two solution distributions: one that guarantees 
correct cost computations and one that allows errors in the cost computation. A 
drawback of the first approach is that only a limited number of processors can 
be used, which prohibits scaling of the algorithm. The second approach does not 
suffer from this drawback. Their empirical results show that both approaches find 
the same quality final solutions. Jones & Banerjee [1987] present a similar algo­
rithm in which they also decompose a solution. A new decomposition is obtained 
by exchanging cells between neighboring processors, and the combination func-



3.2. Single-walk parallelism 33 

tion accepts all proposed exchanges, which may lead to erroneous cost computa­
tions. The algorithm is implemented on a distributed MIMD machine. Casotto, 
Romeo & Sangiovanni-Vincentelli [1987] use a local search heuristic to find a 
new decomposition of the solution that minimizes the probability of erroneous 
cost computation. These errors are caused by accepting all proposed exchanges 
without checking the position of cells in the newly constructed solution. Their 
algorithm is implemented on a shared-memory parallel machine. A hybrid al­
gorithm that uses both multiple-walk and multiple-step parallelism is presented 
by Rose, Snelgrove & Vranesic [1988]. They apply multiple-walk parallelism at 
high temperatures of the simulated annealing algorithm and multiple-step paral­
lelism during low temperature annealing, because at low temperatures erroneous 
cost computation is less likely to occur due to the low acceptance rate. 

Barbosa & Gafni [1989] present a simulated annealing algorithm with multi­
ple-step parallelism that can be applied to problems for which only a single ele­
ment is replaced in the exchange function of the neighborhood structure. More­
over, such an exchange must have limited interaction with other elements of a 
solution. They propose a solution decomposition approach that guarantees that 
no erroneous cost computation can occur when all proposed exchanges are ef­
fectuated, at the cost of a limited number of employable processors. As a conse­
quence, the maximum speed-up that can be obtained with their approach depends 
on characteristics of the problem instance at hand. 

Another example of multiple-step parallelism is the algorithm of Savage & 
Wloka [1991] for the graph partitioning problem, for which they propose a solu­
tion distribution based on decomposing a solution. The combination function ei­
ther accepts all proposed exchanges if the resulting global solution has lower cost, 
or it rejects all proposed exchanges if the resulting global solution has higher cost. 
Such a combination function has low computational overhea~ but it also may ef­
fectuate individually deteriorating exchanges. 

Boissin & Lutton [1993] present a framework for parallel simulated anneal­
ing based on multiple-step parallelism. Exchanges are proposed according to the 
conventional acceptance criterion of simulated annealing, and the combination 
function probabilistically accepts or rejects all proposed exchanges-that is, it 
accepts or rejects the global solution resulting from these exchanges. The algo­
rithm is tested on the quadratic assignment problem and on a 0-1 quadratic func­
tion minimization problem, displaying moderate speed-ups when implemented 
on a connection machine and compared to implementations on a workstation. 

Thillard [1993] and Garcia, Potvin & Rousseau [1994] propose parallel tabu 
search algorithms for vehicle routing. Thillard proposes a solution distribution in 
which entire, geographically close, routes are preferably assigned to processors 
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tllat are directly connected in the processor network on which the algorithm is 
implemented, A new distribution is obtained by assigning elements to neighbor­
ing processors, Garcia, Potvin & Rousseau propose a domain distribution for the 
vehicle routing problem with time windows, Their combination function consec­
utively effectuates the proposed exchanges in order of descending gain, 

3.3 Complexity issues of parallel local search 

In this section we discuss some issues related to the parallel complexity of finding 
local optima, For an overview of the complexity theory of parallel computations, 
the reader is referred to [Greenlaw, Hoover & Ruzzo, 1995], 

IfPLS-complete problems require superpolynomial running times, as is con­
jectured by Yannakakis [1996], then parallel algorithms that find local minima 
using a polynomially bounded number of processors, which is the case in any re­
alistic machine model, will also run in superpolynomial time, Therefore, we re­
strict ourselves to the parallel complexity of the verification problem, the problem 
of deciding whether a solution is a local optimum, Consider a problem instance 
( S, f) and a neighborhood structure N, then we have the following result 

Theorem 3.2. Let i.N(s)l = b(n) > lfor all sE S, where n denotes the size of 
a solution, and let c(n) be the time complexity of deciding whether f(s') ~ f(s) 
for a given solution s' E N (s ), Then, a parallel algorithm for the verification 
problem exists that uses b(n)jlog b(n) processors on a PRAM and that has a time 
complexity ofO(c(n) logb(n)) and an efficiency ofO(l), 
Proof. The sequential time complexity for this problem is O(c(n)b(n)), Parti­
tion the neighborhood in b(n)jlogb(n) sets that contain log b(n) solutions, Use 
an algorithm with synchronous single-step parallelism, Its time complexity is 
O(c(n) logb(n)) + O(log(b(n)/log b(n))), o 

In Chapter 1 we have discussed the complexity class BP introduced by Kruskal, 
Rudolph & Snir [1990] that contains problems for which an efficient parallel al­
gorithm on a PRAM machine exists. Recall that a problem is in BP if there exists 
a parallel algorithm with speed-up that scales with the instance size and for which 
the computational effort, the time complexity of the parallel algorithm multiplied 
by the number of processors, is equal to the time complexity of the sequential al­
gorithm. Theorem 3.2 now leads to the following corollary. 

Corollary 3.1. If the complexity of the problem to decide whether f(s') ~ f(s) 
fors E Sands' E .N(s) is polynomially bounded in the instance size and if 
neighborhood sizes are also bounded polynomially, then the verification problem 
is in the class EP. Moreover, if the former problem is in NC, then the verification 
problem for N is in NC. 
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Proof. Let c(n) = O(nu) be the complexity of the problem to decide whether 
f(s') ?.:: f(s) fors E Sands' E N(s), and let b(n) = O(n 11

) be the neighbor­
hood size for instances of size n. Let Tp be the time required by an algorithm for 
the verification problem withpprocessors. Then, T1 = O(b(n)c(n)) = O(nu+v) 

andaccordingtoTheorem3.2for p = Io!Wln) holds Tp = O(c(n)logb(n)) = 
O(nu logn11

). It remains to show that Tp O(Tt) forE < 1. It holds that 
Tp = O(nu logn) = O(nun°) foro > 0. For any o and E such that 0 < o < v 
and ill < E < 1 holds T = O(nuH) O(n<u+v)E) = O(T€) Further-u+v - P 1 · 
more, Tp · p = O(T1). Thus, the verification problem is in EP. Moreover, if 
c(n) = (log n) O(l) on a PRAM, then the verification problem is NC. o 

Corollary 3.1 shows that verification oflocal optimality can be done in polyloga­
ritllmic time with a polynomially bounded number of processors, if the cost eval­
uation of a neighbor can be done in polylogaritllmic time. This typically holds 
when the cost evaluation of a neighbor is 0(1), for example in the 2-exchange 
neighborhood for the TSP. Corollary 3.1 shows that it is possible to design an 
efficient parallel algorithm for the verification problem with speed-up that is pro­
portional to the size of the problem. The running time of this parallel algorithm 
can still be polynomial, but in practical situations one is satisfied with parallel 
algorithms with a good speed-up that scales with the instance size. 

Another important topic is the complexity of finding a local optimum of a dis­
tributed neighborhood structure. The notion of PLS-completeness and the defi­
nition of the class PLS can also be applied to the problem of finding a local op­
timum of a distributed neighborhood structure. Using this extension, we obtain 
the following result. 

Theorem 3.3. Let a distributed neighborhood structure V be isomorphic with a 
neighborhood N. If the problem of finding a local optimum of N is PLS-complete, 
then the problem of finding a local optimum of'D is PLS-complete. o 

Finally, we discuss upper bounds on the speed-up that can be obtained with the 
various approaches discussed in this chapter. We assume that we have an infinite 
number of processors at our disposal. The number of processors that can be em­
ployed in multiple-walk parallelism is not bounded by a polynomial in the size of 
the instance, so here we do not have a polynomial upper bound on the maximum 
speed-up. In an algorithm with single-walk parallelism the maximum speed-up 
is at most the size of neighborhoods because at least one neighbor has to be eval­
uated by each processor that contributes to the speed-up. Most neighborhoods 
have low-order polynomial sizes. In practice the number of processors of a par­
allel machine is typically much smaller than the neighborhood size, so the number 
of available processors is then a trivial upper bound on the maximum speed-up. 
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4 
Multiple Independent Walks 

The most straightforward approach to introduce parallelism in local search is to 
perform multiple independent runs of a local search algorithm simultaneously 
since this requires no complex parallelization scheme or even dedicated parallel 
hardware. An important question is therefore to what extend such an approach 
can be successful. In this chapter we analyze the speed-up that can be obtained by 
performing several independent walks in the neighborhood graph simultaneously. 
In this analysis we concentrate on iterated local search for the traveling salesman 
problem but the conclusions drawn from it can be applied to other problems and 
local search variants as well. The outline of this chapter is as follows. Section 4.1 
presents a theoretical and empirical average-case analysis of a 2-opt algorithm for 
the TSP. Section 4.2 gives a semi-empirical analysis of the average-case perfor­
mance of an iterated 2-opt and Lin-Kernighan algorithm. The main results of this 
chapter are discussed in Section 4.3 in which we show how these results can be 
used to analyze the speed-up achieved by multiple independent walks. 

The performance of local search algorithms can be quantified by the relative 
excess of the obtained final solutions and the required running time. Empirical 
results show that local search can find good-quality solutions within low-order 
polynomial running times. It is, however, conjectured that worst-case running 
times cannot be bounded polynomially; see also Section 2.1. Furthermore, it is 
not possible to give theoretical upper bounds on the relative excess of local min­
ima. So there is a considerable difference between the worst-case and empiri-

37 
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cal average-case behavior of local search algorithms. 1beoretical average-case 
analysis is therefore useful to provide a better understanding of local search al­
gorithms. However, only a few results on average-case analysis of local search 
are presented in the literature. 

The TSP, defined in Example 2.1, belongs to the class of NP-hard problems 
[Garey & Jobnson, 1979]. We consider only symmetric TSP instances, in which 
distances satisfy ~i = dji. for each i, j E V. The average cost of the solutions 
found by local search strongly depends on the choice of the neighborhood struc­
ture. Therefore, various neighborhood structures have been introduced for the 
TSP, most of which are based on edge exchanges. In the 2-opt neighborhood Nz 
of Croes [1958], formally specified in Example 2.1, a tour t' is a neighbor oftour 
t, if t' can be obtained from t by removing two edges and inserting two edges 
such that t' is obtained. 

For an overview of the worst-case complexity and empirical behavior of lo­
cal search for the TSP, we refer to [Johnson & McGeoch, 1996]. Others have ad­
dressed the theoretical average-case behavior of local search. Stadler & Schnabl 
[1992] investigate the structure of the 2-opt neighborhood using simplifications 
for dependencies between neighbors that lead to a flawed model. Kern [1989] 
showed with a probabilistic analysis that the 2-opt algorithm for Euclidean in­
stances of the TSP has an average-case running time that is polynomially bounded. 
Other probabilistic models for local search have been studied by Tovey [1985]. 
In this study artificial problems are considered with special neighborhood graphs 
consisting of regular structures, e.g., the hypercube. The cost function for these 
problems is chosen to induce an orientation on this graph. Different cost distri­
butions are considered and for some cases low-order polynomial average-case 
running times are proved. More recently, Chandra, Karloff & Tovey [1994] ob­
tained similar results for 2-opt and 3-opt algorithms for the TSP, and derived up­
per bounds on the average cost of the local minima obtained by these algorithms. 
Most effort is focused on providing upper bounds on the average-case behavior 
of local search. We are interested in the actual distribution of the cost of local 
minima and the required number of steps to find them, instead of upper bounds 
on the average-case behavior only. 

4.1 A probabilistic analysis for the 2-opt neighborhood 

In this section we discuss the distribution of local minima found by iterative best 
improvement algorithms with the 2-opt neighborhood and the distribution of the 
number of steps required to find local minima. The distribution of local min­
ima and the distribution of final solutions found by iterative improvement are not 
equivalent because not all local minima have the same probability of being found 



4.1. A probabilistic analysis for the 2-opt neighborhood 39 

by an iterative improvement algorithm. It may be the case that local minima with 
low cost have a larger attraction region than local minima with high cost and are 
therefore more often found by local search. 

An instance of the TSP is completely specified by its distance matrix. As 
the first step in our approach we assume that the distances dij are independently 
drawn from a given distribution. Such instances are called random distance ma­
trix instances. Such instances are commonly considered in probabilistic analy­
sis; see for instance [Kirkpatrick & Toulouse, 1985; Weinberger, 1991]. How­
ever, it should be noted that the assumption of independence is in fact a restriction 
that excludes Euclidean instances, because then the distances are dependent. It is 
possible to associate a class of instances with a distribution by letting the edge 
lengths fbi be independent identically distributed random variables with mean 
ILl and variance 0'?. Consequently, we can also view the cost f (t) of a tour t 
as a random variable, i.e., the sum of n independent, identically distributed edge 
lengths, where n is the number of cities in an instance. According to the central 
limit theorem, f (t) has approximately a normal distribution with mean p, = np,1 
and variance 0'2 nO'l. The corresponding density of tour lengths is called CUtour· 

4.1.1 The distribution of final solutions 

Consider a tour t E Sk. where Sk is the set of solutions that can be reached in k 
best improvement steps, starting from an arbitrary initial solution. The analysis 
of iterative best improvement is based on the computation of the step probability 

8k(C, c') = IP{'v'r'EAfz(t) f(t') > c' I f(t) = c 1\ t E Sk}, (4.1) 

that is, the conditional probability that all neighbors of tour t have costs larger 
than c' given that a tour t found after k steps has cost c. The computation of ( 4.1) 
is discussed in the next section. Various notions can be expressed in terms of 
the step probability g defined in (4.1). First, note that go(c, c) is the probability 
that an arbitrary tour with cost c is a local minimum. Hence, the density of local 
minima is given by 

(4.2) 

where A is the probability that an arbitrary tour is a local minimum, given by 
00 

j go(c, c)cutour(c)dc. (4.3) 

-oo 

Consider a tour t E Sk that is not a local minimum. Let S' denote the set of local 
minima. Recall that in best improvement a step is made to a neighbor with lowest 
cost. To investigate such a step, we compute for c' < c the probability 

lP{ min f(t1
).:::; c' I f(t) = c 1\ t E sk \ S'} = 

t'EAf2(t)- -



40 Multiple Independent Walks 

IP{min r'E.N"2(r)[(t') ::.:: c' I [(t) =cAt E Sk} 

IP{t E sk \S' I /(t) = c} 

1- gk(c, c') 

1 gk(c, c) ' 
where we have used the fact that t cannot be a local minimum if f(t) = c and 
min t'EN'z(t) f(t') ::.:: c' <c. The density corresponding with the above probabil­
ity is 

-bgk(c, c') 
1- gk(c, c) · 

This expression is the density as function of c' of the cost after k + 1 best im­
provement steps, given that the tour found after k steps has cost c and is not a 
local minimum. 

The density of the local minima found after k best improvement steps can be 
described by the following recurrence relations. Let Pk be the density of the local 
minima found after at most k steps and let 'f/k be the density of the remaining tours. 
If we start the sequence of best improvement steps with a randomly generated 
tour, then 'f/o = Wtour and po(c) = 0, for all c. After the kth step the density of the 
residual tours equals 'flk· Consider such a tour with cost c. There is a probability 
gk(c, c) that it turns out to be a local minimum. This is found out in the k + 1 fh 

step, hence 

Pk+l (c) = Pk(c) + gk(c, c)'f/k(c). (4.4) 

On the other hand, there is a probability 1 - gk(c, c) that the tour with cost c is 
not a local minimum. Then, with probability density Pt(c, c'), it is transformed 
into a tour with cost c' in the k + 1 th step. Hence, 

00 

'f/k+1 (c') = J 'f/k(c)(1 - gk(c, c))Pk(c, c')dc. (4.5) 

c' 

This set of recurrence relations allows us to compute the densities of the detected 
local minima and the residual tours after an arbitrary number of steps. Then, 
limk..,.oo'f/k = 0 and limk..,.ooPk = Pfin• the density of the final solutions. More­
over, note that Pk Pk-1 is the density of the local minima found in the kth step. 
So if steps is the random variable describing the number of steps until a local 
minimum is found, then 

00 

IP{steps = k} = J 8k-l (c, c)rJk-1 (c)dc. (4.6) 

-00 
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4.1.2 Evaluation of the step probability 

The problem has been reduced to evaluating the step probability (4.1). The joint 
distribution of f(to), j(t1), ... , f(tb) is needed to compute this probability for 
an arbitrary tour to with neighboring tours t1, ... , tb, where b = 1Af2(to)l = 
n · (n - 3) /2. These tours have a large number of edges in common, so the corre­
sponding tour lengths are not independent. 1\vo arbitrary tours s and t that have 
m edges in common, have a covariance given by 

IE{(f(t)- ~L) · (f(s) ~L)} =mol, 

where IL = n~Lz is the mean tour length. ILl the mean edge length, and a? the 
variance of edge lengths. The tour to and each of its neighbors ti, with 1 ~ i ~ 
b, haven - 2 edges in common. However, two neighbors of t0 , say t; and lj, 
can have n - 3 or n - 4 edges in common. The case of n - 3 common edges 
occurs if, while going from to to ti respectively t i, a common edge is removed or 
inserted. Consequently, the (b + 1) x (b + 1) covariance matrix of the random 
variables f(to), j(t1), ... , f(tb) is rather complicated, which makes it difficult 
to compute or numerically approximate the right hand side of (4.1) for the 2-opt 
neighborhood. Therefore, in the remaining part of this section we concentrate 
on the neighborhood Afi that is a restricted version of the 2-opt neighborhood in 
Example 2.1 defined by 

Nlz(t) = {1dt, ei, eh(t)) 11 ~ i < h(t) -1 v h(t) + 1 < i ~ n}. 

So whereas in the conventional 2-opt neighborhood two arbitrary edges can be 
removed, here one of the edges to be removed from a tour t = {et, ... , en} is 
fixed and is given by h(t) for a function h : S -+ {1, ... , n}. In this neighbor­
hood structure a tour t has only b = IAfi (t) I = n - 3 neighbors, and all these 
neighbors have n - 3 edges in common. 

If we assume that the probability of ( 4.1) does not depend on the number of 
local search steps, so gk(c, c') = g(c, c') for all k, then the transition properties 
and several related notions for the best improvement algorithm can be computed 
for the Afi neighborhood structure. Note that go(c, c) can be computed without 
this assumption. If edge lengths are normally distributed with mean ILl and vari­
ance at2, then the costs /(to), f(t1), ... , f(tb) have a joint normal distribution 
[Papoulis, 1965] with mean IL and covariance matrix R given by 

Ru = nol for 0 ~ i ~ b 
RiO= Roi = (n - 2)a? for 1 ~ i ~ b 
Rij= Rji= (n 3)az2 for 1 ~ i < j ~ b, 

where Rii gives the variance, RiO the covariance between to and its neighbors, 
and R1j the covariance between two neighbors of to. As (4.1) is a conditional 
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probability, we have to compute the conditional density Wcond(cb •.. , Cb I c), 
i.e., the density of f(ti), ... , f(tb) given that /(to) = c. It is a known result 
(see for instance [Papoulis, 1965]) that Wcond is again a joint normal density, with 
all means equal to JL' = JL + RiO/ Roo(c - JL) = (1 - 2/n)c + (2/n)JL. The 
variances are given by rii = Ru - Roi2 1 Rii = (4- 4/n)crt2 and the covariances 
by riJ RiJ- RiORJo/Roo (1-4/n)rrt2. Now (4.1) can be rewritten as 

00 00 

g(c, c') = J dc1 · · · J dcb CUcond(CJ, .•. , Cb I c). 

c' c' 

The essential observation is that now all covariances are equal and positive. In 
this case the b~fold integral can be simplified to a single integral [Stuart & Ord, 
1987]. This results into 

1 /oo ,2 (1 (c'-(t-1)c-2JLt IIT)2 )b 
g(c, c') =- . e-2 -erfc n - s --- ds, 

J2i 2 ,J6a1 6 3n 
-oo 

which can be computed numericaily. 

4.1.3 Empirical results 

We validate our model for the density of final solutions Pfin and for the density 
(4.6) of the required number of steps by comparing them with empirically ob­
tained densities. We consider instances with 200 and 400 cities in which edge 
lengths are distributed according to a standard normal distribution, which implies 
that tour lengths can be negative. Other distributions of edge lengths in which 
costs of neighbors. can be approximated by a joint normal distribution, may also 
be considered. The results are computed from averages over five instances, al­
though there is little difference between the means of local minima in individual 
instances since these quantities are self-averaging, which means that these quan­
tities are equal for sufficiently large instances in which edge lengths are samples 
from the same distribution. For each instance we have sampled 20,000 local min­
ima found by an iterative best improvement algorithm. The fixed edge h (t) in the 
neighborhood N5_(t) is randomly chosen for a tour t. 

Figure 4.1 and 4.2 give the results for instances with 200 and 400 cities, re­
spectively. In these figures, the density Pfin of the costs of final solutions found 
by a best improvement algorithm is depicted. Furthermore, the density of (4.6) 
of the number of steps required by a best improvement algorithm to find a local 
minimum is given. We observe that the theoretical predictions fit well with the 
empirical results, so our model adequately describes the behavior of local search 
for these instances. 
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Figure 4.1 : Results for instances with 200 cities. 
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Figure 4.2: Results for instances with 400 cities. 
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The probability that an arbitrary tour is a local minimum is given by ( 4. 3). For 
n 100 this probability amounts to 1.23 ·10-4 • We determined empirically the 
density oflocal minima for five instances with 100 cities by randomly generating 
37 million tours of which 4410 turned out to be local minima. The lefthand side 
of Figure 4.3 gives the corresponding empirical density as well as the theoreti­
cal density of local minima given by (4.2). Again, we obtain a good fit between 
theoretical and empirical results. 

Therighthand side ofFigure4.3 presents the density of local minima as given 
by ( 4.2) and the density of final solutions as obtained by iterative best improve­
ment for instances with 100 cities. Typically, the average cost of final solutions 
is much lower than the average cost of local minima. This implies that low-cost 
local minima have a much larger attraction region and therefore a much higher 
probability of being found by local search than high-cost local minima, which is 
of course an advantageous property for the performance of local search. 

Empirical distributions for 2-opt and Lin-Kernighan. Next, we present dis­
tributions of final solutions obtained by a first improvement 2-opt algorithm and 
a Lin-Kemighan algorithm, discussed in more detail in Chapter 5, to show that 
the distribution shapes observed for the more artificial random distance matrix 
instances and restricted 2-opt neighborhood we used in our theoretical analysis, 
are also instructive for real-world Euclidean instances. 

Figure 4.4 shows empirical results for a number of real world instances from 
the TSP library ofReinelt [1991], where the number in an instance name denotes 

2-opt Lin-Kernighan 
20 24 

20 

16 

% 
12 

8 

4 

2 4 
deviation 

Figure 4.4: The distribution of final solutions. For the 2-opt algorithm, the solid line 
gives the results for kro200, the short-dashed line for lin318, and the long-dashed line 
for pcb442. For the Lin-Kernighan algorithm these lines give results for pcb442, u574, 
and pr1002, respectively. 
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its size. In these figures, the frequency is plotted against the relative excess over 
the optimal solution value. Our empirical investigation of the distribution of final 
solutions obtained by 2-opt and Lin-Kernighan algorithms reveals two interest­
ing properties. First, we have statistically validated that final solutions are dis­
tributed according to gamma distributions. Secondly, we have observed that the 
standard deviation of these distributions decreases when the instance size grows. 
These characteristics are an important aspect of a neighborhood for iterated local 
search or other more advanced local search algorithms, because they indicate the 
additional computational effort required by iterated local search to find lower -cost 
local minima. 

4.2 A semi-empirical analysis of iterated local search 

Iterated local search algorithms repeatedly execute an iterative improvement al­
gorithm. Each time the iterative improvement algorithm terminates, the last or 
best local minimum found is modified and the iterative improvement algorithm 
is restarted with the modified local minimum [Johnson, 1990; Martin, Otto & Fel­
ten, 1991; Boese, Kahng & Muddu, 1994]. The best heuristic to handle the TSP 
is the iterated Lin-Kernighan algorithm of Johnson [1990]. In Johnson's iterated 
Lin-Kernighan algorithm the best local minimum found so far is modified by a 
4-exchange, which replaces four edges by four new edges, and used as starting 
solution for the next run of the Lin-Kernighan heuristic. 

In this section we approximate the average running times iterated local search 
algorithms need for finding a solution within a given relative excess over the opti­
mal solution. Time is measured by the number of tours whose costs are evaluated. 
Our analysis is of a semi-empirical nature, which means that the average num­
ber of evaluations is expressed as a function of empirically obtained parameters. 
These parameters are the distribution of final solutions and the average number 
of steps needed to find them. 

The average number of iterations and the number of evaluations performed 
per iteration are needed to approximate the average running time. We, further­
more, assume that an iterated local search algorithm samples local minima, which 
means that we neglect the intermediate solutions generated by the iterative im­
provement algorithm. Let i tnr E be the random variable that gives the number of 
iterations until a solution with a given relative excess E has been found, then 

i 

IP{itnrE::::: i} = 1- n(l-IP{f(Sk)::::: (1 +E)/opt}). (4.7) 
k=l 

where Sk is the final tour obtained at iteration k E IN. 
1b determine the average number of iterations needed, we assume that the 
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modification mechanism is primarily a diversification mechanism. Tims, we con­
sider subsequent local minima to be independent, and consequently the probabil­
ity IP{f(sk) :::; c} is independent of k. This may seem a rather strong assumption 
since the modification mechanism only changes four edges in a local minimum, 
but the final solution obtained from this modified local minimum typically differs 
in much more edges from the original local minimum. Given the density Pfin of 
the costs of final solutions, we then have 

(l+e)/opt 

IP{f(sk) :::; (1 + €)/opt} = J Pfin(c)dc. 

-oo 

Let p., denote the above probability, then the probability of (4.7) is given by 

IP{itnr., :::; i} = 1 - (1 - p.,)i. (4.8) 

Expression (4.8) implies that the number of iterations is distributed according to 
a geometrical distribution. So the average number of iterations to find a solution 
within a given relative excess € is equal to 1/ p.,. 

In order to approximate the average number of evaluations needed per iter­
ation, we need the following observations. After the first iteration the iterative 
improvement algorithm starts with a tour that differs only four edges from a lo­
cal minimum. Consequently, the average number of evaluations required in sub­
sequent iterations is substantially lower than that required in the first iteration, 
which is also observed from empirical results. Hence, we differentiate between 
the following two values. 

• kt, the average number of evaluations needed to reach a local minimum 
from a start solution. 

• k2. the average number of evaluations needed to reach a local minimum 
from a solution obtained by modifying a local minimum. 

The values of kt and k2 are obtained empirically. They depend strongly on the 
heuristic used to construct start solutions and on the instance at hand. 

Let evals € denote the random variable that gives the number of evaluations 
until a solution with a given relative excess € is found. Then, evals., = kt + 
(itnr., - l)k2, and 

(4.9) 

The expected number of evaluations needed to find a solution within a given rel­
ative excess € is equal to kt + <;, - l)k2. 
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4.2.1 Empirical results 

We have analyzed iterated 2-opt and Lin-Kernighan algorithms with a 4-exchange 
similar to the one utilized by [Johnson, 1990] of the best local minimum found 
as modification mechanism. Both algorithms have been tested on instances from 
the TSP library. In order to acquire the average number of evaluations empiri­
cally, 100 executions of the iterated local search algorithm have been performed 
for each instance. 

Figures 4.5 and 4.6 show the probability of (4.9) for finding a solution within 
a relative excess E in a given number of evaluations by the iterated 2-opt algorithm 
for the instance kro200 and the iterated Lin-Kernighan algorithm for the instance 
u574, respectively. The value of PE• the probability that a local minimum has at 
most the given relative excess E, and the value of kt and k2 are obtained empiri­
cally by sampling 1,000 local minima obtained from random start solutions or ap­
plying 4-exchanges to local minima, respectively. The solid curves represent the 

E -6% € =5% € =4% 
100 ,-·-· 100 .-"- 100 ,,..... 

,r' --
80 -' 80 r 

I I 
60 ( 60 f 

% % % 

40 
I 40 

l 

I I 
20 20 

0 0 
0 0.5 1 1.5 2 0 1 2 3 4 5 6 7 6 9 12 15 

evaluations (X1E7) evaluations (X 1E7) evaluations (X 1E7) 

Figure4.5: Probability of finding a tour with at most relative excess E as function of the 
running time using iterated 2-opt for kro200. 
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Figure 4.6: Probability of finding a tour with at most relative excess E as function of the 
running time using iterated Lin-Kernighan for u574. 
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theoretically predicted distributions, the dashed curves the empirically obtained 
distributions. Iterated local search for other instances, not shown in Figure 4.5 
and 4.6, displays a similar behavior. 

We observe that a good agreement between our theoretical prediction and the 
empirical results is only obtained for low values of the desired relative excess <=. 

This is explained by the observation that even a small under- or overestimation of 
the probability p6 can have a large effect on the theoretical curves. Furthermore, 
we have found that the empirical distributions fit well with geometrical distribu­
tions that are slightly translated to compensate for the initial behavior. 

4.3 Parallel iterated local search 

In Section 4.2 we have given an expression for the probability that an iterated lo­
cal search algorithm has found a solution with a given relative excess <= over the 
optimal solution assuming that subsequent local minima are independent. Con­
sider an algorithm that carries out P independent runs of an iterated local search 
algorithm, and let itnr E,P be the random variable that gives the number of itera­
tions until this algorithm has found a solution with a given relative excess €. We 
have that 

IP{itnr E,P ::; i} = 1 - (1 - p6 )iP, 

where P~: denotes the probability that a local minimum has a relative excess of at 
most <:. Hence, the expected number of iterations needed by P parallel runs of 
an iterated local search algorithm equals 

1 
1- (1- p6)P' 

Recall that kt and k2 denote the average number of evaluations needed for find­
ing the first local minimum and that for finding subsequent local minima, respec­
tively. At least one iteration is needed so the average running time for finding a 
suboptimal solution with P independent parallel runs can be approximated by 

1 
kt + <1 _ (1 _ p,JP -1)kz. 

Consequently, the expected speed-up for P independent parallel runs is given by 

kt-k2 + h 
su(P) = i; 

kt - k2 + 1-(1-p,)l' 

In order to analyze the scalability of this approach, we still have to determine the 
number of processors that can be employed effectively. Therefore, we examine 
the typical speed-up of the algorithm as a function of the problem parameters. 
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The speed-up is bounded by 
1 kz 

lim su(P) = 1 + (- - 1)-. 
P-HXi p., kt 

We see that more processors can be employed effectively when final solutions 
with low relative excess fi are sought because then p., is small More processors 
can also be employed when kt and kz, the times for finding the first local min­
imum and subsequent local minima, are roughly equal. This generally occurs 
when smaller instances are attempted, or when better-quality starting solutions 
are utilized. In particular, for k2! k1 --+ 1 holds that the speed-up is bounded by 
1/ P€· Note that kz/ k1 = 1 means that the probability of finding a suboptimal so­
lution is distributed according to a geometrical distribution. On the other hand, 
for kz/ kt --+ 0 there is no speed-up at all. Furthermore, limp,_,.o su(P) = P, 
which implies that in this case a nearly linear speed-up can be achieved with mul­
tiple independent walks. 

4.3.1 Computational study 

Next, we present a computational study of the expected behavior of parallel in­
dependent runs of an iterated local search algorithm, which can be characterized 
by the obtained efficiency. 

In order to compute the expected speed-up, the empirical distributions pre­
sented in Section 4.2 are fitted with translated geometrical distributions, which is 
necessary to get a good fit for the initial part of the distribution that corresponds 
with the time needed to find the first local minimum. The empirical distributions 
are accurately described by this translated geometrical distribution, except for the 
distributions in which the desired relative excess was relatively high. In these 
cases, the probability of finding a solution with a given relative excess increases 
initially less than exponentially. Consequently, our approximation overestimates 
the achieved efficiency for runs in which final solutions with high relative ex­
cesses suffice. 

Figure 4. 7 shows efficiencies that can be reached with parallel algorithms 
that perform multiple independent runs of iterated 2-opt or Lin-Kernighan al­
gorithms. The expected efficiency is plotted as a function of the number of em­
ployed processors. We observe that good speed-ups can be obtained with multiple 
independent runs of an iterated local search algorithm. Moreover, the efficiency 
increases when the desired relative excess is lowered, as explained by the obser­
vations in the previous section. 

Summarizing this chapter, we remark that it is possible to achieve good speed­
ups with multiple independent walks of an iterated local search algorithm or other 
algorithms that sample local minima, such as tabu search algorithms, if the prob­
ability of finding suboptimal solutions is distributed geometrically. For this it is 
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Figure 4.7: Efficiency of parallel iterated 2-opt (left) and iterated Lin-Kernighan (right) 
for kro200 and u574 and given relative excesses. 

essential that the time to reach a region in the neighborhood graph that contains 
high-quality solutions, starting from an initial solution, is roughly equal to the 
time to reach other such regions from this region. Nearly linear speed-ups can 
be achieved if solutions are sought whose relative excess is substantially lower 
than the average relative excess of local minima. An important prerequisite for 
these results is that the iterated local search algorithm at hand should eventually 
be able to find solutions within a given relative excess when continued sufficiently 
long, which in fact requires that a neighborhood is sufficiently connected and that 
each solution in a connected component of the neighborhood graph has a positive 
probability of being visited in a local search walk. 



5 
The Traveling Salesman Problem 

In this chapter we present local search algorithms with multiple-step parallelism 
for the traveling salesman problem based on the 2-opt and 3-opt neighborhoods 
ofLin [1965]. Furthermore, we present a parallel implementation of the variable­
depth algorithm of Lin & Kemighan [1973]. Our parallel Lin-Kernighan algo­
rithm uses neighborhood reduction techniques and efficient data structures. The 
algorithm is tested on a network of 64 transputers and on a network of 32 Pow­
erPC's. Its performance is empirically analyzed for real-world problem instances 
with up to 85,900 cities from Reinelt's TSP library. Our parallel Lin-Kernighan 
algorithm is competitive with the best known sequential implementations of the 
Lin-Kernighan algorithm, both with respect to quality of final solutions and run­
ning times. 

5.1 Local search for the traveling salesman 

Much of the theory for combinatorial optimization has been developed using the 
TSP as a proving ground [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985]. Im­
pressive results have been obtained using elaborate branch and bound algorithms. 
The largest real-world problem solved to optimality is currently an instance with 
7,397 cities, which required several months of running time on a network of pow­
erful workstations [Applegate, Bixby, Chvatal & Cook, 1994]. 

A classical example of a local search algorithm for the TSP is the variable­
depth algorithm ofLin & Kernighan [1973]. The best approximation algorithm 
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for the TSP is the iterated Lin-Kernighan algorithm of Johnson [1990], which 
uses multiple runs of the Lin-Kernighan algorithm with a random 4-exchange to 
obtain a new starting solution. It finds solutions with average quality of 0. 7% over 
the Held-Karp lower bound on random Euclidean instances. 

However, large real-world instances, such as those originating from circuit 
board lay-outing [Reinelt, 1992] and x-ray crystallography [Bland & Shallcross, 
1989], still require substantial amounts of running time. To reduce the running 
time of the Lin-Kernighan algorithm various advanced data structures and neigh­
borhood reduction techniques have been proposed [Bentley, 1990; Fredman, John­
san, McGeoch & Ostheimer, 1993; Reinelt, 1994]. One way to further reduce 
running time is by using parallelism. In the literature several examples of paral­
lellocal search algorithms for the TSP are given. Multiple-walk parallelism for 
the TSP is studied in [Malek, Guruswamy & Pandya, 1989; Diekmann, Liiling & 
Simon, 1993]. Single-step parallelism is studied by Chakrapani & Skorin-Kapov 
[1993a], and multiple-step parallelism is studied in [Felten, Karlin & Otto, 1985; 
Allwright & Carpenter, 1989; Fiechter, 1994; Bachem, Steckemetz & Wottawa, 
1994; Verhoeven, Aarts, Van de Sluis & Vaessens, 1992; Verhoeven & Aarts, 
1994]. All these algorithms, however, are not competitive, both with respect to 
running times and quality of final solutions, with the best existing sequential algo­
rithms, i.e., efficient implementations of the Lin-Kernighan algorithm. Our goal 
is to design a parallel algorithm that finds the same quality solutions as the best 
sequential algorithm in a smaller amount of running time. 

Neighborhoods for the TSP. The TSP can be reformulated as the problem of 
finding a Hamiltonian cycle of minimal length in a complete weighted graph; see 
Example 2.1. We concentrate on the Euclidean TSP in which the cities are given 
by coordinates in a Euclidean space. Most neighborhood structures for the TSP 
are based on the exchange of a number of edges. Besides the 2-opt neighborhood 
of Example 2.1, we mention the following ones. 

• 3-opt. In this neighborhood a tour t' is a neighbor of tour t if it can be ob­
tained from t by removing three edges and inserting three other edges. 'Thi.s 
exchange is called a 3-exchange. 

• Or-opt. A tour t' is a neighbor of tour t if it can be obtained from t by 
removing a path with at most three subsequent cities from t and inserting 
it between two other cities in t. This is called an Or -exchange. 

• Lin-Kernighan. This is a variable-depth neighborhood structure in which 
the number of edges that is exchanged to obtain a neighbor is not fixed 
but depends on the current tour t. Basically, a series of 2-exchanges is 
constructed by a combination of first improvement, best improvement, and 
limited backtracking [Lin & Kernighan, 1973]. 
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The empirical average-case time complexity of local search algorithms using the 
above neighborhood structures is low-order polynomial. Furthermore, computa­
tional results show that good-quality solutions can be found with these neighbor­
hood structures. 2-opt, 3-opt, and Lin-Kernighan give final solutions with av­
erage quality of 6.4%, 3.5%, and 2.1 %, respectively, over the Held-Karp lower 
bound on random Euclidian instances. For excellent overviews of what can be 
achieved with local search for the TSP, we refer to [Johnson, 1990; Johnson & 
McGeoch, 1996; Reinelt, 1994]. 

The outline of the remainder of this chapter is as follows. Section 5.2 presents 
parallel2-opt and 3-opt algorithms. Section 5.3 discusses the implementation of 
the Lin-Kernighan algorithm. Section 5.4 discusses the parallel Lin-Kernighan 
algorithm and presents numerical results on different parallel platforms. 

5.2 Parallel 2-opt and 3-opt algorithms 

The concept of distributed neighborhoods for multiple-step parallelism has been 
introduced in Section 3.2. A distributed neighborhood structure defines a par­
tition of neighborhoods by partitioning the domain of the exchange function. It 
also defines a combination function that combines several exchanges to a feasible 
solution. In order to enable efficient combination of 2-exchanges it is convenient 
to decompose a tour into several partial solutions each consisting of two paths. 
However, in this way it is not possible to examine 2-exchanges in which edges 
from different partial solutions are replaced. To guarantee that all exchanges ex­
amined in the 2-opt neighborhood are also examined in the distributed 2-opt neigh­
borhood, several tour decompositions have to be included in the distribution struc­
ture of a distributed 2-opt neighborhood. 

5.2.1 A distributed 2-opt neighborhood 

Next, we define a distributed 2-opt neighborhood 'Dz that is isomorphic with the 
2-opt neighborhood .Nz defined in Example 2.1. Recall that a distributed neigh­
borhood is a triple ( !J., A, </>), where !J. is a distribution structure, A a domain dis­
tribution, and </> a combination function. 

First, we define a distribution structure that gives a set of distributions in which 
each partial solution consists of two paths. A tour is a set of N edges, and we in­
dex the successive edges with indices from 0 to N. A partial solution 8 P is defined 
as a set of edges that constitute two paths. One path is the set of edges with indices 
in D(p) = {mp, ... , np -1} and contains ap edges, and theotherpathis the set 
of edges with indices in D'(b, p) ={m~- b, ... , n~ b -1} for someb, with 
0 :s; b :s; B, and it contains a~ edges. The parameter B is needed to prove iso­
morphism properties of various distributed neighborhood structures based on this 
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Figure 5.1: Linear distribution. 

distribution structure, as we see later on. Different distributions are generated by 
assigning one edge to an adjacent partial solution. Figure 5.1 gives an example of 
this distribution for partial solutions Jp. 8p+1 with ap =a~ = ap+l = a~+l = 3 
and b = 0. In the following definition this distribution structure is stated fonnally. 
All additions and subtractions are done modulo N. 

Definition 5.1. Let P with P ~ 1 and B with B ~ 1 be given. Let a, a' : 
{0, ... , P} --* {0, ... , N} be mappings such that ap ~ 1, a~ ~ 1 for all 0 :::; 
p < P,andap+a~ =NdivP+lforO:::; p < N mod P,andap+a~ = NdivP 
for N mod P :::; p < P. Furthennore, define m, m', n, n' : {0, ... , P} --* 
{0, ... , N} by m0 0, np = mp + ap for 0 < p < P, mp+l np for 
0 :::; p < P - 1, and m'p_1 = np-t, n~ = m~ +a~ for 0 :::; p < P, and 
m~-l = n~ for 1:::; p < P. Define for all 0:::: p < P andO:::: b:::; B 

D(p) = {mp, ... , np -1}, 

{m~ b, ... , n~- b- 1} for 0 < p < P- 1, 
{m~ b, ... , n~- 1} for p = 0, 
{m~, ... , n~ - b 1} for p = P - 1. 

D'(b, p) = { 

Let t E 8 with t = {e(i) I 0 :::; i < N}, then a solution distribution 8,(b, c) oft, 
for 0:::; b:::; Band 0:::; c < N, is defined by 

8r(b, c)(p) = {e(i -c) I i E D(p) U D'(b, p)}. 

A linear distribution structure !:!. is defined by 

!:!.(t, P) = {81(b, c) I 0 :::; b :::; B A 0:::; c < N}. 

0 

The following definition gives the domain distribution ). that defines which ex­
changes are included in the local neighborhoods of partial solutions. 
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Figure 5.2: Distribution of a tour. 
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Figure 5.3: Examples oflocal neighbors. 

Definition 5.2. Let~ be a linear distribution structure with B = 1, andlett E S, 
0 :S. b :s. B, 0 :S. c < N, 0 :S. p < P, and let r = oe(b, c)(p) be a partial solution 
with oe(b, c) E ~(t, P). Define a domain distribution/.. as follows, 

).. () = { {(e(mp c),e(i -c)) I i E D'(O,p)} ifb =0, 
P r {(e(i -c),e(m~ -1 c)) I i E D(p)} ifb = 1. 

0 

Each local neighborhood defined by the domain distribution ).. consists of at most 
NIP neighbors obtained by applying 2-exchanges to partial solutions that re­
move a fixed edge in one path of a partial solution and one arbitrary edge in the 
other path of a partial solution. Figure 5.2 gives an example of a distribution of a 
tour and Figure 5.3 gives some examples oflocal neighbors obtained by applying 
2-exchanges to partial solutions. 

The combination function</>, which joins several partial solutions to a feasi­
ble tour, is straightforward when a linear distribution structure is utilized, since 
exchanges applied to a given partial solution do not interact with exchanges ap­
plied to other partial solutions. The parts of a tour that are not included in a partial 
solution can be represented by two imaginary edges that connect terminal cities 
of a partial solution. The addition of these imaginary edges that are not actually 
included in a tour to a partial solution transforms it into a single subtour. It is ob­
vious that partial solutions can be merged to a feasible tour as long as each partial 
solution is a single subtour that includes these imaginary edges; cf. Figure 5.2. 

Using the above definitions, the distributed 2-opt neighborhood can be de­
fined as follows. 
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Definition 5.3. A distributed 2-opt neighborhood structure 'D2 is given by a triple 
(D., ).. , <P), where D. is a linear distribution structure, with B = 1, as specified in 
Definition 5.1, J.. is a domain distribution as specified in Definition 5.2, and the 
combination function <Pis given by cp(ro, ... , rp_l) = Uo::sp<P rp for partial 
solutions r p· o 

Next, we show that the distributed neighborhood structure 'Dz is isomorphic with 
Nz, i.e., a local minimum of 'Dz is also a local minimum of Nz. For this it has to 
be shown that each 2-exchange evaluated to determine local optimality for Nz is 
also evaluated in 'Dz. First, we need the following lemma. 

Lemma 5.1. Let D, D' be defined by Definition 5.1. Let L(p) = {(mp, j) I j E 

D'(O, p)} and L'(p) = {(i, m~ 1) I i E D(p)}. Then, 

Uo:::;q:sp {j- i I (i, j) E L(q) U L'(q)} ={m~- np, ... , N- 1}. 

Proof. Use induction top. First, note that {j - i I (i, j) E L(p) U L'(p)} = 
{m~- np, ... , n~- mp- 1}. Furthermore holds n0 = Nand mo = 0. So 
for p = o holds {j - i 1 (i, j) e L(O) u L'(O)} = {m0 no, ... , N - 1}. 
For the induction step, note that {j - i I (i, j) E L(p + 1) U L'(p + 1)} 

{m~+l-nP+l>····m~-np-1}. o 
Using this lemma, the following result can be obtained. 

Theorem 5.1. 'Dz is isomorphic with Nz. 
Proof Let t = {et, ... , eN} E S. Recall that Nz(t) = {rz(t, ei, ej) I 0 ~ 
i < N /\ 0 :::; j i < N}. Applying Lemma 5.1 for p = P 1 shows that 
Uo:sq<P {j- i I (i, j) E L(q) U L'(q)} = {0, ... , N- 1}. Hence, all required 
differences j - i between arguments ei, e j of the 2-exchange function rz that are 
included in Nz are also included in the domain distribution of'Dz specified by L 
and L'. Note that L and L' define the indices of the edges removed in the local 
neighborhoods of partial solutions defined by 'Dz. Furthermore, 'Dz contains N 
different solution distributions, and consequently {e1(mp- c) I 0:::; c < N} = t 
for all p. So all exchanges evaluated for verifying local optimality oft for Nz are 
also evaluated for verifying local optimality oft for 'D2. o 

The parallel complexity of verifying local optimality of a tour for 'D2 is equal to 
O(N · lfr) with P processors since each local neighborhood has size lfr and N dis­
tributions have to be considered. The communication overhead for obtaining new 
distributions is 0(1) on a message-passing MIMD machine with a ring topology 
, as distribution ot(1, c) can be obtained from distribution ot(O, c), and similarly 
8t(O, c + 1) from 8t(1, c), by sending a single edge to an adjacent processor in 
the ring. Hence, a new distribution can be obtained from the current distribu­
tion in constant time as follows. Even-numbered processors first send an edge to 
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right-adjacent processors, subsequently they receive an edge from left-adjacent 
processors. So the time needed to obtain a new distribution is at most twice the 
time to send a single edge to a neighboring processor. 

The total number of 2-exchanges that are evaluated for verifying local opti­
mality of a tour for V2 is O(N2), because P processors each evaluate O(N ·lfr) 
2-exchanges. This observation shows that the total computational effort of the 
parallel algorithm for verifying local optimality is equivalent with that of the se­
quential algorithm. The number of processors that can be employed is at most lf 
since each partial solution must contain at least two edges. 

5.2.2 A distributed 3-opt neighborhood 

Computational experiments have shown that 3-opt local search algorithms find 
solutions with considerable lower cost than solutions found by 2-opt algorithms 
[Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985; Johnson, 1990]. Good results 
with respect to solution quality and running time are reported in particular with 
the Or-opt neighborhood. The Or-opt neighborhood is a restricted 3-opt neigh­
borhood in which a path consisting of at most three subsequent cities is inserted 
between two other cities in a tour. The Or-opt neighborhood can be generalized to 
the neighborhood M,B in which only those 3-exchanges are examined in which 
the minimum number of adjacent edges, after removal of three edges, is smaller 
than B. Johnson [1990] reports good quality results with this kind of restricted 
3-opt neighborhood. Formally N3,B is defined as follows. 

Definition 5.4. The exchange function r3 : S x (V x V) 3 ---+ P ( S) gives for each 
tour t E S the set of eight different tours that can be obtained by replacing three 
edges with three other edges. The restricted 3-exchange neighborhood structure 
N3,B is given by N3,B(t) = Uo:;;i<N Ai<j<N-B Aj<k:;oj+B r3(t, e;, ej, ek). D 

Note that the Or-opt neighborhood is a subset of the N3,3 neighborhood. Next, 
we define a distributed neighborhood V3,B that is isomorphic with the neighbor­
hood N3 B. The distribution structure of V3 B is a linear distribution structure as 

' ' defined in Definition 5 .1. Its domain distribution, which specifies the local neigh-
borhood of each partial solution, is defined as follows. 

Definition 5.5. Let!:!.. be a linear distribution structure with ap = 1 and a~ ~ B 
for all 0 ~ p < P, and let t E Sand 0 ~ b ~ B. Let r = or(b, c)(p) be a partial 
solution with or (b, c) E l:!..(t, P) for 0 ~ c < N. Define 

L(p) = {(mp, j, k) I m~~ j ~ n~- B 1\ j < k ~ j + B}, 

L'(b, p) = {(mp, m~- b, m~- b + i) I 0 < i ~ B}. 
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Then, domain distribution ). is defined as follows. 

{ 

{(e(i -c), e(j -c), e(k-c))l(i, j, k) EL(p)} if b=O, 
Ap(r) = {(e(i -c), e(j -c), e(k-c))l(i, j, k) EL'(b, p)} if b>O, p< P -1, 

0, ifb>O,p=P-1. 

0 

The sets L, L' specify the indices of the edges that are to be removed in a local 
neighborhood. Each local neighborhood specified by the domain distribution ). 
either consists of at most B · If; neighbors obtained by applying 3-exchanges to 
partial solutions that remove a fixed edge in one path of a partial solution and two 
arbitrary edges in the other path of a partial solution, or it consists of at most B 
neighbors obtained by applying 3-exchanges that remove two fixed edges, one in 
each path, and one arbitrary edge. 

The combination function is similar to that of V2, since a linear distribution 
structure is used, which implies that local neighbors of partial solutions can be 
merged to feasible tours, provided that all local neighbors, with addition of two 
additional edges, are single subtours. 

Definition 5.6. A distributed neighborhood structure 'D3,B, with B E IN+, is de­
fined by a triple (D.,)., if>), where D. is a linear distribution structure as specified 
in Definition 5.1,). is a domain distribution as specified in Definition 5.5, and the 
combination function if> is given by if>(ro, ... , rp_l) = Uosp<P rp for partial 
solutions rp. D 

Next, we show that the distributed neighborhood structure 'D3,B is isomorphic 
withN3,B. i.e., a local minimum of'D3,B is also a local minimum of N3,B. which 
requires that each 3-exchange evaluated to determine local optimality for N3,B is 
also evaluated in V 3,B· Th show this, we need the following lemma. 

Lemma 5.2. Let 0:::: p < P 1, and 0:::: b:::: B. Define the set W (p) that consists 
of all differences between indices in L(p) and L'(b, p) as follows. 

W(p) ~ { 
{j- i I (i, j, k) E L(p)} u 
Uo<bsB {j -i I (i,j,k) E L'(b,p)}, ifO::Sp<P-1, 
{j - i I (i' j' k) E L (p)} if p = p -1. 

Then, 

U W(q) ={m~- B- mp, ... , N-B}. 
o::;q::;p 

Proof. Use induction top. First, note that W(p) ={m~- B- mp, ... , n~­
B -mp}. So for p = Oholds W(p) ={m~- B- mp, ... , N-B} asniJ = 
Nand mo = 0. For the induction step, note that W(p + 1) = {m~+l - B -
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mp+l• ... , m~- B -mp 
mp + 1. 

1} sincen~+l =m~ andmp+l = np = mp +ap = 
0 

The above lemma leads to following result 

Theorem 5.2. v3,B is isomorphic with N3,B· 

Proof Recall that N3,s(t) = Uosi<N Ai<j<N-B Aj<ksi+B r:3(t, e;, ei, ek) for 
each t E S. First note that for p = P- 1 holds W(p) {m~ mp, ... , n~ 
B- mp} = {1, ... n~- B mp} as m~= mp + 1. This combined with Lemma 
5.2 for p = P- 2 shows that Uosq<P W(q) = {1, ... , N-B}. Hence, all re­
quired differences of indices j - i and k- j between arguments of the 3-exchange 
function in N3,B· are also included in the domain distribution of V 3,B specified 
by L and L'. Furthermore, the distribution structure of V3, s contains N different 
solution distributions, and consequently {et(mp- c) I 0::; c < N} = t for all 
p. So all exchanges evaluated for verifying local optimality oft for N3,s are also 
evaluated for verifying local optimality oft for V3,B· 0 

V3,B contains P · N local neighborhoods of partial solutions Ot (0, c) (p) with size 
(!j;- B)B and P·N ·B local neighborhoods of partial solutions ot(b, c)(p) with 
size B for 0 < b ::; B. As P local neighborhoods can be searched in parallel, the 
parallel complexity of verifying local optimality of a tour is O(N B If;) using P 
processors. The communication overhead for obtaining new distributions is 0(1) 
since new distributions can be obtained from current distributions in a similar way 
as discussed in the previous section for the parallel 2-opt algorithm. 

The parallel 3-opt algorithm requires the same computational effort as the se­
quential 3-opt algorithm, as the total number of 3-exchanges examined to verify 
localoptimalityforV3,8 andN3,B areequal, viz. O(BN2). Furthermore, atmost 
N div ( B + 1) processors can be used in a parallel 3-opt algorithm for a given in­
stance of size N and choice of parameter B in 'D3,B. 

5.2.3 Computational results 

The distributed neighborhoods 'Dz and 'D3,B are mapped onto a message-passing 
MIMD machine with a ring network topology by assigning adjacent partial so­
lutions to adjacent processors. A partial solution consists of two paths and the 
number of edges in a path determines the local neighborhood size. The number 
of edges in each of the two paths of a partial solution is not fixed because per­
forming edge exchanges can change the number of edges in each of these paths. 
Since communication has to take place as soon as local neighborhoods have been 
explored, load imbalance may occur when path lengths are not equal. 

1b obtain a new distribution, each processor sends one edge to its left adjacent 
processor; to obtain the next distribution each processor sends one edge its right 



60 The Traveling Salesman Problem 

p €(%) T(s) e:ff p .-=(%) T(s) e:ff 

I 1 7.5 144.2 1 1 7.9 1436 1 
16 7.8 13.0 0.69 64 7.4 29 0.77 
64 7.4 5.2 0.43 128 7.5 18 0.62 

128 7.6 5.5 0.20 256 7.8 19 0.29 

Table 5.1: Computational results for att532 and prl 002 with V 2 • 

p .-=(%) T(s) e:ff p .-=(%) T(s) e:ff 
1 11.6 1960 1 16 5.4 481 1 

64 10.8 52 0.59 64 5.2 103 1.17 
128 10.8 31 0.49 128 4.6 69 0.87 
256 11.5 32 0.24 256 5.3 76 0.40 

Table 5.2: Computational results for rl1304 and d2103 with V 2 • 

p €(%) T(s) e:ff p E(%) T(s) e:ff 
16 8.8 685 1 64 8.8 312 1 
64 9.1 189 0.91 128 8.6 168 0.93 

128 8.6 109 0.79 256 8.6 108 0.72 
256 9.3 66 0.65 512 8.7 79 0.49 

Table 5.3: Computational results for pr2392 and pcb3038 with V 2 . 

p €(%) T(s) eff p €(%) T(s) e:ff 
128 9.0 645 1 128 8.7 2671 1 
256 9.3 315 1.02 256 8.7 1396 0.96 
512 8.6 215 0.75 512 9.2 819 0.82 

Table 5.4: Computational results for r15934 and rl11849 with V 2• 

p €(%) T(s) e:ff p €(%) T(s) e:ff 
1 3.4 706 1 1 3.9 9948 1 

25 3.5 51 0.55 25 4.0 671 0.59 
50 3.3 21 0.67 50 3.9 324 0.61 

Table 5.5: Computational results for att532 and rl1002 with V3,3· 
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adjacent processor, such that the tour is rotated. The communication overhead for 
obtaining new distributions is 0(1) when the orientation of a tour has not changed 
due to the effectuation of edge exchanges. This situation occurs during verifi­
cation of local optimality. Another situation occurs if some path assigned to a 
processor consists of one edge. If the orientation of partial solutions has changed 
through exchanges and edges are sent and received simultaneously, an empty path 
may arise when the received edge is connected to the other subpath than the path 
from which one edge is sent. In this case this processor has to wait until it receives 
an edge before it sends this edge. So the communication overhead is determined 
by the length of the longest sequence of adjacent processors in the ring for which 
all minimum path lengths are equal to one. More formally, the time complexity 
of communication overhead is 0(1 +maxo::;p,q<PIVp::;:i<q t(i)=l q- p), where l(i) 
is the minimum length of a path assigned to processor i. If all paths of partial 
solutions consist of at least two edges, the communication overhead is constant 
since then it is always possible to send an edge to an adjacent processor and still 
maintaining a partial solution that consists of two paths. The worst case commu­
nication behavior occurs when all processors own a path with length one, but in 
practice this rarely happens. 

The parallel 2-opt and 3-opt algorithms have been implemented on networks 
consisting of 50 and 512 T805 transputers configured in a ring. A tour is repre­
sented by a linked list, which makes it possible to effectuate proposed exchanges 
in constant time. Initial tours are constructed using the nearest neighbor heuris­
tic [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985]. A nearest neighbor tour 
is constructed as follows. Start in an arbitrarily chosen initial city and repeatedly 
choose the unvisited city closest to the current city. Once all cities have been cho­
sen, return to the initial city. We have tested the algorithms on instances with sev­
eral thousands of cities that originate from the TSP library ofReinelt [1991]. The 
number in the name of an instance denotes the number of cities in this instance. 

Tables 5.1 5 .4list the computational results obtained with the neighborhood 
V 2. All results are averages computed over ten runs started from different initial 
solutions. In these tables, Pis the number of processors, and the average relative 
excess, measured in percentages, over the minimal tour length or the best known 
lower bound is given by E. The average running time in seconds is given by T. 
The efficiency, defined as the speed-up divided by P, is given in the column la­
beled "eff". For large instances we were not able to run the algorithm for P = 1, 
due to the limited availability of running time so in these cases the efficiency is 
computed relatively to the smallest number of employed processors. The com­
putational results in Tables 5.1 - 5.4 show that the number of processors has no 
influence on the average cost of final solutions. This is explained by the fact that 
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'Dz is isomorphic with Nz. Moreover, good efficiencies of more than 50 percent 
are obtained, if the partial solutions are sufficiently large. This results in speed­
ups of up to a factor 80 with 128 processors. 

Thble 5.5 lists the results obtained with 'D3,B. for B = 3. Recall that the 
Or-opt neighborhood is included in the restricted 3-opt neighborhood N3,3 with 
which 'D3,3 is isomorphic. Again, it can be observed that the same quality final 
solutions are found regardless of the number of employed processors. This is ex­
plained by the isomorphism of V3,B with N3,B. Moreover, good efficiencies are 
achieved using 'D3,B· The quality of final solutions obtained with 'D3,3 is much 
better than that obtained with the 2-opt neighborhood at the cost of a substantial 
increase in running time. 

5.3 The Lin-Kernighan neighborhood 

The most effective neighborhood for the TSP is the one proposed by Lin & Kernig­
han [1973] in which a variable number of edges is replaced instead of a fixed 
number of edges as done in the 2-opt or 3-opt neighborhoods. Using elaborated 
data structures and neighborhood reduction techniques, sophisticated sequential 
Lin-Kernighan algorithms require less running time than our parallel 2-opt and 
3-opt algorithms and find better quality results. In the remainder of this chapter, 
we outline a parallel Lin-Kernighan algorithm that is competitive with the most 
advanced sequential implementations of the Lin-Kernighan neighborhood. 

The idea· behind the Lin-Kernighan neighborhood structure is that for any 
given tour the optimal tour can be obtained from it by exchanging the appropri­
ate set of edges. Its exchange function t). tries to construct this set by repeatedly 
removing and adding edges to the given tour. One property of this exchange func­
tion is that the number of edge exchanges is not fixed but depends on the given 
tour. Let t E S and let xo E t be an edge in t. Then rA. can be outlined as follows: 

(1) Remove edge xo from t. The result is a Hamiltonian path Ho, i.e., a path 
that visits each city only once. Set variable i = 0. 

(2) Add an edge y; <t t to the end of the Hamiltonian path H; and remove an 
edgexi+t E tfromH;,suchthatHi+1 = t\{Xj I 0:::: j:::: i+l}U{Yj I 0:::: 
j < i + 1} is a minimum-length Hamiltonian path. Edge Xi+t is uniquely 
determined by y;. Increment i with one. 

(3) Check if tour t', obtained by closing H;, has lower cost than t*, the best 
tour found so far. If this is the case, replace t* with t'. 

(4) Repeat steps (2)-(3) as long as a given gain criterion is satisfied. 

(5) If no tour with lower cost than t is found, set i = 1 and repeat steps (2)­
(4) while selecting a different edge Yt that is added to Ht. If after a given 
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number of choices for Yt no shorter tour has been found, set i = 0 and repeat 
steps (2)-:(4) for different edges Yo that are added to Ho. Return t*. 

Let ti be the tour obtained by closing Hi and let ti+l be the tour obtained from 
H;.+l. Then ti+l can be obtained from t; by performing the 2-exchange on t that 
removes edges Xi and Xi+ 1· So the exchange function tries to construct a sequence 
of 2-exchanges that, performed on initial tour t, results in a shorter tour t*. Every 
2-exchange in this sequence removes an edge added by the preceding 2-exchange, 
viz., the edge added in step (3) to check if a shorter tour is constructed. 

Lett* be a tour with f(t*) < f(t). Then t* can be obtained from t by adding 
the set of edges t* \ t to t and removing the set of edges t \ t* from t. Exchange 
function t), tries to construct these sets by iteratively choosing one edge Xi+l that 
has to be removed and one edge Yi that has to be added, until all edges of both sets 
are chosen. The removal of Xi +I decreases the tour length and the addition of Yi 
increases the tour length. The net result of the exchange of edge pair (xi+ 1, Yi) 
is called the gain and is defined by IXi+II lyil, where lel denotes the length 
of an edge e. It is obvious that the cumulative gain of all pairs (xi, Yi) should be 
positive, otherwise f(t*) 2: f(t). The gain criterion is based on this observation: 
new edge pairs are chosen as long as the cumulative gain of the pairs (Xi+l• y;) 
is non-negative. 

Let v be the last city of Hamiltonian path Hi. Then edge Yi, which is added to 
the end of Hi, is chosen from a predefined set of edges that depends on v. Edge y; 
is chosen from this set such that the gain resulting from adding y; and removing 
Xi+I to Hi. which is given by lxi+II - lyil, is maximized. 

Furthermore, if no sequence of 2-exchanges can be constructed that gives a 
shorter tour, then for given edges xo and Yo each 3-exchange that cannot be ob­
tained by performing two consecutive 2-exchanges and that removes xo from t 
and adds Yo is applied to t. If no 3-exchange results in a shorter tour, the back­
track mechanism in step (5) ensures a new Hamiltonian path H1 is constructed by 
choosing a different yo. Again, if no sequence of 2-exchanges can be constructed 
that gives a shorter tour, the above 3-exchange mechanism is applied. This is re­
peated until a shorter tour is found, or a given number of alternatives for yo and 
Yt have been examined. Iffor all xo E t and all possible choices for Yo and Yt. r), 
cannot find a shorter tour, then the final solution is not only a local minimum with 
respect to NA but also with respect to N3. In practice only a restricted number of 
alternatives for yo and Yt are examined. Using the exchange function rA outlined 
above, we can define the neighborhood structure N>.. 

Definition 5.7. Let t E S be a tour. The Lin-Kernighan neighborhood structure 
NA is defined by NA(t) = {rA(t, xo) I xo Et}. D 

Although rA returns a single tour t*, several tours are examined during the con-
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struction of t*. The Lin-Kernighan algorithm consists of an iterative improve­
ment algorithm that uses the neighborhood structure N)... 

5.3.1 Neighborhood reduction 

In the previous section we have outlined how the exchange function 'f).. constructs 
a neighbor of a given tour t by repeatedly inserting edges in a Hamiltonian path. 
Let y be an edge that is to be added to the Hamiltonian path that ends in city l. We 
want to consider only those edges y = (l, m) that are likely to be in an optimal 
tour. So for each city l a set of cities, the candidate set for l, is to be determined 
such that the edges between l and these cities are likely to be in an optimal tour. 

When edge x is removed, edge y is chosen from the candidate set such that 
lxl lyl is maximized. The time complexity for selecting y is O(y ), where y is 
the size of the candidate set. This can be costly for large candidate sets. On the 
other hand, a candidate set that is too small may result in poor-quality solutions. 
In their original paper, Lin and Kernighan suggest for the candidate set of l the 
set of its five nearest neighbors. The disadvantage of such a set is that its size 
is fixed, and it does not exploit the geometrical structure of an instance. Reinelt 
[1992] suggests another approach based on a Voronoi diagram for a set of cities. 
A Delaunay graph is the geometric dual of a Voronoi diagram, and it connects 
cities that share a boundary in a Voronoi diagram. The following definition gives 
a partition of IR2 into N convex polygons. 

Definition 5.8. Let d(c, c') denote the Euclidean distance between two points 
c, c' E IR2

, and let V = {et, ... , CN} be a set of points in IR2
, with N > 3. 

Define forcE V the Voronoi region vr(c, V) as 

vr(c, V) {c" E IR2 I Vc'eV\{c} d(c", c) ~ d(c", c')}. 

0 

Then for all c" E vr(c, V) no point in V is closer to c" than c. The boundary 
that separates different Voronoi regions that have points in common is called a 
Voronoi edge. We define the Delaunay graph as follows. 

Definition 5.9. Define the Delaunay graph G for a set of points V by 

G (V, { (c, c') E V2 I c i= c' 1\ lvr(c, V) n vr(c', V) I> 1 }). 

0 

A triangulation -a decomposition of a polygon into triangles- that contains the 
Delaunay graph can be computed with an algorithm from Fortune [1987]. We call 
this triangular graph the extended Delaunay graph. A triangulation contains at 
most 3N 3 edges, where N is the number of vertices of G. This means that the 
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average number of adjacent cities of a given city is at most six in the extended De­
launay graph The candidate set of a city consists of the cities that can be reached 
in k steps in the extended Delaunay graph, with k :::: 1. Such candidate sets are 
called k-th order Delaunay sets. We use first and second order Delaunay sets be­
cause higher order sets are too computationally expensive. 

5.3.2 Efficient data structures 

The following operations are applied to a tour or Hamiltonian path: Pred, Succ, 
TWoChange, ThreeChange, and lnBetween. Pred and Succ return the predecessor 
and successor, respectively, of a given city in a Hamiltonian path. Two Change re­
verses a part of a Hamiltonian path starting from a given city to the last city in the 
path. Three Change performs a 3-exchange on a Hamiltonian path and requires a 
boolean returned by lnBetween that denotes whether a given city is located be­
tween two other cities in a path. 

Performing a 2-exchange on a tour requires reversal of a part of the tour, which 
has a complexity of O(N) for tours of size N if the tour is represented by an array 
that lists the cities in tour order. This becomes quite expensive for the exchange 
function r >.. that performs sequences of 2-exchanges on Hamiltonian paths. Fred­
man, Johnson, McGeoch & Ostheimer [1993] discuss three tour representations, 
two-level trees, segment trees, and splay trees that perform 2-exchanges more ef­
ficiently than the array data structure. We have implemented two-level trees and 
segment trees as splay trees catch up with these data structures only for instances 
with more than one million cities. 

For each representation we explain how to implement operations Succ and In­
Between and how to implement the reversal of a subpath in TWoChange. The im­
plementation of Pred is analogous to that of Succ. ThreeChange is implemented 
as a sequence of reversals. There is one operation, we have not mentioned yet. 
In an execution of i>.. backtracking may occur, so some of the constructed Hamil­
tonian paths have to be stored for later use. There are two approaches to store 
these paths. The easiest way is to copy the entire path, the other, more compli­
cated, way is to reconstruct the required path from the current path by undoing 
the 2-exchanges that lead from the required path to the current path. For each 
representation, we describe how we store a path 

Array representation 

The best-known data structure to represent a tour is the array representation. A 
tour of size N is represented by two N -sized one-dimensional arrays A and B. 
Array A lists the cities in the order as they occur in the tour, and array B is the 
inverse of A, i.e., B (A (i)) = i, for 1 ~ i ~N. 

Using these two arrays the relative position a city has in a Hamiltonian path 
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Oties 

Figure 5.4: An example of a two-level tree. 

is given in array B and therefore operations Succ and InBetween have complexity 
0(1). Reversing a part of a Hamiltonian path is done by reversing parts of arrays 
A and B, resulting in a O(N) complexity of operation TwoChtmge. Storing both 
arrays for backtracking by copying them is an O(N) operation. 

Two-level tree representation 

A 2-exchange reverses the direction in which a part of the Hamiltonian path is 
traversed. The idea of the two-level tree data structure is to partition the path in 
approximately equal-sized segments that contain consecutive cities, where each 
segment has a reversal bit that indicates the direction in which it should be tra­
versed. Figure 5.4 shows an example of the two-level tree data structure. The 
segments are represented by doubly linked lists of cities, each connected to a su­
pervisor. The supervisor contains the represented segment's reversal bit but also 
links to the first and last element of its doubly linked list. Furthermore, each su­
pervisor includes the number of elements of its segment and it has a unique iden­
tification number to distinguish it from other supervisor nodes. The Hamiltonian 
path can be constructed by walking from segment to segment and traversing each 
segment according to its supervisor's reversal bit The two-level tree in figure 5.4 
represents the path< 9, 2, 3, 6, 1, 4, 7, 8, 5 >. 

Th determine the successor of a city, the city itself in the two-level tree has 
to be found. To speed up the search for a city, an array that contains the address 
of each city is maintained. If the city is located, the next city -or previous city, 
depending on the reversal bit of the supervisor- in the list contains the successor. 
If there is no next city, the consecutive supervisors must be checked until a non­
empty segment is found. If there are no empty segments, it follows that operation 
Succ has complexity 0(1). 

Let the number of segments be r ~ 1, where N is the number of cities and g is 
the groupsize, the approximate size of each segment, and let v0 , Vt and v2 be three 
cities on the represented Hamiltonian path. To find out whether v1 is visited be­
fore v2, if one starts from vo and follows the Hamiltonian path, the identification 
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number of each city's supervisor is needed. If these three numbers are different 
we can determine if Vt is in a segment between the segments that contain vo and 
vz. If two or more numbers are the same, the corresponding segments have to 
be traversed. Since each segment contains approximately g elements, operation 
InBetween has worst-case complexity O(g). 

Reversing a part of the path in TwoChange is implemented by reversing the 
order of some supervisors, fiipping their reversal bit, and by relocating some cities 
to other segments. Due to the number of supervisors and the size of each segment 
this can be implemented in O(maxU~l. g}) time. If g is approximately .jN, 
then TwoChange has complexity 0(../N). However, a 2-exchange can change 
the length of a segment One might argue that to guarantee this complexity the 
segments should be rebalanced after each 2-exchange, but this results in a large 
overhead and is therefore not efficient Moreover, the more or less random 2-
exchanges can disturb but also restore the balance. 

In order to enable backtracking we have to copy the required paths or recon­
struct them from the current path. Copying a path takes O(N) time and recon­
structing a path takes O(l.j N) time, where l is the number of 2-exchanges that 
lead from the current path to the required path. In practice l is much smaller than 
.jN and therefore we choose to reconstruct the required path. 

Segment tree representation 

The segment tree representation is based on the observation that it suffices to 
specify which segments of a path H need to be reversed to construct H' with­
out explicitly reversing these segments. The following code fragment illustrates 
this idea. Here Ho, Ht and Hz are Hamiltonian paths derived from a tour t with 
length 100. h[i] is the city at the i-th position in Ho, and TwoChange(c, Ho) is 
the Hamiltonian path that is obtained when the path in Ho from c to the last city 
in Ho is reversed. a+ b denotes the concatenation of paths a and b. 

{Ho = h[l, ... , 100]} 

Ht :=TwoChange (h[75], Ho); 

{ Ht = h[l, ... , 75] + h[lOO, ... , 76]} 

Hz :=TwoChange (h[25], Ht); 

{ Hz = h[l, ... , 25] + h[76, ... , 100] + h[75, ... , 26]} 

H3 :=TwoChange (h[35], Hz); 

{ H3 = h[l, ... , 25] + h[76, ... , 100] + h[75, ... , 36] + h[26, ... , 35]} 

The permanent tour is the representation of the current solution in a Lin-Kernig­
han algorithm. Temporary Hamiltonian paths are Hamiltonian paths constructed 
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T 2 [ 26 
tree link 

Figure 5.5: The segment trees for H2 (left) and H3 (right). 

in a A.-exchange. In the above example t is the permanent tour, and Ho, H1, Hz, H3 
are temporary paths. Temporary paths are represented by a sequence of records 
of the form [ rev, begin, end] where rev is a boolean and begin and end are ele­
ments of {1, ... , N} for tours of size N. Such a record, called a segment node, 
represents the subpath of the permanent tour from position begin to position end, 
when rev does not hold, or its reverse when rev holds. The segment nodes are 
stored in an array in the order in which the subpaths they represent occur in the 
temporary path. 

The position a city has in the permanent tour is needed to find its successor. 
Given this position, the segment node that contains the city can be found. To ac­
celerate the search for a city in the temporary path, a tree is constructed that con­
tains pointers to all the segment nodes. The inorder traversal of this tree lists the 
segments in the order in which they occur in Ho. The tree structures for paths 
Hz and H3 are shown in Figure 5.5. We implement the tree as a height-balanced 
tree [Bayer, 1972]. Search and insert operations on these trees have complex­
ity O(log i), where i is the number of elements of the tree. The tree structure 
grows with the number of 2-exchanges performed on the permanent tour, which 
results in more expensive search operations. The example at the beginning of this 
section shows that with each 2-exchange at most one new segment node is cre­
ated. If H' is the result of performing l consecutive 2-exchanges on a Hamiltonian 
path H, the segment tree that represents H' contains l elements. Because the tree 
search operations can be performed in log l time, operations Succ and InBetween 
have complexity O(log !). Performing a 2-exchange involves the creation of a 
new segment node and the reversal of the order of other segment nodes. Since 
there are 0(1) segments, operation TWoChange has complexity O(l). 

The Hamiltonian paths Ho and H1 have to be stored in case backtracking takes 
place. For the segment tree representation storage of these paths can be done in 
0(1) time by copying the array and tree of segment nodes. The permanent tour 
is represented using the array representation, because in each call to each oper-' 
ation, the position a city has in the permanent tour is needed. Using the array 
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representation Succ Two Change BackUp Effectuate 
array 0(1) O(N) O(N) -
two-level tree 0(../N) 0(../N) O(k../N) -

1 segment tree O(logk) O(k) 0(1) O(N) 

Table 5.6: Complexity of tour operations for tours of size N. 

representation the position of a city can be determined in 0(1) time. 
Since the path operations become more expensive as the size of the segment 

tree increases, we update the permanent tour and reduce the segment tree to a tree 
that contains a single segment node as soon as a cost-improving A.-exchange has 
been found. 'This is done by effectuating the sequence of 2-exchanges that leads 
to the tour t*, which takes 0 (1 N) time, where l is the length of the sequence, or 
by reading the segments consecutively, which takes E>(N) time. Which method 
is more efficient depends on the contents of the individual segments nodes. 

Table 5.6 summarizes the cost of each tour operation for the data structures to 
represent a tour. For each tour representation the cost to perform operation Pred 
is equal that of operation Succ. It should be noted that for the segment tree tour 
representation, the cost to perform a tour operation on a Hamiltonian path Hi de­
pends on i, since the height of a segment tree is equal to log i. Therefore, an upper 
bound k is often imposed on the maximum number of attempted 2-exchanges that 
are represented in a segment tree. In this way, the maximum height of the segment 
tree is bounded by log k. 

5.3.3 Computational complexity 

Next, we analyze the total time complexity of all tour operations that are per­
formed in the exchange function fA,. The number of times each tour operation 
is performed in t'J, depends on the given tour. Therefore, we define the following 
sequence of tour operations that is performed if t'J, is called with a Hamiltonian 
path Ho that is obtained by removing edge x0 from a tour. 

(1) A Hamiltonian path Ht is constructed by adding an edge to and removing 
an edge from Ho. One Succ operation is performed for each element of the 
candidate set of the last city of Ho to find the edge that should be added. 
On average, y Succ operations are performed, where y denotes the average 
candidate set size. 

(2) Once an edge is found, operation Two Change is performed once and oper­
ation Pred twice. 

(3) Steps (1)-(2) are repeated tc times to construct a sequence of Hamiltonian 
paths Hi withO.:::: i < tc < k. 
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representation complexity 
array O(Ky + KN) 

two-level tree O(Ky../N) 
segment tree O(Ky log" + K2) 

Table 5.7: Total complexity of tour operations in r;... 

In all, operation Succ is performed at most "Y times, TwoChange at most" times 
and Pred at most 2K times. Furthermore, Hamiltonian paths Ho and H1 have to 
be stored in case backtracking has to take place. 

Table 5.7 presents for each tour representation the total time complexity of 
tour operations performed in the exchange function -c;.. to construct a sequence of 
" 2-exchanges. N denotes the number of cities and y the size of the candidate 
sets. Note that for large candidate set sizes y, e.g. y ~ N, the total complexity 
of tour operations for the array representation is O(K N), for the two-level trees 
O(KN ,jN), and for the segment trees O(N K log K ). This suggests that the two­
level trees and segment trees are not suited for large candidate sets. 

For the Delaunay sets defined in Section 5.3.1, the average candidate set size 
y is at most six. In that case the complexity of the array, two-level tree and seg­
ment tree representation reduces to O(KN), O(K,jN) and 0(K2), respectively. 
Experiments show that in general K is much smaller than N, so the larger N is, the 
more efficient the segment tree representation is compared to the array and two­
level tree representations. It should be noted, however, that we have not added the 
costs of effectuating the proposed 2-exchanges for the segment tree representa­
tion, which takes O(N) time. If only a few 2-exchanges are needed in r}.. to find a 
shorter tour, the given complexities suggest that the two-level tree representation 
is more efficient than the segment tree representation. However, if large amounts 
of 2-exchanges are evaluated that do not result in shorter tours, the complexity of 
7:>.. is dominated by the cost to evaluate these 2-exchanges, which is more expen­
sive for two-level trees than for segment trees. 

5.3.4 Computational results 

We have implemented the sequential Lin-Kernighan algorithm on a SUN Spare 
ELC workstation with 16 Mbyte of memory. There are a few differences between 
the algorithm of Lin & Kernighan [19731 and our implementation of it. First of 
all, we consider at most five edges for yo and Yt. the edges added to Ho and H1o 
for backtracking. This is motivated by the observation that, if any gain is found by 
inserting an edge, it is usually one of the first choices for these edges, due to the 
way yo and y1 are chosen. We limit the length of the sequence of 2-exchanges 
in -c.~. to k, where k 50. For the segment tree representation, each operation 
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becomes more expensive when the sequence of performed 2-exchanges becomes 
larger. Fredman, Johnson, McGeoch & Ostheimer [1993] mention that a limit of 
50 on the length of this sequence does not influence the final tour length. 

We used the nearest neighbor heuristic to construct the initial tour. We have 
tested our Lin-Kernighan algorithm on several instances from Reinelt's TSP li­
brary. Table 5.8 presents the results. The items in the tables are averages over ten 
runs of the algorithm starting from different initial tours. The first column lists 
the instances and their sizes. The columns labeled first and second order contain 
the computational results obtained with the first and second order Delaunay sets 
defined in Section 5 .3.1. We have tested the tour representations with both candi­
date sets. The columns labeled "a", "t" and "s" contain the average running times 
in seconds obtained with arrays, two-level trees, and segment trees, respectively. 
The column labeled € gives the average relative excess in percentages over the 
optimal solution or, when the optimum is not known, over the best-known lower 
bound. 

We observe that the relative difference in running times between the repre­
sentations becomes smaller as the size of the candidate set increases. This can be 
explained by the observation that for larger candidate sets, the total complexity 
of all tour operations is increasingly determined by the number of Succ opera­
tions. This operation is more expensive for the two-level trees and in particular 
for segment trees than for arrays. 

Furthermore, we observe that segment trees outperform two-level trees, and 
that two-level trees outperform arrays. In the previous section we have shown 
that for small candidate sets, such as the first and second order Delaunay sets, 
the running time of rA is dominated by the complexity of a 2-exchange. So for 
larger instances the differences between running times becomes larger, provided 
that only a small proportion of the examined 2-exchanges leads to a shorter tour, 
because segment trees have to be consolidated- that is, proposed 2-exchanges 
have to be effectuated whenever a shorter tour is found. Apparent! y this is the case 
because the segment trees outperform the two-level trees for larger instances. 

We have also tested five instances with complete candidate sets consisting of 
all cities. For these five instances, not listed in Table 5.8, the best result is ob­
tained once with first order Delaunay sets, three times with second order Delau­
nay sets and only once with complete candidate sets. For all other instances we 
have tested, we obtained better solutions with second order Delaunay sets than 
with first order Delaunay sets. For most instances we obtained slightly better re­
sults with third order Delaunay sets than with second order Delaunay sets. This 
small improvement in quality is paid for with a large increase in running time. 

Another interesting observation is that the relative difference in running times 
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cand. set first order second order 
repr. a t s a t s 

T(s) E T(s) E 

rd400 15.9 6.7 3.5 1.82 27.5 12.6 10.1 1.48 
pcb442 10.0 4.0 2.9 1.42 17.6 9.1 8.5 1.13 

u574 34.2 8.4 6.0 2.22 59.5 22.0 19.0 1.90 
p654 23.3 11.7 6.9 0.46 45.7 31.8 25.2 1.01 

rat783 48.5 17.5 6.5 2.01 75.2 33.7 17.2 1.71 
pr1002 121 44 13 2.42 178 74 35 2.45 
u1060 132 29 15 2.13 204 82 46 1.89 

pcb1173 143 36 15 2.86 167 66 31 1.97 
d1291 72 20 9 4.08 142 69 49 3.75 
u1432 90 22 12 2.30 131 46 34 2.12 
d1655 193 52 19 3.63 274 105 57 3.05 
rl1889 297 51 20 2.87 438 123 78 2.56 
d2103 132 41 13 3.30 185 91 44 3.26 
u2152 221 71 18 3.12 345 110 56 2.61 

pr2392 732 226 39 2.88 1003 284 95 2.04 
pcb3038 1181 305 50 2.22 1491 418 111 1.87 

fl3795 459 169 27 4.92 841 446 131 4.07 
fnl4461 2741 654 62 1.88 4578 918 189 1.62 
rl5915 2822 277 69 3.05 3201 547 260 2.61 
rl5934 2422 254 57 3.29 3764 660 258 2.97 

pla7397 3381 1148 105 3.22 3607 1475 227 2.49 
rl11849 14562 1282 181 2.83 21411 2195 950 2.30 

brd14051 - 10092 374 2.79 - 8433 663 2.72 
d18512 23827 475 2.34 - 19401 1005 2.17 

pla33810 - 12849 810 2.58 - 21748 1656 2.42 
pla85900 - 63831 2795 2.94 - - 6261 2.74 

Table 5.8: Computational results for the sequential Lin-Kernighan algorithm. 

between our implementation of segment trees and two-level trees is much more 
significant than the difference observed by Fredman, Johnson, McGeoch & Ost­
heimer [1993]. This might be explained by the fact that they do not balance the 
segment trees. As a consequence, the height of a segment tree obtained after i 
2-exchanges is bounded by 2i + 1 in their implementation, whereas it is bounded 
by log i in our implementation. This height determines the complexity of Succ 
and Pred operations. 

5.4 A parallel Lin-Kernighan algorithm 

In Section 5.2 we have presented parallel 2-opt and 3-opt algorithms based on 
decomposing a solution into a number of disjoint partial solutions consisting of 
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two separate paths that are assigned to different processors. Subsequently, all 
partial solutions can be changed independently from each other since edge ex­
changes only affect the edges involved in a given partial solution. However, ini­
tial experiments showed that such a solution decomposition is not effective for the 
Lin-Kernighan neighborhood. Although a larger number of A.-exchanges is ac­
cepted, the total cumulative gain in all these simultaneously performed exchanges 
is equal to, or less than, the gain made in a single A.-exchange applied to the entire 
tour. So it is too restrictive to limit the edges that can be changed in t) .. beforehand. 
Therefore, we outline a different approach in the remainder of this section. 

In an algorithm with multiple-step parallelism several consecutive steps in the 
neighborhood graph are made in parallel. Let P denote the number of processors. 
A Lin-Kernighan algorithm with multiple-step parallelism based on domain de­
composition can then be outlined as follows. 

(1) Partition the domain {(t, xo) I xo Et} oftheexchangefunction t">.. applied to 
a tour t E S into P subdomains. Each processor evaluates one subdomain 
and proposes at most one profitable exchange. 

(2) Communicate profitable exchanges to other processors. 

(3) Combine and effectuate a subset of the profitable exchanges found in step 
(1), which results in a new tour t'. 

(4) Replace t by t', and continue steps (1)-(3) until no improvement is found. 

A single iteration of our algorithm consists of three phases-that is, evaluating 
exchanges in step (1), communicating profitable exchanges in step (2), and ef­
fectuating proposed exchanges in step (3). First, each processor evaluates the ex­
changes that are assigned to it. Each processor has to evaluate at most I !{r l ex­
changes, where N is the number of cities and P the number of processors. Each 
processor proposes at most one profitable exchange. As soon as a processor has 
found a profitable exchange or it has evaluated all its exchanges, it has to wait 
until other processors have finished evaluating their exchanges. Global commu­
nication then takes place to broadcast all proposed exchanges to all processors. 
Subsequently, a subset of proposed exchanges has to be effectuated such that a 
feasible solution is constructed. Since all processors have knowledge of all pro­
posed exchanges, combination of proposed exchanges can be done locally and 
results in the same tour on all processors. 

5.4.1 A distributed Lin-Kernighan neighborhood 

Recall that a distributed neighborhood consists of a distribution structure, a do­
main distribution, and a combination function. Next, we discuss these compo­
nents for the distributed Lin-Kernighan neighborhood. 
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Domain distribution. Our distributed Lin-Kernighan neighborhood uses a dis­
tribution structure in which the entire current tour is assigned to each processor. 
The domain distribution for the exchange function TA is also easy to formulate 
since each application of TA on a tour t requires only a single additional argument, 
an edge xo oft. The set of N arguments of TA in a neighborhood NA (t) therefore 
consists of all pairs (t, xo) for xo E t. We can partition this set of arguments 
into P (almost) equal-sized subsets. Subsequently, each subset is assigned to a 
different processor p, and each processor executes TA. with the arguments (t, xo) 
chosen from the subset assigned to p to construct its local neighborhood. A dis­
tributed Lin-Kernighan neighborhood that uses the above domain distribution is 
isomorphic with the conventional Lin-Kernighan neighborhood as this domain 
distribution partitions this neighborhood. 

Combination function. Since each processor executes TA on the entire tour t 
and without any restriction on edges that may be exchanged, it can occur that the 
same edges are replaced or inserted by different processors. This may result in 
infeasible solutions when all proposed edge exchanges are effectuated. Even if 
proposed edge exchanges are disjoint, it can occur that a tour is split into several 
subtours when all exchanges are effectuated. Hence, the combination function 
can only effectuate a subset of the proposed exchanges. Essential to obtain a good 
speed-up is that the total gain made in each iteration of the parallel algorithm is 
as large as possible, i.e., the gain achieved with effectuating a subset of all pro­
posed exchanges should be maximal. This problem, which we call the traveling 
salesman combination problem (TSCP), can be formulated as follows. 

Definition 5.10 (TSCP). Given are a TSP instance, a tour t, and a collection L 
{lt, ... , lq} of q edge sets included in t. Let l~, ... , l~ be sets of edges such that 
t \ li u z; E NA (t) for 1 :::: i :::: q' and let L' = {it, ... 'lq, li' ,',. '~~}. Then, the 
problem is to find a subset L* of L' such that t* = (t \ Ut~j~q lj) U <UkeL• k) 
is a tour, and f (t*) is minimal. D 

In the TSCP one is asked to find a subset L *of the proposed exchanges L such that 
the tour obtained by replacing the edges in L with the edges in L * has minimal 
length. Unfortunately, we have the following result. 

Theorem 5.3. The decision variant of the TSCP is NP-complete. 
Proof. It is not hard to verify that the TSCP is in NP. Next, we reduce the set 
packing problem (SPP) to the TSCP. In the SPP a collection C of finite sets with 
elements from a set W is given and a positive integer m ::;: I C 1. The question is 
whether C contains at least m mutually disjoint sets. The SPP is NP-complete 
[Garey & Johnson, 1979]. 
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We construct a tour t, with ltl = IWI + ICI, as follows. Map each wE W 
onto an edge e of a tour t with length d (e) = 0. Associate with each set c e C an 
unique edge ee Et on which no w E W is mapped, such that c, whose elements are 
mapped onto a set of edges Ee, is mapped onto a tour t~ eNA. (t) with t \ t~ = Ec U 
{ec}, i.e., edges le= Ee U {ee} are removed from t to construct t~. rA. adds edges 
e' tot~ such that (t~ \ t) n (t~ \ t) = 0 for all c' E C \ {c}. Choose d(ee) = 1 and 
d(e') Ofor alle' E t~\t andc E C. Hence, f(t)- f(t~) = lfor all t~ associated 
with sets c E C. An SPP instance is now reduced to an TSCP instance in which 
the question is whether there exists a tour t* with f (t) - f (t*) :;:: m, because for 
all le, le' EL that are included in t but not in t* holds that le n let = 0, otherwise 
t* is not a tour since the inserted edges in t~ and t~ are different. Consequently, it 
holds that the sets c associated with the edge sets sets leE L * are mutually disjoint. 
So the problem of determining whether C contains m mutually disjoint subsets is 
equivalent with determining whether there exists a tour t* with /(t)- f(t*) :;:: m 
since the gain made by exchanging an edge set l E L * is at most one. o 

Considering that the problem of finding an optimal subset of the proposed ex­
changes whose effectuation results in a maximal gain is NP-hard, we use the fol­
lowing heuristic for selecting a subset of the proposed exchanges that is effectu­
ated. The idea is to combine proposed edge reversals to a feasible tour by attempt­
ing to perform them on the current tour in order of descending gain. For this, we 
construct the following sequence of tours tp with 0 ~ p ~ P and to t. Let 
ep be an edge for which f(rA.(t, ep)) < f(t). Then tp+t = tp if rA.(tp, ep) does 
not result in a feasible tour with lower cost. otherwise tp+1 = rA.(tp, ep). A pro­
posed A.-exchange consists of a sequence of k 2-exchanges. To compute tp+l this 
sequence of 2-exchanges is performed on tp. If a 2-exchange in the sequence of 
rA.(t, ep) removes anedgex which does not occur in tp, i.e., this edge has already 
been removed by a previous A.-exchange then rA. (t P• e P) cannot be effectuated, so 
tp+l = tp. The part of the sequence of2-exchanges proposed in -cA.(t, ep) up to 
the 2-exchange that can no longer be performed can still be effectuated, provided 
that it gives a shorter tour t p+ 1· 

5.4.2 Computational complexity 

The complexity of an iteration of the parallel Lin-Kernighan algorithm depends 
on the target-machine on which the algorithm is executed. Our target-machine is 
a message-passing MIMD machine with a 2-dimensional torus as interconnection 
network. We restrict the complexity discussion to this machine. 

Complexity of the proposal phase. The complexity of the proposal phase de­
pends on the representation of a tour. It is at most NIP times the complexity 
of TA. as given in Table 5.7, where N is the number of cities and P the number 
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of processors. After this phase a processor can be idle for some time, until all 
other processors have completed the proposal phase, at which point the commu­
nication phase begins. The idle time should of course be minimal, and therefore 
a good load balance is important. The load imbalance is determined by the time 
between the first and the last processor to finish the evaluation of exchanges. This 
amount of time is to be minimized. It is, however, not possible to determine an 
equal amount of work for each processor beforehand, because the time needed 
to evaluate exchanges depends on the (variable) number of edges replaced in an 
exchange. Fortunately, the maximum difference between the first and the last 
processor to finish the proposal phase decreases when P increases, because then 
the maximum number of exchanges evaluated by processors decreases. Conse­
quently, also the load imbalance decreases with increasing P. 

Communication overhead. As soon as all processors have stopped evaluating 
exchanges, all-to-all broadcasting of proposed exchanges occurs. This part of the 
algorithm is called the communication phase. It makes no difference for the com­
munication overhead whether communication is synchronous or asynchronous, 
because even if a processor can send a message to another processor before this 
processor wants to receive it, a processor can only proceed as soon as it has re­
ceived the exchanges proposed by all other processors. Using the algorithm of 
Section 6.2, all-to-all broadcasting on a two-dimensional 2x x 2y torus can be 
done in O(x + y) time, which is equal to O(y' P) if the network topology is a 
v' P x v' P torus, where P is the number of processors. 

The parallel algorithm performs multiple exchanges in a single iteration. Con­
sequently, the total number of all-to-all broadcasts in a run of the algorithm de­
creases with an increasing number of processors, provided that the total number 
of exchanges needed to find local minima is independent of the number of em­
ployed processors. So the time needed for all-to-all broadcasting increases sub­
linearly with an increasing number of processors, but the total number of all-to-all 
broadcasts decreases with an increasing number of processors. 

Complexity of the combination function. The complexity of effectuating pro­
posed exchanges by the combination function depends on the data structure used 
to represent tours. Assume that a proposed .A.-exchange consists of a sequence of 
k 2-exchanges in which the edges Xi are replaced by the edges Yi for 0 :::; i :::; k. 
Effectuating this proposed exchange is then similar to applying TJ.. to the tour tq in 
which the edges Xi that are to be removed by 7:;.. are known beforehand; here tq is 
the tour obtained by the combination function through effectuating the preceding 
q proposed exchanges. Since Xi is already given, only a single Succ operation has 
to be performed to check whether Xi still exists in the tour tq. So for the two-level 
tree representation the complexity to effectuate a proposed exchange is eJ (ky' N), 
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and the total complexity of the combination function to effectuate all proposed ex­
changes is CJ(P k,JN), where k is the maximum number of 2-exchanges in any 
proposed A.-exchange. 

For the segment trees representation effectuating a proposed A.-exchange on 
the permanent tour requires CJ(N) time. So if proposed exchanges are effectu­
ated each time after checking whether a proposed exchange can be performed, the 
combination function requires at least Q ( P N) time for effectuating P exchanges. 
However, it is possible to postpone the effectuation of exchanges on the perma­
nent tour until all proposed exchanges have been checked and implemented in the 
segment tree. This implies that a single, possibly large, segment tree is. built that 
represents all proposed exchanges. If K denotes the total number of2-exchanges 
summed over all proposed .A-exchanges, then the height of this segment tree is 
CJ(log K). Since only a single Succ operation has to be performed in each 2-
exchange, the total complexity to build a segment tree that represents the tour 
obtained after effectuating all proposed exchanges, is CJ(K log K + K 2). Effectu­
ation of the proposed exchanges on the permanent tour requires CJ(N) time. The 
total complexity of the combination function is therefore CJ(N + K log K + K2). 

Recall that in each .A-exchange an upper bound on the number of 2-exchanges is 
imposed, which is equal to 50 in our implementation. Hence, K = CJ(P) and the 
complexity of the combination function is CJ( N + P2). The combination function 
effectuates at most P exchanges, which requires CJ( P N) time in a sequential al­
gorithm. So the total amount of time needed for effectuating proposed exchanges 
in the parallel Lin-Kernighan algorithm that uses segment trees is less than that 
required by a sequential algorithm. 

Important issues to obtain a good speed-up with our parallel Lin-Kernighan 
algorithm are load balancing, communication overhead, and the proportion of 
proposed exchanges effectuated by the combination function. The load imbal­
ance is expected to decrease with an increasing number of processors. The time 
needed for all-to-all broadcasting is CJ(,JP), which grows sublinearly with in­
creasing number of processors, but the number of all-to-all broadcasts is expected 
to decrease with increasing number of processors. The number of proposed ex­
changes that can be effectuated depends on the tour at hand but is bounded by 
NI k, where k is a lower bound for the number of replaced edges in a single .A­
exchange. In our parallel algorithm only the work involved in a rejected exchange 
does not contribute to the speed-up, and it is therefore important that most of the 
proposed exchanges are effectuated. It is likely that more exchanges are rejected 
when the number of processors increases. For a fixed number of processors it is 
likely that less exchanges are rejected when larger instances are attempted. 
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cand. set first order second order 
p 1 16 32 48 64 1 16 32 48 64 

T(s) speed-up T(s) speed-up 
d2103 360 3.3 4.9 6.2 4.9 926 4.7 4.8 7.5 7.7 
u2152 517 5.5 9.8 9.5 10.0 1053 5.2 9.0 11.7 11.5 

pr2392 1317 5.0 8.8 13.6 16.2 2140 5.6 10.1 12.5 15.7 
pcb3038 2091 6.0 12.1 14.3 16.8 2699 6.7 11.0 15.4 16.9 

rl5915 2241 4.5 7.7 11.2 12.4 9498 8.1 11.9 15.6 16.8 
r15934 2267 4.1 7.9 10.6 12.0 9772 5.7 10.4 13.0 18.4 

pla7397 9041 5.7 8.9 13.7 14.9 14987 5.1 9.9 14.5 18.2 

Table 5.9: Computational results on the Parsytec GCel for two-level trees. 

cand. set first order second order 
p 1 16 32 48 64 1 16 32 48 64 

J. \SJ I speed-up T(s) speed-up 
d2103 70 2.8 4.0 4.5 3.3 400 3.7 3.8 4.5 4.6 
u2152 131 4.3 5.7 5.3 6.2 421 4.2 6.1 7.3 7.5 

pr2392 252 5.0 6.9 8.6 8.9 671 5.2 7.6 8.8 9.9 
pcb3038 356 5.3 8.7 9.2 9.3 810 5.7 8.5 10.2 11.0 

rl5915 448 4.9 7.6 9.2 8.8 2197 5.3 7.6 9.1 9.4 
rl5934 439 4.5 6.9 8.3 8.4 2321 4.8 6.3 8.5 9.8 

pla7397 782 5.2 6.7 8.9 8.8 2026 5.0 7.0 8.5 10.0 
rll1849 1352 5.3 8.1 9.7 9.9 4504 5.5 6.7 10.7 11.6 

brd14051 2409 6.5 10.2 12.0 13.7 5427 7.2 11.5 13.9 16.4 

Table 5.10: Computational results on the Parsytec GCel for segment trees. 

cand. set first order second order 
p 1 8 16 24 32 1 8 16 24 32 

T(s) speed-up T(s) speed-up 
rl5915 140 2.5 4.4 5.5 6.8 509 3.2 5.7 6.6 9.8 
rl5934 200 3.1 5.5 7.1 8.6 612 3.0 5.6 9.4 8.7 

pla7397 815 3.9 6.7 10.5 10.9 904 2.9 4.9 6.5 9.7 
rl11849 1645 3.4 7.8 8.8 12.0 3027 3.5 6.6 10.3 13.3 

brd14051 2042 1.6 3.6 5.9 7.2 4317 2.2 4.7 8.1 12.8 
d18512 6719 3.4 7.8 9.7 11.3 8553 4.1 6.9 12.3 14.4 

Table 5.11: Computational results on the Parsytec Xplorer for two-level trees. 
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cand. set first order second order 
p 1 8 16 24 32 1 8 16 24 32 

T(s) speed-up T(s) speed-up 
r15915 39 3.3 4.6 5.3 6.1 175 3.6 5.2 6.2 7.8 
rl5934 41 3.2 4.7 5.4 6.3 178 3.1 4.8 6.8 6.8 

pla7397 57 2.8 4.1 5.4 5.3 146 3.2 4.6 5.6 7.0 
rl11849 132 3.7 5.5 6.4 7.6 373 3.3 5.2 6.3 7.9 

brdl4051 206 4.0 6.0 8.6 9.8 461 4.4 7.0 9.0 10.9 
d18512 278 3.8 6.8 8.0 9.7 552 4.1 6.8 9.9 10.8 

pla33810 443 2.7 4.3 5.3 6.6 982 3.6 4.9 6.1 8.1 
pla85900 1628 2.9 3.9 5.2 6.0 3852 3.1 5.9 6.4 7.7 

Table 5.12: Computational results on the Parsytec Xplorer for segment trees. 

p 1 8 16 24 32 1 8 16 24 32 
T(s) €avg(%) 

rl5915 39 12 8.4 7.3 6.4 3.3 2.7 2.8 2.9 2.9 
r15934 41 13 8.7 7.5 6.7 3.3 3.1 3.5 3.3 3.2 

pla7397 57 20 14 11 11 3.0 3.0 2.7 2.9 3.2 
rl11849 132 36 24 21 18 3.0 2.7 2.6 2.5 2.8 

brd14051 206 51 34 24 21 2.9 2.7 2.8 2.7 2.7 
d18512 278 74 41 34 29 2.4 2.3 2.3 2.3 2.2 

pla33810 442 163 104 84 67 2.7 2.6 2.6 2.5 2.6 
pla85900 1628 563 431 311 273 2.9 2.7 2.7 2.6 2.6 

Table 5.13: Running times and average relative excess E for segment trees and first order 
Delaunay sets. 

p 1 8 16 24 32 1 8 16 24 32 

I T(s) €m(%) 

I r15915 174 48 34 28 23 2.6 2.3 2.3 2.3 2.6 
r15934 178 46 32 26 21 3.0 2.8 2.9 2.8 2.7 

pla7397 143 68 37 29 28 2.6 2.4 2.8 2.5 2.5 
rl11849 373 113 72 60 47 2.4 2.4 2.3 2.4 2.4 

brd14051 461 106 66 51 42 2.6 2.5 2.6 2.5 2.6 
d18512 552 137 81 56 51 2.2 2.2 2.1 2.2 2.1 

pla33810 982 272 200 160 121 2.4 2.5 2.3 2.5 2.5 
pla85900 3852 1244 658 601 500 2.7 2.7 2.9 2.6 2.6 

Table 5.14: Running times and average relative excess c:: for segment trees and second 
order Delaunay sets. 
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5.4.3 Computational results 

We have implemented the parallel Lin-Kernighan algorithm in C on two parallel 
machines running the Parix operating system. The first one is a Parsytec GCel 
that consists of 512 T805 transputers with 4 Mbyte local external memory. The 
second one is a Parsytec PowerXplorer that consists of 32 processing units that 
are based on the PowerPC 601 microprocessor. Each processing unit has 4 bidi­
rectional communication link interfaces and a local external memory of 32 Mb. 
Both machines are configured in a two-dimensional torus. Although the compu­
tational power of a T805 transputer is much less than that of a Power PC processor 
-a T805 is roughly 15 times slower-, the ratio of communication vs. compu­
tation time is better for the GCel, which means that communication is relatively 
less costly on the GCelthan on the PowerXplorer. A comparison on these two 
platforms may therefore indicate the dependence of our algorithm on the com­
munication/computation performance ratio. 

We have tested the parallel algorithm on the same instances as the sequential 
algorithm. All running times are given in seconds. Tables 5.9 and 5.10 give the 
speed-up obtained on the Parsytec GCel. The largest instance we could test on 
this network was pla7397 because of memory limitations. Tables 5.11 and 5.12 
give the speed-up obtained on the PowerXplorer network. The results are aver­
ages over ten runs of the algorithm starting from different initial nearest neighbor 
tours. Each table presents the average running times for the runs on a single pro­
cessor and the average speed-up for the runs on multiple processors. 

From these tables we observe that larger and better scaling speed-ups can be 
obtained for the two-level tree data structure than for the segment tree data struc­
ture. However, the achieved speed-ups for two-level trees are not sufficient to 
make them competitive with segment trees, because the smallest running times 
are evidently obtained with the segment tree data structure. 

Furthermore, we observe that in most cases better speed-ups are obtained on 
the GCel. This is explained by the better communication vs. computation ratio of 
this machine. The smallest overall running times, however, are clearly obtained 
on the PowerXplorer, because of the much larger computational power of this 
machine. Also, we observe that better speed-ups are obtained when using larger 
candidate sets, such as those consisting of second order Delaunay sets. This is 
explained by the increasing computation time through using larger candidate sets, 
which is beneficial for the speed-up of the algorithm. 

Thbles 5.13 and 5.14 show that the quality of the solutions found by the par­
allel algorithm is equal to that obtained by the sequential algorithm. This is no 
surprise, since the distributed Lin-Kernighan neighborhood used by the paral­
lel algorithm is isomorphic with the conventional Lin-Kernighan neighborhood. 
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Figure 5.6: Running time profiles for dl8512 (left) and pla85900 (right). 

Figure 5.7: Proportional profiles for d18512 (left) and pla85900 (right). 

However, most approaches based on partitioning cities either lead to a deterio­
rated solution quality or display little speed-up, which was also observed in our 
earlier attempts to design an efficient parallel Lin-Kernighan algorithm. 

Figure 5.6 and 5.7 present some more detailed information on the total and 
proportional amount of time spent by processors in each of the following four 
phases: proposing exchanges, being idle, communicating exchanges, and effec­
tuating exchanges. Measurements are done on the PowerXplorer using segment 
trees and first-order Delaunay sets. First, we note that for a given instance, the to­
tal amount of time spent in each phase of the algorithm decreases with an increas­
ing number of processors. TYPically, the total time needed in the proposal phase, 
the idle time, and the effectuation time decrease almost linear with an increasing 
number of processors. 'Ibis is explained by the observations in Section 5 .4.2. Fur­
thermore, we observe that the proportional amount of time to combine and effec­
tuate proposed exchanges increases for larger instances and decreases for larger 
number of processors. 'Ibis is also explained in Section 5.4.2. Finally, we ob­
serve that also the total time needed for communication decreases with an increas­
ing number of processors. 'Ibis indicates that the decrease in the total number of 
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Figure 5.8: Total and proportional amounts of proposed and accepted exchanges. 

all-to-all broadcasts dominates the increase in time needed for all-to-all broad­
casting. The proportional amount of time spent in communication, however, in­
creases for larger number of processors, and is the bottle-neck for the speed-up of 
the algorithm. So the scalabllity of our algorithm for larger number of processors 
depends on the efficiency of all-to-all broadcasting. 

The typical behavior of the combination function is illustrated in Figure 5.8 in 
which the absolute number of proposed and accepted exchanges is given as well 
as the proportional amounts for each iteration of the parallel algorithm when ap­
plied to the instance rl5934 using 32 processors. We observe that during the first 
iterations of the algorithm all processors find profitable exchanges of which 60% 
to 80% can be effectuated. After this, the number of profitable exchanges drops 
significantly and the effectuation rate varies between 40% and 100%. Overall it is 
fair to say that the combination function utilized in the parallel algorithm is quite 
effective, considering the intricate behavior of the exchange function t';, .• 

In this chapter we have shown that multiple-step parallelism can be applied 
successfully in the design of effective local search algorithms for the TSP. We 
have used solution decomposition for the parallel 2-opt and 3-opt algorithms and 
domain decomposition for the parallel Lin-Kernighan algorithm. Computational 
results show that reasonable speed-ups are achieved and that the parallel Lin­
Kernighan algorithm is competitive with sophisticated sequential implementa­
tions, both with respect to running times and quality of final solutions. Moreover, 
multiple-step parallelism based on domain decomposition is fairly robust with re­
spect to the underlying Lin-Kernighan implementation and data structures used 
to represent tours. Hence, the proposed approach will give good speed-ups for 
mostLin-Kernighan implementations provided that the target machine allows ef­
ficient all-to-all communication. 



6 
The Steiner Tree Problem 

This chapter discusses sequential and parallel local search for the Steiner tree 
problem in graphs. We introduce novel neighborhoods whose computational time 
and space complexity is smaller than those known in the literature. We present 
computational results for benchmark instances from Beasley [1990] and instances 
derived from real-world TSP instances, which contain up to 18,512 vertices and 
325,093 edges. These results show that good-quality solutions can be obtained 
in moderate running times. 

Furthermore, we present a parallel local search algorithm based on multiple­
step parallelism and an optimal polynomial-time combination function. Compu­
tational results show that good speed-ups can be obtained without loss in quality 
of final solutions. 

6.1 Local search for the Steiner tree problem 

In the Steiner tree problem in graphs a minimum weight subtree has to be found 
that includes a prespecified subset of vertices of a graph. The Steiner tree problem 
occurs in several practical applications, such as the design oftelephone, pipeline, 
and transportation networks, and the design of integrated circuits. Although the 
Steiner tree problem is NP-hard [Hwang, Richards & Winter, 1992], several so­
phisticated optimization algorithms exist that are able to solve instances with up 
to 2,500 vertices and 62,500 edges, at the cost however of substantial amounts of 
running time, viz., several hours on a powerful workstation or supercomputer. In 
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addition many heuristics have been proposed, most of which have running times 
that are polynomially bounded at the risk of finding sub-optimal solutions. Hwang, 
Richards & Winter [1992] present an overview of both optimization algorithms 
and heuristics. 

Local search has been applied so far only to relatively small instances of the 
Steiner tree problem containing up to 100 vertices, requiring several minutes of 
running time. Such instances are well within the range of current optimization 
algorithms, using a smaller amount of running time. So up to now local search 
has not been competitive with the best known optimization algorithms. In this 
chapter we present a local search algorithm that is able to find solutions with a 
relative excess of a few percent requiring moderate running times. Moreover, it 
is able to handle large problem instances in acceptable amounts of time. 

Formally the Steiner tree problem in graphs (STPG) is defined as follows. 

Definition 6.1 (STPG). Given are an undirected graph G = (Vo, Eo), a func­
tion d : Eo -+ IN that assigns weights to edges, and a set of terminals X s; V o. 
The problem is to find a subtree T = (Vr, Er) of G with X s; Vr s; V o and 
Er s; Eo such that the sum of the edge weights LeeEr d (e) is minimal. 0 

Vertices in V o \ X are called non-terminals. Since no non-terminals with degree 
one are included in an optimal solution, the solution space S consists of all sub­
trees T of G with X s; Vr that contain no non-terminals with degree one. Such 
a tree is called a Steiner tree. Non-terminals in a Steiner tree T are called the 
Steiner vertices of T. Steiner vertices with a degree at least three are called key 
vertices. A key path is a path in a Steiner tree T of which all intermediate vertices 
are Steiner vertices with degree two in T and whose end vertices are terminals or 
key vertices. It follows directly that a minimal Steiner tree consists of key paths 
that are shortest paths between key vertices or terminals. A basic property of the 
STPG is that Steiner trees contain at most I X I - 2 key vertices, and consequently 
they consist of at most 21 X I 3 key paths. 

6.1.1 Neighborhoods for the STPG 

The question of finding appropriate neighborhoods for the Steiner tree problem 
in graphs has been addressed by several authors. Duin & VoB [1993] distinguish 
between node-oriented neighborhoods based on exchanging Steiner vertices, and 
edge-oriented neighborhoods based on edge exchanges. 

Os borne & Gillett [1991] propose a neighborhood based on the observation 
that a Steiner tree T can be represented by its vertices Vr since its edges Er 
can be determined by computing a minimum spanning tree for the subgraph of 
G induced by Vr. Neighbors are then constructed by adding and removing ele­
ments to and from Vr. A similar neighborhood is used in the genetic algorithm 
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of Kapsalis, Rayward-Smith & Smith [1993]. Although the neighborhood size is 
O(IVGI), verification oflocal optimality is computationally expensive for these 
neighborhoods, as construction of neighbors requires a minimum spanning tree 
computation that has O(IEGilog IVGI) time complexity. 

YoB [1992] and Dowsland [1991] propose 1-opt neighborhoods based on ex­
changing key paths. Neighbors are constructed by removing one key path from a 
Steiner tree T and connecting the remaining two components by a shortest path 
between two arbitrarily chosen vertices, one in each component, such that a Steiner 
tree is obtained. A disadvantage of this neighborhood is that the complexity of 
verification of local optimality, and thus the complexity of a single local search 
step, is O(IXIIVGI2), since a Steinertree T contains at most 21XI- 3 key paths. 
Moreover, a pre-processing step of 0(1 VGI 3) is needed to compute shortest paths 
between all pairs of vertices, and storing all paths requires 0(1 VG 12) space com­
plexity. Dowsland [1991] furthermore presents an extended 1-opt neighborhood 
that consists of the above neighborhood extended with Steiner trees obtained by 
connecting the two components by shortest paths from any vertex not in the tree 
to any two vertices, one in each component. This extension is needed to prove 
complete connectivity of this neighborhood. The time complexity to evaluate all 
neighbors in this neighborhood is O(IXIIVGI3), which makes it not suited for lo­
cal search algorithms in which neighborhoods have to be enumerated, e.g., iter­
ative improvement or tabu search. 

We present novel neighborhood structures and exchange functions with im­
proved time and space complexities, which makes these neighborhoods more suit­
able for larger problem instances. Moreover no pre-processing step is required to 
compute all-pairs shortest paths. The exchange function of these neighborhoods 
is based on the following observation. Removal of key path splits a Steiner tree 
into components. Reconnection of these components can be considered as a new 
STPG instance in which components are treated as terminals. A STPG instance 
with two terminals can be solved in polynomial time by computing a shortest path 
between these terminals. This observation gives rise to the following neighbor­
hood. 

Definition 6.2. Let T be a Steiner tree that consists of K key paths, lt, ... , lK. 
Let Si, s: be the two components that remain after removal of key path li from 
T. Let sp : P(VG) x P(VG) ---+ P(EG) give a shortest path from a subset of 
vertices to another subset of vertices. Then, the neighborhood Nt is defined by 

Nt(T) ={Si Us; U sp(Vsi' Vs~) I Si Uli Us;= T A 1:::: i:::: K}. 
I 

0 

The number of key paths in neighboring Steiner trees can differ. Removal of a key 
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proc sp (W, W': 'P(Va)) 
begin 

for v E Va \ W dom(v} := oo od 
for v E W dom(v) := Ood 
Yo := 0; Yt := W; v E W; 
while Yt =F 0 1\ v If_ W' do 

v E {wE Yt I m(w) = minw'eY1 m(w')}; 
if v cf. W' then 

fi 

for v' E {wE Va I (v, w) E Ea} do 
if v' cf. Yo then 

fi 
od 

m(v') := min{m(v'), m(v) + d(v, v')}; 
Yt := Yt U {v'} 

Yo :=YoU {v}; Y1 := Yt \ {v} 
od {m ( v) gives the length of the shortest path from W to W'} 

end 

Figure 6.1: A multiple-source shortest path algorithm. 

path that ends in a key vertex with degree three turns that key vertex into a non 
key vertex and the two remaining key paths are merged into a single key path. 
Addition of a key path that ends in a non key vertex converts that vertex into a 
key vertex, and the key path that passes through it is split into two key paths. So 
ITI- 2 :S IT'I :S ITI + 2 forT' E Nt(T), where ITI denotes the number of 
key paths in T. The number of key paths whose removal has to be considered 
in a given neighborhood Nt(T) is at least lXI- 1 and at most 21XI- 3 since a 
Steiner tree T contains at least I X I - 1 and at most 21 X I - 3 key paths. Hence, 
the size of a neighborhood is at most 21 X I - 3. An interesting observation is that 
solutions only have neighbors with lower or equal cost, because only paths with 
at most the length of the removed path are inserted since this length is an upper 
bound on the length of the shortest path between components. So an attempted 
replacement of a key path in a Steiner tree can lead to the same Steiner tree if no 
shorter path exists. In particular this can imply that local minima have no other 
neighbors. 

The function sp is computed using the algorithm of Figure 6.1. The time 
complexity of this algorithm is O(IEallog IV aD if the set Yt is represented by 
the classical heap data structure. Identification of the two components that arise 
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when a key path is removed from a Stein er tree can be done in 0( I V c I) time. 
An important observation is that the algorithm of Figure 6.1 computes the 

shortest paths to vertices in ascending order. In this algorithm m ( v) gives the 
length of a shortest path to a vertex v E Yo. The algorithm can be terminated as 
soon as m ( v) ::::: d (1i) for a vertex v E Yo and a removed key path li, because then 
the shortest path from Si to s; is at least d(li) long. Consequently, replacement 
of 1i cannot lead to a lower-cost tree. This leads to the following upper bound for 
the time complexity of the function sp. Let T be a Steiner tree from which a path 
1 with length d (1) is removed, which results in two components S, S'. Let W be 
the largest set of vertices that are within distance d (1) from S for some 1 in T. 
Then, the complexity of the function sp is O(IVcl + IWI2 log lW I). 

A consequence of inserting only shortest paths between components is that 
the neighborhood N1 is not connected, i.e., it is not always possible to reach a 
globally minimal Steiner tree by a sequence of exchanges, as can be seen by a 
simple example. Therefore, we present a neighborhood N{ that is a small aug­
mentation of N1 such that it is sufficiently connected, i.e., it is possible to reach 
an optimal solution from any solution by a sequence of exchanges. Moreover, 
N{ (T) also contains neighbors with higher cost than that of a Steiner tree T, so 
here neighborhoods of local minima contain other Steiner trees. Such neighbor­
hoods are needed in tabu search algorithms to escape from local minima. 

InN{ also a single key path is replaced with another key path, as is the case 
in N1. The supplement of N{ to N1 consists of neighbors constructed by adding 
shortest paths from one component to the other component via vertices that are 
positioned at a distance of one edge from the other component. 

Definition 6.3. Let T be a Steiner tree that consists of K key paths, 1}, ... , 1K. 
Then, the neighborhood N{ (T) is equal to 

{Sius;usp(Vs;' v)U{(v, v')} I T = SiU1ius; I\V
1 
E s: 1\(v, v') E Eel\ 1 ~i ~K}. 

D 

The complexity of evaluating the cost of all neighbors in a neighborhood N{ (T) 
of a Steiner tree T is O(IXIIEcllog IV cl), as all neighbors originating from re­
moval of the same key path can be evaluated in a single execution of the multiple­
source shortest path algorithm. The neighborhood N{ (T) is a strict subset of 
the extended 1-opt neighborhood ofDowsland [1991] and all excluded neighbors 
originating from removal of a given key path have higher cost than those that are 
included inN{ (T). The average cost of neighbors in N{ (T) is therefore lower 
than in Dowsland's extended 1-opt neighborhood, which also has a much larger 
computational complexitythanN{, viz. O(IXIIVcl3). N{ is not completely con­
nected since it is not possible to transform a Steiner tree into another Steiner tree 
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that differs only in a single key path that is not a shortest path between two com­
ponents. However, we have the following result. 

Theorem 6.1. The neighborhood structure N{ is sufficiently connected. 
Proof. Let T* be an optimal Steinertree, let T be aSteinertree, andletsp(A, B) 
denote a shortest path from component A to B. Partition T* into subtrees such 
that all leaves are terminals and all other vertices are Steiner vertices. Let S ~ 
T* be such a subtree that is not duplicated in T. We consecutively add adjacent 
key paths in S to T, starting with the key paths rooted from the leaves in S. We 
distinguish between two cases based on whether vertex i with which a vertex a E 
T has to be connected, is included in T. 

Let i E T, and let sp(a, i) be a key path in T* not in T that is to be added. 
Remove a key path l from T not in T* such that addition of sp(a, i) would result 
in a Steiner tree. This is always possible since addition of sp(a, i) to T gives a 
cycle in T of which at least one key path is not included in T*. Removal of l 
splits Tin components A and B with a EA and i E B. Let (j, i) E sp(a, i) and 
construct T' = A U B U sp(A, j) U { (j, i)} EN{ (T). If sp(a, j) # sp(A, j) = 
sp(a', j), then addition of sp(a, j) toT' results in a cycle. So there exists a key 
path in T' not in T* whose replacement with sp(a, j) would result in a Steiner 
tree. We can repeat the above procedure, adding one edge of sp(a, i) at a time, 
until the entire path sp(a, i) has been added. 

Let i fj. T, then i is a key vertex connected with at least three vertices a, b, c E 
Sthat also exist in T. Letsp(a, i) beakeypathin T* not in T that is to be added. 
Remove akeypathl from T notin T* such that addition of sp(b, a) would result 
in a Steiner tree. This is always possible since addition of sp(b, a) to T gives 
a cycle in T of which at least one key path is not included in T*. Removal of l 
splits Tin components A and B with a E A and b E B. Let (j, a) E sp(a, i) 
and construct T' = A u B U sp(B, j) u {(j, a)} E N{(T). Next, remove a 
key path l' from T' not in T*, which results in components A' and C, such that 
additionofsp(c, j) wouldgiveaSteinertree. Let(j', j) E sp(a, i) and construct 
T" =A' u C U sp(C, j') u {(j', j)} E N{(T'). Repeating these steps of adding 
edges of sp(a, i) one after the other, starting alternately from b and c, gives a 
Steiner tree that includes i, at which point the former case applies. 

Sort the key paths of S according to the minimum number of key paths that 
need to be traversed to reach a terminal. Once a key path of subtree S in T* has 
been added to T, other key paths from S that do not exist in T * are added to T in 
order of ascending rank. Repeating this construction for other subtrees S c T* 
not duplicated in T gives a valid sequence of exchanges inN{ that transforms a 
Steiner tree T into an optimal Steiner tree T*. D 

The neighborhood structures N1 and N{ are based on the insertion of a single 
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shortest path between two components. They are inspired by the polynomially 
solvable Steiner tree problem with two terminals. Chen [1983] presents a poly­
nomial algorithm for the Steiner tree problem with three terminals. This moti­
vates the following neighborhood in which two paths are removed from a Steiner 
tree. Reconnection of the remaining three components can be done optimally in 
polynomial time with the following algorithm that improves upon the time com­
plexity of the algorithm of Chen [1983]. The algorithm is based on the following 
property. 

Property 6.1. Consider an S1PG instance with three terminals s, s', s", and let 
T be a minimal Stein er tree with key vertex w. Then, the length of the path in T 
from w to s and the length of the path from w to s' is at most d(sp(s, s')). D 

Note that it is possible that w coincides with a terminal. If we replace terminals 
s, s', s" with three components S, S', S" we see that the key vertex win a mini­
mal Stein er tree that contains the components S, S', S" is included in the set W 
of vertices for which the shortest path to S and the shortest path to S' is at most 
d (sp( S, S')). This optimal key vertex w can be found by the following algorithm. 

(1) Construct the set of vertices for which the shortest path to S is at most 
d(sp(S, S')). This set is given by the final value of the set Yt in the al­
gorithm of Figure 6.1 for the computation of sp(S, S'). Similarly, the set 
of vertices for which the shortest path to S' is at most d(sp(S, S')) is given 
by the final value of Yt in the computation of sp(S', S). The set W of can­
didate key vertices is the intersection of these sets. 

(2) Determine the shortest path from W to S" using the algorithm of Figure 
6.1. In this algorithm m(v), v E W, has to be initialized as the distance 
from S to v plus the distance from S' to v. The root vertex w of this path 
is the key vertex in a minimal Steiner tree T for the components S, S', S". 

The time complexity to find w is O(IEollog IVol). At most three additional key 
paths need to be added to construct a minimal Steiner tree that contains S, S', 
and S". Let stp3 ( S, S', S") denote this set of key paths that can be found with 
the above algorithm. Using the function stp3, we can define the following 2-
exchange neighborhood. 

Definition 6.4. Let T be a Steiner tree that consists of K key paths, It, ... , l K. 

Let the function stp3 return, on input of three components, the additional key 
paths in a minimal Steiner tree that contains these components. Then, the neigh­
borhood Ni (T) is equal to 

{SUS'US"Ustp3{S, S', S") IT= SUS'US"Uli Ulj A l::;;i<j::;;K}. 

D 
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The size of this neighborhood is O(IXI2) as the number of key paths in a Steiner 
tree is at most 21X I - 3. The complexity of identifying S, S', S" is 0(1 VG I), and 
the above algorithm to implement the function stp3 requires O(IEollog IVol) 
time. Hence, the complexity to verify local optimality of a Steiner tree for Nf is 
O(IXI21Eollog IVoD. The time complexity of the algorithm to implement stp3 
can bereduced bytenninatingitas soon asm(v) > d(li) +d(lj), wherem(v) is 
the summed length of the shortest paths from S, S', and W to v e V0 , because 
then replacing key paths li and l i cannot lead to a Steiner tree with lower cost. 

For all neighbors T' E Nf (T) holds that f (T') ~ f (T) since neighbors 
are constructed by computing a minimal Steiner tree to connect the remaining 
components after removal of two key paths. Removal of two key paths can, fur­
thermore, lead to a Steiner tree in which Steiner vertices with degree one exist. 
This occurs if the two removed key paths share a key vertex with degree three in 
T. The remaining key path from this vertex can also be removed from T, which 
leads to an additional cost decrease ofT'. So in some cases three key paths are 
removed from a Steiner tree T to construct its neighbors in Nf(T). The neigh­
borhood N1 (T) is generally not a subset of Nz(T), and in some cases their inter­
section can even be empty. However, the following result holds. 

Theorem 6.2. Let a Steiner tree T e S be given. If T is a local minimum of 
Nf, then T is also a local minimum of Nt. Moreover, let T' E Ni (T) and T" E 

Nf(T) with l, l' E T, l f/. T', and l, l' f/. T". then f(T") ~ f(T'). 
Proof. Let T be a local minimum of Ni and assume that T is not a local minimum 
of Nt. Then, for some T' = SUS' U {l} U sp(S uS' u {l}, S") e Ni(T), in 
which key path l' is removed, holds f (T') < f (T). T' is also a Steiner tree that 
connects the components S, S', S" that arise when key paths l and l' are removed 
from T, so f(T') 2:::: f(T), which contradicts the assumption. Furthermore, for 
T" =SUS' US" U stp3(S, S', S") E Nf(T) holds that f(T") ~ f(T') as T" is 
a minimal Steiner tree that connects the components S, S', and S". o 

A disadvantage of the neighborhood N2, which limits its practical usefulness, is 
its time complexity of 0(1 X 121Eo I log I VG I) for verifying local optimality. There­
fore, we present the following neighborhood N2 that is a restriction of N2 with a 
smaller time complexity for verifying local optimality. 

Definition 6.5. Let T be a Steiner tree that consists of K key paths, lt, ... , lx. 
Let the function stp3 return, on input of three components, the additional key 
paths in a minimal Steiner tree that contains these components. Then, the neigh­
borhood Nz (T) is equal to 

{Sus'us"ustp3(S,S',S") 1 T=SUS'US"Ul;UljAlinlr=/=0A1 <j~K}. 

0 
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To obtain a neighbor in Nz two key paths are removed that have a vertex in com­
mon, which can be a terminal or a key vertex. TYPically, if this key vertex has de­
gree three in the Steiner tree, the remaining key path is also removed. The three 
remaining components are connected using the function stp3 to compute a min­
imal Steiner tree for three components. The size of the neighborhood N2 (T) for 
a Steiner tree T is O(tciXI), where tc is the maximum degree of a key vertex in 
T. Consequently, the complexity of verifying local optimality ofT for Nz is then 
O(tciXIIEollog !Vol), which is substantially less than the complexity of verify­
ing local optimality for N~. Moreover, it still holds that a local minimum of Nz 
is a local minimum of N1 since minrre.tV2(T) f(T') :::;: minrne.tV1(T) f(T") for a 
Steiner tree T E S for similar reasons as outlined in the proof of Theorem 6.2. 

6.1.2 Enumeration of neighborhoods 

An important aspect for the running time of an iterative first-improvement algo­
rithm is how neighborhoods are enumerated. Neighborhoods should be enumer­
ated such that exchanges that are not likely to lead to lower-cost solutions are ex­
amined last. Of course it is generally not possible to determine beforehand which 
exchanges do not lead to a lower-cost solution, but often exchanges that do not 
yield any gain when applied to a Steiner tree T also do not lead to a lower-cost 
Steiner tree when applied to a neighbor T' E N (T). This implies that it is prof­
itable to enumerate neighborhoods in such a way that exchanges that have not 
yet been examined, are explored first; this is called circular neighborhood search 

[Papadimitriou & Steiglitz, 1982]. To this end, a function b is introduced that 
assigns a boo lean to arguments of the exchange function that indicates whether 
the corresponding exchange has been evaluated and has not led to cost decrease. 
While enumerating the neighborhood of the current solution in a local search al­
gorithm, first those exchanges are examined for which this boolean is false. If 
no lower-cost neighbor has been found for these exchanges, then the remaining 
exchanges are evaluated. 

In the neighborhood N1 only a single path is removed in an exchange, so 
booleans can be associated with key paths, and the space complexity for storing 
the boo lean function b is 0 (IX I). In the neighborhood Nz exchanges can be iden­
tified by marking key vertices, because if a key vertex in a Steiner tree has degree 
tllree, neighbors are obtained by removing the three key paths that end in this key 
vertex. Considering that most key vertices in a Steiner tree have degree tllree, 
we can associate booleans with key vertices to indicate whether they have been 
exchanged. The space complexity of b can then be reduced to O(IXI). In tabu 
search certain exchanges are also not explored, but an essential difference with 
the tabu list in tabu search and the usage of the function b is that b is only used to 
achieve circular neighborhood search, not to prohibit exploration of exchanges. 
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6.1.3 Computational results 

We have implemented iterative first-improvement algorithms that use the neigh­
borhoods N1 and Nz. A Steiner tree is represented by a list of records that contain 
key paths. Each record also contains cross references to key paths that share end 
vertices with this key path. Furthermore, a function is maintained that gives for 
each vertex included in the Steiner tree, a key path that contains this vertex. Given 
the end vertices of a key path it is possible to find the corresponding key path by 
following the cross references. In this way removal and addition of key paths can 
be done in a time linearly bounded by the number of vertices in a key path and 
the degrees of the end vertices. It should be noted that removal or addition of key 
paths can require that other key paths are joined to one key path or split into two 
key paths. 

Computational results are presented for 40, randomly generated, instances 
from Beasley [1990]. Furthermore, a number of real-world Euclidean traveling 
salesman problem instances from Reinelt's TSPLIB are transformed to Steiner 
tree problem instances, since for many combinatorial optimization problems it is 
observed that real-world instances are typically much harder to solve than ran­
domly generated instances. This transformation is done as follows. The graph 
required in an STPG instance is the extended Delaunay graph for the correspond­
ing TSP instance as defined in Definition 5.9. Recall that an extended Delaunay 
graph G is a planar graph that contains at most 3n edges, where n is the number 
of vertices. We have utilized k-th order Delaunay graphs, with k = 1, 2, 3, 4, to 
construct STPG instances with more edges. From each graph, constructed in this 
way, three STPG instances are derived by randomly designating 15%, 25%, or 
35% of the vertices as terminals. No reduction techniques to reduce Steiner tree 
problem instances have been used. Initial solutions are constructed with a short­
est path heuristic [Takahashi & Matsuyama, 1980] as follows. Starting with an 
initial terminal, terminals closest to the tree constructed so far are consecutively 
connected by shortest paths to this tree until all terminals are added. 

Thbles 6.1 and 6.2 present the results obtained with our iterative improvement 
algorithm. In these tables lVI, lE I, and lXI give the number of vertices, edges, 
and terminals, respectively. For all problems but one (e18), in Beasley's series 
D and E, optimal solutions are known [Beasley, 1989] For the Euclidean STPG 
instances optimal solutions are only known for the instances f1 - f24 that contain 
up to 1,000 vertices. These solutions are computed by the exact algorithm of Duin 
[1994], which is among the fastest exact algorithms available for the STPG. It 
can handle instances with at most 1,000 vertices due to memory limitations. The 
optimal solution value is given in the column "opt". The best solution found in 
ten runs of the iterative improvement algorithm is given in the column labeled 
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N"t Nz 
lVI lE I lXI opt best Eavg t(s) best Eavg t(s) 

d1 1000 -1250 5 106 106 2.64 0.7 106 0.94 1.1 
d2 10 220 220 0.73 0.3 220 0.27 0.6 
d3 167 1565 1567 0.22 9.4 1565 0.00 13.7 
d4 250 1935 1939 0.34 11.9 1935 0.10 16.2 
d5 500 3250 3254 0.18 24.7 3251 0.12 44.5 
d6 2000 5 67 70 5.67 0.8 67 2.23 1.9 
d7 10 103 103 0.00 0.9 103 0.00 1.2 
d8 167 1072 1082 1.64 8.2 1075 1.13 11.6 
d9 250 1448 1454 0.70 14.5 1450 0.58 23.4 
dlO 500 2110 2119 0.70 29.5 2113 0.44 41.0 
dll 5000 5 29 29 4.14 0.8 29 3.05 1.0 
d12 10 42 42 3.81 0.1 42 0.24 0.3 
d13 167 500 509 2.46 9.2 502 1.86 23.5 
d14 250 667 674 1.27 15.0 670 0.90 26.3 
d15 500 1116 1123 0.79 32.6 1116 0.46 73.8 
dl6 25000 5 13 13 3.08 0.1 13 0.00 0.3 
d17 10 23 23 4.35 0.3 23 2.64 0.4 
d18 167 223 236 7.40 12.3 230 4.41 30.8 
dl9 250 310 336 9.32 22.8 321 5.77 53.5 
d20 500 537 558 4.49 53.4 547 2.29 112.0 
el 2500 3125 5 111 111 0.00 0.2 111 0.00 0.1 
e2 10 214 214 2.62 0.5 214 0.00 1.2 
e3 417 4013 4035 0.64 57.1 4023 0.34 86.0 
e4 625 5101 5118 0.35 85.2 5103 0.20 192.6 
e5 1250 8128 8130 0.11 171.4 8128 0.01 305.3 
e6 5000 5 73 73 2.04 0.2 73 0.00 0.3 
e7 10 145 145 3.70 0.7 145 1.69 2.2 
e8 417 2640 2661 0.98 76.2 2655 0.73 170.8 
e9 625 3604 3633 1.03 120.1 3617 0.65 212.5 
e10 1250 5600 5621 0.47 242.9 5605 0.37 431.0 
ell 12500 5 34 34 4.41 0.2 34 0.00 0.4 
e12 10 67 67 1.49 0.6 67 0.59 1.0 
e13 417 1280 1312 2.82 77.5 1299 1.98 182.3 
e14 625 1732 1756 1.59 139.4 1745 1.07 293.1 
e15 1250 2784 2794 0.69 265.2 2784 0.28 728.8 
e16 62500 5 15 15 6.67 0.3 15 0.00 1.0 
e17 10 25 25 4.80 0.8 25 2.40 1.3 
e18 417 568* 613 8.87 94.1 593 5.04 300.8 
e19 625 758 809 7.68 156.3 790 4.63 397.5 
e20 1250 1342 1398 4.71 384.5 1370 2.77 845.9 

Table 6.1: Results for Beasley's series D and E. 
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NI N2 
lVI lE I lXI opt E:av~ t(s) Eavg t(s) 

f1 783 2322 117 2992 1.51 4.4 1.13 7.3 
f2 196 3826 0.69 7.5 0.51 12.8 
f3 274 4401 1.23 8.9 0.77 21.5 
f4 7532 117 2899 1.92 5.1 1.44 10.1 
f5 196 3744 1.85 8.8 1.29 26.2 
f6 274 4368 1.46 10.1 0.52 27.1 
f7 28365 117 2892 1.03 28.9 0.67 54.7 
f8 196 3742 1.40 18.2 0.89 35.0 
f9 274 4368 0.98 19.5 0.47 44.8 
flO 109895 117 2892 1.13 24.9 0.51 42.5 
f11 196 3742 1.47 51.5 1.04 124.6 
f12 274 4368 1.01 53.9 0.35 163.6 
f13 1000 2981 150 6509412 2.30 11.2 1.53 35.9 
f14 250 8123458 1.26 16.8 0.91 29.7 
f15 350 9804964 1.23 24.0 0.67 57.2 
f16 9699 150 6316653 2.27 11.3 1.35 30.2 
fl7 250 7946357 0.71 19.5 0.55 34.3 
f18 350 9675663 1.06 26.1 0.82 71.9 
f19 38080 150 6297956 1.97 20.2 1.05 35.0 
f20 250 7931250 0.61 41.8 0.46 84.7 
f21 350 9673224 0.94 98.7 0.36 295.7 
f22 184597 150 6297956 1.63 66.4 1.01 143.2 
f23 250 7931250 0.67 99.1 0.33 161.6 
f24 350 9673224 0.50 151.7 0.35 277.1 

lVI lE I lXI best Eav~~: t(s) Eavg t(s) 
g1 3795 11326 569 13201 0.66 153 0.18 291 
g2 949 14693 0.54 276 0.24 497 
g3 1328 15868 0.73 367 0.27 1064 
g4 52684 569 13070 0.36 237 0.10 503 
g5 949 14569 0.54 394 0.10 670 
g6 1328 15681 0.60 547 0.27 1551 
g7 325093 569 13012 0.49 850 0.11 1867 
g8 949 14556 0.50 1171 0.23 2927 
g9 1328 15616 0.65 1770 0.20 3009 
g10 11849 35532 1777 381324 0.62 2476 0.12 5816 
gll 2962 478669 0.68 4296 0.17 12338 
g12 4147 559579 0.55 5740 0.14 14940 
gl3 14051 42128 2108 153663 0.59 2698 0.06 5002 
g14 3513 197335 0.67 4565 0.15 10682 
g15 4918 234213 0.63 6177 0.11 14424 
g16 18512 55510 2777 204314 0.71 4761 0.09 7998 
g17 4628 271714 0.74 7369 0.13 15622 
g18 6479 322698 0.67 10338 0.14 30807 

Table 6.2: Results for Euclidean instances. 
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"best" and the average relative excess of these ten final solutions in percentages 
over the optimal solution, or best known upper bound for the series G, is given by 
Eavg· The average running time in seconds on a Sun Classic workstation is given 
by t(s). 

We observe that our iterative improvement algorithms find solutions with rel­
ative excess of at most a few percents over the optimal solution for the instances of 
Beasley [1990] in a small amount of running time (at most a few minutes, whereas 
exact algorithms require several hours on supercomputers or powerful worksta­
tions for instances with 2,500 vertices). For several instances optimal solutions 
are found. For the Euclidean instances with up to 1,000 vertices we are able to 
find solutions with relative excesses of 0.3% - 2.2% in a few seconds. Further­
more, the algorithms are able to handle substantially larger instances in moderate 
amounts of running time. 

We are able to deal with much larger instances than those studied in other lo­
cal search approaches as presented by Dowsland [1991], Osbome & Gillett [1991], 
and Kapsalis, Rayw.ard-Smith & Smith [1993], who all deal with instances of at 
most 100 vertices, requiring running times that range from several minutes to a 
few hours. Moreover, our approach has limited memory requirements since only 
a compact representation of an instance is stored. Most other heuristic and exact 
approaches require a pre-processing step of 0(1Val3) time and 0(1Val2) space 
to compute and store all-pairs shortest paths, which makes it hard to handle large 
instances. 

6.2 Parallel local search for the Steiner tree problem 

Although good-quality solutions can be found with local search for the STPG, 
running times are still considerable for the larger instances. In this section we 
investigate the applicability of multiple-step parallelism to reduce these running 
times. An algorithm with multiple-step parallelism for the STPG can be outlined 
as follows. Here, P denotes the number of processors. 

(1) Partition the domain of the exchange function applied to a Steiner tree T 
into P subdomains and let each processor evaluate such a subdomain. 

(2) Communicate profitable exchanges to other processors. 

(3) Effectuate a subset of the profitable exchanges found in step (1), which re­
sults in a new Steiner tree T '. 

(4) Replace T by T', and repeat steps (1)- (3) until no improvement is found. 

Next, we discuss a distributed neighborhood structure 'Dt that can be employed 
in the above algorithm. We restrict our discussion of the time complexity asso­
ciated with V1 to synchronous multiple-step parallelism as our target machine 
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is a message-passing MIMD machine. Synchronization between the steps of the 
above multiple-step parallel local search algorithm is typically necessary on this 
machine because it has a decentralized architecture in which there is no central 
processor that governs accesses to the current Steiner tree. 

Domain distribution. The distribution structure of 'Dt assigns the entire cur­
rent Steiner tree to all processors. Th define the domain distribution of 'Dt, we 
note that the additional arguments for applying the exchange function 1: associ­
ated with the neighborhood .N1 to a given Steiner tree T are single key paths that 
are to be removed from T. So the set of arguments of r that determines the neigh­
borhood .Nt (T) consists of all pairs (T, l), for key paths l E T. This set of argu­
ments is partitioned into P (almost) equally sized subdomains that specify local 
neighborhoods. The domain distribution of 'Dt defined in this way partitions the 
neighborhood .Nt (T). If T consists of K key paths, then each processor evalu­
ates at most f K I Pl exchanges. So the size of a local neighborhood is 0( lj!), 
considering that K is at most 21X I - 3. 

Combination function. The combination function of the distributed neighbor­
hood structure 'D1 specifies how proposed exchanges are combined to form a new 
Steiner tree. It is not always possible to effectuate all proposed exchanges since 
some simultaneous key path replacements can split a Steiner tree into discon­
nected components. So the combination function may only effectuate a subset 
of the proposed exchanges. Essential for the speed-up of the algorithm is that the 
total gain that results from effectuating exchanges is as large as possible. The 
Steiner tree combination problem (STCP) of effectuating a subset of q proposed 
exchanges such that the resulting gain is maximized, is formulated as follows. 

Definition 6.6 (STCP). Given a Steiner tree T with key paths lt, . . . , lq E T for 
q E IN. Let!~, ... 1 l~ be paths such that T \ li u z: E .Nt (T) for alll ~ i ~ q, 
and let L = {lt, ... I lq, 1~, ... , !~}. Then, the problem is to find a subset L' of 
L such that the cost of Steiner tree T' T \ {it, . . . , lq} U L' is minimal. D 

The STCP is closely related to the problem of finding a minimum spanning tree 
in which components instead of vertices are to be connected. In the STCP a min­
imum spanning tree is to be found that connects q + 1 components that remain 
after removal of l t. ... , lq from T using new key paths l~, ... , l~ or removed key 
paths lt, ... , lq. Ifkeypath!psinserted into T' andli is removed, a proposed re­
placement of li with Zi is accepted. In the classical minimum spanning tree prob­
lem all edges are connections between vertices. In the STCP, however, inserted 
key paths z; are not necessarily connections between components because an in­
serted path li may end in a removed key path l i in which case z; is not a direct 
connection between components. 
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The STCP can be solved polynomially by generalizing the algorithm for find­
ing a minimum spanning tree ofKruskal [1956]. Kruskal's algorithm is based on 
the observation that an edge (u, v) has to be included in a minimum spanning tree 
for a graph G = (V, E) if there exists a subset U s; V with u e U and v e V \ U 
such that ( u, v) is a shortest edge between U and V \ U. Let T be a Steiner tree, 
and let L be defined as in Definition 6. 6. The STCP can then be solved as follows. 

(1) Remove {l1, ... , lq} from T, which results in q + 1 components C0, ••. , 

Cq. Let T' = {Co, ... , Cq} be this set of components. 

(2) Select a smallest length path 1 from L whose addition to T' does not give a 
cyclic component or else intersects with a key path l' in L. Remove l from 
the set L and add it to T'. If l connects two components, merge these com­
ponents to one. l is not necessarily a connection between two components 
in T' since it is possible that l ends in a vertex of a key path removed from 
T. Addition of l can give a cycle in a component C in T' if l intersects with 
a key path l' removed from T. In this case, remove a maximum length key 
path from C such that C becomes non-cyclic. 

(3) Repeat step (2) until all terminals are contained in a single component, i.e., 
T' includes a Steiner tree. It may occur that T' includes components with­
out terminals or that T' contains paths that end in a non-terminal with de­
gree one. These components or paths can be removed from T'. After this, 
T' is a minimum weight tree that spans the components { Co, ... , Cq} us­
ing paths from L, so T' is an optimal solution for the STCP. 

Next, we discuss the complexity of the above algorithm to effectuate a subset of 
q proposed exchanges. The complexity of selecting the smallest length path from 
L is constant if L is sorted in a pre-processing phase. Step (2) requires at most 
O(q) time in case a cycle is introduced. It is repeated at most 2q times. The 
overall time complexity of the algorithm is therefore O(q2). Thus, it is possible 
to determine in polynomial time a subset of q proposed exchanges whose effec­
tuation gives maximum cost decrease of the current Steiner tree T. In particu­
lar, at least one proposed exchange is effectuated by this algorithm, so in each 
iteration of the parallel algorithm the cost of the current Steiner tree decreases, 
which guarantees termination of the parallel local search algorithm. Moreover, 
in each iteration a Steiner tree T' is constructed whose cost is at most that of the 
lowest-cost neighbor of the current Steiner tree T, which would be accepted by 
a sequential algorithm with best improvement. 

Multi improvement. In sequential local search algorithms, two pivoting rules 
are distinguished to pick from profitable exchanges. In first-improvement algo­
rithms the first profitable exchange found is the one that is accepted, whereas in 
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best-improvement algorithms all exchanges are evaluated and the one with the 
largest gain is accepted. A disadvantage of first improvement in a synchronous 
multiple-step parallel algorithm is that it can lead to load imbalance, because syn­
chronization takes place after the proposal phase. Some processors may find a 
profitable exchange quickly, while others have to search their entire local neigh­
borhood. Moreover, even the running times required by single exchanges can dif­
fer substantially, as the number of vertices explored in the shortest path algorithm 
can vary significantly for different exchanges. Once a profitable exchange has 
been found or the entire local neighborhood has been examined, a processor has 
to wait until other processors have finished their proposal phase since effectuat­
ing proposed exchanges requires all-to-all broadcasting. Hence, large load im­
balance may occur when first improvement is used as pivoting rule. On the other 
hand, best improvement is also not efficient because in each step local neighbor­
hoods are searched entirely, although several steps with equal total gain can often 
be made with less computational effort using first improvement. 

Therefore, we use a different pivoting rule in our parallel local search algo­
rithm for the S1PG in which the entire local neighborhood is explored, as is the 
case in best-improvement algorithms, but instead of selecting only the best ex­
change, all profitable exchanges are memorized and proposed for effectuation. 
This pivoting rule is called multi improvement. Through multi improvement more 
exchanges are proposed, which leads to a better speed-up, provided that a large 
proportion of the proposed exchanges can be effectuated. An additional advan­
tage of this approach over first improvement is that a better load balance is ob­
tained because the entire local neighborhood is always explored, regardless of ob­
served profitable exchanges. This leads to smaller differences in running times of 
the proposal phase for processors since the running time for evaluating neighbors 
is summed over the entire local neighborhood. The effectiveness of an algorithm 
with multi improvement of course strongly depends on the ratio of proposed and 
effectuated exchanges, but this holds for best or first improvement as well. Note 
that for multi improvement the set of proposed exchanges is independent of the 
number of employed processors, so the course of the algorithm does not depend 
on the number of employed processors. 

Next, we discuss an upper bound for the speed-up of a parallel algorithm with 
multi improvement over a sequential algorithm with first improvement. For this 
we assume that the amount of time needed to communicate and combine pro­
posed exchanges is negligible compared to the time needed for evaluation of local 
neighbors. Let p be the number of exchanges effectuated in the combination step 
and let a be the average number of exchanges evaluated by a first-improvement 
algorithm to find a profitable exchange. p can be larger than the number of pro-
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cessors P since all profitable exchanges are proposed, but p is bounded by K, 
the number of key paths in the current Steiner tree T. The average running time 
of a sequential algoritlun with first improvement to find p profitable exchanges is 
ay p, where y is the average time for evaluating an exchange. A lower bound for 
the average running time of a parallel multiple-step algoritlun on P processors to 
find p profitable exchanges is 'y. So the speed-up is at most P f. If ap ~ K 
this would imply that a super-linear speed-up might be achieved with multi im­
provement, in which case it would be beneficial to use multi improvement in a 
sequential algoritlun instead of first improvement This observation emphasizes 
the importance of adequate neighborhood enumeration, because in a neighbor­
hood for which ap ~ K, it is better to first search an entire neighborhood for 
profitable exchanges, which are subsequently effectuated, than to effectuate ex­
changes immediately after finding them. In a local search algoritlun neighbors are 
enumerated according to some order imposed on the neighborhood. This order 
can change through effectuation of exchanges, which can infer that exchanges ap­
plied to T and T' that remove the same key paths are evaluated in different orders 
for neighboring solutions T and T'. If neighbors of T' that are not likely to have 
lower cost are examined first through this order change, it might be beneficial to 
examine several neighbors of T first before effectuating profitable exchanges. 

In our neighborhoods for the STPG neighbors are enumerated according to 
a tree traversal order. This order can change through removal and insertion of 
key paths. In Section 6.1.2 we have introduced a boolean function that is used 
to adapt the enumeration order of neighborhoods in such a way that exchanges 
that are not likely to result in lower-cost neighbors, are selected last Hence, first 
improvement in combination with a boolean function to guide enumeration of 
neighborhoods, is likely to be more effective than multi improvement as pivoting 
rule in a sequential local search algoritlun. 

Global communication. When a processor has evaluated its local neighbor­
hood and collected the profitable exchanges in this neighborhood, it has to wait 
until other processors have finished evaluating their local neighborhoods. As soon 
as all processors have explored their local neighborhoods, all-to-all broadcasting 
has to take place to communicate all profitable exchanges to all processors. The 
algoritlun for all-to-all broadcasting depends on the target machine on which it 
is implemented, which is in our case a message-passing MIMD machine config­
ured in a two-dimensional torus.ln this machine processors can only be involved 
in a single communication action at a time, either a send or receive. 

Eachrow and column in a two-dimensional torus is configured as a ring net­
work. Therefore, we first discuss an algoritlun to perform all-to-all broadcasting 
in a ring network with P processors, where P mod 2 = 0. The idea of this algo-
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proc BroadcasLRing(p) 
{ 0 ~ p < P 1\ P mod 2 = 0 } 
var m : array [0, P) ; 
begin 

i : = 0 ; m (p) = proposed exchanges processor p ; 
{ m(p) =proposed exchanges proc. p 1\ Vo:§;q<PAq#:p m(q) =nil} 
while i < P do 

if p mod 2 = 0 then (p + 1) ! m(p i), m(p + 1 - i); 
(p 1) ? m(p 2- i), m(p - 1 - i) 

else(p - 1) ? m(p 1 - i), m(p - i) ; 
(p + 1) ! m(p 1 - i) , m(p - i) 

fi 
i := i +2 

od { Vo:§;q<P m(q) =proposed exchanges of processor q} 
end 

Figure 6.2: Algorithm for all-to-all broadcasting in a ring for processor p. 

rithm is as follows. Let each 2i -th processor in a ring, with 0 :5 2i < P, send a 
message that contains proposed exchanges to the 2i + 1-th processor in this ring. 
Subsequently, each 2i + 1-th processor sends a message that contains not already 
sent exchanges to the 2i + 2-th processor. Figure 6.2 presents the algorithm for 
all-to-all broadcasting on a ring with P processors. In this algorithm all indexing 
is done modulo P. Expression p !m, m' denotes that variables m and m' are con­
secutively sent to processor p, and p?m, m' denotes that variables m and m' are 
consecutively received by p. 

The time needed for a single communication action depends on the start-up 
time to and the message length in bytes multiplied by the time t1 to transfer a byte, 
where the start-up time to is usually much larger than the time t1 for transferring a 
single byte. In the algorithm of Figure 6.2, P times a communication is initiated 
and messages have length 2M, except for the first and the last communication 
action in which a message with length M is sent, where M is the maximum length 
for encoding proposed exchanges of a processor. So the time complexity of our 
broadcasting algorithm is P(to + 2Mtt) - 2Mt1• Any one-to-all broadcasting 
algorithm on a ring in which a processor cannot send and receive simultaneously 
requires at least ~ communications. An all-to-all broadcasting algorithm on such 
a ring requires at least twice as much communications since at a given time stamp 
only one of two adjacent processors can send a message through which a one-to­
all broadcast for some processor proceeds. The total time needed for message 
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transfer is at least 2(P- l)Mtt. Thus, our all-to-all broadcasting algorithm on a 
ring without simultaneous transmission is optimal. 

AU-to-all broadcasting on a two-dimensional2x x 2y torus can then be done 
by simultaneously broadcasting proposed exchanges in each row using the algo­
rithm of Figure 6.2, followed by column-wise broadcasting using the same algo­
rithm. Row-wise and column-wise broadcasting requires O(x) and O(y) time, 
respectively. The message sizes for broadcasting column-wise are of course much 
larger since each message then contains all proposed exchanges in a given row. 
The total complexity of all-to-all broadcasting to communicate all proposed ex­
changes to all processors ina2x x2y torus is O(x+y). This is equal to O(.jP) if 
the network topology is a .j P x .j P torus, where P is the number of processors. 

The total number of executions of this broadcasting algorithm equals the num­
ber of iterations of the parallel algorithm, which is independent of the number of 
employed processors since in each iteration all profitable exchanges are collected 
regardless of the number of employed processors. 

6.2.1 Computational results 

We have implemented the parallel iterative multi-improvement algorithm outlined 
in the previous section in C on a Parsytec PowerXplorer consisting of 32 process­
ing units that are based on the PowerPC 601 microprocessor. Each processing 
unit is running the Parix operating system. The interconnection network topol­
ogy of this message-passing machine is a two-dimensional torus. 

We have tested the parallel algorithm on the same instances as the sequen­
tial algorithm. Tables 6.3 and 6.4 give the speed-ups obtained on the PowerX­
plorer machine. The results are averages over ten runs of the algorithm starting 
from different initial Steiner trees. Each table presents the average running time 
in seconds t (s) of the sequential algorithm, the average speed-up of the parallel 
algorithm for a given number of processors P, and the average relative excess Eavg 

of the cost of final solutions over the optimal cost for the D and E series or over 
the best known upper bounds for the G series. Our sequential algorithm differs 
ftom the parallel algorithm since it uses first improvement, whereas the parallel 
algorithm uses multi improvement as pivoting rule. However, as we have argued 
in the previous section, first improvement is more efficient in a sequential algo­
rithm than multi improvement, provided that neighborhoods are enumerated as 
outlined in Section 6.1.2. Therefore, we compute speed-up using first improve­
ment in the sequential algorithm and multi improvement in the parallel algorithm. 
Multi improvement furthermore ensures that the course of the algorithm is inde­
pendent of the number of employed processors, and consequently the same final 
solutions are found regardless of the number of processors. 

From the tables we observe that we obtain an acceptable speed-up that scales 
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p 1 4 8 16 24 32 
instance t(s) speed up(P) €avg 

d18 8.8 1.8 3.0 5.5 8.8 11.0 7.17 
d19 15.4 1.5 2.4 4.7 8.1 9.1 9.12 
d20 35.2 2.0 3.4 6.2 9.3 13.0 4.45 
e18 65.7 1.6 2.8 5.2 7.1 8.6 8.67 
e19 106.7 1.7 3.3 6.0 7.9 9.5 7.51 
e20 249.9 1.9 3.6 6.8 9.4 11.6 4.62 

Table 6.3: Some computational results for series D and E on PowerXplorer. 

p 1 4 8 16 24 32 
instance t(s) speed up(P) Eavg 

g1 111.1 1.5 2.9 4.9 6.2 7.5 0.67 
g2 191.3 1.7 3.3 5.8 7.6 9.2 0.46 
g3 245.8 2.0 3.7 6.6 8.2 10.5 0.58 
g4 196.3 1.9 3.5 6.3 8.5 9.9 0.43 
g5 317.6 1.6 3.0 5.2 7.2 8.8 0.47 
g6 432.4 1.9 3.5 6.2 8.7 10.7 0.49 
g7 705.6 1.8 3.2 5.8 8.4 10.4 0.47 
g8 983.3 1.8 3.5 6.1 8.6 11.0 0.46 
g9 1458.9 1.8 3.3 6.0 8.7 11.0 0.64 
g10 1674.3 1.4 2.7 4.8 6.9 9.0 0.63 
gll 2809.1 1.5 2.8 5.2 7.6 9.6 0.72 
g12 3715.0 1.3 2.5 4.7 6.8 8.7 0.43 
g13 2061.1 1.4 2.6 4.7 6.9 9.0 0.44 
g14 3331.3 1.4 2.6 4.7 6.8 8.7 0.74 
g16 3623.2 1.6 3.0 5.4 7.6 10.0 0.59 
g17 5543.8 1.3 2.5 4.5 6.4 8.2 0.69 

Table 6.4: Computational results for series G on PowerXplorer. 
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Figure 6.3: Running time profile for the instances gl (left) and glO (right). 

with the number of processors and the size of the instance. We typically obtain 
better speed-ups for the random instances in the series D and E than for the Eu­
clidean instances in the series G. Furthermore, we observe that the quality of the 
final solutions found by the parallel algorithm is equal to the quality that is ob­
tained with the sequential algorithm. This can be explained by the isomorphism 
of the employed neighborhoods. Moreover, this indicates that the probability of 
finding given local minima is equal for multi improvement and first improvement 
algorithms. 

Next, we investigate the behavior of our algorithm in more detail. Our paral­
lel algorithm consists of three stages, viz., proposing exchanges, communicating, 
and combining proposed exchanges. Figure 6.3 gives the total amount of run­
ning time spent in each of these stages for two instances and different numbers of 
processors. We observe that the amount of time spent for proposing exchanges 
accounts for the bulk of the total running time. This amount of time decreases 
almost linearly with increasing number of processors. The communication over­
head of the parallel algorithm, which includes idle time as well, decreases with 
increasing number of processors. This implies that the amount of idle time de­
creases with an increasing number of processors since the time needed for broad­
casting increases when more processors are employed. Furthermore, we observe 
that the amount of time needed to combine and effectuate proposed exchanges 
is negligible compared to the time needed for proposing and communicating ex­
changes. 

Essential for obtaining a good speed-up with our parallel algorithm is that a 
large proportion of proposed exchanges is effectuated by the combination func­
tion. Figure 6.4 gives for two instances the number of proposed and effectuated 
exchanges as function of the iteration number. We observe that initially roughly 
30% - 40% of the proposed exchanges can be effectuated. This proportion in­
creases rapidly in the course of the algorithm. This shows that the combination 
function outlined in the previous section is quite effective. 
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Figure 6.4: Proposed and effectuated exchanges for gl (left) and gl 0 (right). 

Another interesting observation is that typically only a few iterations of the 
parallel algorithm are needed to find a local minimum. This is due to the multi 
improvement pivoting rule that proposes a large number of exchanges in each it­
eration, many of which can be effectuated. A small number of iterations implies 
that only a few all-to-all broadcasts occur in the course of the algorithm, since in 
each iteration only a single all-to-all broadcast is necessary. This accounts for the 
small communication overhead of the algorit.hm, which enables a good speed-up 
of our parallel local search algorithm for the STPG. 

In this chapter we have discussed a parallel local search algorithm for the 
STPG based on multiple step parallelism. Our parallel algorithm uses a new piv­
oting rule for proposing exchanges which is better suited for a parallel algorithm. 
Furthermore, we have presented an optimal polynomial-time algorithm to imple­
ment the combination function. Computational results show that good speed-ups 
can be obtained without any loss in quality of final solutions, which shows that 
the proposed algorithm is one of the most effective algorithms to handle large in­
stances of the STPG. 



7 
Scheduling 

Scheduling problems arise in situations where a set of activities has to be pro­
cessed using a limited number of resources. Applications can be found in pro­
duction planning, time tabling, or real-time system controlling. An introduction 
to schedlillng can be found in [Pinedo, 1995]. Job shop scheduling is an impor­
tant model in scheduling theory, which serves as a testbed for new algorithmic 
ideas and provides a starting point for the more complicated practically relevant 
scheduling models [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1993]. 

In this chapter we study the applicability of multiple-step parallelism in lo­
cal search for the job shop scheduling problem. Furthermore, we present a lo­
cal search algorithm for a generalization of the job shop scheduling problem in 
which machines are capable of processing more than one operation at a time and 
in which operations may require machine sets for processing and may have sev­
eral alternative machine sets on which they can be processed. Finally, we study 
parallel local search approaches to this problem. 

7.1 Job shop scheduling 

An instance of the job shop scheduling problem (JSSP) consists of a set of jobs 
and a set of machines. Each machine can handle at most one job at a time. Each 
job consists of a chain of operations, which need to be processed in that order 
during an uninterrupted time period of a given length on a given machine. The 
problem is to find a schedule, which is defined as an assignment of the operations 
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to time intervals, such that the total length of the schedule is minimal [French, 
1982]. More formally, the problem can be defined as follows. 

Definition 7.1 (JSSP). Given are a set J of jobs, a set M of machines, and a set 
0 of operations. For each operation a e 0, there is a job j (a) e J to which it 
belongs, a machine m(a) e M on which it must be processed, and a processing 
timed(a) e IN. There is a binary relation-< on 0 that decomposes 0 into chains 
corresponding to the jobs; more specifically, if a -< b, then j (a) = j (b) and there 
is no c e 0 \{a, b} with a -< c and c -< b. The problem is to find a non-negative 
start time s(a) for each operation a e 0 such that the schedule length 

max(s(a) + d(a)) 
a eO 

is minimal, subject to 

s(b) - s(a) 2: d(a) (1) 
(2) s(b) s(a) 2: d(a) v s(a) - s(b) ::: d(b) 

for all a, b e 0, 

if a-< b, and 
if m(a) = m(b), 

0 

The constraints corresponding to (1) are job precedence constraints, and those 
corresponding to (2) are machine capacity constraints. 

The job shop scheduling problem is NP-hard [Garey & Johnson, 1979] and 
local search, in particular tabu search [Nowicki & Smutnicki, 1995], has proved 
to belong to the best approximation algorithms for it [Vaessens, 1995]. To apply 
local search to the job shop scheduling problem, it is most appropriate to use the 
disjunctive graph representation of Roy & Sussmann [1964]. 

Definition 7.2. A JSSP instance is represented by a vertex weighted disjunctive 
graph G = (V, A, E) with vertex set V = 0, arc set A = {(a, b) I a -< b}, 
and edge set E = {{a, b} I m(a) = m(b)}. A weight d(a) is associated with 
each vertex a in V. A feasible solution is represented as a minimal subset E' of 
orientations of the edges in E, such that E' gives for each machine a complete 
order of the operations that have to be processed on it, and such that the resulting 
digraph D = (V, A u E') is acyclic. The start time of an operation v e V is the 
length of the longest path up to and without v, and the cost f(D) of a feasible 
solution D is the longest path in D. D 

The (directed) arcs represent the job precedence constraints and the (undirected) 
edges represent the machine capacity constraints. The length of a path is the sum 
of the weights of vertices on this path. A digraph D corresponding with a fea­
sible solution contains only oriented edges between immediate successors and 
predecessors on a machine, since the orientation of the remaining edges in E is 
uniquely determined by E'. So each vertex in D has at most two incoming edges 
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and at most two outgoing edges, viz., at most one successor and at most one pre­
decessor in its job and on its machine. Given any such orientation E', we can 
determine feasible start times by setting each start time s(a) equal to the length 
of a longest path in D up to a. The cost of a solution with I 0 I operations can 
be computed in 0(1 01) time with Bellman's labeling algorithm [Lawler, 1976], 
since the degree of each vertex in D is at most four. The problem is then to find 
an orientation of the edges in E that minimizes the longest path in D. 

Definition 7.3. Given are a digraph D = (V, E) and a vertex a E V. Then, the 
immediate successor and predecessor on the machine and in the job of operation 
a are given by sma. pma, sja, and Pia. respectively. st(a, D) is the length of the 
longest path in D up to and without a. rt (a, D) is the length of the longest path 
in D starting from and including a. l(a, D) is the length of the longest path in D 
through a. The start time s(a) is equal to st(a, D). o 

Most neighborhoods for the job shop scheduling problem are based on reversing 
machine capacity arcs in the digraph representing a schedule-that is, reversing 
the order in which operations are processed on a machine. Van Laarhoven, Aarts 
& Lenstra [1992] give the following 1-opt neighborhood M. Given a solution 
s E S represented by a digraph D, a neighboring solution is obtained by selecting 
two operations a and b, with j (a) -:/= j (b), that are adjacent on some machine m 
and for which the arc (a, b) is on a longest path in D, and reversing (a, b). More 
formally, this leads to the following definition. 

Definition 7.4. Given are a schedules E S represented by digraph D = (V, E), 
and a, be V withb=sma. Let the exchange function r be given by r(D, a, b)= 
(V, (E \{(a, b), (pma, a), (b, smb)}) U {(pma, b), (b, a), (a, smb)}). Then, the 
neighborhood Ni(D) = {r(D, a, sma) I a, sma E V 1\ (a, sma) on a longest 
path in D}. o 

The size of the neighborhood N1 (D) for any digraph D is 0 (I 0 I). Van Laarhoven, 
Aarts & Lenstra [1992] showed the following properties for this neighborhood. 

(1) The reversal of (a, sma) on a longest path in D results in an acyclic digraph 
D' that again corresponds to a feasible solution s'. 

(2) Reversals of arcs on a longest path are the only arc reversals that can -but 
need not- result in a digraph with a shorter longest path. Furthermore, a 
reversal of an arc not on a longest path can lead to an infeasible solution. 

(3) N1 is sufficiently connected. 

Furthermore, we have the following result, which generalizes an observation made 
by Taillard [1994]. 
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Figure 7.1: Part of a digraph before (i) and after (ii) reversal of an arc (a, b). Dotted arcs 
are redundant machine capacity arcs. 

Theorem 7.1. Given are a digraph D and jUnctions st and rt as in Definition 
7.3. Let digraph D' = r(D, a, b), with b = sma and (a, b) on a longest path in 
D, and let mx(D', a, b) = max{l(a, D'), l(b, D')}. Furthermore, let h be the 
length of the second longest path in D, which can be equal to f(D), and l' the 
length of the longest path in D not through a or b. Then, 

(1) mx(D', a, b) 2: f(D)::::;. f(D') = mx(D', a, b), 
(2) lz < mx(D', a, b) < f(D) => f(D') = mx(D', a, b), and 
(3) lz 2: mx(D', a, b) ::::;. f(D') = max{l', mx(D', a, b)}. 

Moreover, mx(D', a, b) is computable in constant time. 
Proof Only paths through a or b in D may no longer exist in D' as a conse­
quence of the reversal of (a, b). So in case (1) when mx(D', a, b) 2: f(D), 
then f(D') mx(D', a, b) because all paths in D' not through a orb have 
lengths of at most f(D). In case (2) when lz < mx(D', a, b) < f(D), then 
f(D') = mx(D', a, b) because all paths in D' not through a orb have lengths of 
at most lz with lz < mx(D', a, b), and paths in D' through a orb have lengths 
of at most mx(D', a, b) and at least one path has length mx(D', a, b). In case 
(3) when mx(D', a, b) s lz, then f(D') = max{l', mx(D', a, b)} because the 
longest path in D' is the longest path through a orb in D' or the longest path not 
through a orb in D', which is equal to that in D. From Figure 7.1 we infer that 
st(b, D') max{st(pma, D)+ d(pma), st(pjb, D) +d(pjb)} and st(a, D') 
max{st(b, D')+d(b), st(pja, D)+d(pja)}. Also, rt(a, D') = max{rt(sja, D), 
rt(smb, D)}+d(a), andrt(b, D') max{rt(a, D'), rt(sjb, D)}+d(b). Hence, 
l(a, D') = st(a, D') + rt(a, D') and l(b, D') = st(b, D') + rt(b, D'). This 
gives mx(D', a, b) = max{l(a, D'), l(b, D')}. So mx(D', a, b) is given by ex­
pressions that are all computable in constant time. o 
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7.1.1 Parallel local search for the job shop scheduling problem 

In this section we outline a local search algorithm with multiple-step parallelism 
for the job shop scheduling problem. Other approaches discussed in Chapter 3 
to introduce parallelism in local search are also valuable since most tabu search 
algorithms for the job shop scheduling problem use best improvement as pivoting 
rule, in which case good speed-ups can be achieved with single-step parallelism, 
provided that neighborhoods are sufficiently large; see Section 3.2.1. Moreover, 
probabilities of finding optimal solutions using tabu search fit well with exponen­
tial distributions [Taillard, 1994], and in that case good speed-ups can be obtained 
with multiple independent walks; see Chapter 4. Multiple-step parallelism can 
be incorporated in the above approaches, which may result in even more scalable 
hybrid approaches. 

In the previous section we have argued that only reversals of arcs on a longest 
path can lead to digraphs with shorter longest paths. Furthermore, infeasible di­
graphs can be constructed when arcs not on a longest path are reversed. So a par­
allellocal search algorithm must be based on reversals of arcs on longest paths. 
However, a reversal of an arc on a longest path leads to a digraph that has a dif­
ferent longest path, and consequently only a single arc can be reversed on a given 
longest path 

Our parallel local search algorithm is based on a distributed neighborhood 
structure in which local neighborhoods for each processor p comprise arc rever­
sals on the p-th longest path in a digraph. 

Definition 7 .5. Let p be an integer between 1 and P, and D = (V, E) a digraph. 
Then, for a vertex c E V, stp(c, D) gives the length of the p-th longest path in 
D up to and without c, and rtp(c, D) gives the length of the p-th longest path in 
D from and including c. Furthermore, Ap(D) denotes the p-th longest path in 
D. Let ap, bp E V with (ap, bp) on Ap(D). Then, we recursively define Dp as 
D1 = D, and Dp+l = r(Dp, ap, bp) for 1 < P. D 

Note that stp(c, D) and rtp(c, D) are descending in p and that the paths speci­
fied by A are not necessarily disjoint. D Pis the graph obtained by effectuating the 
reversals on the paths A.q (D) with 1 ::::: q < p. Theorem 7.1 suggests that A P (D) is 
often the longest path in Dp. This gives rise to the following local search algo­
rithm with multiple-step parallelism for the job shop scheduling problem. Given 
are a digraph D and P processors. 

(1) Compute the P longest paths in D and assign Ap(D) to processor p for 
1:::Sp:::SP. 

(2) Processor p evaluates arc reversals -c(D, ap, bp) with (ap, bp) on Ap(D). 
A reversal is proposed ifmx(D', ap, bp)< length(Ap(D)). 
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(3) Effectuate the proposed arc reversals by successively constructing each di­
graph Dp+b which is obtained by reversal of (ap, bp) in Dp, provided that 
D p+ 1 is feasible. 

(4) ReplaceD with Dp for p such that min1~p~P f(Dp) = f(Dp). Repeat 
the above steps until no improvement is found. 

The above algorithm is based on the following distributed neighborhood V. The 
distribution structure of V assigns to each processor p, with 1 ::::; p ::::; P, the p-th 
longest path in a digraph D. The local neighborhood for a processor, specified by 
the domain distribution of V, is obtained by reversing arcs on the path assigned to 
a processor. Note that the P longest paths in an acyclic digraph can be computed 
by a generalization ofBellman's labeling algorithm [Lawler, 1976] that computes 
the longest path in an acyclic digraph. 

An arc (ap, bp) whose reversal is proposed may not on a longest path in the 
graph Dp if the longest path through (ap, bp) in D also passes through (aq, bq) in 
D whose reversal is proposed by processor q with 1 ::::; q < p. This implies that 
effectuating r(Dp, ap, bp) might lead to an infeasible solution. Furthermore, ef­
fectuating a proposed exchange r(Dp, ap, bp) may result in a digraph with larger 
cost if st or rt needed to compute mx(Dp+t. ap, bp) are not equal to the val­
ues of st or rt used to compute mx(D, ap, bp), i.e., reversals of other edges have 
resulted in a longer path to or from a vertex that precedes or succeeds ap or bp 
in Dp. In order to deal with such situations, it has to be checked whether pro­
posed exchanges lead to feasible digraphs with lower costs, before they are ef­
fectuated. This is done by the combination function of the distributed neighbor­
hood V as follows. Each processor p effectuates proposed reversals (aq, bq) with 
1 ::::; q ::::; p and checks whether the resulting digraph Dp defines a feasible sched­
ule with lower cost than the current schedule. The digraph D' that is returned by 
the combination function is the digraph Dp with minimal cost found in this way. 
The time complexity of this combination function is O(P + I 0 1), since each di­
graph D P is constructed in 0( P) time (cf. Definition 7 .5) and the time complexity 
to check whether Dp is a feasible schedule with lower cost is 0(1 0 1). 

Discussion. We have implemented a sequential algorithm that simulates an al­
gorithm with multiple-step parallelism based on the distributed neighborhood V 
for the job shop scheduling problem. Experiments show that the maximum speed­
up is limited since the number of proposed exchanges that can be effectuated by 
the combination function is typically quite small, e.g., for instances with up to 
300 operations the maximum speed-up is at most four. Although this picture is 
slightly better for larger instances, in particular for instances with many jobs and 
few machines, it is fair to say that the application of multiple-step parallelism to 
local search for job shop scheduling does not give satisfactory results. 
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7.2 Resource-constrained scheduling 

In the job shop scheduling problem it is assumed that each machine can process 
only one operation at a time and that each operation is processed by a prespecified 
machine. However, in many practical situations machines are capable of process­
ing more than one operation at a time and processing of operations may require 
sets of machines for which several alternative choices exist. 

In this section we present a scheduling model that incorporates the above ex­
tensions. In this model each operation can be processed by resource sets for which 
alternatives may exist, and an operation's processing time on a particular resource 
may depend on the resource set by which it is processed and on the resource at 
hand. Furthermore, resources are able to process several operations simultane­
ously-that is, resources are multiple capacitated. For this purpose, each resource 
is given an integer capacity, and each operation is given an integer size which 
may depend on the resource by which it is processed. A resource can simultane­
ously process only those sets of operations whose sizes do not exceed the capacity 
of the resource. Finally, arbitrary precedences between operations are allowed. 
The objective is to minimize the maximum completion time over all operations. 
Other extensions, such as resource availability constraints that prohibit usage of 
resources during given time intervals, and minimum delay time constraints that 
force time gaps between operations, can easily be integrated in this model. One 
important type of constraint we exclude from our model is the maximum delay 
constraint that binds operations in time by stating that an operation must be started 
within a given time interval after another operation is completed. 

Our model generalizes the resource-constrained single project scheduling 
problem, which is one of the few problems in the area of more general scheduling 
problems, an area usually referred to as resource-constrained scheduling, that re­
ceived considerable attention in the literature [Lawler, Lenstra, Rinnooy Kan & 
Shmoys, 1993]. Our model also generalizes the models presented by Hurink, Ju­
risch & Thole [1994] and Vaessens [1995]. It resembles the model of Nwjten 
[1994] except for the possibility of adding additional constraints by means of a 
constraint language. Our resource-constrained scheduling problem (RCSP) is de­
scribed as follows. 

Definition 7.6 (RCSP). Instances of the resource-constrained scheduling prob­
lem consist of a set of operations 0 and a set of resources R. Furthermore, f r : 
0 -+ P(P(R)) gives for each operation a set offeasibleresource sets, cp : R -+ 
IN gives for each resource its capacity. The functions pt : 0 x R x P(R) ~--+ IN 
and sz : 0 x R x P(R) 1-+ N give for each operation o E 0 and resource r E R 
in a resource set in fr(o) the processing time and size, respectively, required by 
o for processing on r. A binary relation -< defines a partial order on 0. 
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A schedule is a pair (ra, st) where ra : 0 ~ P(R) is mapping that gives for 
each operation o e 0 a resource assignment ra(o) e fr(o) and st : 0 ~IN is 
a mapping that gives for each operation o a start time such that for all o, o' e 0 
witho-< o' 

max st(o) + pt(o, r, ra(o)) ~ st(o'), 
rera(o) 

and for all r e R and t e IN 

L sz(o, r, ra(o)) ~ cp(r). 

(7.1) 

oEO!rEra(o) 1\st(o) ::9 < st(o)+pt(o,r,ra(o)) (7.2) 

The problem is to find a schedule (st, ra) such that its length, or makespan, 

max st(o) + pt(o, r, ra(o)) 
oeO 1\ rera(o) 

is minimized. 0 

Weusect(o, r, ra(o)) to abbreviatest(o)+ pt(o, r, ra(o)). The constraints given 
in (7.1) are called precedence constraints and those in (7.2) are capacity con­
straints. The RCSP is NP-hard since it contains the job shop scheduling problem 
as a subproblem. 

A schedule is left-justified if it is not possible to complete any operation ear­
lier without changing the resource assignment and the order of operations on re­
sources that is determined by their start times. Clearly, there is a left-justified 
optimal schedule that can be obtained from an optimal schedule by adjusting its 
start times such that each operation is started as soon as possible without chang­
ing the order of operations on resources. So we can restrict the solution space to 
left-justified schedules, since such a solution space still contains an optimal so­
lution. 

7.2.1 Neighborhoods for the resource-constrained scheduling problem 

Most of the literature on resource-constrained scheduling concentrates on exact 
algorithms or constructive heuristics [Slowinski & Weglarz, 1989; Blazewicz, 
Ecker, Schmidt & Weglarz, 1994]. Local search algorithms belong to the best 
approximation algorithms for job shop scheduling, and therefore one may expect 
that local search also gives good-quality solutions for more general scheduling 
problems such as the resource-constrained scheduling problem. 

Only a few attempts to apply local search in this problem area are known to 
us. Sampson & Weiss [1993] present a local search algorithm for a, not explic­
itly stated, resource-constrained scheduling problem in which irregular cost func­
tions are allowed. In the neighborhood they propose, neighbors are obtained by 
incrementing of decrementing the delay from the earliest possible start time of 
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any operation. Yoo, Yang & Ignizio [1995] consider a model in which operations 
may require resource sets for which alternatives exist and in which resources are 
multiple capacitated. The objective is to minimize the makespan. They propose a 
neighborhood in which neighbors are obtained by pairwise interchanging any two 
operations on a machine. A drawback of this neighborhood is the large propor­
tion of non-improving neighbors. Lean & Balakrishnan [1995] consider a similar 
model extended with the possibility to utilize other cost functions, such as mean 
tardiness, but without the possibility of alternative resource sets for processing an 
operation. They represent solutions by a vector that associates values with oper­
ations. Schedules are constructed using some heuristic that utilizes this vector. 
Neighbors are obtained by adapting the values in this vector. A drawback of this 
approach is that solutions are manipulated only indirectly without exploiting the 
problem structure. Hurink, Jurisch & Thole [1994] and Dauzere-Peres & Paulli 
[1995] present local search algorithms for the job shop scheduling problem with 
resource alternatives, which is a subclass of the RCSP. 

To apply local search to the RCSP, we represent schedules by feasible re­
source assignments for operations and by specifying the order in which opera­
tions are started on resources. Start times of operations can then be determined 
by computing a left-justified schedule. 

Definition 7.7. Let an RCSP instance be given. A schedule (ra, st) is repre­
sented by resource assignment ra and an acyclic directed graph G = ( 0, E) 
with E = {(o, o') I o -< o'} U E', where E' s; {(o, o') I ra(o) n ra(o') -=!= 

0 1\ st(o) :::: st(o')} such that E' is a maximal edge set that gives for each re­
source r a complete order for operations o with r E ra(o). o 

Given an acyclic graph Gas specified in Definition 7.7, start times of operations 
in a left-justified schedule corresponding with G can be computed using the algo­
rithm of Figure 7.2 that is based on Bellman's labeling algorithm [Lawler, 1976]. 
In this algorithm S(o) is the set of immediate successors of an operation o in 
G. This set contains operations o' with (o, o') E E for which no o" exists with 
(o, o") E E and (o", o') E E. The complexity ofthis algorithm is O(IOI(CK + 
J)), where C is the maximum capacity of any resource, which is an upper bound 
on the number of operations that can be processed simultaneously on a resource, 
K the maximum cardinality of a feasible resource set of any operation, and J the 
maximum number of successors of any operation in the precedence graph speci­
fied by-<. 

A neighborhood structure for the RCSP must be capable of changing resource 
assignments of operations and modifying the order in which operations are pro­
cessed by resources. This can be done by an exchange function that removes op­
erations from a schedule and reinserts them in such a way that feasible schedules 
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proc Compute..StarLTime 
begin 

foro E 0 do n(o) := 0; st(o) := 0 od 
foro E 0 do foro' e S(o) do n(o') := n(o') + 1 od od 
Y := {o E 0 I n(o) = 0}; 
while Y # 0 do 

o e Y; { st(o) satisfies (7.1)} 
increase st(o) until (7.2) is met and st(o') :::; st(o) for (o', o) e E; 
foro' e {o" I o -< o"} do update st(o') od 
foro' E S(o) do n(o') := n(o')- 1; 

if n(o') = 0 then Y := Y U {o'} fi 
od 
Y := y \ {o}; 

od { st(o) is start time of o e 0 subjectto (7.1) and (7.2)} 
end 

Figure 7.2: An algorithm to compute start times of operations. 

are constructed in which either resource assignments have been changed or orders 
of operations on resources have been modified. To reduce the size of such a neigh­
borhood it is desirable to exclude exchanges that cannot result in neighbors with 
lower cost, as is done for the job shop by restricting exchanges to those that mod­
ify the order of operations on a longest path. For the RCSP critical operations, 
operations whose removal from a schedule may affect a schedule's makespan, are 
defined as follows. 

Definition 7.8. Given are an RCSP instance and a feasible schedule (ra, st) for 
it, represented by G = (0, E). Add a dummy vertex o* to G that succeeds all 
operations in 0, i.e., o -< o* for all o e 0. Define a mapping .A. : 0 ......,. P( 0) 
that gives for each operation o a set of operations whose removal from G may 
affect the start time of o, as follows . .A.(o) = 0 if {(o', o) e E I o' I. o)} = 0, 
otherwise .A.(o) = Uo'eOI(d,o)eEAR(o,o') (.A.(o') U {o'}) where R(o, o') = 

3rera(o)nra(o')St(o) ::S Ct(o', r, ra(o')) V 

(o' -<o A st(o) = max ct(o', r, ra(o'))). 
rera(d) 

Operation o is critical in G, if and only if o E .A.(o*). 0 

If we consider RCSP instances in which all operation sizes and resource capaci­
ties are one, then the set of critical operations defined by Definition 7.8 coincides 
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with the set of operations on a longest path in a graph, but in general critical op­
erations are not situated on a single path in a graph. 

Removal of non-critical operations does not affect the makespan of a sched­
ule, and therefore removal and subsequent reinsertion of non-critical operations 
cannot result in lower-cost schedules. This gives rise to the following neighbor­
hood in which only critical operations are reinserted. First, we remark that an 
operation o is an active predecessor of o' if o is just finished or still being pro­
cessed on a resource when o' is started on this resource. Neighbors are obtained 
by removing a critical operation from a schedule and inserting it before an active 
predecessor on a resource while maintaining the same resource assignment, or by 
choosing a new resource set for this operation and reinserting the operation on the 
resources in this set. Formally, this neighborhood is defined as follows. 

Definition 7.9. Let G = ( 0, E) be a graph that represents a schedule (ra, st). 
Let r1, rz be exchange functions such that r1 ( G, o', o) = ( 0, E') is an acyclic 
graph with (o, o') E E' and (o', o) E E that represents a schedule (ra, st'), and 
such that rz(G, o, a) is an acyclic graph corresponding with a schedule (ra', st') 
with ra'(o) = a for a E fr(o) and a :f. ra(o). Then, the neighborhood N1 is 
defined by 

N1(G) = {r1(G, o', o) I (o', o) E E 1\ 3rera(o)nra(o') st(o) ::5 ct(o', r, ra(o')) 
1\ o is critical in G} U {rz(G, o, a) I a E fr(o) 1\ o is critical in G}. 

0 

Next, we show that this neighborhood is sufficiently connected, which implies 
that an optimal solution can be reached starting from an arbitrary solution by a 
finite sequence of exchanges. For this we need the following lemma. 

Lemma 7.1. Let (ra, st) be a non-optimal schedule represented by G, and let 
(ra*, st*) be an optimal schedule represented by G* = ( 0, E*). Then, the set 

{o E 0 I o is critical in G 1\ ( ra(o) :f. ra*(o) v 
3o'eo3rera(o)nra(o') st(o) ::S ct(o', r, ra(o')) 1\ (o', o) E E 1\ (o, o') E E* )} 

is non-empty. 
Proof. Assume that for all critical operations o in G holds that ra(o) = ra*(o) 
and for all (o', o) E E with st(o) :::: ct(o', r, ra(o')) and r E ra(o') holds 
(o', o) E E*. Then, all edges in G that contribute to st(o*) are also included 
in G*, and since other edges (o', o) in G* can only increase st*(o*), we have 
st*(o*) ::=: st(o*). But we already know that st*(o*) :::: st(o*) and therefore G is 
optimal. o 

Theorem 7.2. The neighborhood N1 is sufficiently connected. 
Proof. Let (ra, st) be a non-optimal schedule represented by G, and (ra*, st*) 
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an optimal schedule represented by G* ( 0, E*). We construct a sequence of 
exchanges leading from G to G* via G; as follows. 

(1) Go= G. 

(2) If there is a critical operation o in G; with ra(o) f. ra*(o), then G;+l = 
r2(G;, o, ra*(o)). 

(3) If for all critical operations o ra(o) = ra*(o), then Gi+t = tt(G;,o', o), 
where o is a critical operation in G; and o' E 0 is such that (o', o) E Ea; 
and 3rEra(o)nra(o') st(o) ::5 ct(o', r, ra(o')) and (o, o') E E*. 

It holds that G;+l E N1 (Gi). According to Lemma 7.1 operations o or o' that 
meet the conditions in (2) or (3) always exist, unless G; is optimal. Furthermore, 
for (3) holds that edges (v', v) E G; exist for which (v, v') E G* and (v, v') E 

Gi+l· Reversal of (v', v), in addition to reversal of (o', o), is necessary for achiev­
ing acyclicity of G;+l. These edges (v', v) exist because if all edges (v', v) E G; 
on a path from o' to o in G; also occur in G*, then G* would contain a cycle since 
(o, o') E G*. 

It remains to show that this sequence is finite. For this, define A(G, G*) = 
{o E 0 I ra(o) f. ra*(o)} and R(G, G*) = {(o', o) E E I (o, o') E E*} 
foragraphG = (O,E). ItholdsthatiA(GHt,G*)I < IA(Gi,G*)IifG;+lis 
constructed in (2) and that IR(Gi+t• G*)l < IR(G;, G*)l if G;+l is constructed 
in (3). So there exists a k1 :::; I 0 I · A( Go, G*) such that the condition in (2) can 
no longer be satisfied for all k > kt in which case Gk+l is constructed from Gk 
by applying r1 in (3) only. Moreover, for some k2 :::; kt + IR(Gkp G*)l holds 
that the condition in (3) can also no longer be satisfied. According to Lemma 7.1 
then holds that Gk2 is an optimal schedule. D 

A neighbor in Nt is any acyclic graph that can be obtained by placing a critical 
operation before an active predecessor or by changing its resource assignment. 
Several feasible graphs may be constructed in which a given resource set is as­
signed to a critical operation. All these graphs are comprised in N 1, which re­
sults in large neighborhood sizes. Moreover, determining feasibility of a graph 
obtained by reversing some edges or by changing the resource assignment of a 
critical operation cannot be done in constant time, as opposed to the job shop 
in which graphs obtained by reversing edges on a longest path are always feasi­
ble. These issues limit the practical usefulness of N 1• Therefore, we restrict the 
neighborhood Nt such that it contains less neighbors, which can be constructed 
efficiently. 

Definition 7.10. Given is a graph G = ( 0, E) representing a schedule (ra, st). 
An insert neighbor G' = (0, E') with given resource assignment ra' is con­
structed as follows. Remove operation a E 0 from G and remove all edges in-
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cident with a, resulting in a graph c- = ( 0 \ {a}, E-). Choose an operation 
be 0. Determine, for all r E ra'(a), operation o, e 0 with r e ra'(or) such 
that st(o,) < st(b) and st(o') ::::; st(or) for all o' E 0 for which r e ra(o') and 
st(o') < st(b). Add to c- edge (o, a), edges (a, o') for all (or, o') e , and 
edges (o', a) for all (o', o,) e E-, i.e., Or directly precedes a on resource r. 0 

Theorem 7 .3. An insert neighbor G' as specified in Definition 7.10 is acyclic and 
represents a feasible schedule. 
Proof Let a, b, o,, G, G-, G' be given by Definition 7.1 0. First note that the 
existence of a path in G from o e 0 too' e 0 in G implies that st(o) ::::; st(o') 
by definition of a graph G. Let o~ denote a direct successor of operation Or in G. 
Assume that G' contains a cycle. This cycle must pass through edge (Or', a) and 
(a, o~) for some r, r' e R, since G and thus c- are acyclic. So there must be a 
path from {or I r e R} to {o~ I r E R} in c-. However, no such path can exist, 
because for all r, r' E R holds st(o~) :=: st(b) > st(or) which implies that no 
such path exists in G and therefore neither in G-. o 

Insert neighbors G' specified by Definition 7.10 can be computed in O(K log L) 
time, where K is the maximum cardinality of a feasible resource set of any opera­
tion and L the maximum number of operations assigned to any resource, because 
operations Or that directly precede a in G' can be found using binary search. 

Using the above observations, we can define a neighborhood N{ that is sim­
ilar to N1, except for the exchange functions r1 and rz that construct only insert 
neighbors as given in Definition 7.1 0. N{ has a much smaller computational com­
plexity for verifying local optimality than N1, but the price we pay for this is that 
N{ is no longer sufficiently connected, as can be shown by an example. The size 
of the neighborhood N{(G) for a graph G is O(A,(o*)F), where F is an upper 
bound on the number of feasible resource sets for any operation. 

The effectiveness of the neighborhood N{ can be further improved by restrict­
ing the solution space to active schedules. A schedule is active if it is not possi­
ble to complete any operation earlier without changing the resource assignment 
of operations or postponing the completion time of any of the other operations. 
The construction of active schedules is based on the following observation. If 
(o, o') e E for a graph G, then according to Definition 7.7 st(o) ::::;st(o'). Iffor 
some t <St(o) the precedence constraints (7.1) and capacity constraints (7.2) for 
o' are satisfied without postponing o when o' is started on t, then reversing (o, o') 
does not delay any operation and can only decrease the makespan of G. Active 
schedules can be constructed with the algorithm of Figure 7.2 by satisfying only 
the precedence constraints (7 .1) while assigning the earliest possible start time 
to operations at which (7.2) is satisfied, in the order imposed by E. So while 
computing a schedule's makespan it is possible to construct, with some additional 
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computational overhead, an active schedule by reversing some edges, which may 
have a shorter makespan than the original graph. The time complexity to compute 
the makespan of such an active schedule, derived from G, is O(IOI(K L + 1)), 
where K is the maximum cardinality of a feasible resource set of any operation, 
L is the maximum number of operations assigned to any resource, and J is the 
maximum number of successors of any operation in the precedence graph. 

Construction of active neighboring schedules may give a larger cost decrease 
in a single exchange, but it also results in a larger computational complexity for 
each local search step. 

7.2.2 Tabu ~earch for the resource-constrained scheduling problem 

Tabu search is discussed in Section 2.2. In this section, we outline how tabu search 
can be adapted to the RCSP. The tabu list can be implemented for the neighbor­
hood N{ as follows. Intmduce mappings ts : 0 -+ 0 x IN and ta : 0 x 
P(R) ~---+ IN. Let I denote the total number of steps performed by a tabu search 
algorithm and T the tabn tenure. Then, a proposed reinsertion r{ ( G, o', o) is tabu, 
ifts(o) = (o', i) withi + T 2:: I, andaproposedresource assignment rf(G, o, a) 
is tabu, if t a ( o, a) = i with i + T 2:: I. After effectuating a proposed reinsertion 
r{(G, o', o), ts(o') is set equal to (o, I), and if a resource assignment r2(G, o, a) 
is effectuated, ta(o, a) is set equal to I. Note that the memory requirements to 
implement the tabu list are quite limited, viz., 0( I 0 I F) where F is the maximum 
number of feasible resource sets for any operation. 

The basic tabu search algorithm, outlined above, can be extended in several 
ways; see [Glover, Taillard & De Werra, 1993]. Nowicki & Smutnicki [1995] 
present a tabu search algorithm for the job shop scheduling problem that is one 
of the most effective appmximation algorithms for this problem. In this algo­
rithm restarting from one of the five best solutions found so far takes place if no 
improvement of the overall best solution is found for a given number of steps. 
We incorporate this approach for intensification of the search in our tabu search 
algorithm for the RCSP as follows. 

(1) Perform the basic tabu search step by selecting a non-tabu neighbor of the 
current solution, while storing the B lowest-cost local minima G; in a list 
.C. Also the tabu lists tl(G;) associated with solutions G; are stored. 

(2) Repeat step (1) until no solution with lower cost than the overall best is 
found for a given number of steps L. 

(3) Select the lowest-cost solution G; in .C for which the set of non-tabu neigh­
hors in N{(G;) \ W(G1) is non-empty. Select G' EN{(Gi) \ W(Gi) and 
add it to W(G;). Go to step (1) using G' as current solution and tabu list 
tl(Gt). If no such G' exists for any solution G; in£, the algorithm stops. 
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In the above algorithm, the search is intensified around previously found good so­
lutions by exploring different paths from there. Memory requirements for this ap­
proach can be reduced by storing the exchanges that lead to the examined neigh­
bors in W(Gi), instead ofthe actual neighbors themselves. 

7.2.3 Computational results 

We have implemented the tabu search algorithm with the neighborhood .Nf out­
lined in the previous sections. The parameters of the tabu search algorithm are 
chosen as follows. The tabu tenure is randomly chosen in the interval [A, 2A] 
where A is equal to the sum of lfr(o) I over all o E 0 divided by the total number 
of resources in an instance. A new value for the tabu tenure is chosen after every 
2A steps. In this way the probability that the tabu search algorithm starts cycling 
in the neighborhood graph is reduced. Furthermore, the length of the list £ in 
which the best local minima found are stored, is set to five. The number of steps 
L in which the overall best solution must be improved since otherwise restart­
ing from a previously found local minimum takes place is set equal to 2000/ A at 
first, and it is set equal to 1000/ A once restarting has occurred. The algorithm is 
terminated when either all restarting possibilities are exhausted or when the total 
number of examined solutions exceeds 107 I A. 

We have tested the algorithm on instances due to Nuijten [1994], who trans­
formed well-known job shop instances into instances oftwo subproblems ofthe 
resource-constrained scheduling problem, viz., the multiple capacitated job shop 
scheduling problem (MCJSSP) and the job shop scheduling problem with resource 
sets and alternatives (RSAJSSP). 

The MCJSSP is a generalization of the job shop in which machines can pro­
cess several operations simultaneously. Each machine has an integer capacity and 
each operation has an integer size. A machine can process only those subsets of 
operations simultaneously whose summed sizes do not exceed its capacity. In­
stances of the MCJSSP are devised from job shop instances by duplicating all op­
erations including processing times, precedences and machine assignments. All 
operations have size one, and the machines have capacity two. Upper bounds on 
the makespan of the original job shop instances are then upper bounds for the cor­
responding MCJSSP instances. Triplicated instances, in which machines have 
capacity three, are constructed similarly. 

The RSAJSSP is a generalization of the job shop in which operations may 
require several machines for processing. Furthermore, an operation can be pro­
cessed by several alternative machine sets. Machines can only process one opera­
tion at a time. Instances of the RSAJSSP are constructed from job shop instances 
as follows. Each operation requires one additional machine for which three alter­
natives exist. The processing times are either the original processing time or this 
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101 IRI cap lb/ub res best f best avg t(s) 
fld 100 5 2 666 666 669 0.45 682 21 
f2d 100 5 2 655 683 669 2.14 688 35 
f3d 100 5 2 593/597 638 645 8.77 661 25 
f4d 100 5 2 572/590 590 601 5.07 630 65 
f5d 100 5 2 593 593 593 0 596 12 
flt 150 5 3 666 671 671 0.75 688 35 
f2t 150 5 3 655 704 694 5.95 716 27 
f3t 150 5 3 590/597 647 636 7.80 660 36 
f4t 150 5 3 570/590 592 615 7.89 645 63 
f5t 150 5 3 593 593 593 0 599 12 
g1d 150 5 2 926 926 926 0 932 49 
g2d 150 5 2 890 890 893 0.33 925 75 
g3d 150 5 2 863 863 866 0.35 895 73 
g4d 150 5 2 951 951 951 0 967 53 
g5d 150 5 2 958 958 958 0 961 90 
glt 225 5 3 926 926 926 0 931 59 
g2t 225 5 3 890 913 900 1.12 913 101 
g3t 225 5 3 863 866 873 1.16 888 135 
g4t 225 5 3 951 952 952 0.11 956 132 
g5t 225 5 3 958 960 958 0 962 69 
ald 200 10 2 888/935 935 962 8.33 993 113 
a2d 200 10 2 75on65 765 783 4.40 804 74 
a3d 200 10 2 783/844 844 856 0.93 897 101 
a4d 200 10 2 730/840 840 849 16.30 872 106 
a5d 200 10 2 829/902 902 907 9.41 960 93 
fi06d 72 6 2 53/55 55 57 7.55 58 5 
fi10d 200 10 2 835/930 963 989 18.44 1021 132 
fi20d 200 5 2 1165 1319 1353 16.14 1409 291 

Table 7.1: Results for multiple capacitated job shop instances. 
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101 IRI F lb/ub res best € best avg t(s) 
flra 50 5 3 950 956 950 0 954 77 
f2ra 50 5 3 881/883 893 883 0.23 887 75 
f3ra 50 5 3 795n96 810 796 0.13 807 73 
f4ra 50 5 3 836 840 836 0 840 74 
f5ra 50 5 3 761 764 761 0 764 76 
g1ra 75 5 3 1331 1331 1334 0.23 1342 130 
g2ra 75 5 3 1249/1251 1251 1251 0.16 1278 141 
g3ra 75 5 3 1275/1276 1276 1277 0.16 1295 134 
g4ra 75 5 3 1421/1424 1424 1426 0.35 1432 131 
g5ra 75 5 3 1340/1341 1341 1341 0.07 1350 133 
alra 100 10 4 901/1082 1122 1082 20.09 1132 226 
a2ra 100 10 4 780/901 946 901 15.51 955 212 
a3ra 100 10 4 865/1003 1086 1003 15.95 1053 243 
a4ra 100 10 4 891/1019 1030 1019 14.37 1065 250 
a5ra 100 10 4 908/1078 1127 1078 18.72 1126 230 
b1ra 150 10 4 133311478 1489 1478 10.88 1534 284 
b2ra 150 10 4 122111365 1368 1365 11.80 1416 283 
b3ra 150 10 4 134811498 1498 1506 11.72 1530 272 
b4ra 150 10 4 1288/1401 1401 1437 11.57 1452 288 
b5ra 150 10 4 1252/1380 1380 1396 11.50 1421 282 
c1ra 200 10 4 1753/1884 1884 1925 9.81 1988 323 
c2ra 200 10 4 1806/2001 2018 2001 10.79 2058 302 
c3ra 200 10 4 1781/1968 1975 1968 10.50 2026 304 
c4ra 200 10 4 165511858 1858 1876 13.35 1957 301 
c5ra 200 10 4 1780/1942 1942 1963 10.28 2040 305 
fi06ra 36 6 3 66 68 66 0 69 27 
filOra 100 10 4 954/1114 1202 1114 16.77 1198 233 
fi20ra 100 5 3 1703/1724 1724 1726 1.35 1798 175 

Table 7.2: Results for job shop instances with resource sets and alternatives. 
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time multiplied by 1.2. Lower bounds for the original job shop instance are then 
lower bounds for the corresponding RSAJSSP instances. 

Tables 7.1 and 7.2 list the results. In these tables, I 0 I is the number of op­
erations in an instance, IR I is the number of resources, and the column "lb/ub" 
gives the best known lower and upper bounds. For the MCJSSP instances the 
upper bounds are derived from the original job shop instance, except for the in­
stances a1d, a2d, a3d, and a4d for which these upper bounds could be improved. 
All lower bounds are computed by Nuijten [1994]. The column labeled "cap" 
gives the capacity of the machines in,the MCJSSP instances, in which each op­
eration has size one. For the RSAJSSP instances F is the number of machine set 
alternatives for an operation, where each machine set consists of two machines. 
The column "res" gives the results obtained by the randomized constraint satis­
faction algorithm of Nuijten [1994]. The columns labeled "best" and Ebest give 
the best solution found in ten runs and its relative excess over the lower bound, 
the column "avg" gives the average cost of final solutions, and t(s) is the average 
running time in seconds on a Spare 5 workstation. 

The tables show that the tabu search algorithm is slightly better than the rl:ll­
domized constraint satisfaction algorithm of Nuijten [1994] for the RSAJSSP in­
stances, but it is outperformed by this algorithm for the MCJSSP instances. So 
whereas tabu search algorithms based on similar conceptual ideas as incorpo­
rated in our algorithm clearly outperform constraint satisfaction algorithms for 
job shop scheduling [Vaessens, 1995], this no longer seems to hold for the more 
general resource-constrained scheduling problem. This may be explained by the 
substantial increase of the computational complexity to evaluate the neighbor­
hoods of schedules. 

7.2.4 Parallel tabu search for the resource-constrained scheduling problem 

In Section 7.1 we have attempted to design a parallel local search algorithm for 
the job shop scheduling problem based on multiple-step parallelism. This ap­
proach, however, turned out to be unsatisfactory for this problem. In this section 
we consider other options for applying parallelism in tabu search for the resource­
constrained scheduling problem. 

Multiple independent walks. In Chapter 4 we have argued that it is possible 
to obtain good speed-ups with multiple independent walks of a tabu search algo­
rithm, provided that some rather mild conditions are met. First, the desired final 
solution quality should be much lower than the average relative excess of local 
minima. Secondly, the probability to find these (sub)optimal solutions should be 
given by a geometrical distribution. This condition is typically satisfied when the 
time needed to find a local minimum starting from an initial solution is equal to 
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Figure 7.3: Speed-up with multiple independent walks for the instances flt (left) and 
fishlOra (right) for finding solutions with a given relative excess. 

the time needed to find other local minima starting from local minima. 
Next, we study the amount of speed-up that can be obtained with multiple 

independent walks of our tabu search algorithm. For this, we perform runs of 
our tabu search algorithm in which the algorithm is halted when a solution with 
a given relative excess is found. The running time needed by P processors to 
find a solution with a given relative excess is then given by the minimum run­
ning time needed for this in P runs. In this way we can compute the average 
running time required by different numbers of employed processors and the re­
sulting speed-ups for obtaining a given final solution quality. Figure 7.3 shows 
some typical results for the speed-up achieved with multiple independent walks 
of our tabu search algorithm for finding solutions with relative excesses of one 
and two percent over the best known upper bounds. We observe that this trivial 
approach to parallel tabu search for the RCSP results in good speed-ups and ef­
ficiencies -more than 50 percent- for as many as 20 processors, in particular 
when solutions with low relative excess are sought. 

Single step parallelism. In Chapter 3 we have also argued that it is possible to 
obtain good speed-ups with single-step parallelism if best improvement is used 
for selecting neighbors. As this is the case in our tabu search algorithm, single­
step parallelism may also be effective here. Single-step parallelism requires de­
composition of a neighborhood into equally sized subsets containing neighbors 
that are explored simultaneously. Subsequently, one of the proposed neighbors 
replaces the current solution-that is, only a single proposed exchange is effectu­
ated by the combination function; cf. Section 3.2.1. For this, we partition a neigh­
borhood N{ (G) of a solution G into equally sized subsets by imposing an order 
on the set A.(o*) that determines the neighborhood of G. Each processor p, with 
0 ~p < P, examines IN{ (G) 11 P neighbors whose rank in this order is between 
p · IN{ (G) I I P and (p + 1) ·IN{ (G) I I P. The speed-up that can be obtained with 
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Figure 7.4: Speed-up with single-step parallelism for the instances f1 t (left) and fishl Ora 
(right). 

single-step parallelism depends on the sizes of neighborhoods, the time needed 
to evaluate the cost ofneighbors, and the time needed for all-to-all broadcasting. 
The sizes of neighborhoods rely also upon the status of the tabu list, in addition 
to the solution at hand. All-to-all broadcasting is necessary to communicate all 
proposed exchanges to all processors, after which processors can locally replace 
the current solution with the lowest-cost neighbor. 

We have implemented a tabu search algorithm with single-step parallelism 
on a Parsytec PowerXplorer machine consisting of 32 PowerPC processing units 
configured in a torus. All-to-all broadcasting is done with the algorithm outlined 
in Section 6.2. Figure 7.4 shows the average speed-up using single-step parallel­
ism for the instances fl t and fishlOra. The computational results show that good 
speed-ups and efficiencies can be obtained for moderate number of processors. 
The scalability, however, is rather limited due to the worse communication vs. 
computation ratio for larger number of processors. 

An important observation is that it is possible to use more processors effec­
tively, resulting in larger speed-ups, by combining single-step parallelism with 
multiple-walk parallelism since single-step parallelism can be used in each walk 
of a multiple-walk parallel local search algorithm. For example, performing 20 
independent walks, each of which utilizes single-step parallelism using 8 pro­
cessors, would result in a speed-up of 71 requiring 160 processors for the in­
stance fishlOra. So large speed-ups can be obtained for the resource-constrained 
scheduling problem using a combination of concepts proposed in this thesis for 
parallel local search. 
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Samenvatting 

Dit proefschrift bebandelt parallelle lokale-zoekalgoritmen voor combinatorische 
optimaliseringsproblemen. Dit zijn problemen waarbij een optimale oplossing 
gevonden moet worden uit een extreem groot, maar eindig, aantal altematieve 
oplossingen met bepaalde kosten. Een grote verscheidenheid aan problemen in 
planning- en ontwerpsituaties kunnen gemodelleerd worden als een combinato­
risch optimaliseringsprobleem. Voorbeelden hiervan zijn het opstellen van pro­
duktieroosters in fabrieken en lesroosters in scholen, het berekenen van voertuig­
routes en het berekenen van layouts voor gemtegreerde schakelingen. Instanties 
van deze problemen kunnen veelal niet optimaal opgelost worden in aanvaard­
bare tijd en daarom moet er volstaan worden met suboptimale oplossingen. 

Lokaal zoeken is een benaderingstechniek voor lastige combinatorische op­
timaliseringsproblemen die in staat is goede kwaliteit oplossingen te vinden voor 
een grote klasse van problemen. Een lokaal-zoekalgoritme is gebaseerd op het 
herhaaldelijk doorzoeken van buurruimten van oplossingen. Een buurruimte van 
een oplossing bestaat uit een verzameling buuroplossingen. Deze oplossingen 
worden geconstrueerd door het toepassen van een verwisselingsfunctie die een 
aantal elementen uit een oplossing vervangt door andere elementen. Een buur­
ruimte induceert een graaf op de oplosruimte, de buurruimtegraaf, waarin twee 
buuroplossingen verbonden zijn door een kant. Een lokaal-zoekalgoritme voert 
in deze graaf een wandeling uit die bestaat uit opeenvolgende stappen van oplos­
sing naar buuroplossing. Het klassieke lokaal-zoekalgoritme is iteratieve verbe­
tering waarin alleen stappen worden gemaakt naar buren met lagere kosten tot­
dat een lokaal minimum, een oplossing zonder buren met lagere kosten, bereikt 
wordt. Een nadeel van iteratieve verbetering is dat het algoritme kan stoppen in 
een lokaal minimum van slechte kwaliteit. Om dit risico te verlagen kan een gro­
tere buurruimte gekozen worden of een andere manier om de wandeling in de 
buurruimtegraaf uit te voeren. Voorbeelden van de eerste aanpak zijn variabele­
diepte algoritmen waarin buren verkregen worden door reeksen verwisselingen. 
Varianten van lokaal zoeken gebaseerd op de tweede aanpak zijn herhaald lokaal 
zoeken, tabu search, simulated annealing en genetisch lokaal zoeken. Kenmer­
kend voor a1 deze varianten is dat ook stappen naar buren met hogere kosten toe­
gelaten zijn. 
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Lokale-zoekalgoritmen vergen vaak lange rekentijden voor de grotere pro­
bleem instanties. In dit proefschrift onderzoeken we de mogelijkheden van paral­
lelle computers om deze rekentijden te verkleinen, waardoor het tevens mogelijk 
wordt om grotere instanties te hanteren of om betere oplossingen te vinden in een 
gegeven tijdsbestek Het doel van het onderzoek is het ontwerpen van parallelle 
lokale zoekalgoritmen die kunnen concurreren met de beste sequenm~le algorit­
men, zowel met betrekking tot rekentijd als kwaliteit van de gevonden oplossin­
gen. Hiertoe onderzoeken we zowel algemene technieken die toepasbaar zijn op 
een brede klasse van problemen als technieken die toegesneden zijn op een speci­
fiek probleem. Schaalbaarheid van algoritmen, het gedrag bij toenemend aantal 
processoren, is hierbij een belangrijk aspect. Rekenexperimenten op parallelle 
computers vormen daarom een belangrijk onderdeel van dit onderzoek. 

Eerst presenteren we een overzicht van concepten voor parallelle lokale-zoek­
algoritmen. Hierbij maken we onderscheid tussen een-wandelings en meer-wan­
delings parallellisme. In een-wandelings parallellisme worden meerdere proces­
soren ingezet voor het uitvoeren van een wandeling en in meer -wandelings paral­
lellisme worden verscheidene wandelingen tegelijkertijd door verschillende pro­
cessoren uitgevoerd. Binnen een-wandelings parallellisme maken we verder on­
derscheid tussen een-staps en meer-staps parallellisme. Het idee van een-staps 
parallellisme is om buuroplossingen van een oplossing gelijktijdig te evalueren 
en vervolgens een stap naar een buuroplossing te maken. In algoritmen met meer­
staps parallellisme worden meerdere opeenvolgende stappen van een wandeling 
tegelijkertijd uitgevoerd. In de klasse van meer-wandelings algoritmen maken 
we onderscheid tussen algoritmen die onafhankelijke wandelingen uitvoeren en 
algoritmen die interactie tussen wandelingen toelaten. 

De eenvoudigste aanpak voor parallellokaal zoeken is het gelijktijdig uitvoe­
ren van een aantal onafhankelijke wandelingen. We bestuderen de versnelling, de 
factor waarmee de rekentijd afneemt, die behaald kan worden door deze aanpak. 
Dit gebeurt aan de hand van een studie voor het handelsreizigersprobleem, een 
probleem waarin de kortste route gevonden moet worden voor een rondreis waar­
bij een aantal steden bezocht dient te worden. Voor dit probleem wordt eerst het 
gerniddelde gedrag van een twee-verwisselingsbuurruimte bestudeerd. In deze 
buurruimte worden buren geconstrueerd door twee trajecten in een tour te ver­
vangen door twee nieuwe trajecten. Met behulp van de analyse voor dit probleem 
wordt de versnelling bepaald die verkregen kan worden door een aantal onafhan­
kelijke wandelingen parallel uit te voeren. Het belangrijkste resultaat is dat een 
goede versnelling verkregen kan worden voor het vinden van suboptimale oplos­
singen van hoge kwaliteit indien de tijden benodigd voor het vinden van een eer­
ste lokale minimum en daaropvolgende lokale minima vergelijkbaar zijn. 
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Verder presenteren we een aantal studies van toegesneden aanpakken, geba­
seerd op meer-staps parallellisme, voor een aantal klassieke combinatorische op­
timaliseringsproblemen, waaronder het handelsreizigersprobleem. We ontwer­
pen en analyseren parallelle twee-verwisselings- en drie-verwisselingsalgoritmen 
voor dit probleem. Deze algoritmen vinden gelijkwaardige kwaliteit eindoplos­
singen als sequentH~le algoritmen en vertonen een goede versnelling. Verder pre­
senteren we een parallel variabel-diepte algoritme dat gebaseerd is op de Lin­
Kernighan buurruimte. Dit algoritme maakt gebruik van geavanceerde data-struc­
turen en buurruimtereductietechnieken. Het algoritme is gei'mplementeerd op een 
parallelle computer bestaande uit 32 processoren en vertoont een aanvaardbare 
versnelling. Het algoritme kan concurreren met geavanceerde sequentiele imple­
mentaties uitgevoerd op krachtige werkstations. 

In het Steinerbomenprobleem moet een boom met minimaal gewicht gecon­
strueerd worden die ten minste een gegeven deelverzameling van knopen van een 
graaf omvat. We introduceren nieuwe buurruimten voor dit probleem. Reken­
resultaten voor grote instanties tonen aan dat goede kwaliteit oplossingen in be­
scheiden rekentijden gevonden kunnen worden. Verder wordt aangetoond dat het 
mogelijk is om lokale-zoekalgoritmen met meer -staps parallellisme te ontwerpen 
voor dit probleem die, zonder verlies van kwaliteit, een goede versnelling verto­
nen op een parallelle computer. 

In het werkplaatsroosterprobleem dient een rooster gevonden te worden voor 
een aantal reeksen van taken die elk een bepaalde machine vereisen. Het rooster 
dient zodanig te zijn dat alle uit te voeren handelingen binnen een zo kort mo­
gelijke tijd voltooid zijn. We onderzoeken de toepasbaarheid van meer-staps pa­
rallellisme voor dit probleem. Verder presenteren we een lokaal-zoekalgoritme 
voor een veel algemener roosterprobleem. In dit probleem is het mogelijk dat 
een handeling meerdere hulpmiddelen vergt waarvoor altematieve combinaties 
bestaan, en bovendien kunnen hulpmiddelen in meerdere handelingen tegelijker­
tijd gebrnikt worden. Voor dit probleem ontwerpen we nieuwe buurruimten en 
buurruimtereductietechnieken. Tevens wordt aangetoond dat het mogelijk is het 
algoritme aanzienlijk te versnellen door middel van een combinatie van meer­
wandelings en een-staps parallellisme. 

Samenvattend kan gesteld worden dat het mogelijk is om parallellisme effec­
tief aan te wenden in lokale-zoekalgoritmen voor een brede klasse van combina­
torische optimaliseringsproblemen. 
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I 

Lokale zoekalgoritmen voor een bredek:lasse van problemenkunnen op eenvoudigewijze in grote 
mate versneld worden door meerdere wandelingenin een buurruimtegraaf gelijktijdig uit te voe­
ren en in iedere wandeling buunuimten van oplossingen simultaa:n te evalueren. 

11 

Er bestaat, mits P;fNP, geen exacte buunuimte voor het job shop schedulingprobleem die poly­
nomiale tijd per iteratie van een lokaal zoekalgoritme vergt. Dit geldt ook voor het graafpartitio­
neringsprobleem. 

Ill 

Er bestaat geen gedistribueerdebuurruimte voor het handelsreizigersprobleem die isomorf is met 
de 3-opt buunuimte uit [1] en waarvoor de rekencomplexiteit voor het verwezenlijken van P 3-
verwisselingen met behulp van P processorenlineair afneemt met P. Dit geldt wel voor de 2-opt 
buurruimte uit [1]. 

[1] Lin, S. [1965], Computer solutions of the traveling salesman problem, Bell System Technical 
Journal44, 2245-2269. 

IV 

Beschouw het job shop schedulingprobleem met de 1-opt buurruimte uit [2]. Het verificatiepro­
bleem, waarin bepaald dient te word en of een gegeven schedule een lokaal minimmn is voor deze 
buunuimte, behoorttot de complexiteitsklasseNC. 

[2] Van Laarhoven,P.J.M., Aarts, E.H.L., Lenstra, J.K. [1992] Job shop scheduling by simulated 
annealing, Operations Research 40, 113-125. 

V 

Beschouw het Steinerbomenprobleemmet de buurruimteN'1 uit [3]. Gegevenis een Steinerboom 
T. Laat T' = T\{lo}U{lb} E Nt(T) voorsleutelpadenlo enl~. Neem verderaandat f(S) 2:: f(T) 
voor alle S E Nt(T) \ {T'}. Laat T 11 = T' \{it} U {ll} E N't (T') met f(T") < f(T') voor 
sleutelpaden l1 en l~. Dan geldt (i) l 1 is een sub pad van het pad van lo naar 10 in T of (ii) lb en l~ 
hebben 66n vertex v gemeen en de lengte van t; is kleiner dan het langste sleutelpadin T' en 11 is 
een sub pad van het pad van v naar 10 in T'. 

[3] Verhoeven, M.G.A., Dit proefschrift,hoofdstuk6. 

VI 

Het gebruik van standaard testinstanties om de efticientie van een algoritme te bepalen heeft als 
risico dat onderzoekersinformatieover deze instanties gebruikenom een algoritme te ontwerpen. 
Een goed voorbeeld hiervanis te vindenin [ 4], waarvan de rekenresultatenalleen gereproduceerd 
kunnen worden indien het stopcriterium ,stop als de huidige oplossing een gegeven globaal mi­
nimmn is" gebruikt wordt. 

[4] Nowicki, E., Smutnicki, C., A fast taboo search algorithm for the job shop problem, Manage­
ment Science 42, to appear. 



VII 

De parallelle Boltzmann-machine [ 5] is een neuraal netwerk met meer-staps parallellisme geba­
seerd op de volgende gedistribueerde buurruimte. De oplossingsdistributie kent aan iedere pro­
cessor een unit toe, delokale buurruimte wordt verkregen door deze unit te inverteren en de com­
binatiefunctie verwezenlijkt alle verwisselingen in het geval van ongelimiteerd parallellisme of 
een deelverzameling hiervan in het geval van gelimiteerd parallellisme. 

[5] Aarts; E.RL., Korst, J.RM [1989], Simulated Annealing and Boltvnann Machines, Wlley, 
Chichester. 

VIII 

In [6] wordt geconcludeerd dat het tussen de geobserveerde groepen waargenomen verschil in 
achteruitgang van taalbegrip significant is. Deze conclusieis echter misleidend want indien de 
relatieve achteruitgang beschouwd wordt in plaats van de absolute achteruitgang, is er geen sig­
nificant verschil. 

[6] Just, MA., Carpenter, P.A. [1992], A capacity theory of comprehension: individual differen­
ces in working memory, Psychological Review 99, 122-149. 

IX 
De docent die verantwoordelijkis voor de inhoud van een college heeft vaak geen goed beeld van 
de kennisoverdracht via dit college. De benodigde terugkoppeling kan bewerkstelligd worden 
door de docent te verplichten een behoorlijk aantal tentamens van het vak te corrigeren. 

X 

Ben vak kan uit het curriculum verwijderd wordenindien het is toegestaan een onvoldoende voor 
dit vak te compenseren middels een voldoende voor een ander vak. 

XI 

Beschouw het volgende spel dat gebaseerdis op de Tour de France. ledere speler stelt een team 
samen bestaande uit een aantal renners. Een renner die eindigt bij de eerste tien in een etappe 
krijgt een score van elf punten minus de behaalde positie. De speler met de hoogste teams core, 
gesommeerd over alle etappes, wint. Een aldus opgezet spel is geen kansspel zoals bedoeld in de 
wet op de kansspelen. 

XII 

Het feit dat het doen van onderzoekniet gebondenis aan kantooruren wordt door veel onderzoe­
. kers aan de universiteit gebruikt als excuus om een voorschot te nemen op de vierdaagse werk­
week. 

XIII 

Een positief gevolg van het broeikaseffectis dat Brabant een aangenaam subtropischklimaat za1 
krijgen in combinatie met een ligging aan zee. 


