

Parallel local search

Citation for published version (APA):
Verhoeven, M. G. A. (1996). Parallel local search. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR456244

DOI:
10.6100/IR456244

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR456244
https://doi.org/10.6100/IR456244
https://research.tue.nl/en/publications/9e918527-2390-4eaa-8633-6da3d86f40df

Parallel Local Search

CIP-DATA KONINKLUKE BIDLIOTHEEK., DEN HAAG

Verhoeven, Marcus Gerardus Aldegonda
Parallel Local Search I Marcus Gerardus Aldegonda Verhoeven. -
Eindhoven: Eindhoven University of Technology
Thesis Technische Universiteit Eindhoven. -
With index, ref. - With summary in Dutch
ISBN 90-386-0247-2
Subject headings: parallelism, local search.

druk: Universitaire Drukkerij, Eindhoven
foto omslag: Theo Audenaerd

1be work in this tbesls has been carried out under !be auspices of !be research school IPA
(Institute for Ptogrammtngresearcb and Algcrlllun!cs).

@1996 by M.G.A. Verhoeven, Eindhoven, The Netherlands

All rights reserved. No part of tills publlcatiou may be reproduced, stored in a retrieval system, or ttausmitted, in any form or by any means,
electronic, mecbanlcal, photocopying, recording or otl:terwise. without prior permlssiou of !be author.

Parallel Local Search

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. J.H. van Lint,
voor een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op

donderdag 7 maart 1996 om 16.00 uur

door

Marcus Gerardus Aldegonda Verhoeven

geboren te Eindhoven

Dit proefschrift is goedgekeurd
door de promotoren:

prof.dr. E.H.L. Aarts

en

prof.dr. J.K. Lenstra

para M aria de los Milagros

Contents

1. Introduction 1

1.1 Combinatorial optimization 1
1.2 Parallel processing 4
1.3 Thesis outline 8

2. Local Search 9

2.1 Computational complexity of local search 11
2.2 Local search variants 12

3. Concepts of Parallel Local Search 11

3.1 Multiple-walk parallelism 19
3.2 Single-walk parallelism 25
3.3 Complexity issues ofparallellocal search 34

4. Multiple Independent Walks 31

4.1 A probabilistic analysis for the 2-opt neighborhood 38
4.2 A semi-empirical analysis of iterated local search 45
4.3 Parallel iterated local search 48

5. The Traveling Salesman Problem 51

5.1 Local search for the traveling salesman 51
5.2 Parallel2-opt and 3-opt algorithms 53
5.3 The Lin-Kemighan neighborhood 62
5.4 A parallel Lin-Kemighan algorithm 72

6. The Steiner Tree Problem 83

6.1 Local search for the Steiner tree problem 83
6.2 Parallel local search for the Steiner tree problem 95

7. Scheduling 105

7.1 Job shop scheduling 105
7.2 Resource-constrained scheduling 111

vii

viii

Bibliography 125

Index 133

Samenvatting 135

Contents

1
Introduction

A wide variety of problems in practical planning and design situations is con­
cerned with the choice of the best solution from a finite, possibly large, number of
alternatives. Many of these problems can be modelled as combinatorial optimiza­
tion problems. Combinatorial optimization problems are often computationally
intractable and, consequently, larger instances of such problems can typically be
solved only to proximity.

Local search is a generally applicable approximation technique for combina­
torial optimization problems that is able to find good quality solutions, albeit at
the expense of substantial running times. It is often argued that parallelism can
be used to reduce these running times, which makes it possible to handle larger
instances in a given amount of running time, or to find better solutions for a given
instance in an equal amount of running time. In this thesis we investigate the po­
tentials of parallel processing for local search.

1.1 Combinatorial optimization

In this section we give a brief introduction to combinatorial optimization. More
elaborate introductions can be found in [Papadimitriou & Steiglitz, 1982; Nem­
hauser & Wolsey, 1988]. A combinatorial optimization problem is either a min­
imization problem or a maximization problem consisting of a set of problem in­
stances. Without loss of generality, we consider only minimization problems.

1

2 Introduction

Definition 1.1. An instance of a combinatorial optimization problem is a pair
(S, f), where S is a finite set of solutions, and f : S --+ 7L. is a function that
gives the cost of a solution. The objective is to find a solution in S with minimal
cost. CJ

The size of an instance/, denoted by size(!), is defined as the number of sym­
bols needed to encode I in a compact way. The finiteness of the set S suggests
that an instance (S, f) can be solved by examining all solutions and selecting the
one with minimal cost. Such an enumeration approach is only practical for very
small instances if the size of S, which is denoted by I SI, grows superpolynomially
with the instance size. The time complexity function lA : IN --+ IN of an algorithm
A gives for each instance size the largest running time needed by A for solving
an instance of that size, where running time is measured in the number of ele­
mentary operations such as assignments, comparisons, etc. Hence, tA(size(l))
is an upper bound on the running time needed to solve an instance I. To compare
algorithms, one is often interested in the order of their complexity functions. A
function f is CJ(f') with f, f' : IN --+ IN if there exist constants c, mE IN such
that f(n) :::; c · f'(n) for all n > m. f is Q(f') if there exist constants c, m EIN
such that f(n) 2: c · f'(n) for all n > m, and f is E>(f') if f is both Q(f')
and CJ(f'). An algorithm A is a polynomial-time algorithm if lA = O(f) for
some polynomial function f. Otherwise A is a superpolynomial-time algorithm.
Problems for which a polynomial-time algorithm is known, which implies that
instances I can be solved in size(I)0 (1) time, are often called 'easy'. For many
other problems no such algorithms are known despite considerable effort to find
them. The difference between these kinds of problems is formalized by the theory
of NP-completeness. Garey & Johnson [1979] present an overview of the NP­
completeness theory. This theory is based on decision problems in which one is
asked to determine whether there exists a solution with cost of at most k E 7L.. A
decision problem has only two possible solutions, either 'yes' or 'no'. With each
optimization problem a decision problem can be associated. Next, two classes of
problems are introduced, called P and NP, with P s; NP. These classes are used to
distinguish between easy and hard problems.

Definition 1.2. P is the class of decision problems for which each instance can
be solved by a polynomial-time algorithm. CJ

A concise certificate for an instance I is an amount of data with size polynomial
in size(!). The class NP can now be defined as follows.

Definition 1.3. NP is the class of decision problems for which each instance I
with answer 'yes' has a concise certificate c such that a 'yes' answer for I can be
verified by a polynomial-time algorithm using c. CJ

1.1. Combinatorial optimization 3

The concept of reducibility has been proven useful for relating the computational
complexity of two decision problems.

Definition 1.4. Problem n is polynomially reducible to problem n' if a polyno­
mial-time algorithm exists that maps each instance I of n onto instance I' of n'
such that I is a 'yes' instance of n if and only if I' is a 'yes' instance of n 1

• o

If n is polynomially reducible ton', then n' is at least as difficult as n. This leads .
to a class of problems in NP that can be considered as the most difficult ones in
NP. These problems are called NP-complete.

Definition 1.5. A problem n E NP is NP-complete if each problem in NP is poly­
nomially reducible ton. The class ofNP-complete problems is called NPC. o

Reducibility can be used to prove that a problem n is NP-complete. From Defini­
tions 1.4 and 1.5 it follows that in order to prove that n is NP-complete it suffices
to show that n E NP and that a problem n' E NPC is polynomially reducible
to n. Note that, if one NP-complete problem can be solved in polynomial time,
then all NP-complete problems can be solved in polynomial time. However, so
far no polynomial-time algorithm has been designed for any NP-complete prob­
lem and it is widely believed that NP-complete problems are intractable-that
is, any algorithm that solves each instance of an NP-complete problem requires
superpolynomial running time.

Finally, a problem is NP -hard if it is as least as difficult as any problem in NP,
i.e., any problem in NP is polynomially reducible to it Hence, each NP-complete
problem is NP-hard, and if the decision variant of a combinatorial optimization
problem is NP-complete, then the optimization problem is NP-hard.

Handling NP-hard problems. Two approaches can be distinguished to handle
NP-hard problems. Either one searches for optimal solutions, at the risk of very
large, possibly excessive, running times, or one is satisfied with relatively quickly
obtainable solutions at the risk of sub-optimality. The first approach finds optimal
solutions and accepts the possibility of superpolynomial running times. It seeks
to achieve as much improvement as possible over straightforward enumeration,
because often many solutions can be discarded as non-optimal without enumerat­
ing them explicitly. Dynamic programming, branch-and-bound, and branch-and­
cut algorithms are examples of such implicit enumeration techniques.

For many NP-hard optimization problems one has to resort to approximation
algorithms since larger instances cannot be solved optimally in acceptable run­
ning times. Approximation algorithms aim to find good-quality suboptimal so­
lutions in a moderate amount of time. Two classes of approximation algorithms
can be distinguished, viz. constructive algorithms and local search algorithms.

4 Introduction

Constructive algorithms build a solution by starting with an empty solution and
consecutively adding elements to the partial solution until a complete solution is
obtained. Constructive algorithms typically run in polynomial time as each step
requires polynomial time and the total number of steps is also bounded polyno­
mially, but they may find solutions of mediocre quality. Local search algorithms
constitute a class of approximation algorithms that are based on repeatedly re­
placing a solution by a neighboring solution. They often find good-quality so­
lutions but may require substantial running times. Local search is discussed in
more detail in Chapter 2. ·

Analysis of algorithms. The quality of an approximation algorithm is judged
by the quality of the solutions it produces, its effectiveness, and by the time it re­
quires to obtain them, its efficiency. The quality of solutions is measured by their
excess ratio, the relative deviation of the costs of solutions from optimal solu­
tions. Both effectiveness and efficiency can be considered from a worst-case and
an average-case point of view. Worst-case analysis gives upper bounds on the
average-case performance. Two approaches can be used to study the average-case
behavior, namely, probabilistic or empirical analysis. A probabilistic average­
case analysis aims at determining the expected performance of an algorithm by
presupposing a probability distribution over the set of problem instances. An em­
pirical analysis is based on a large number of numerical experiments on a set of
benchmark instances either originating from practice or randomly generated ac­
cording to some probability distribution. If optimal solutions are not known, the
excess ratio is usually computed using a lower bound for the optimal solution,
which establishes an upper bound for the empirical average-case performance.
For many approximation algorithms a worst-case or average-case analysis is quite
complicated and, therefore, one often resorts to an empirical average-case anal­
ysis. Another option is to compare the performance of an algorithm with that of
other algorithms in order to determine a relative ranking of algorithms. Here it is
essential that a challenging set oftest instances is available.

1.2 Parallel processing

In this section we discuss some preliminaries for parallel processing that are rel­
evant for the work described in this thesis. A more elaborate introduction into
parallel processing can be found in [Bertsekas & Tsitsiklis, 1989].

1.2.1 Parallel machines

We first discuss some issues related to parallel machine architectures. Our dis­
cussion is mainly based on the classification of parallel architectures presented
by Bertsekas & Tsitsiklis [1989].

1.2. Parallel processing 5

Over 1he years many parallel machine models have been proposed. Unfortu­
nately, no 1heoretical model effectively describes 1he full spectrum of parallel ma­
chines. Some models are based on technological developments, while o1hers are
based on theoretical observations. The most widely used classification of paral­
lel computers is based on 1he distinction between single instruction, multiple data
(SIMD) and multiple instruction, multiple data (MIMD) machines. In SIMD ma­
chines one global instruction is performed at a time, possibly on different data
elements. In MIMD machines different instructions on different data elements
can be performed simultaneously. Most modern parallel computers belong to the
class of MIMD machines.

Based on the timing of instructions on different processing units it is possible
to distinguish between synchronous and asynchronous machines. A synchronous
machine uses one global clocking scheme to synchronize instructions among pro­
cessors. If several local clocking schemes exist in a parallel machine, typically
one per processing unit, 1he system is called asynchronous. SIMD machines are
synchronous by definition. while MIMD machines are mainly asynchronous.

The above model does not address the way information is exchanged between
processors. There are two possibilities for exchanging information. In shared­
memory systems processors may read and write in a common memory acces­
sible by each processor. In message-passing systems processors exchange data
1hrough messages. Message-passing systems can be characterized by their inter­
connection network topology 1hat describes how processors are connected. The
most common topologies are 1he ring and 1he torus. In a ring each processor is
connected wi1h two other processors such that a cycle is formed. In a torus pro­
cessors are positioned in a two-dimensional grid. Processors are connected to
four other processors, and each row and column forms a ring. 01her frequently
used topologies are 1he tree, and 1he hypercube. Some parallel computing envi­
ronments permit 1he usage of virtual topologies in which topologies are simulated
on the machine at han'd in a user transparent way. It is of course important for
1he system's performance 1hat 1he virtual topology is mapped efficiently onto the
physical topology.

Other distinctions made between parallel machines are based on the amount
of data each processor can handle and the number of processors. In fine-grained
systems each processor can handle only a small amount of data, while in coarse­
grained systems each processor deals with a large amount of data. Massively par­
allel systems consist of a large number of, usually relatively simple, processors.
Massively parallel systems are typically fine-grained.

An important class of machine models in parallel complexity 1heory is 1he
parallel random access machine (PRAM) model. A concurrent read, concurrent

I -

6 Introduction

write PRAM is a shared memory machine in which all processors can simulta­
neously read from and write to the same memory locations. A concurrent read,
exclusive write PRAM is a shared memory machine in which all processors can
simultaneously read from the same memory location, but exclusive access to a
memory location is required for writing. Although none of the currently available
parallel machines are true PRAM's, this model supports the study of the intrinsic
parallelism in problems and provides theoretical lower bounds for the time com­
plexity of many parallel algorithms. The PRAM model can be adapted to capture
features of more realistic parallel machines by considering memory partitioning,
communication latency, and sparse network topologies, which all result in less
powerful variants of the above PRAM model.

Features of a parallel machine at hand, besides the computational power of
processors, can have a large influence on the performance of algorithms when
executed on that machine. Important properties of a message-passing MIMD ma­
chine are the latency for starting up communication, and the throughput of com­
munication between processors, which also depends on the interconnection net­
work topology. For shared-memory MIMD machines the access time to various
parts of memory plays an important role. Computational experiments are there­
fore important in the study of parallelism.

1.2.2 Parallel algorithms

Useful criteria to evaluate a parallel algorithm for a given problem are its speed­
up and efficiency. The speed-up is the running time of the best known sequential
algorithm for this problem divided by the parallel running time, and the efficiency
is the speed-up divided by the number of processors [Barr & Hickman, 1993].
Another important issue is the scalability of an algorithm, which refers to its per­
formance for increasing number of processors.

It is usually required that the output of parallel algorithms is independent of
the number of employed processors. In our research, however, the number of em­
ployed processors may determine the part of the solution space that is explored,
which may affect the output. Furthermore, we consider randomized algorithms
for which different runs may require different running times. As the quality of
the output of the local search algorithms we study is measured using the relative
excess of final solutions over global minima, we define speed-up as follows.

Definition 1.6. Let tA,€(1) be the average time to find a solution with a relative
excess E over the global minimum using sequential algorithm A and let tB,li(P)
be the average time for this using parallel algorithm B on machine M with P
processors, then the speed-up of B over A on M is given by t A,€ (1) I tB ,€ (P). D

Other useful criteria, besides speed-up and efficiency, for judging the quality of

1.2. Parallel processing 7

the parallel algorithms we study in this thesis are the extend in which these paral­
lel algorithms are able to find better quality solutions than sequential algorithms
in a given amount of time. Also the instance sizes that can be handled by sequen­
tial and parallel algorithms in a given amount of time may be of interest. These
criteria are of course closely related to the speed-up of algorithms as algorithms
with a large speed-up can typically find better quality solutions in a given amount
of time since more solutions can be explored. The reduction of running times for
given instance sizes can also be employed to handle larger instances in a given
amount of time.

Two issues are important in designing parallel algorithms with a good speed­
up, viz., communication overhead and load balancing. On most parallel machines
communication is costly compared to computation operations, so attention has to
be paid to the communication behavior of parallel algorithms. Load balancing is
important to achieve that no processor ever becomes idle while others are work­
ing.

1.2.3 Parallel complexity

It is often attempted to define a class of problems for which parallel processing
can be profitable. A traditional example is the complexity class NC that consists
of the problems that can be solved on a PRAM with a polynomial number of pro­
cessors n°<1> in polylogarithmic time (log n)0 (1), i.e., a time bounded by a poly­
nomial in the logarithm of the instance size n. Furthermore, a class of P -complete
problems is identified that contains problems that are believed to be among the
hardest problems in P. A problem is P-complete if it belongs to P and any other
problem in P can be transformed to it using polylogarithmic time and polynomi­
ally many processors [Greenlaw, Hoover & Ruzzo, 1995]. It is conjectured that
the class ofP-complete problems is disjoint from the class NC, and consequently
it is believed that P-complete problems cannot be solved in polylogarithmic time.

In practical situations one is often interested in parallel algorithms that solve
an instance roughly P times faster when using P processors. Such algorithms
may still exist for P-complete problems. So the distinction between P-complete
problems and problems in NC is inadequate to capture the informal notion of
problems that are amenable for parallel processing. Kruskal, Rudolph & Snir
[1990] introduce a class EP of efficient parallel algorithms, in which they measure
the performance of parallel algorithms relative to that of sequential algorithms.
The usual yardstick is the best existing sequential algorithm for a given problem.
EP is defined as follows.

Definition 1.7. Let the time complexity of a sequential algorithm and a paral­
lel algorithm using P(n) processors for instances of size n be given by t(n) and

8 Introduction

T (n), respectively. An algorithm is polynomial! y fast and has constant efficiency,
if T(n) = O(t(n)") with E < 1 and T(n) · P(n) = CJ(t(n)). The class that con­
tains these algorithms is called EP. D

Although the class EP does not define strict complexity classes for problems since
it depends on a particular sequential algorithm, it provides a practically relevant
classification of parallel algorithms.

1.3 Thesis outline

The objective of the research described in this thesis is to design parallel local
search algorithms that can handle large problem instances and that are competi­
tive with the best known sequential algorithms both with respect to running time
and quality of final solutions. For this, we study general approaches that can be
applied to a wide variety of problems, as well as tailored approaches in which
problem characteristics are exploited. Computational experiments on parallel ma­
chines are considered as an important aspect of this research.

The remainder ofthis thesis is organized as follows. Chapter 2 deals with lo­
cal search. In Chapter 3 we introduce the concepts for designing parallel local
search algorithms. This chapter is based on [Verhoeven & Aarts, 1995a]. Chap­
ter 4 presents some results for the speed-up that can be obtained by performing
several independent runs of a local search algorithm in parallel. These results are
based on a probabilistic analysis of local search that can also be found in [Ten
Eikelder, Verhoeven, Vossen &Aarts, 1996]. Chapters 5, 6, and 7 discuss tailored
approaches to design parallel local search algorithms for some well-studied com­
binatorial optimization problems. In Chapter 5 we study the traveling salesman
problem, in Chapter 6 the Steiner tree problem in graphs, and in Chapter 7 job
shop scheduling. Chapter 7, furthermore, discusses sequential and parallel local
search for resource-constrained project scheduling. These chapters are based on
[Verhoeven, Aarts, Van de Sluis & Vaessens, 1992; Verhoeven & Aarts, 1994;
Verhoeven, Aarts & Swinkels, 1995], [Verhoeven, Aarts & Severens, 1995], and
[Verhoeven & Aarts, 1995b], respectively.

The main conclusion that can be drawn from the work described in this thesis
is thatlocal search algorithms for a wide variety of problems can be sped up sig­
nificantly using parallelism based on hybrids of the approaches to parallel local
search proposed in this thesis.

2
Local Search

Local search algorithms constitute a class of approximation algorithms for hard
combinatorial optimization problems that are based on the exploration of neigh­
borhoods of solutions. They have shown to be successfully applicable to a wide
range of problems, giving good-quality solutions [Aarts & Lenstra, 1996]. The
basic local search algorithm is the so-called iterative improvement algorithm. An
iterative improvement algorithm starts off with an initial solution constructed by
some heuristic. Next, the algorithm repeatedly tries to improve the current solu­
tion by replacing it with a lower-cost neighbor. If a solution has been reached that
has no neighbors with lower cost, a local minimum has been found. An essential
concept in local search algorithms is the notion of a neighborhood structure.

Definition 2.1. Let (S, f) be an instance of a combinatorial optimization prob­
lem. Then a neighborhood structure N: S-+ P(S) assigns to each solution in
S a set of solutions, called a neighborhood. A solution s E S is a local minimum
of N if f(s') :::: f(s) for each s' E N(s). D

The neighbors of a solution are not given explicitly but are to be constructed by
a function. Most neighborhoods are based on the replacement of a few elements
that constitute a solution. For this we introduce the following definition in which
we assume that solutions are sets. The set of building elements that constitute
solutions inS is then given by£ = {e I e E s 1\ s E S}.

9

10

proc lterativeJmprovement (s : S)
var w: P(S);
begin

w :=0;
while N(s) \ w =P 0 do

s' E N(s) \ w;
if f(s') ;::: f(s) then w := w U {s'}
else s := s'; w := 0 fi

od {s is a local minimum of N}
end

Figure 2.1: An iterative improvement algorithm.

Local Search

Definition 2.2. Let the exchange function T:r : s X er ~ s be a partial function
with r E IN. Then, an r-exchange neighborhood structure Nr associated with <r
is defined by Nr(s) = {r:r(s, et. ... , er) I e1, ... , er E s} fors E S. D

According to Definition 2.2 neighbors of a solutions can be constructed by apply­
ing the exchange function to s and a subset et •... , er of the building elements
of s. Below, we give an example of an exchange function and a neighborhood
for one of the best-known combinatorial optimization problems, viz. the travel­
ing salesman problem (TSP). In the TSP a salesman wishes to visit all cities in a
given set once and return to the starting point, in such a way that the total distance
covered is as short as possible.

Example 2.1 (traveling salesman problem). Given is a complete weighted graph
(V, V x V), where V is a set of N vertices and dii E IN gives the distance between
each i, j E V. A tour t is a set of N directed edges {et. ... , eN} that constitutes
a Hamiltonian cycle, a cycle that visits each vertex in this graph precisely once.
The solution space S of a TSP instance is the set of all tours. The cost function
f is given by

t<t) = :L dij·
(i,j) Et

The problem is to find a tour t E S for which f(t) is minimal. The exchange
function r:z :Sx(VxV)2 ~ S gives for each tour anew tour obtained by replacing
two edges with two other edges. The well-known 2-exchange neighborhood of
Lin [1965] is defined by Nz(t) = { r:z(t, ei, ej) 11 ::;:i < j::;: N}. D

Figure 2.1 presents a schematic description of an iterative improvement algorithm.
A single iteration of an iterative improvement algorithm, which we call a step,
consists of the following actions. First, aneighbor is constructed by applying the

2.1. Computational complexity of local search 11

exchange function to the current solution. Subsequently, the cost of the neigh­
bor is evaluated. If the neighbor has lower cost, it replaces the current solution
by effectuating the proposed exchange. Otherwise the search is continued with
the old current solution. A pivoting rule [Yannakakis, 1990] determines which
neighbor will be the new current solution. Well-known pivoting rules are first
improvement, which replaces the current solution with the first lower-cost neigh­
bor that is found, and best improvement, which uses the solution that has lowest
cost among all neighbors.

For practical reasons it is often required that each local search step can be
done in polynomial time. For this it is necessary that neighbors can be selected
in polynomial time, which requires that the exchange function associated with
a neighborhood structure has polynomial time complexity, and that the cost dif­
ference f(s')- f(s) of two neighboring solutions sands' can be computed in
polynomial time.

2.1 Computational complexity of local search

Unless a neighborhood is exact, i.e., each local minimum is a global minimum,
it is generally not possible to give a fixed upper bound on the relative excess of
local minima. Moreover, for the iterative improvement algorithm of Figure 2.1
it is in general not possible to give a non-trivial upper bound on the number of
steps needed to find a local minimum. Examples are known of problem instances
for which the number of steps cannot be bounded by a polynomial in the size
of the instance. Therefore, the question has been raised whether this is a gen­
eral property of local search algorithms. Johnson, Papadimitriou & Yannakakis
[1988] have formalized the question of the worst-case behavior of local search
algorithms by introducing a new complexity class PLS. A local search problem
n is a set of problem instances of which each instance is characterized by a triple
(S, f, N), where S is the set of solutions, f the cost function, and A(the neigh­
borhood structure. The question is to find a local optimum of N. The class PLS
is then defined as follows.

Definition 2.3. A local search problem n is in PLS if polynomially computable
functions g and g' exist such that for an instance I of n, g(I) returns a start so­
lution, g'(I, s) returns a solutions' E Af(s) with f(s') < f(s) fors E Sand if
no such solution exists, g' returns s, which is then a local minimum of N. o

Informally stated, PLS is the class of local search problems for which each local
search step requires polynomial time. The notion of PLS-reducibility has been
introduced in order to define PLS-complete problems.

12 Local Search

Definition 2.4. A local search problem n is PIS-reducible to a local search prob­
lem n' ifthere exists a polynomially computable function h that maps instances
I of n onto instances I' of n' and a polynomial function h' that maps pairs of the
form (solution of h(I), I) onto solutions of I such that, ifs is a local optimum
for h(I), then h'(s, I) is locally optimal for I. o

Definition 2.5. A local search problem n E PLS is PIS-complete if each prob­
lem in PLS is PLS-reducible ton. 0

To prove that a local search problem n is PLS-complete it suffices to show that
n is included in PLS and that there exists a known PLS-complete problem n'
that can be PLS-reduced to n. The generic PLS-complete problem is FLIP. The
class ofPLS-complete problems contains the hardest problems in PLS, and if one
of these problems can be solved in polynomial time, then all others can. It is,
however, conjectured that Psis a strict subset of PLS, where Ps is the class of
search problems that can be solved in polynomial time [Yannakakis, 1996]. Con­
sequently, if this conjecture holds, superpolynomial running times might be re­
quired by any algorithm to find a local optimum for the PLS-complete problems.

2.2 Local search variants

A neighborhood structure imposes a directed graph on the solution space. The
vertices of this neighborhood graph are the solutions, and there is an edge from a
vertex to another vertex if this vertex is a neighbor of the first vertex. The course
of a local search algorithm is characterized by a walk in this graph. Starting in
some vertex, the costs of neighbors are evaluated, and a step to some neighbor is
made. This process is repeated until some stop criterion is met. The effectiveness
of local search depends on both the structure of the neighborhood graph, which is
determined by the neighborhood structure, and the way the neighborhood graph
is traversed, which is determined by the type of local search that is used. A neigh­
borhood is sufficiently connected if there is a path in the neighborhood graph to
an optimal solution from any solution, and it is completely connected if there is
a path to each solution from any other solution.

A drawback of iterative improvement is that it may get stuck in poor-quality
local minima. To overcome this drawback, one can either modify the neighbor­
hood structure, or change the way the neighborhood graph is traversed. The first
approach is problem specific, whereas the latter one is less problem dependent.

Most neighborhood structures are based on exchange functions that modify
only a few elements, which results in small neighborhoods. In order to avoid
the risk of getting stuck in a poor-quality local minimum, one may increase the
size of the neighborhood by exchanging more elements. Another option is to

2.2. Local search variants 13

exploit characteristics of the problem at hand to tailor the neighborhood to this
problem. Examples of this approach are variable-depth neighborhood structures
[Kernighan & Lin, 1970; Lin & Kernighan, 1973] and the quite similar ejection
chain approach in [Reeves, 1993]. Variable-depth neighborhoods are based on
a simple exchange function. A neighbor is obtained by constructing a sequence
of exchanges, instead of a single exchange. An algorithm that uses a variable­
depth neighborhood is often no longer regarded as a basic iterative improvement
algorithm since it actually generates a sequence of solutions, which may contain
solutions with higher cost than a preceding solution. The solution that eventually
replaces the current solution is the solution in this sequence with minimal cost.
The algorithm stops if this neighbor has higher cost than the current solution.

Another approach to escape from local minima is to accept neighbors with
cost higher than that of the current solution. We mention the following local search
variants, sometimes called meta heuristics, which all traverse the neighborhood
graph in a different way to escape from local minima.

Iterated local search [Johnson, 1990; Martin, Otto & Felten, 1991] uses two
neighborhoods Nand N'. The search starts with the first neighborhood N until a
local minimum of N is found. If this local minimum has lower cost than the best
solution found so far, this local minimum replaces it. Then, a neighbor of the best
solution found so far is chosen from a second neighborhood N'. Subsequently,
the search is restarted from this neighbor using the first neighborhood. In this way
local search is performed at two levels. At the lower level regular local search
steps are made in the neighborhood graph induced by N, but at the higher level
large steps between local minima of N are made.

Thbu search [Glover, 1989; Glover, Taillard & De Werra, 1993] tries to direct
the search into unexplored areas of the solution space once a local minimum is
found, by memorizing the course of the search. To this end, a finite list of the most
recently visited solutions, the tabu list, is constructed, whose length is given by
the tabu tenure. In each step of a tabu search algorithm a neighbor s' is chosen
from the neighborhood N (s) of the current solutions such that s' is not included
in the tabu list. Subsequently, s is added to the tabu list. Hence, the set from which
a neighbor s' of s is chosen depends on how s is reached, and no s' is chosen that
has been visited in the k most recent steps, if the tabu tenure is k. By choosing
solutions not on the trajectory to recently visited local minima, tabu search can
be directed into other areas of the solution space.

Rather than storing complete solutions that have been visited in the tabu list,
building elements associated with exchanges that have led to these solutions are
included in the tabu list If a step is made from a solution s to s' with s' = r (s, e),
where r is an exchange function and e a building element of a solution, then an

14 Local Search

element e' for which s = r (s', e') is added to the tabu list. If the tabu list is full,
its oldest element is removed. Neighbors are obtained by performing exchanges
that act on building elements that do not occur in the tabu list. An exchange is not
permissible, or tabu, if it occurs on this list. In this way, the implicitly defined set
of tabu solutions includes the k most recently visited solutions.

Most tabu search algorithms select the lowest-cost non-tabu neighbor in the
neighborhood as the new current solution. If all neighbors are tabu, then the old­
est element on the tabu list is removed, until a permissible neighbor can be se­
lected. Since such a pivoting rule can be computationally expensive candidate
sets can be used. Candidate sets are subsets of neighborhoods in which it is at­
tempted to exclude high-cost neighbors from a neighborhood without exploring
them explicitly. Aspiration criteria can be used to overrule the tabu status of an
exchange when it seems promising in some sense, e.g., if it leads to a solution
with lower cost than the best solution found so far.

The effectiveness of many tabu search algorithms is significantly increased
by incorporating intensification and diversification of the search. Intensification
of the search around good-quality local minima is used to search promising areas
of the solution space more thoroughly. This can be implemented by keeping track
of the best solutions found in the course of the search. If no improvement of the
best solution is achieved for a number of steps, the search is restarted with one
of these best solutions, where the search is forced to follow a different trajectory
from this solution by associating a tabu status with each attempted exchange for
this solution. This requires storage of tabu lists associated with the best solutions
found in the course of the search.

Search diversification is used to ensure that other regions of the solution space
are searched as well. Diversification of the search can be achieved by adding
penalties to the cost of solutions if some of its elements occur frequently in the
current solution or are included in the current solution for a large number of local
search steps.

Simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983; Aarts & Korst, 1989]
probabilistically accepts neighbors with higher costs, in addition to lower-cost
neighbors, which are always accepted. To this end, an acceptance probability is
used that is reversely related to the size of the cost increase. The acceptance prob­
ability of cost-increasing exchanges is given by

exp(- (f(s')- f(s)))
c

for solutions s and s' with f (s') > f (s). The control parameter c is used to lower
the acceptance probability in the course of the search.

A simulated annealing algorithm can be outlined as follows. First, an initial

2.2. Local search variants 15

value for the control parameter c is chosen. For each value of c a number of ran­
domly chosen exchanges is attempted, where proposed exchanges are accepted
according to the above acceptance probability, after which the control parame­
ter is lowered. If the control parameter c drops below a given value the search
is ended. A cooling schedule determines how the control parameter c is decre­
mented. In many practical simulated annealing algorithms a geometric cooling
schedule is used in which c is decremented by multiplication with a constant fac­
tor a, with a < 1.

Using finite Markov chain theory, it has been proven that simulated annealing
converges to a global minimum if the acceptance probability is lowered slowly
enough, provided that the employed neighborhood is at least sufficiently con­
nected. This connectivity condition is not hard to meet for many problems.

Genetic local search [Mtihlenbein, Gorges-Schleuter & Kramer, 1988; Aarts
& Verhoeven, 1996] incorporates local search into genetic algorithms. In genetic
local search, a population of solutions is explored, instead of only a single solu­
tion. A genetic local search algorithm starts with a population of p initial solu­
tions. This population is augmented with q solutions obtained as follows. 1\vo
parent solutions are selected from the population. Using these two parent solu­
tions a new solution is constructed by applying cross-over. In a cross-over opera­
tion building elements of two solutions are combined to one solution. This newly
constructed solution is then improved using a local search algorithm and added to
the population. The augmented population is subsequently reduced to its original
size using concepts from biological evolution strategies.

Evidently, the cross-over operation is important, since here one must try to
take advantage of the availability of more than one local minimum by exploiting
their structure. Mutation in a traditional genetic algorithms corresponds with the
part of the above algorithmic concept in which local search is applied to the so­
lution resulting from the cross-over operation.

Widely recognized advantages oflocal search are its general applicability, its fiex­
ibility, and its ease of implementation. Only a specification of solutions, a cost
function, and a neighborhood structure are required, which can easily be defined
for many problems. Furthermore, practical experience in scheduling, layouting,
and routing applications has revealed that the average-case performance of local
search is quite good in the sense that high-quality solutions can be found within
acceptable running times. Tills has led to the conviction that local search is a pow­
erful technique to handle complex real-world combinatorial optimization prob­
lems that arise in management science and engineering. For more extensive over­
views on local search in which the above variants are discussed in more detail we
refer to [Yannakakis, 1990; Reeves, 1993; Aarts & Lenstra, 1996].

16 Local Search

3
Concepts of Parallel Local Search

Although local search algorithms may find good-quality solutions, they require
substantial amounts of running time for the larger instances of some combina­
torial optimization problems; see for instance [Sechen, 1988], who reports run­
ning times of 24 hours for his simulated annealing based cell-placement algo­
rithm when applied to real-life problem instances. To cope with this drawback,
several approaches have been proposed in the literature to implement these al­
gorithms on parallel machines. Other goals of these parallel approaches to local
search are to find better quality solutions in a given amount of time or to enable
handling of larger problem instances. In this chapter we try to disclose the under­
lying concepts on which these approaches are based. In this discussion we try to
abstract from implementation issues that depend on the machine model at hand.
Furthermore, we study some complexity issues of parallel local search.

Much effort in the field of parallel local search has concentrated on the de­
sign of parallel simulated annealing algorithms [Aarts & Korst, 1989; Azencott,
1992]. For an overview of parallel simulated annealing, we refer to [Greening,
1990]. More recently, also parallel approaches to other local search algorithms,
such as tabu search and genetic local search, have been reported. Voss [1993]
presents a classification of parallel tabu search algorithms based on the use of
different search strategies and starting solutions. Crainic, Toulouse & Gendreau
[1993b] extended this classification with dimensions based on communication or­
ganization and information handling.

17

18 Concepts of Parallel Local Search

We distinguish between tailored and general approaches. A tailored approach
can be applied only to a specific problem, whereas a general approach can be ap­
plied to a wide variety of problems. Furthermore, we distinguish between single­
walk and multiple-walk parallelism and between asynchronous and synchronous
algorithms. In the class of single-walk algorithms,. we distinguish between multi­
pie-step and single-step parallelism.

Tailored approaches. A tailored approach to incorporate parallelism in local
search requires parallel execution of a problem specific part of the algorithm. Cost
computation is a typical problem dependent part of a local search algorithm. Also
operations on the data structures used to represent a solution are problem specific.
If one of these problem dependent parts is very time consuming, the running time
of the local search algorithm can be decreased substantially by efficient parallel
execution of this part.

Kravitz & Rutenbar [1987] apply a tailored approach to their local search al­
gorithm for the standard cell placement problem. They compute the cost of a
neighbor in parallel. Another example of parallel cost computation is given by
Taillard [1994], who uses a parallel longest path algorithm to compute the length
of a schedule in the job shop scheduling problem.

Tailored approaches have limited applicability because they strongly depend
on the problem at hand. Therefore, we discard these approaches here and concen­
trate on techniques that can be applied to a wide variety of local search problems.

General approaches. A general approach can be applied to a broad class of
local search problems. We can distinguish between two approaches: single-walk
and multiple-walk parallel local search. In a single-walk algorithm only a single
walk in the neighborhood graph is carried out, whereas in a multiple-walk algo­
rithm several walks are performed simultaneously.

Within the class of multiple-walk algorithms we can distinguish between al­
gorithms that perform interacting walks and algorithms that perform multiple in­
dependent walks. The latter can be considered as the most straightforward ap­
proach to introduce parallelism in local search.

In single-walk parallel local search a single walk is carried out in parallel.
Typically, this requires some distribution of a solution or elements of a solution
over a number of processors. Furthermore, we distinguish between single-step
and multiple-step parallelism. The idea of single-step parallelism is to evaluate
neighbors simultaneously and subsequently make a single step. Th this end, the
neighborhood of a solution is partitioned into subsets that are searched in parallel.
In an algorithm with multiple-step parallelism several consecutive steps through
the neighborhood graph are made simultaneously. Figure 3.1 shows neighbor­
hood graphs that illustrate the idea of single-step and multiple-step parallelism.

3.1. Multiple-walk parallelism

·-------·----· 1\ ~~' 11
I \ ' \ I I

\ ~ \ I I
\ ~ \

~ I I

I ,.,~ \I 1
I ' I

I ", ,." \ I
I/ _ _ \I

1/ --.... -- ... 'I . -:::.. - - - - - - - - - --·

19

·- - - - - - -- - - - -· ,, ~~' 11
\ ~ \ I I

\ ~ \ I I
\ / \

, I I ,., ___ ~',I

I' ~
I I ', . ,." \
I/ _.e.:'"_ \
J/ '*"".,.,...,. \1
e-:::..--------- --•

Figure 3.1: Local search with single-step parallelism (left) and multiple-step parallelism
(right) in a neighborhood graph. Dotted edges connect neighbors and a solid arc repre­
sents a step made by a local search algorithm.

Finally, in both single-walk and multiple-walk parallel local search we dis­
tinguish between synchronous and asynchronous algorithms. In a synchronous
algorithm one or more steps of the algorithm are performed simultaneously by all
processors. Synchronous parallelism requires a global clocking scheme or token­
passing mechanism that guarantees that communication occurs at given points in
time. In asynchronous parallelism no such global clocking mechanism exists.

A multiple-walk algorithm performs multiple single walks. Hence, it is pos­
sible to combine multiple-walk and single-walk parallelism in the design of par­
allellocal search algorithms. Also tailored approaches can be incorporated into
general approaches resulting in all kinds of hybrid approaches, but the items in
our classification are the basic concepts of such algorithms.

The remainder of this chapter is organized as follows. In Section 3.1 we dis­
cuss multiple-walk parallelism. Section 3.2.1 discusses single-step parallelism,
and Section 3.2.2 discusses multiple-step parallelism in more detail. Finally, Sec­
tion 3.3 discusses some complexity issues of parallel local search.

3.1 Multiple-walk parallelism

Multiple-walk algorithms have inherent parallelism, which can be exploited by
distributing the walks over a number of processors and performing them simulta­
neously. We distinguish between algorithms that perform multiple independent
walks and algorithms that perform multiple interacting walks. The first class of
algorithms is the simplest one, since no complex parallelization scheme is re­
quired. In order to describe algorithms with multiple interacting walks more pre­
cisely, we extend the notion of neighborhood structures to hyper neighborhood
structures. Neighborhood structures define neighbors for a single solution; hyper
neighborhood structures define neighbors for a set of solutions [Vaessens, 1995].

20

proc Multiple_ Walks (s1, . . . , s p E S)
begin

stop_criterion := false;
while, stop_criterion do

od
end

par p E Q do
lterativeJmprovement(sp);
Sp E H(shp(l)• ... , shp(M))

rap

Concepts of Parallel Local Search

Figure 3.2: A multiple-walk parallel local search algorithm.

Definition 3.1. Let M :::: 1. Then, a hyper neighborhood structure 1{ : sM ~
P(S) assigns to a set of M solutions inS, a subset of solutions inS. o

Let Q = {1, ... , P} be a set of P processors, and let hp: {1, ... , M}~ Q be
a function for each p E Q, where hp(i) denotes the i-th processor with which p
communicates. hP gives, for each processor p, M other processors with which
interaction takes place in order to construct a hyper neighbor.

Using the concept of hyper neighborhood structures, we can formulate the
template presented in Figure 3.2 that describes algorithms with interacting mul­
tiple-walk parallelism. The set of current solutions s1, . • • , s p is often called the
population. A current solution sp is assigned to processor p. All processors per­
form simultaneously a walk in the neighborhood graph by executing an iterative
improvement algorithm, or some other local search algorithm. After a number
of local search steps, a hyper neighbor is constructed, which requires interac­
tion with M other processors hp(l), ... , hp(M). This process is continued until
some stop criterion is met.

3.1.1 Multiple independent walks

A trivial approach to parallel local search is to perform a number of independent
walks in parallel, since this requires no communication between different runs.
The speed-up one hopes to achieve by using such an approach is based on the
following property for random walks in a neighborhood graph.

Theorem 3.1. Let Qp(t) be the probability of not having found a solution with
relative excess E in t time units with p independent walks, and let Q1 (t) =e-M
with A. eiR+, i.e., Q1 is distributed exponentially. Then, Qp(t) = Q1 (pt). D

3.1. Multiple-walk parallelism 21

Hence, it is possible to achieve linear speed-up with multiple independent walks if
tbe probability to find an optimal (or suboptimal) solution within a given amount
of time units is distributed exponentially. An appropriate time measure for local
search algorithms is the number of solutions of which the cost has been evaluated.
Theorem 3.1 states that the probability to find a (sub)optimal solution in t time
units and P processors is equal to the probability to find a (sub)optimal solution
in Pt time with a single processor, if this probability is distributed exponentially.
So in that case, a linear speed-up and an efficiency equal to one is reached with
multiple independent walks.

Several authors have studied the probabilistic behavior of local search algo­
rithms for various problems to investigate whether the condition of Theorem 3.1
holds in practice. Battiti & Tecchiolli [1992] empirically investigate the behavior
of tabu search for randomly generated instances of the quadratic assignment prob­
lem. They observe that the probability of finding a (sub)optimal solution with a
tabu search algorithm is indeed distributed exponentially, provided that the search
is started with a local minimum. This indicates that good efficiencies can be ob­
tained with multiple independent parallel walks in tabu search, if the time needed
to find the first local minimum is relatively small compared to the time spent in
the remainder of the search process. Thillard [1991] also shows that tbe probabil­
ity of finding an optimal solution for quadratic assignment problems with a tabu
search algorithm fits well with an exponential distribution. Dodd [1990] empiri­
cally shows that a similar conclusion. also holds for simulated annealing. For the
problem and parameter setting that he used an efficiency of one could be obtained
with a maximum of 16 processors. Osbome & Gillett [1991] investigate the em­
pirical behavior of simulated annealing for the Steiner tree problem in graphs.
They also observe that tbe probability of finding a near-optimal solution is dis­
tributed exponentially. Chapter 4 presents some results for the average-case be­
havior of iterated local search algorithms for the traveling salesman problem. It is
shown that the probability of finding a solution with a small excess over the global
minimum using an iterated local search algorithm can be described by a geomet­
rical distribution, which is the discrete counterpart of an exponential distribution,
somewhat translated to compensate for the time needed to find the first local min­
imum. Good efficiencies can be obtained with multiple-walk parallelism but the
amount of speed-up depends on the time needed to find the first local minimum,
the time needed to find subsequent local minima, and the desired solution quality.

Shonkwiler & Van Vleck [1994] present a theoretical analysis of the speed-up
with multiple independent stochastic walks using Markov-chain analysis. They
show that the speed-up is given by \·:_'(_ sP-1 where p is the number of walks and
s and A.· are parameters that are related to the search process at hand. They claim

22 Concepts of Parallel Local Search

that nearly always A ~ 1 so then the speed-up is equal to psP-1. They present
some artificial problems for which they are able to determine the parameters s
and A, and for some of these problems even superlinear speed-ups are achieved
with multiple independent stochastic walks. Ferreira & Zerovnik [1993] give an­
other theoretical result which shows that multiple independent walks can be prof­
itable. They show that, after a certain amount of time, the probability to find a
(sub)optimal solution with multiple runs of an iterative improvement algorithm
is larger than the probability that it is found by a single simulated annealing run
in the same amount of time.

The inherent parallelism of genetic algorithms is also based on Theorem 3.1,
although in genetic algorithms the walks interact to combine good parts of in­
dividual solutions. The population size is therefore an important parameter of a
parallel genetic algorithm, because it determines the speed-up and efficiency that
can be obtained ultimately.

3.1.2 Multiple interacting walks

Interaction of walks can be used to faster direct the search into promising areas
of the solution space. Th model the interaction between parallel walks we use
the concept of hyper neighborhoods. Hyper neighborhoods can be based on se­
lection of a single solution from a set of solutions. Such hyper neighborhoods
assign the same solution to different processors and are useful only if the walks
performed by processors follow different paths from this solution. This can be
achieved by either introducing randomization in walks or by enforcing different
directions for walks. Other hyper neighborhoods are based on combining parts
of different solutions to new solutions.

Processors exchange information when walks interact. Titis information, such
as the occurrence oflow-cost solutions in a population or the availability of multi­
ple good parts of individual solutions; can be used to speed up the search. A pos­
sible way to use the additional information resulting from interaction of walks, is
indicated by Lin & Kemighan [1973] and Kirkpatrick & Toulouse [1985], who
observe that local minima often have many elements in common. These elements
can be identified as the good parts of solutions. So the availability of multiple
local minima allows fast identification of good parts of individual solutions that
should not be changed in the course of the search. This then leads to a reduction
of the sizes of neighborhoods.

Implementation issues. First, we discuss asynchronous and synchronous mul­
tiple walks. In synchronous multiple-walk parallelism, walks are synchronized
at certain points in time-that is, the construction of a hyper neighbor can only
be done in a state that depends on the state of all processors. In asynchronous

3.1. Multiple-walk parallelism 23

multiple-walk parallelism construction or selection of a hyper neighbor is not
synchronized at a point in time. Here, the number of processors with which a
processor interacts to construct a hyper neighbor is typically a subset of all pro­
cessors. In that case a processor can resume searching as soon as communication
with that subset of processors has taken place, and it does not need to wait for
other processors.

The amount of communication overhead involved with multiple-walk paral­
lelism depends on how often a hyper neighbor is constructed, the hyper neighbor­
hood structure at hand, the machine architecture, and on the mapping of walks
on to processors. It is preferable to map interacting walks on to the individual
processors of a given machine such that the resulting communication overhead is
minimal. Load balancing is done by specifying an equal amount of work that is to
be performed in between two interactions of walks. This can be done by fixing
the number of steps between two communications, which typically means that
hyper neighbors are not always constructed from local minima, since the num­
ber of steps to find a local minimum is not equal in each walk. An advantage of
asynchronous walks over synchronous walks is their reduced load imbalance.

Examples. Parallel genetic local search algorithms are typical examples of lo­
cal search algorithms with multiple-walk parallelism. The following hyper neigh­
borhood is used in genetic algorithms. 1\vo parent solutions, selected from -a
subset of- the current population, are used in a cross-over operation to construct
a new solution. In a cross-over operation good parts of individual solutions are
combined. Both synchronous and asynchronous multiple-walk parallelism can
be applied in genetic algorithms. Asynchronous parallel genetic algorithms are
mostly based on an island model in which parents are chosen from a subset of the
population instead of from the entire population. Here, we do not further elabo­
rate on parallel genetic algorithms; for more details we refer the reader to [Jog,
Suh & Van Gucht, 1991; Michalewicz, 1992; Mtihlenbein, 1992].

Several authors have applied multiple-walk parallelism to simulated anneal­
ing and tabu search. A hyper neighborhood of a population of solutions that is
often used here is the selection of the best solution in the population. In a tabu
search algorithm different paths from this solution should be followed by differ­
ent processors. This can by done by blocking certain exchanges or by using dif­
ferent search parameters for different processors. Note that in this way an inten­
sification of the search around good solutions is achieved. Additional diversifi­
cation can be achieved by combining long-term memory of different walks.

Malek, Guruswamy & Pandya [1989] present tabu search and simulated an­
nealing algorithms with synchronous multiple-walk parallelism in which the best
solution in the population is communicated to all processors after a fixed number

24 Concepts of Parallel Local Search

of steps of the simulated annealing or tabu search algorithm. In their algorithm
the hyper neighborhood of a solution consists of a single element, viz., the best
solution come across in the entire population. Different parameter settings are
used to guarantee that different paths are followed by processors. They obtain a
good speed-up for seven processors.

Crainic, Toulouse & Gendreau [1995] present various synchronous multiple­
walk tabu search algOrithms. They propose two hyper neighborhoods: one in
which the best solution in the entire population is selected by all processors, and
one in which each of the P processors selects a different solution among the P
best solutions come across since the previous interaction. Different paths are fol­
lowed by choosing a different parameter setting for processors. 'JYpically, the
best-quality solutions are found by multiple independent walks. Crainic, Thulouse
& Gendreau [1993a] also present asynchronous multiple-walk parallel tabu search
algorithms. They propose two hyper neighborhoods in which processors interact
asynchronously with a central processor that keeps track of either the best solu­
tion or the P best solutions found in the search process, where P is the number of
processors. In the first hyper neighborhood this overall best solution is selected
as hyper neighbor, and in the latter hyper neighborhood a hyper neighbor is ran­
domly chosen from the P best solutions found. Compared to their synchronous
algorithms they obtain slightly better final solutions. Although actual running
times of the various synchronous and asynchronous algorithms are not presented,
the number of iterations after which the overall best solution is found implies that
the algorithms display little speed-up.

Aarts, De Bont, Habers & Van Laarhoven [1986] present parallel simulated
annealing algorithms based on a combination of multiple interacting walks and
single-step parallelism in which the size of the population is gradually decreased
in the course of the search. They propose the following two hyper neighborhoods.
In the first one the best solution from the entire population is chosen (M = P),
and in the second one a solution is randomly chosen from two solutions (M = 2).
The first hyper neighborhood results in synchronous multiple-walk parallelism,
the second one in asynchronous multiple-walk parallelism. Similar algorithms
using these hyper neighborhoods are implemented by Diekmann, Lilling & Si­
mon [1993], who obtain a speed-up of 85 on a network of 120 transputers for the
traveling salesman problem.

Moscato [1993] and Fox [1993] present parallel algorithms that combine ge­
netic algorithms, simulated annealing, and tabu search. They claim a linear speed­
up, but no empirical evidence is given. Mahfoud & Goldberg [1995] propose a
combination of genetic algorithms and simulated annealing, but so far they do not
present results for combinatorial optimization problems.

3.2. Single-walk parallelism 25

3.2 Single-walk parallelism

In this section we discuss a template that captures local search algorithms with
single-walk parallelism. In an algorithm with single-walk parallelism one or more
consecutive steps in the neighborhood graph are made in parallel. To this end, ap­
plications of the exchange function, which we call exchanges, are proposed that
all act on the same solution. Since effectuation of a proposed exchange can pro­
hibit effectuation of other exchanges, the proposed exchanges are combined in
such a way that a feasible solution is constructed, which can imply that not all
proposed exchanges can be effectuated. Let r be an exchange function as defined
in Definition 2.2. Then a single-walk parallel local search algorithm consists of
the following steps.

(1) Partition the domain {(s, e1, ... , er) I et. ... , er E s} of the exchange
function r for a given current solutions E S.

(2) Propose exchanges for each subdomain simultaneously.

(3) Effectuate -a subset of-the profitable exchanges found in step (2), which
results in a new solution s'.

(4) Replaces by s', and continue steps (1) to (3) until some stopping criterion
is met.

Single-step parallel local search, which is based on parallel neighborhood explo­
ration, is a special case of the above concept. In single-step parallelism each pro­
cessor examines a part of the neighborhood of the current solutions, and only a
single exchange is effectuated in step (3). So speed-up is achieved only in step (2).
Single-step parallelism implies that, in terms of a walk in the neighborhood graph,
only a single step is made as solution s' is obtained from s by applying a single
exchange. In an algorithm with multiple-step parallelism several exchanges are
effectuated in step (3), which implies that a solutions' is constructed that can only
be reached from s by performing multiple steps in the neighborhood graph-that
is, multiple exchanges have to be performed to obtains' from s; see Figure 3.1.

Below, we present a machine-independent template for single-walk parallel
local search algorithms. First we introduce the concept of distributed neighbor­
hood structures, which have to deal with the following issues. A distributed neigh­
borhood has to specify how solutions and domains of the exchange function are
decomposed. Furthermore, it has to specify how proposed exchanges are com­
bined. These aspects are captured in the following definitions.

Definition 3.2. Let Q = { 1, ... , P} be a set of processors, S the set of solutions,
andU =Uses P(s) the set of partial solutions. A solution distribution o gives
a partial solution o P for each processor p E Q. A local neighborhood structure
£ : U 1-+ P(U) gives sets of partial solutions for partial solutions. D

26 Concepts of Parallel Local Search

Similar to conventional neighborhoods, local neighborhoods are not given ex­
plicitly but are constructed using an exchange function. The following definition
states how this is done.

Definition 3.3. Let r : U x £' t-+ U be an exchange function that can be applied
to partial solutions. A domain distribution "Ap : U t-+ 'P(£') gives for each pro­
cessor p E Q and partial solution u E U a set of arguments, chosen from u, for the
exchange function r. A local neighborhood .C(u) is equal to {'r(u, et. ... , e,) I
(et, ... , er) E A.p(u)} for u EU. 0

The domain distribution describes which elements of partial solutions are the ar­
guments used by the exchange function to construct local neighbors. If solutions
are decomposed, exchanges involving elements of different partial solutions can­
not occur, and therefore several decompositions need to be examined. This issue
is also described in the following definition of a distributed neighborhood.

Definition 3.4. Let S be a set of solutions, U the set of partial solutions, Q a set
of P processors, and r an exchange function. Then, a distributed neighborhood
structure V is a triple (~, A, 4>) defined as follows. A distribution structure ~
gives for each solution s and set of processors Q a set of solution distributions,
with ~(s, 0) ~ {o E Q-+ U I Upen op = s}. A. gives for eachp E Q a
domain distribution Ap :Ut-+ 'P(£') with r E IN+, where A. gives the arguments
of the exchange function r used to construct the local neighborhood .C(op) of a
partial solution op. A combination function</> :uP t-+ S combines P partial
solutions to a feasible solution. o

A distributed neighborhood structure consists of a distribution structure that spec­
ifies how solutions are distributed over processors, a domain distribution that de­
fines local neighborhoods, and a combination function that specifies how pro­
posed exchanges have to be combined. Note that only a subset of the proposed
exchanges might be effectuated by the combination function, since effectuating
all proposed exchanges might lead to infeasible solutions. Next, we formalize the
notion of local optimality for a distributed neighborhood structure.

Definition 3.5. Given are an instance (S, f), with f : U t-+ lL., a distributed
neighborhood structure V = (~.A,</>), and processor set 0. Then, a solution
s E S is a local minimum of V if for each solution distribution o E ~(s, Q),
processor p E 0, and partial neighbor o~ E .C(op) holds f(o~) 2:: f(op). o

Using the concept of distributed neighborhood structures we can formulate the
template for single-walk parallel local search given in Figure 3.3. In this algo­
rithm first a distribution of the current solution is chosen. Then, all processors

3.2. Single-walk parallelism

proc Single_ Walk (s : S)
var o : 0 -+ U; D : P(O -+ U);
begin

D:=0;
while ~(s, 0) \ D i= 0 do

o E ~(s, 0) \ D;
par p E 0 do IterativeJmprovement (op) rap;
if gain found then D := 0; s := t/J(8t, ... , op)
else D :~ DU {8} fi

od { s is a local minimum of V}
end

Figure 3.3: A single-walk parallel local search algorithm.

27

simultaneously propose exchanges. Subsequently, a subset of the proposed ex­
changes is effectuated to obtain a new feasible solution. 1bis process is repeated
until no solution distribution of the current solution can be improved upon, at
which point a local minimum has been found.

To guarantee termination of the algorithm, t/J should combine a set of neigh­
hors of s in such a way that, if any neighbor has lower cost than s, their combina­
tion also has lower cost than s. We define this termination condition as follows ..

Definition 3.6. Given are a problem instance (S, f), a distributed neighborhood
structure V = (~,)... , t/J), and a set of processors 0. Then, the combination func­
tion t/J is called progressive, if for all o E ~(s, 0), p E 0, and s E S holds that
3a~E£(!,p)/(8~) < f(op) => f(t/J(o}, ... , oj,)) < f(s). o

An important issue is raised by the question how we can compare a distributed
neighborhood structure V with a conventional neighborhood structure N. This
enables a comparison of the solutions found by a parallel local search algorithm
with those found by a sequential local search algorithm. The following definition
is useful for such a comparison.

Definition 3.7. Given are a problem instance (S, f), a neighborhood structure
N, and a distributed neighborhood structure V for this problem. Then, V is called
isomorphic withN if, for any set of processors 0, holds that each local minimum
of N is a local minimum of V, and vice versa. D

If a distributed neighborhood structure V is isomorphic with a neighborhood struc­
ture N. then the expected average cost of final solutions found by sequential and
parallel algorithms, are equal, provided that sequential and parallel algorithms

28 Concepts of Parallel Local Search

have equal probabilities for finding given local minima.

Implementation issues. First, we discuss synchronous and asynchronous sin­
gle-walk parallel algorithms. In an algorithm with synchronous single-walk par­
allelism some step of the algorithm can be performed only in a state dependent
on the state of all processors. 1bis can occur for example when global commu­
nication has to take place before a next step of the algorithm can be performed.
Synchronization is typically required in a decentralized algorithm in which each
processor has a copy of the current solution. In order to update all local copies of
the current solution after some exchanges have been proposed, global communi­
cation is required. If there is a central control mechanism that manages access to
the current solution, no inconsistencies in the current solution can occur. So pro­
cessors can then proceed independently from each other, although it may occur
that some of the proposed exchanges cannot be effectuated because the current
solution has already been altered by another processor. The choice between syn­
chronous or asynchronous parallelism is often determined by characteristics of
the parallel machine at hand, such as the availability of common memory or the
configurability of a machine in a master/slave model. As we want to abstract from
machine-dependent issues, we do not further elaborate on this subject.

The speed-up obtained with asynchronous and synchronous single-walk par­
allelism depends on problem characteristics and on the architecture of the target
machine. 1\vo important issues to obtain a good speed-up are load balancing and
communication overhead, which we briefly address below.

In many single-walk parallel local search algorithms global communication
is necessary because effectuation of an exchange has a global impact on the char­
acteristics of solution. If a machine allows direct communication with a central
processor, or if it has common memory from which all processors can read effi­
ciently, then the overhead of asynchronous global communication is limited. In
many other cases, however, global communication between all processors causes
a substantial communication overhead.

Load balancing is needed to reduce the amount of time processors are idle. In
synchronous parallelism load balancing must be done by assigning equal amounts
of work to all processors in between synchronization points. In asynchronous
single-walk parallelism load balancing is needed only for processors that interact.

Finally, the efficiency of single-walk parallelism is also determined by the ra­
tio between the time needed to evaluate the cost of a neighbor and to combinate
and effectuate proposed exchanges. For this reason the data structures used to
represent a solution are important, since these data structures determine the effi­
ciency of operations that have to be performed to effectuate proposed exchanges.

3.2. Single-walk parallelism 29

3.2.1 Single-step parallelism

In the previous section, we have introduced a template to capture single-walk par­
allellocal search algorithms. In order to apply single-step parallelism to a given
problem, the distributed neighborhood of Definition 3.4 is instantiated as follows.
The distribution structure is chosen as .6-(s, Q) = {o : Q ---+ S I op = s for all
p E Q} and the combination function is given by </>(St. ... , sp) E {si I 1 :::;
i < P}. Moreover, it is not difficult to define a domain distribution that parti­
tion..~ a conventional neighborhood, which guarantees that the distributed neigh­
borhood is isomorphic with it. The distributed neighborhood of Definition 3.4 is
now straightforward, since a complete solution is assigned to each processor, and
the combination function effectuates one of the proposed exchanges. This means
that the combination function only has to select a neighbor from the proposed
neighbors.

An advantage of single-step parallelism is its general applicability. Moreover,
it results in a distributed neighborhood structure that is isomorphic with a conven­
tional neighborhood structure that uses the same exchange function. So, under
mild conditions, it is guaranteed that the parallel algorithm finds the same qual­
ity solutions as a sequential algorithm.

A disadvantage of single-step parallelism is the amount of speed-up that can
be obtained. A local search algorithm with single-step parallelism explores neigh­
hors of a solution simultaneously. Subsequently, one of the neighbors replaces
the current solution, which results in a single step in the neighborhood graph. The
amount of speed-up that can be obtained by single-step parallelism strongly de­
pends on the number of exchanges that has to be examined before a proposed ex­
change is accepted. If best improvement is used as pivoting rule, then single-step
parallelism gives good speed-up, because finding the neighbor with lowest cost
requires scanning of the entire neighborhood of a solution. Best improvement is
often used in tabu search, so single-step parallelism can be effectively applied in
tabu search algorithms. However, best improvement is not always the most ef­
fective pivoting rule since for many problems the same quality solutions can be
found with first improvement in smaller running times.

For algorithms with first improvement the amount of speed-up that can be
obtained by single-step parallelism depends on the stage of the search process
that has been reached by the algorithm. If the current solution has few lower-cost
neighbors, a situation arises that is almost similar to best improvement, since then
it is more likely that a large proportion of neighbors has to be examined before a
solution with lower cost is found. If the proportion of neighbors that would be ac­
cepted by a local search algorithm at a certain stage of the search process is given
by a, then the maximum speed-up with single-step parallelism is ~, regardless of

30 Concepts of Parallel Local Search

the number of processors; see also [Roussel-Ragot & Dreyfus, 1990; Azencott,
1992] for a theoretical analysis of the speed-up that can be obtained by single-step
parallelism in simulated annealing. Generally, a is large in the beginning of the
search process, and consequently the resulting speed-up is small at first. As the
cost of the current solution decreases, a increases and thus the resulting speed­
up. So for a local search algorithm with first improvement, single-step parallel­
ism can typically be applied efficiently only in a later stage of a local search walk
when low-cost solutions are reached.

Examples. One the first examples of single-step parallelism in the literature is
the algorithm ofKravitz & Rutenbar [1987] who apply asynchronous single-step
parallelism to simulated annealing for the cell placement problem. They report a
speed-up of 2.5 on a shared memory machine with four processors. Diekmann,
Ltiling & Simon [1993] present asynchronous and synchronous single-step par­
allel simulated annealing algorithms for the traveling salesman problem and the
link assignment problem. Their algorithms are implemented on a network of 120
transputers. They obtain a speed-up of 35 for the traveling salesman problem
and a speed-up of 70 for the link assignment problem. Kindervater, Lenstra &
Savelsbergh [1993] present a local search algorithm with synchronous single-step
parallelism for the time-constrained traveling salesman problem. Verification of
local optimality can be done in O(log N) time with O(N2 I log N) processors on
a PRAM machine, but no empirical results on a parallel machine are given. Syn­
chronous single-step parallelism is used by Ravikumar [1992] in an iterative best
improvement algorithm for the traveling salesman problem.

As already mentioned, many tabu search algorithms also use best improve­
ment as pivoting rule. Synchronous single-step parallelism can then be applied
effectively, as is shown by Thillard [1990, 1991] for the flow shop sequencing
problem and the quadratic assignment problem. Chakrapani & Skorin-Kapov
[1993a, 1993b] use synchronous single-step parallelism in combination with best
improvement for the traveling salesman problem and the quadratic assignment
problem, respectively. Their algorithm is implemented on a massively parallel
Connection Machine with 16,384 processors, but running times are compared to
an implementation on a workstation only. They also report that 55 percent of the
running time is spent for communication. Li & Pardalos [1992] use synchronous
single-step parallelism in a parallel variable depth algorithm for the quadratic as­
signment problem.

3.2.2 Multiple-step parallelism

Essential to achieve a good speed-up with multiple-step parallelism is that a large
proportion of the proposed exchanges can be effectuated in the combination step.

3.2. Single-walk parallelism 31

The applicability of multiple-step parallelism therefore strongly depends on tbe
problem at hand, as the problem must allow effectuation of several proposed ex­
changes for a given solution.

1\vo approaches to design distributed neighborhood structures can be distin­
guished based on whether or not solutions are decomposed into partial solutions.
If the cost difference between two neighboring solutions can be computed using
only information on the removed and inserted parts of a solution, then it might
be profitable to decompose a solution and assign each partial solution to a pro­
cessor. This enables an efficient implementation of the combination function be­
cause a new solution can then be constructed without global communication. A
disadvantage, however, is that exchanges that involve elements of different par­
tial solutions cannot be proposed. In order to find the same quality solutions as
a sequential local search algorit:hm. different distributions have to be examined,
which might lead to a complex distribution structure.

Another approach in the design of distributed neighborhood structures is to
provide each processor with a copy of the current solution and to define an appro­
priate domain distribution. This often leads to a distributed neighborhood that is
isomorphic with a conventional neighborhood that uses the same exchange func­
tion. To achieve speed-up, however, an effective combination function is essen­
tial because effectuation of an exchange can prohibit effectuation of other ex­
changes to guarantee feasibility of solutions. Furthermore, global communica­
tion is often required in the combination function, which can lead to a large com­
munication overhead depending on tbe target machine's architecture.

Examples. The traveling salesman problem of Example 2.1 is a typical exam­
ple of a problem for which decomposition of a solution is often used. Here a
solution is a Hamiltonian cycle, and the cost difference between neighbors can
be computed using only the lengths of removed and inserted edges. Moreover,
it is possible to combine proposed exchanges without extensive communication.
Most of the examples we discuss below are implemented on a distributed-memory
MIMD machine and use synchronous parallelism.

One of the first applications of multiple-step parallelism to the TSP is pre­
sented by Felten, Karlin & Otto [1985], who divide a tour in consecutive paths.
Each path is assigned to a different processor. A new distribution is obtained by
assigning adjacent edges that are assigned to different processors to the same pro­
cessor. Fiechter [1994] presents a parallel tabu search algorithm for the TSP that
uses a similar solution distribution. Partial solutions that are assigned to proces­
sors consist of one path in the tour. New distributions of a tour are obtained by
assigning different paths to processors.

Allwright & Carpenter [1989] present a parallel simulated annealing algo-

32 Concepts of Parallel Local Search

rithm for the TSP based on a distribution of a tour over a linear array of proces­
sors. A partial solution in this distribution consists of two non-adjacent paths in
the tour. Edges are randomly reassigned to processors to obtain a new distribu­
tion. In Chapter 5 we present distributed neighborhood structures for the TSP
based on a similar solution distribution. We prove that our distributed neighbor­
hoods are isomorphic with the well-known 2-exchange and 3-exchange neighbor­
hoods. Here, a new distribution is obtained by assigning a single edge to a new
processor, which leads to synchronization between processors. In Chapter 5 we
also present a parallel Lin-Kernighan algorithm based on domain decomposition.
Each processor works on a copy of the entire tour, and the proposed exchanges
are subsequent! y combined to a new tour, where as many as possible exchanges
are effectuated in the combination function.

Bachem, Steckemetz & Wottawa [1994] propose a solution distribution based
on a geometric partition of the cities in a TSP instance. The partial solutions,
which consist of Hamiltonian paths, are combined by a tour construction heuris­
tic. A new distribution is obtained by choosing a new geometric partition.

Applications of multiple-step parallelism can also be found in the placement
of cells in circuit layouting. Shahookar & Mazunder [1991] present an overview
of this field. In most of the examples simulated annealing is used. For cell place­
ment problems a local change might have a global impact on a solution, since the
cost of a solution is determined by the relative position of pairs of cells. If no re­
strictions are imposed, effectuation of proposed exchanges can lead to erroneous
cost computation. Erroneous cost computation changes the convergence behav­
ior of simulated annealing, but various empirical results in the papers below show
that simulated annealing for cell placement is rather robust to errors in the cost
evaluation. Romeo & Sangiovanni-Vincentelli [1991] present some theoretical
results on erroneous cost evaluation in simulated annealing.

Darema, Kirkpatrick & Norton [1987] use a solution distribution in which
they assign the cells to processors, so each partial solution consists of a subset
of the set of cells, and all proposed exchanges are accepted by the combination
function. A new distribution is obtained by randomly reassigning different cells
to each processor. They compare two solution distributions: one that guarantees
correct cost computations and one that allows errors in the cost computation. A
drawback of the first approach is that only a limited number of processors can
be used, which prohibits scaling of the algorithm. The second approach does not
suffer from this drawback. Their empirical results show that both approaches find
the same quality final solutions. Jones & Banerjee [1987] present a similar algo­
rithm in which they also decompose a solution. A new decomposition is obtained
by exchanging cells between neighboring processors, and the combination func-

3.2. Single-walk parallelism 33

tion accepts all proposed exchanges, which may lead to erroneous cost computa­
tions. The algorithm is implemented on a distributed MIMD machine. Casotto,
Romeo & Sangiovanni-Vincentelli [1987] use a local search heuristic to find a
new decomposition of the solution that minimizes the probability of erroneous
cost computation. These errors are caused by accepting all proposed exchanges
without checking the position of cells in the newly constructed solution. Their
algorithm is implemented on a shared-memory parallel machine. A hybrid al­
gorithm that uses both multiple-walk and multiple-step parallelism is presented
by Rose, Snelgrove & Vranesic [1988]. They apply multiple-walk parallelism at
high temperatures of the simulated annealing algorithm and multiple-step paral­
lelism during low temperature annealing, because at low temperatures erroneous
cost computation is less likely to occur due to the low acceptance rate.

Barbosa & Gafni [1989] present a simulated annealing algorithm with multi­
ple-step parallelism that can be applied to problems for which only a single ele­
ment is replaced in the exchange function of the neighborhood structure. More­
over, such an exchange must have limited interaction with other elements of a
solution. They propose a solution decomposition approach that guarantees that
no erroneous cost computation can occur when all proposed exchanges are ef­
fectuated, at the cost of a limited number of employable processors. As a conse­
quence, the maximum speed-up that can be obtained with their approach depends
on characteristics of the problem instance at hand.

Another example of multiple-step parallelism is the algorithm of Savage &
Wloka [1991] for the graph partitioning problem, for which they propose a solu­
tion distribution based on decomposing a solution. The combination function ei­
ther accepts all proposed exchanges if the resulting global solution has lower cost,
or it rejects all proposed exchanges if the resulting global solution has higher cost.
Such a combination function has low computational overhea~ but it also may ef­
fectuate individually deteriorating exchanges.

Boissin & Lutton [1993] present a framework for parallel simulated anneal­
ing based on multiple-step parallelism. Exchanges are proposed according to the
conventional acceptance criterion of simulated annealing, and the combination
function probabilistically accepts or rejects all proposed exchanges-that is, it
accepts or rejects the global solution resulting from these exchanges. The algo­
rithm is tested on the quadratic assignment problem and on a 0-1 quadratic func­
tion minimization problem, displaying moderate speed-ups when implemented
on a connection machine and compared to implementations on a workstation.

Thillard [1993] and Garcia, Potvin & Rousseau [1994] propose parallel tabu
search algorithms for vehicle routing. Thillard proposes a solution distribution in
which entire, geographically close, routes are preferably assigned to processors

34 Concepts of Parallel Local Search

tllat are directly connected in the processor network on which the algorithm is
implemented, A new distribution is obtained by assigning elements to neighbor­
ing processors, Garcia, Potvin & Rousseau propose a domain distribution for the
vehicle routing problem with time windows, Their combination function consec­
utively effectuates the proposed exchanges in order of descending gain,

3.3 Complexity issues of parallel local search

In this section we discuss some issues related to the parallel complexity of finding
local optima, For an overview of the complexity theory of parallel computations,
the reader is referred to [Greenlaw, Hoover & Ruzzo, 1995],

IfPLS-complete problems require superpolynomial running times, as is con­
jectured by Yannakakis [1996], then parallel algorithms that find local minima
using a polynomially bounded number of processors, which is the case in any re­
alistic machine model, will also run in superpolynomial time, Therefore, we re­
strict ourselves to the parallel complexity of the verification problem, the problem
of deciding whether a solution is a local optimum, Consider a problem instance
(S, f) and a neighborhood structure N, then we have the following result

Theorem 3.2. Let i.N(s)l = b(n) > lfor all sE S, where n denotes the size of
a solution, and let c(n) be the time complexity of deciding whether f(s') ~ f(s)
for a given solution s' E N (s), Then, a parallel algorithm for the verification
problem exists that uses b(n)jlog b(n) processors on a PRAM and that has a time
complexity ofO(c(n) logb(n)) and an efficiency ofO(l),
Proof. The sequential time complexity for this problem is O(c(n)b(n)), Parti­
tion the neighborhood in b(n)jlogb(n) sets that contain log b(n) solutions, Use
an algorithm with synchronous single-step parallelism, Its time complexity is
O(c(n) logb(n)) + O(log(b(n)/log b(n))), o

In Chapter 1 we have discussed the complexity class BP introduced by Kruskal,
Rudolph & Snir [1990] that contains problems for which an efficient parallel al­
gorithm on a PRAM machine exists. Recall that a problem is in BP if there exists
a parallel algorithm with speed-up that scales with the instance size and for which
the computational effort, the time complexity of the parallel algorithm multiplied
by the number of processors, is equal to the time complexity of the sequential al­
gorithm. Theorem 3.2 now leads to the following corollary.

Corollary 3.1. If the complexity of the problem to decide whether f(s') ~ f(s)
fors E Sands' E .N(s) is polynomially bounded in the instance size and if
neighborhood sizes are also bounded polynomially, then the verification problem
is in the class EP. Moreover, if the former problem is in NC, then the verification
problem for N is in NC.

3.3. Complexity issues ofparallellocal search 35

Proof. Let c(n) = O(nu) be the complexity of the problem to decide whether
f(s') ?.:: f(s) fors E Sands' E N(s), and let b(n) = O(n 11

) be the neighbor­
hood size for instances of size n. Let Tp be the time required by an algorithm for
the verification problem withpprocessors. Then, T1 = O(b(n)c(n)) = O(nu+v)

andaccordingtoTheorem3.2for p = Io!Wln) holds Tp = O(c(n)logb(n)) =
O(nu logn11

). It remains to show that Tp O(Tt) forE < 1. It holds that
Tp = O(nu logn) = O(nun°) foro > 0. For any o and E such that 0 < o < v
and ill < E < 1 holds T = O(nuH) O(n<u+v)E) = O(T€) Further-u+v - P 1 ·
more, Tp · p = O(T1). Thus, the verification problem is in EP. Moreover, if
c(n) = (log n) O(l) on a PRAM, then the verification problem is NC. o

Corollary 3.1 shows that verification oflocal optimality can be done in polyloga­
ritllmic time with a polynomially bounded number of processors, if the cost eval­
uation of a neighbor can be done in polylogaritllmic time. This typically holds
when the cost evaluation of a neighbor is 0(1), for example in the 2-exchange
neighborhood for the TSP. Corollary 3.1 shows that it is possible to design an
efficient parallel algorithm for the verification problem with speed-up that is pro­
portional to the size of the problem. The running time of this parallel algorithm
can still be polynomial, but in practical situations one is satisfied with parallel
algorithms with a good speed-up that scales with the instance size.

Another important topic is the complexity of finding a local optimum of a dis­
tributed neighborhood structure. The notion of PLS-completeness and the defi­
nition of the class PLS can also be applied to the problem of finding a local op­
timum of a distributed neighborhood structure. Using this extension, we obtain
the following result.

Theorem 3.3. Let a distributed neighborhood structure V be isomorphic with a
neighborhood N. If the problem of finding a local optimum of N is PLS-complete,
then the problem of finding a local optimum of'D is PLS-complete. o

Finally, we discuss upper bounds on the speed-up that can be obtained with the
various approaches discussed in this chapter. We assume that we have an infinite
number of processors at our disposal. The number of processors that can be em­
ployed in multiple-walk parallelism is not bounded by a polynomial in the size of
the instance, so here we do not have a polynomial upper bound on the maximum
speed-up. In an algorithm with single-walk parallelism the maximum speed-up
is at most the size of neighborhoods because at least one neighbor has to be eval­
uated by each processor that contributes to the speed-up. Most neighborhoods
have low-order polynomial sizes. In practice the number of processors of a par­
allel machine is typically much smaller than the neighborhood size, so the number
of available processors is then a trivial upper bound on the maximum speed-up.

36 Concepts of Parallel Local Search

4
Multiple Independent Walks

The most straightforward approach to introduce parallelism in local search is to
perform multiple independent runs of a local search algorithm simultaneously
since this requires no complex parallelization scheme or even dedicated parallel
hardware. An important question is therefore to what extend such an approach
can be successful. In this chapter we analyze the speed-up that can be obtained by
performing several independent walks in the neighborhood graph simultaneously.
In this analysis we concentrate on iterated local search for the traveling salesman
problem but the conclusions drawn from it can be applied to other problems and
local search variants as well. The outline of this chapter is as follows. Section 4.1
presents a theoretical and empirical average-case analysis of a 2-opt algorithm for
the TSP. Section 4.2 gives a semi-empirical analysis of the average-case perfor­
mance of an iterated 2-opt and Lin-Kernighan algorithm. The main results of this
chapter are discussed in Section 4.3 in which we show how these results can be
used to analyze the speed-up achieved by multiple independent walks.

The performance of local search algorithms can be quantified by the relative
excess of the obtained final solutions and the required running time. Empirical
results show that local search can find good-quality solutions within low-order
polynomial running times. It is, however, conjectured that worst-case running
times cannot be bounded polynomially; see also Section 2.1. Furthermore, it is
not possible to give theoretical upper bounds on the relative excess of local min­
ima. So there is a considerable difference between the worst-case and empiri-

37

38 Multiple Independent Walks

cal average-case behavior of local search algorithms. 1beoretical average-case
analysis is therefore useful to provide a better understanding of local search al­
gorithms. However, only a few results on average-case analysis of local search
are presented in the literature.

The TSP, defined in Example 2.1, belongs to the class of NP-hard problems
[Garey & Jobnson, 1979]. We consider only symmetric TSP instances, in which
distances satisfy ~i = dji. for each i, j E V. The average cost of the solutions
found by local search strongly depends on the choice of the neighborhood struc­
ture. Therefore, various neighborhood structures have been introduced for the
TSP, most of which are based on edge exchanges. In the 2-opt neighborhood Nz
of Croes [1958], formally specified in Example 2.1, a tour t' is a neighbor oftour
t, if t' can be obtained from t by removing two edges and inserting two edges
such that t' is obtained.

For an overview of the worst-case complexity and empirical behavior of lo­
cal search for the TSP, we refer to [Johnson & McGeoch, 1996]. Others have ad­
dressed the theoretical average-case behavior of local search. Stadler & Schnabl
[1992] investigate the structure of the 2-opt neighborhood using simplifications
for dependencies between neighbors that lead to a flawed model. Kern [1989]
showed with a probabilistic analysis that the 2-opt algorithm for Euclidean in­
stances of the TSP has an average-case running time that is polynomially bounded.
Other probabilistic models for local search have been studied by Tovey [1985].
In this study artificial problems are considered with special neighborhood graphs
consisting of regular structures, e.g., the hypercube. The cost function for these
problems is chosen to induce an orientation on this graph. Different cost distri­
butions are considered and for some cases low-order polynomial average-case
running times are proved. More recently, Chandra, Karloff & Tovey [1994] ob­
tained similar results for 2-opt and 3-opt algorithms for the TSP, and derived up­
per bounds on the average cost of the local minima obtained by these algorithms.
Most effort is focused on providing upper bounds on the average-case behavior
of local search. We are interested in the actual distribution of the cost of local
minima and the required number of steps to find them, instead of upper bounds
on the average-case behavior only.

4.1 A probabilistic analysis for the 2-opt neighborhood

In this section we discuss the distribution of local minima found by iterative best
improvement algorithms with the 2-opt neighborhood and the distribution of the
number of steps required to find local minima. The distribution of local min­
ima and the distribution of final solutions found by iterative improvement are not
equivalent because not all local minima have the same probability of being found

4.1. A probabilistic analysis for the 2-opt neighborhood 39

by an iterative improvement algorithm. It may be the case that local minima with
low cost have a larger attraction region than local minima with high cost and are
therefore more often found by local search.

An instance of the TSP is completely specified by its distance matrix. As
the first step in our approach we assume that the distances dij are independently
drawn from a given distribution. Such instances are called random distance ma­
trix instances. Such instances are commonly considered in probabilistic analy­
sis; see for instance [Kirkpatrick & Toulouse, 1985; Weinberger, 1991]. How­
ever, it should be noted that the assumption of independence is in fact a restriction
that excludes Euclidean instances, because then the distances are dependent. It is
possible to associate a class of instances with a distribution by letting the edge
lengths fbi be independent identically distributed random variables with mean
ILl and variance 0'?. Consequently, we can also view the cost f (t) of a tour t
as a random variable, i.e., the sum of n independent, identically distributed edge
lengths, where n is the number of cities in an instance. According to the central
limit theorem, f (t) has approximately a normal distribution with mean p, = np,1
and variance 0'2 nO'l. The corresponding density of tour lengths is called CUtour·

4.1.1 The distribution of final solutions

Consider a tour t E Sk. where Sk is the set of solutions that can be reached in k
best improvement steps, starting from an arbitrary initial solution. The analysis
of iterative best improvement is based on the computation of the step probability

8k(C, c') = IP{'v'r'EAfz(t) f(t') > c' I f(t) = c 1\ t E Sk}, (4.1)

that is, the conditional probability that all neighbors of tour t have costs larger
than c' given that a tour t found after k steps has cost c. The computation of (4.1)
is discussed in the next section. Various notions can be expressed in terms of
the step probability g defined in (4.1). First, note that go(c, c) is the probability
that an arbitrary tour with cost c is a local minimum. Hence, the density of local
minima is given by

(4.2)

where A is the probability that an arbitrary tour is a local minimum, given by
00

j go(c, c)cutour(c)dc. (4.3)

-oo

Consider a tour t E Sk that is not a local minimum. Let S' denote the set of local
minima. Recall that in best improvement a step is made to a neighbor with lowest
cost. To investigate such a step, we compute for c' < c the probability

lP{ min f(t1
).:::; c' I f(t) = c 1\ t E sk \ S'} =

t'EAf2(t)- -

40 Multiple Independent Walks

IP{min r'E.N"2(r)[(t') ::.:: c' I [(t) =cAt E Sk}

IP{t E sk \S' I /(t) = c}

1- gk(c, c')

1 gk(c, c) '
where we have used the fact that t cannot be a local minimum if f(t) = c and
min t'EN'z(t) f(t') ::.:: c' <c. The density corresponding with the above probabil­
ity is

-bgk(c, c')
1- gk(c, c) ·

This expression is the density as function of c' of the cost after k + 1 best im­
provement steps, given that the tour found after k steps has cost c and is not a
local minimum.

The density of the local minima found after k best improvement steps can be
described by the following recurrence relations. Let Pk be the density of the local
minima found after at most k steps and let 'f/k be the density of the remaining tours.
If we start the sequence of best improvement steps with a randomly generated
tour, then 'f/o = Wtour and po(c) = 0, for all c. After the kth step the density of the
residual tours equals 'flk· Consider such a tour with cost c. There is a probability
gk(c, c) that it turns out to be a local minimum. This is found out in the k + 1 fh

step, hence

Pk+l (c) = Pk(c) + gk(c, c)'f/k(c). (4.4)

On the other hand, there is a probability 1 - gk(c, c) that the tour with cost c is
not a local minimum. Then, with probability density Pt(c, c'), it is transformed
into a tour with cost c' in the k + 1 th step. Hence,

00

'f/k+1 (c') = J 'f/k(c)(1 - gk(c, c))Pk(c, c')dc. (4.5)

c'

This set of recurrence relations allows us to compute the densities of the detected
local minima and the residual tours after an arbitrary number of steps. Then,
limk..,.oo'f/k = 0 and limk..,.ooPk = Pfin• the density of the final solutions. More­
over, note that Pk Pk-1 is the density of the local minima found in the kth step.
So if steps is the random variable describing the number of steps until a local
minimum is found, then

00

IP{steps = k} = J 8k-l (c, c)rJk-1 (c)dc. (4.6)

-00

4.1. A probabilistic analysis for the 2-opt neighborhood 41

4.1.2 Evaluation of the step probability

The problem has been reduced to evaluating the step probability (4.1). The joint
distribution of f(to), j(t1), ... , f(tb) is needed to compute this probability for
an arbitrary tour to with neighboring tours t1, ... , tb, where b = 1Af2(to)l =
n · (n - 3) /2. These tours have a large number of edges in common, so the corre­
sponding tour lengths are not independent. 1\vo arbitrary tours s and t that have
m edges in common, have a covariance given by

IE{(f(t)- ~L) · (f(s) ~L)} =mol,

where IL = n~Lz is the mean tour length. ILl the mean edge length, and a? the
variance of edge lengths. The tour to and each of its neighbors ti, with 1 ~ i ~
b, haven - 2 edges in common. However, two neighbors of t0 , say t; and lj,
can have n - 3 or n - 4 edges in common. The case of n - 3 common edges
occurs if, while going from to to ti respectively t i, a common edge is removed or
inserted. Consequently, the (b + 1) x (b + 1) covariance matrix of the random
variables f(to), j(t1), ... , f(tb) is rather complicated, which makes it difficult
to compute or numerically approximate the right hand side of (4.1) for the 2-opt
neighborhood. Therefore, in the remaining part of this section we concentrate
on the neighborhood Afi that is a restricted version of the 2-opt neighborhood in
Example 2.1 defined by

Nlz(t) = {1dt, ei, eh(t)) 11 ~ i < h(t) -1 v h(t) + 1 < i ~ n}.

So whereas in the conventional 2-opt neighborhood two arbitrary edges can be
removed, here one of the edges to be removed from a tour t = {et, ... , en} is
fixed and is given by h(t) for a function h : S -+ {1, ... , n}. In this neighbor­
hood structure a tour t has only b = IAfi (t) I = n - 3 neighbors, and all these
neighbors have n - 3 edges in common.

If we assume that the probability of (4.1) does not depend on the number of
local search steps, so gk(c, c') = g(c, c') for all k, then the transition properties
and several related notions for the best improvement algorithm can be computed
for the Afi neighborhood structure. Note that go(c, c) can be computed without
this assumption. If edge lengths are normally distributed with mean ILl and vari­
ance at2, then the costs /(to), f(t1), ... , f(tb) have a joint normal distribution
[Papoulis, 1965] with mean IL and covariance matrix R given by

Ru = nol for 0 ~ i ~ b
RiO= Roi = (n - 2)a? for 1 ~ i ~ b
Rij= Rji= (n 3)az2 for 1 ~ i < j ~ b,

where Rii gives the variance, RiO the covariance between to and its neighbors,
and R1j the covariance between two neighbors of to. As (4.1) is a conditional

42 Multiple Independent Walks

probability, we have to compute the conditional density Wcond(cb •.. , Cb I c),
i.e., the density of f(ti), ... , f(tb) given that /(to) = c. It is a known result
(see for instance [Papoulis, 1965]) that Wcond is again a joint normal density, with
all means equal to JL' = JL + RiO/ Roo(c - JL) = (1 - 2/n)c + (2/n)JL. The
variances are given by rii = Ru - Roi2 1 Rii = (4- 4/n)crt2 and the covariances
by riJ RiJ- RiORJo/Roo (1-4/n)rrt2. Now (4.1) can be rewritten as

00 00

g(c, c') = J dc1 · · · J dcb CUcond(CJ, .•. , Cb I c).

c' c'

The essential observation is that now all covariances are equal and positive. In
this case the b~fold integral can be simplified to a single integral [Stuart & Ord,
1987]. This results into

1 /oo ,2 (1 (c'-(t-1)c-2JLt IIT)2)b
g(c, c') =- . e-2 -erfc n - s --- ds,

J2i 2 ,J6a1 6 3n
-oo

which can be computed numericaily.

4.1.3 Empirical results

We validate our model for the density of final solutions Pfin and for the density
(4.6) of the required number of steps by comparing them with empirically ob­
tained densities. We consider instances with 200 and 400 cities in which edge
lengths are distributed according to a standard normal distribution, which implies
that tour lengths can be negative. Other distributions of edge lengths in which
costs of neighbors. can be approximated by a joint normal distribution, may also
be considered. The results are computed from averages over five instances, al­
though there is little difference between the means of local minima in individual
instances since these quantities are self-averaging, which means that these quan­
tities are equal for sufficiently large instances in which edge lengths are samples
from the same distribution. For each instance we have sampled 20,000 local min­
ima found by an iterative best improvement algorithm. The fixed edge h (t) in the
neighborhood N5_(t) is randomly chosen for a tour t.

Figure 4.1 and 4.2 give the results for instances with 200 and 400 cities, re­
spectively. In these figures, the density Pfin of the costs of final solutions found
by a best improvement algorithm is depicted. Furthermore, the density of (4.6)
of the number of steps required by a best improvement algorithm to find a local
minimum is given. We observe that the theoretical predictions fit well with the
empirical results, so our model adequately describes the behavior of local search
for these instances.

4.1. A probabilistic analysis for the 2-opt neighborhood 43

0.01 O.<l2
th-- 111...-.llcal-

0.009 <liJ'Illl1<al- 0.018 --0.008 0.016

0.007 0.014

0.000 0.012

f 0.005 f 0.01

0.004 0.008

0,003 0.006

0.002 0.004

0.001 0.002

0 0
-400 -50 0 20 40 60 80 140 160

steps

Figure 4.1 : Results for instances with 200 cities.

0.005 {J.012

~-0.004S <liJ'Illl1<al-
(t01

0.004

0.0035
0.000

0.003

f 0.0025 f 0.006 i ~ ..
0.002

0.004
0.0015

0.001
0.002

0,0005

0
-700 ·000 ·500 ·400 -300 -200 ·100 0 250 300 -

Figure 4.2: Results for instances with 400 cities.

0.045
0,045

0.04
0.04

0.035
0.035

o.m o.m

t 0.025

0Jl2 f 0.025

O.!l2

0.015 0.015

0.01 0.01

0.005 0.005

0 0
·00 -40 -20 20 40 ·200 so -

Figure 4.3: Density of local minima.

44 Multiple Independent Walks

The probability that an arbitrary tour is a local minimum is given by (4. 3). For
n 100 this probability amounts to 1.23 ·10-4 • We determined empirically the
density oflocal minima for five instances with 100 cities by randomly generating
37 million tours of which 4410 turned out to be local minima. The lefthand side
of Figure 4.3 gives the corresponding empirical density as well as the theoreti­
cal density of local minima given by (4.2). Again, we obtain a good fit between
theoretical and empirical results.

Therighthand side ofFigure4.3 presents the density of local minima as given
by (4.2) and the density of final solutions as obtained by iterative best improve­
ment for instances with 100 cities. Typically, the average cost of final solutions
is much lower than the average cost of local minima. This implies that low-cost
local minima have a much larger attraction region and therefore a much higher
probability of being found by local search than high-cost local minima, which is
of course an advantageous property for the performance of local search.

Empirical distributions for 2-opt and Lin-Kernighan. Next, we present dis­
tributions of final solutions obtained by a first improvement 2-opt algorithm and
a Lin-Kemighan algorithm, discussed in more detail in Chapter 5, to show that
the distribution shapes observed for the more artificial random distance matrix
instances and restricted 2-opt neighborhood we used in our theoretical analysis,
are also instructive for real-world Euclidean instances.

Figure 4.4 shows empirical results for a number of real world instances from
the TSP library ofReinelt [1991], where the number in an instance name denotes

2-opt Lin-Kernighan
20 24

20

16

%
12

8

4

2 4
deviation

Figure 4.4: The distribution of final solutions. For the 2-opt algorithm, the solid line
gives the results for kro200, the short-dashed line for lin318, and the long-dashed line
for pcb442. For the Lin-Kernighan algorithm these lines give results for pcb442, u574,
and pr1002, respectively.

4.2. A semi-empirical analysis ofiteratedlocal search 45

its size. In these figures, the frequency is plotted against the relative excess over
the optimal solution value. Our empirical investigation of the distribution of final
solutions obtained by 2-opt and Lin-Kernighan algorithms reveals two interest­
ing properties. First, we have statistically validated that final solutions are dis­
tributed according to gamma distributions. Secondly, we have observed that the
standard deviation of these distributions decreases when the instance size grows.
These characteristics are an important aspect of a neighborhood for iterated local
search or other more advanced local search algorithms, because they indicate the
additional computational effort required by iterated local search to find lower -cost
local minima.

4.2 A semi-empirical analysis of iterated local search

Iterated local search algorithms repeatedly execute an iterative improvement al­
gorithm. Each time the iterative improvement algorithm terminates, the last or
best local minimum found is modified and the iterative improvement algorithm
is restarted with the modified local minimum [Johnson, 1990; Martin, Otto & Fel­
ten, 1991; Boese, Kahng & Muddu, 1994]. The best heuristic to handle the TSP
is the iterated Lin-Kernighan algorithm of Johnson [1990]. In Johnson's iterated
Lin-Kernighan algorithm the best local minimum found so far is modified by a
4-exchange, which replaces four edges by four new edges, and used as starting
solution for the next run of the Lin-Kernighan heuristic.

In this section we approximate the average running times iterated local search
algorithms need for finding a solution within a given relative excess over the opti­
mal solution. Time is measured by the number of tours whose costs are evaluated.
Our analysis is of a semi-empirical nature, which means that the average num­
ber of evaluations is expressed as a function of empirically obtained parameters.
These parameters are the distribution of final solutions and the average number
of steps needed to find them.

The average number of iterations and the number of evaluations performed
per iteration are needed to approximate the average running time. We, further­
more, assume that an iterated local search algorithm samples local minima, which
means that we neglect the intermediate solutions generated by the iterative im­
provement algorithm. Let i tnr E be the random variable that gives the number of
iterations until a solution with a given relative excess E has been found, then

i

IP{itnrE::::: i} = 1- n(l-IP{f(Sk)::::: (1 +E)/opt}). (4.7)
k=l

where Sk is the final tour obtained at iteration k E IN.
1b determine the average number of iterations needed, we assume that the

46 Multiple Independent Walks

modification mechanism is primarily a diversification mechanism. Tims, we con­
sider subsequent local minima to be independent, and consequently the probabil­
ity IP{f(sk) :::; c} is independent of k. This may seem a rather strong assumption
since the modification mechanism only changes four edges in a local minimum,
but the final solution obtained from this modified local minimum typically differs
in much more edges from the original local minimum. Given the density Pfin of
the costs of final solutions, we then have

(l+e)/opt

IP{f(sk) :::; (1 + €)/opt} = J Pfin(c)dc.

-oo

Let p., denote the above probability, then the probability of (4.7) is given by

IP{itnr., :::; i} = 1 - (1 - p.,)i. (4.8)

Expression (4.8) implies that the number of iterations is distributed according to
a geometrical distribution. So the average number of iterations to find a solution
within a given relative excess € is equal to 1/ p.,.

In order to approximate the average number of evaluations needed per iter­
ation, we need the following observations. After the first iteration the iterative
improvement algorithm starts with a tour that differs only four edges from a lo­
cal minimum. Consequently, the average number of evaluations required in sub­
sequent iterations is substantially lower than that required in the first iteration,
which is also observed from empirical results. Hence, we differentiate between
the following two values.

• kt, the average number of evaluations needed to reach a local minimum
from a start solution.

• k2. the average number of evaluations needed to reach a local minimum
from a solution obtained by modifying a local minimum.

The values of kt and k2 are obtained empirically. They depend strongly on the
heuristic used to construct start solutions and on the instance at hand.

Let evals € denote the random variable that gives the number of evaluations
until a solution with a given relative excess € is found. Then, evals., = kt +
(itnr., - l)k2, and

(4.9)

The expected number of evaluations needed to find a solution within a given rel­
ative excess € is equal to kt + <;, - l)k2.

4.2. A semi-empirical analysis of iterated local search 47

4.2.1 Empirical results

We have analyzed iterated 2-opt and Lin-Kernighan algorithms with a 4-exchange
similar to the one utilized by [Johnson, 1990] of the best local minimum found
as modification mechanism. Both algorithms have been tested on instances from
the TSP library. In order to acquire the average number of evaluations empiri­
cally, 100 executions of the iterated local search algorithm have been performed
for each instance.

Figures 4.5 and 4.6 show the probability of (4.9) for finding a solution within
a relative excess E in a given number of evaluations by the iterated 2-opt algorithm
for the instance kro200 and the iterated Lin-Kernighan algorithm for the instance
u574, respectively. The value of PE• the probability that a local minimum has at
most the given relative excess E, and the value of kt and k2 are obtained empiri­
cally by sampling 1,000 local minima obtained from random start solutions or ap­
plying 4-exchanges to local minima, respectively. The solid curves represent the

E -6% € =5% € =4%
100 ,-·-· 100 .-"- 100 ,,.....

,r' --
80 -' 80 r

I I
60 (60 f

% % %

40
I 40

l

I I
20 20

0 0
0 0.5 1 1.5 2 0 1 2 3 4 5 6 7 6 9 12 15

evaluations (X1E7) evaluations (X 1E7) evaluations (X 1E7)

Figure4.5: Probability of finding a tour with at most relative excess E as function of the
running time using iterated 2-opt for kro200.

IS= 1.5% IS= 1% € =0.5%
100 r 100 /" 100

,.r ,..I '
80 "' 80

(
80

I
)

60
I

60 r
% % I

40 r 40 I

20 20 I

0 0
0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 3 6 9 12 15 18

evaluations (X1E6) evaluations (X 1E6) evaluations (X 1E7)

Figure 4.6: Probability of finding a tour with at most relative excess E as function of the
running time using iterated Lin-Kernighan for u574.

48 Multiple Independent Walks

theoretically predicted distributions, the dashed curves the empirically obtained
distributions. Iterated local search for other instances, not shown in Figure 4.5
and 4.6, displays a similar behavior.

We observe that a good agreement between our theoretical prediction and the
empirical results is only obtained for low values of the desired relative excess <=.

This is explained by the observation that even a small under- or overestimation of
the probability p6 can have a large effect on the theoretical curves. Furthermore,
we have found that the empirical distributions fit well with geometrical distribu­
tions that are slightly translated to compensate for the initial behavior.

4.3 Parallel iterated local search

In Section 4.2 we have given an expression for the probability that an iterated lo­
cal search algorithm has found a solution with a given relative excess <= over the
optimal solution assuming that subsequent local minima are independent. Con­
sider an algorithm that carries out P independent runs of an iterated local search
algorithm, and let itnr E,P be the random variable that gives the number of itera­
tions until this algorithm has found a solution with a given relative excess €. We
have that

IP{itnr E,P ::; i} = 1 - (1 - p6)iP,

where P~: denotes the probability that a local minimum has a relative excess of at
most <:. Hence, the expected number of iterations needed by P parallel runs of
an iterated local search algorithm equals

1
1- (1- p6)P'

Recall that kt and k2 denote the average number of evaluations needed for find­
ing the first local minimum and that for finding subsequent local minima, respec­
tively. At least one iteration is needed so the average running time for finding a
suboptimal solution with P independent parallel runs can be approximated by

1
kt + <1 _ (1 _ p,JP -1)kz.

Consequently, the expected speed-up for P independent parallel runs is given by

kt-k2 + h
su(P) = i;

kt - k2 + 1-(1-p,)l'

In order to analyze the scalability of this approach, we still have to determine the
number of processors that can be employed effectively. Therefore, we examine
the typical speed-up of the algorithm as a function of the problem parameters.

4.3. Parallel iterated local search 49

The speed-up is bounded by
1 kz

lim su(P) = 1 + (- - 1)-.
P-HXi p., kt

We see that more processors can be employed effectively when final solutions
with low relative excess fi are sought because then p., is small More processors
can also be employed when kt and kz, the times for finding the first local min­
imum and subsequent local minima, are roughly equal. This generally occurs
when smaller instances are attempted, or when better-quality starting solutions
are utilized. In particular, for k2! k1 --+ 1 holds that the speed-up is bounded by
1/ P€· Note that kz/ k1 = 1 means that the probability of finding a suboptimal so­
lution is distributed according to a geometrical distribution. On the other hand,
for kz/ kt --+ 0 there is no speed-up at all. Furthermore, limp,_,.o su(P) = P,
which implies that in this case a nearly linear speed-up can be achieved with mul­
tiple independent walks.

4.3.1 Computational study

Next, we present a computational study of the expected behavior of parallel in­
dependent runs of an iterated local search algorithm, which can be characterized
by the obtained efficiency.

In order to compute the expected speed-up, the empirical distributions pre­
sented in Section 4.2 are fitted with translated geometrical distributions, which is
necessary to get a good fit for the initial part of the distribution that corresponds
with the time needed to find the first local minimum. The empirical distributions
are accurately described by this translated geometrical distribution, except for the
distributions in which the desired relative excess was relatively high. In these
cases, the probability of finding a solution with a given relative excess increases
initially less than exponentially. Consequently, our approximation overestimates
the achieved efficiency for runs in which final solutions with high relative ex­
cesses suffice.

Figure 4. 7 shows efficiencies that can be reached with parallel algorithms
that perform multiple independent runs of iterated 2-opt or Lin-Kernighan al­
gorithms. The expected efficiency is plotted as a function of the number of em­
ployed processors. We observe that good speed-ups can be obtained with multiple
independent runs of an iterated local search algorithm. Moreover, the efficiency
increases when the desired relative excess is lowered, as explained by the obser­
vations in the previous section.

Summarizing this chapter, we remark that it is possible to achieve good speed­
ups with multiple independent walks of an iterated local search algorithm or other
algorithms that sample local minima, such as tabu search algorithms, if the prob­
ability of finding suboptimal solutions is distributed geometrically. For this it is

50

-<6%
-" -<5%
-"" --<4%

0.2.

0
~0~2~0~4~0~6~0~80~1~00

no. of processors

EF

0.2

Multiple Independent Walks

u574
<2%
<1%
<0,5%

0~~~~~~~~

0 20 40 60 .80 100
no. of processors

Figure 4.7: Efficiency of parallel iterated 2-opt (left) and iterated Lin-Kernighan (right)
for kro200 and u574 and given relative excesses.

essential that the time to reach a region in the neighborhood graph that contains
high-quality solutions, starting from an initial solution, is roughly equal to the
time to reach other such regions from this region. Nearly linear speed-ups can
be achieved if solutions are sought whose relative excess is substantially lower
than the average relative excess of local minima. An important prerequisite for
these results is that the iterated local search algorithm at hand should eventually
be able to find solutions within a given relative excess when continued sufficiently
long, which in fact requires that a neighborhood is sufficiently connected and that
each solution in a connected component of the neighborhood graph has a positive
probability of being visited in a local search walk.

5
The Traveling Salesman Problem

In this chapter we present local search algorithms with multiple-step parallelism
for the traveling salesman problem based on the 2-opt and 3-opt neighborhoods
ofLin [1965]. Furthermore, we present a parallel implementation of the variable­
depth algorithm of Lin & Kemighan [1973]. Our parallel Lin-Kernighan algo­
rithm uses neighborhood reduction techniques and efficient data structures. The
algorithm is tested on a network of 64 transputers and on a network of 32 Pow­
erPC's. Its performance is empirically analyzed for real-world problem instances
with up to 85,900 cities from Reinelt's TSP library. Our parallel Lin-Kernighan
algorithm is competitive with the best known sequential implementations of the
Lin-Kernighan algorithm, both with respect to quality of final solutions and run­
ning times.

5.1 Local search for the traveling salesman

Much of the theory for combinatorial optimization has been developed using the
TSP as a proving ground [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985]. Im­
pressive results have been obtained using elaborate branch and bound algorithms.
The largest real-world problem solved to optimality is currently an instance with
7,397 cities, which required several months of running time on a network of pow­
erful workstations [Applegate, Bixby, Chvatal & Cook, 1994].

A classical example of a local search algorithm for the TSP is the variable­
depth algorithm ofLin & Kernighan [1973]. The best approximation algorithm

51

52 The Traveling Salesman Problem

for the TSP is the iterated Lin-Kernighan algorithm of Johnson [1990], which
uses multiple runs of the Lin-Kernighan algorithm with a random 4-exchange to
obtain a new starting solution. It finds solutions with average quality of 0. 7% over
the Held-Karp lower bound on random Euclidean instances.

However, large real-world instances, such as those originating from circuit
board lay-outing [Reinelt, 1992] and x-ray crystallography [Bland & Shallcross,
1989], still require substantial amounts of running time. To reduce the running
time of the Lin-Kernighan algorithm various advanced data structures and neigh­
borhood reduction techniques have been proposed [Bentley, 1990; Fredman, John­
san, McGeoch & Ostheimer, 1993; Reinelt, 1994]. One way to further reduce
running time is by using parallelism. In the literature several examples of paral­
lellocal search algorithms for the TSP are given. Multiple-walk parallelism for
the TSP is studied in [Malek, Guruswamy & Pandya, 1989; Diekmann, Liiling &
Simon, 1993]. Single-step parallelism is studied by Chakrapani & Skorin-Kapov
[1993a], and multiple-step parallelism is studied in [Felten, Karlin & Otto, 1985;
Allwright & Carpenter, 1989; Fiechter, 1994; Bachem, Steckemetz & Wottawa,
1994; Verhoeven, Aarts, Van de Sluis & Vaessens, 1992; Verhoeven & Aarts,
1994]. All these algorithms, however, are not competitive, both with respect to
running times and quality of final solutions, with the best existing sequential algo­
rithms, i.e., efficient implementations of the Lin-Kernighan algorithm. Our goal
is to design a parallel algorithm that finds the same quality solutions as the best
sequential algorithm in a smaller amount of running time.

Neighborhoods for the TSP. The TSP can be reformulated as the problem of
finding a Hamiltonian cycle of minimal length in a complete weighted graph; see
Example 2.1. We concentrate on the Euclidean TSP in which the cities are given
by coordinates in a Euclidean space. Most neighborhood structures for the TSP
are based on the exchange of a number of edges. Besides the 2-opt neighborhood
of Example 2.1, we mention the following ones.

• 3-opt. In this neighborhood a tour t' is a neighbor of tour t if it can be ob­
tained from t by removing three edges and inserting three other edges. 'Thi.s
exchange is called a 3-exchange.

• Or-opt. A tour t' is a neighbor of tour t if it can be obtained from t by
removing a path with at most three subsequent cities from t and inserting
it between two other cities in t. This is called an Or -exchange.

• Lin-Kernighan. This is a variable-depth neighborhood structure in which
the number of edges that is exchanged to obtain a neighbor is not fixed
but depends on the current tour t. Basically, a series of 2-exchanges is
constructed by a combination of first improvement, best improvement, and
limited backtracking [Lin & Kernighan, 1973].

5.2. Paralle12-opt and 3-opt algorithms 53

The empirical average-case time complexity of local search algorithms using the
above neighborhood structures is low-order polynomial. Furthermore, computa­
tional results show that good-quality solutions can be found with these neighbor­
hood structures. 2-opt, 3-opt, and Lin-Kernighan give final solutions with av­
erage quality of 6.4%, 3.5%, and 2.1 %, respectively, over the Held-Karp lower
bound on random Euclidian instances. For excellent overviews of what can be
achieved with local search for the TSP, we refer to [Johnson, 1990; Johnson &
McGeoch, 1996; Reinelt, 1994].

The outline of the remainder of this chapter is as follows. Section 5.2 presents
parallel2-opt and 3-opt algorithms. Section 5.3 discusses the implementation of
the Lin-Kernighan algorithm. Section 5.4 discusses the parallel Lin-Kernighan
algorithm and presents numerical results on different parallel platforms.

5.2 Parallel 2-opt and 3-opt algorithms

The concept of distributed neighborhoods for multiple-step parallelism has been
introduced in Section 3.2. A distributed neighborhood structure defines a par­
tition of neighborhoods by partitioning the domain of the exchange function. It
also defines a combination function that combines several exchanges to a feasible
solution. In order to enable efficient combination of 2-exchanges it is convenient
to decompose a tour into several partial solutions each consisting of two paths.
However, in this way it is not possible to examine 2-exchanges in which edges
from different partial solutions are replaced. To guarantee that all exchanges ex­
amined in the 2-opt neighborhood are also examined in the distributed 2-opt neigh­
borhood, several tour decompositions have to be included in the distribution struc­
ture of a distributed 2-opt neighborhood.

5.2.1 A distributed 2-opt neighborhood

Next, we define a distributed 2-opt neighborhood 'Dz that is isomorphic with the
2-opt neighborhood .Nz defined in Example 2.1. Recall that a distributed neigh­
borhood is a triple (!J., A, </>), where !J. is a distribution structure, A a domain dis­
tribution, and </> a combination function.

First, we define a distribution structure that gives a set of distributions in which
each partial solution consists of two paths. A tour is a set of N edges, and we in­
dex the successive edges with indices from 0 to N. A partial solution 8 P is defined
as a set of edges that constitute two paths. One path is the set of edges with indices
in D(p) = {mp, ... , np -1} and contains ap edges, and theotherpathis the set
of edges with indices in D'(b, p) ={m~- b, ... , n~ b -1} for someb, with
0 :s; b :s; B, and it contains a~ edges. The parameter B is needed to prove iso­
morphism properties of various distributed neighborhood structures based on this

54 The Traveling Salesman Problem

/,---f;;;; ~mOm~~;~:; r;;;;~~: mO~~;;J:Jl---.\

\._j • • ~ • • l-/:'
: n' -1 m' ; : n' -1 m' !

t. ~ .. ~J i ?..~:~ ~.:.: .. .J

Figure 5.1: Linear distribution.

distribution structure, as we see later on. Different distributions are generated by
assigning one edge to an adjacent partial solution. Figure 5.1 gives an example of
this distribution for partial solutions Jp. 8p+1 with ap =a~ = ap+l = a~+l = 3
and b = 0. In the following definition this distribution structure is stated fonnally.
All additions and subtractions are done modulo N.

Definition 5.1. Let P with P ~ 1 and B with B ~ 1 be given. Let a, a' :
{0, ... , P} --* {0, ... , N} be mappings such that ap ~ 1, a~ ~ 1 for all 0 :::;
p < P,andap+a~ =NdivP+lforO:::; p < N mod P,andap+a~ = NdivP
for N mod P :::; p < P. Furthennore, define m, m', n, n' : {0, ... , P} --*
{0, ... , N} by m0 0, np = mp + ap for 0 < p < P, mp+l np for
0 :::; p < P - 1, and m'p_1 = np-t, n~ = m~ +a~ for 0 :::; p < P, and
m~-l = n~ for 1:::; p < P. Define for all 0:::: p < P andO:::: b:::; B

D(p) = {mp, ... , np -1},

{m~ b, ... , n~- b- 1} for 0 < p < P- 1,
{m~ b, ... , n~- 1} for p = 0,
{m~, ... , n~ - b 1} for p = P - 1.

D'(b, p) = {

Let t E 8 with t = {e(i) I 0 :::; i < N}, then a solution distribution 8,(b, c) oft,
for 0:::; b:::; Band 0:::; c < N, is defined by

8r(b, c)(p) = {e(i -c) I i E D(p) U D'(b, p)}.

A linear distribution structure !:!. is defined by

!:!.(t, P) = {81(b, c) I 0 :::; b :::; B A 0:::; c < N}.

0

The following definition gives the domain distribution). that defines which ex­
changes are included in the local neighborhoods of partial solutions.

5.2. Parallel 2-opt and 3-opt algorithms 55

Figure 5.2: Distribution of a tour.

i<om ~ouuuuRuooooo~uu o~hohu~)

·~. ~-·. ~· ~ ···~···· ~··· ·~ ·····~-·.

Figure 5.3: Examples oflocal neighbors.

Definition 5.2. Let~ be a linear distribution structure with B = 1, andlett E S,
0 :S. b :s. B, 0 :S. c < N, 0 :S. p < P, and let r = oe(b, c)(p) be a partial solution
with oe(b, c) E ~(t, P). Define a domain distribution/.. as follows,

).. () = { {(e(mp c),e(i -c)) I i E D'(O,p)} ifb =0,
P r {(e(i -c),e(m~ -1 c)) I i E D(p)} ifb = 1.

0

Each local neighborhood defined by the domain distribution).. consists of at most
NIP neighbors obtained by applying 2-exchanges to partial solutions that re­
move a fixed edge in one path of a partial solution and one arbitrary edge in the
other path of a partial solution. Figure 5.2 gives an example of a distribution of a
tour and Figure 5.3 gives some examples oflocal neighbors obtained by applying
2-exchanges to partial solutions.

The combination function</>, which joins several partial solutions to a feasi­
ble tour, is straightforward when a linear distribution structure is utilized, since
exchanges applied to a given partial solution do not interact with exchanges ap­
plied to other partial solutions. The parts of a tour that are not included in a partial
solution can be represented by two imaginary edges that connect terminal cities
of a partial solution. The addition of these imaginary edges that are not actually
included in a tour to a partial solution transforms it into a single subtour. It is ob­
vious that partial solutions can be merged to a feasible tour as long as each partial
solution is a single subtour that includes these imaginary edges; cf. Figure 5.2.

Using the above definitions, the distributed 2-opt neighborhood can be de­
fined as follows.

56 The Traveling Salesman Problem

Definition 5.3. A distributed 2-opt neighborhood structure 'D2 is given by a triple
(D.,).. , <P), where D. is a linear distribution structure, with B = 1, as specified in
Definition 5.1, J.. is a domain distribution as specified in Definition 5.2, and the
combination function <Pis given by cp(ro, ... , rp_l) = Uo::sp<P rp for partial
solutions r p· o

Next, we show that the distributed neighborhood structure 'Dz is isomorphic with
Nz, i.e., a local minimum of 'Dz is also a local minimum of Nz. For this it has to
be shown that each 2-exchange evaluated to determine local optimality for Nz is
also evaluated in 'Dz. First, we need the following lemma.

Lemma 5.1. Let D, D' be defined by Definition 5.1. Let L(p) = {(mp, j) I j E

D'(O, p)} and L'(p) = {(i, m~ 1) I i E D(p)}. Then,

Uo:::;q:sp {j- i I (i, j) E L(q) U L'(q)} ={m~- np, ... , N- 1}.

Proof. Use induction top. First, note that {j - i I (i, j) E L(p) U L'(p)} =
{m~- np, ... , n~- mp- 1}. Furthermore holds n0 = Nand mo = 0. So
for p = o holds {j - i 1 (i, j) e L(O) u L'(O)} = {m0 no, ... , N - 1}.
For the induction step, note that {j - i I (i, j) E L(p + 1) U L'(p + 1)}

{m~+l-nP+l>····m~-np-1}. o
Using this lemma, the following result can be obtained.

Theorem 5.1. 'Dz is isomorphic with Nz.
Proof Let t = {et, ... , eN} E S. Recall that Nz(t) = {rz(t, ei, ej) I 0 ~
i < N /\ 0 :::; j i < N}. Applying Lemma 5.1 for p = P 1 shows that
Uo:sq<P {j- i I (i, j) E L(q) U L'(q)} = {0, ... , N- 1}. Hence, all required
differences j - i between arguments ei, e j of the 2-exchange function rz that are
included in Nz are also included in the domain distribution of'Dz specified by L
and L'. Note that L and L' define the indices of the edges removed in the local
neighborhoods of partial solutions defined by 'Dz. Furthermore, 'Dz contains N
different solution distributions, and consequently {e1(mp- c) I 0:::; c < N} = t
for all p. So all exchanges evaluated for verifying local optimality oft for Nz are
also evaluated for verifying local optimality oft for 'D2. o

The parallel complexity of verifying local optimality of a tour for 'D2 is equal to
O(N · lfr) with P processors since each local neighborhood has size lfr and N dis­
tributions have to be considered. The communication overhead for obtaining new
distributions is 0(1) on a message-passing MIMD machine with a ring topology
, as distribution ot(1, c) can be obtained from distribution ot(O, c), and similarly
8t(O, c + 1) from 8t(1, c), by sending a single edge to an adjacent processor in
the ring. Hence, a new distribution can be obtained from the current distribu­
tion in constant time as follows. Even-numbered processors first send an edge to

5.2. Parallel 2-opt and 3-opt algorithms 57

right-adjacent processors, subsequently they receive an edge from left-adjacent
processors. So the time needed to obtain a new distribution is at most twice the
time to send a single edge to a neighboring processor.

The total number of 2-exchanges that are evaluated for verifying local opti­
mality of a tour for V2 is O(N2), because P processors each evaluate O(N ·lfr)
2-exchanges. This observation shows that the total computational effort of the
parallel algorithm for verifying local optimality is equivalent with that of the se­
quential algorithm. The number of processors that can be employed is at most lf
since each partial solution must contain at least two edges.

5.2.2 A distributed 3-opt neighborhood

Computational experiments have shown that 3-opt local search algorithms find
solutions with considerable lower cost than solutions found by 2-opt algorithms
[Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985; Johnson, 1990]. Good results
with respect to solution quality and running time are reported in particular with
the Or-opt neighborhood. The Or-opt neighborhood is a restricted 3-opt neigh­
borhood in which a path consisting of at most three subsequent cities is inserted
between two other cities in a tour. The Or-opt neighborhood can be generalized to
the neighborhood M,B in which only those 3-exchanges are examined in which
the minimum number of adjacent edges, after removal of three edges, is smaller
than B. Johnson [1990] reports good quality results with this kind of restricted
3-opt neighborhood. Formally N3,B is defined as follows.

Definition 5.4. The exchange function r3 : S x (V x V) 3 ---+ P (S) gives for each
tour t E S the set of eight different tours that can be obtained by replacing three
edges with three other edges. The restricted 3-exchange neighborhood structure
N3,B is given by N3,B(t) = Uo:;;i<N Ai<j<N-B Aj<k:;oj+B r3(t, e;, ej, ek). D

Note that the Or-opt neighborhood is a subset of the N3,3 neighborhood. Next,
we define a distributed neighborhood V3,B that is isomorphic with the neighbor­
hood N3 B. The distribution structure of V3 B is a linear distribution structure as

' ' defined in Definition 5 .1. Its domain distribution, which specifies the local neigh-
borhood of each partial solution, is defined as follows.

Definition 5.5. Let!:!.. be a linear distribution structure with ap = 1 and a~ ~ B
for all 0 ~ p < P, and let t E Sand 0 ~ b ~ B. Let r = or(b, c)(p) be a partial
solution with or (b, c) E l:!..(t, P) for 0 ~ c < N. Define

L(p) = {(mp, j, k) I m~~ j ~ n~- B 1\ j < k ~ j + B},

L'(b, p) = {(mp, m~- b, m~- b + i) I 0 < i ~ B}.

58 The Traveling Salesman Problem

Then, domain distribution). is defined as follows.

{

{(e(i -c), e(j -c), e(k-c))l(i, j, k) EL(p)} if b=O,
Ap(r) = {(e(i -c), e(j -c), e(k-c))l(i, j, k) EL'(b, p)} if b>O, p< P -1,

0, ifb>O,p=P-1.

0

The sets L, L' specify the indices of the edges that are to be removed in a local
neighborhood. Each local neighborhood specified by the domain distribution).
either consists of at most B · If; neighbors obtained by applying 3-exchanges to
partial solutions that remove a fixed edge in one path of a partial solution and two
arbitrary edges in the other path of a partial solution, or it consists of at most B
neighbors obtained by applying 3-exchanges that remove two fixed edges, one in
each path, and one arbitrary edge.

The combination function is similar to that of V2, since a linear distribution
structure is used, which implies that local neighbors of partial solutions can be
merged to feasible tours, provided that all local neighbors, with addition of two
additional edges, are single subtours.

Definition 5.6. A distributed neighborhood structure 'D3,B, with B E IN+, is de­
fined by a triple (D.,)., if>), where D. is a linear distribution structure as specified
in Definition 5.1,). is a domain distribution as specified in Definition 5.5, and the
combination function if> is given by if>(ro, ... , rp_l) = Uosp<P rp for partial
solutions rp. D

Next, we show that the distributed neighborhood structure 'D3,B is isomorphic
withN3,B. i.e., a local minimum of'D3,B is also a local minimum of N3,B. which
requires that each 3-exchange evaluated to determine local optimality for N3,B is
also evaluated in V 3,B· Th show this, we need the following lemma.

Lemma 5.2. Let 0:::: p < P 1, and 0:::: b:::: B. Define the set W (p) that consists
of all differences between indices in L(p) and L'(b, p) as follows.

W(p) ~ {
{j- i I (i, j, k) E L(p)} u
Uo<bsB {j -i I (i,j,k) E L'(b,p)}, ifO::Sp<P-1,
{j - i I (i' j' k) E L (p)} if p = p -1.

Then,

U W(q) ={m~- B- mp, ... , N-B}.
o::;q::;p

Proof. Use induction top. First, note that W(p) ={m~- B- mp, ... , n~­
B -mp}. So for p = Oholds W(p) ={m~- B- mp, ... , N-B} asniJ =
Nand mo = 0. For the induction step, note that W(p + 1) = {m~+l - B -

5.2. Parallel 2-opt and 3-opt algorithms 59

mp+l• ... , m~- B -mp
mp + 1.

1} sincen~+l =m~ andmp+l = np = mp +ap =
0

The above lemma leads to following result

Theorem 5.2. v3,B is isomorphic with N3,B·

Proof Recall that N3,s(t) = Uosi<N Ai<j<N-B Aj<ksi+B r:3(t, e;, ei, ek) for
each t E S. First note that for p = P- 1 holds W(p) {m~ mp, ... , n~
B- mp} = {1, ... n~- B mp} as m~= mp + 1. This combined with Lemma
5.2 for p = P- 2 shows that Uosq<P W(q) = {1, ... , N-B}. Hence, all re­
quired differences of indices j - i and k- j between arguments of the 3-exchange
function in N3,B· are also included in the domain distribution of V 3,B specified
by L and L'. Furthermore, the distribution structure of V3, s contains N different
solution distributions, and consequently {et(mp- c) I 0::; c < N} = t for all
p. So all exchanges evaluated for verifying local optimality oft for N3,s are also
evaluated for verifying local optimality oft for V3,B· 0

V3,B contains P · N local neighborhoods of partial solutions Ot (0, c) (p) with size
(!j;- B)B and P·N ·B local neighborhoods of partial solutions ot(b, c)(p) with
size B for 0 < b ::; B. As P local neighborhoods can be searched in parallel, the
parallel complexity of verifying local optimality of a tour is O(N B If;) using P
processors. The communication overhead for obtaining new distributions is 0(1)
since new distributions can be obtained from current distributions in a similar way
as discussed in the previous section for the parallel 2-opt algorithm.

The parallel 3-opt algorithm requires the same computational effort as the se­
quential 3-opt algorithm, as the total number of 3-exchanges examined to verify
localoptimalityforV3,8 andN3,B areequal, viz. O(BN2). Furthermore, atmost
N div (B + 1) processors can be used in a parallel 3-opt algorithm for a given in­
stance of size N and choice of parameter B in 'D3,B.

5.2.3 Computational results

The distributed neighborhoods 'Dz and 'D3,B are mapped onto a message-passing
MIMD machine with a ring network topology by assigning adjacent partial so­
lutions to adjacent processors. A partial solution consists of two paths and the
number of edges in a path determines the local neighborhood size. The number
of edges in each of the two paths of a partial solution is not fixed because per­
forming edge exchanges can change the number of edges in each of these paths.
Since communication has to take place as soon as local neighborhoods have been
explored, load imbalance may occur when path lengths are not equal.

1b obtain a new distribution, each processor sends one edge to its left adjacent
processor; to obtain the next distribution each processor sends one edge its right

60 The Traveling Salesman Problem

p €(%) T(s) e:ff p .-=(%) T(s) e:ff

I 1 7.5 144.2 1 1 7.9 1436 1
16 7.8 13.0 0.69 64 7.4 29 0.77
64 7.4 5.2 0.43 128 7.5 18 0.62

128 7.6 5.5 0.20 256 7.8 19 0.29

Table 5.1: Computational results for att532 and prl 002 with V 2 •

p .-=(%) T(s) e:ff p .-=(%) T(s) e:ff
1 11.6 1960 1 16 5.4 481 1

64 10.8 52 0.59 64 5.2 103 1.17
128 10.8 31 0.49 128 4.6 69 0.87
256 11.5 32 0.24 256 5.3 76 0.40

Table 5.2: Computational results for rl1304 and d2103 with V 2 •

p €(%) T(s) e:ff p E(%) T(s) e:ff
16 8.8 685 1 64 8.8 312 1
64 9.1 189 0.91 128 8.6 168 0.93

128 8.6 109 0.79 256 8.6 108 0.72
256 9.3 66 0.65 512 8.7 79 0.49

Table 5.3: Computational results for pr2392 and pcb3038 with V 2 .

p €(%) T(s) eff p €(%) T(s) e:ff
128 9.0 645 1 128 8.7 2671 1
256 9.3 315 1.02 256 8.7 1396 0.96
512 8.6 215 0.75 512 9.2 819 0.82

Table 5.4: Computational results for r15934 and rl11849 with V 2•

p €(%) T(s) e:ff p €(%) T(s) e:ff
1 3.4 706 1 1 3.9 9948 1

25 3.5 51 0.55 25 4.0 671 0.59
50 3.3 21 0.67 50 3.9 324 0.61

Table 5.5: Computational results for att532 and rl1002 with V3,3·

5.2. Parallel 2-opt and 3-opt algorithms 61

adjacent processor, such that the tour is rotated. The communication overhead for
obtaining new distributions is 0(1) when the orientation of a tour has not changed
due to the effectuation of edge exchanges. This situation occurs during verifi­
cation of local optimality. Another situation occurs if some path assigned to a
processor consists of one edge. If the orientation of partial solutions has changed
through exchanges and edges are sent and received simultaneously, an empty path
may arise when the received edge is connected to the other subpath than the path
from which one edge is sent. In this case this processor has to wait until it receives
an edge before it sends this edge. So the communication overhead is determined
by the length of the longest sequence of adjacent processors in the ring for which
all minimum path lengths are equal to one. More formally, the time complexity
of communication overhead is 0(1 +maxo::;p,q<PIVp::;:i<q t(i)=l q- p), where l(i)
is the minimum length of a path assigned to processor i. If all paths of partial
solutions consist of at least two edges, the communication overhead is constant
since then it is always possible to send an edge to an adjacent processor and still
maintaining a partial solution that consists of two paths. The worst case commu­
nication behavior occurs when all processors own a path with length one, but in
practice this rarely happens.

The parallel 2-opt and 3-opt algorithms have been implemented on networks
consisting of 50 and 512 T805 transputers configured in a ring. A tour is repre­
sented by a linked list, which makes it possible to effectuate proposed exchanges
in constant time. Initial tours are constructed using the nearest neighbor heuris­
tic [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985]. A nearest neighbor tour
is constructed as follows. Start in an arbitrarily chosen initial city and repeatedly
choose the unvisited city closest to the current city. Once all cities have been cho­
sen, return to the initial city. We have tested the algorithms on instances with sev­
eral thousands of cities that originate from the TSP library ofReinelt [1991]. The
number in the name of an instance denotes the number of cities in this instance.

Tables 5.1 5 .4list the computational results obtained with the neighborhood
V 2. All results are averages computed over ten runs started from different initial
solutions. In these tables, Pis the number of processors, and the average relative
excess, measured in percentages, over the minimal tour length or the best known
lower bound is given by E. The average running time in seconds is given by T.
The efficiency, defined as the speed-up divided by P, is given in the column la­
beled "eff". For large instances we were not able to run the algorithm for P = 1,
due to the limited availability of running time so in these cases the efficiency is
computed relatively to the smallest number of employed processors. The com­
putational results in Tables 5.1 - 5.4 show that the number of processors has no
influence on the average cost of final solutions. This is explained by the fact that

62 The Traveling Salesman Problem

'Dz is isomorphic with Nz. Moreover, good efficiencies of more than 50 percent
are obtained, if the partial solutions are sufficiently large. This results in speed­
ups of up to a factor 80 with 128 processors.

Thble 5.5 lists the results obtained with 'D3,B. for B = 3. Recall that the
Or-opt neighborhood is included in the restricted 3-opt neighborhood N3,3 with
which 'D3,3 is isomorphic. Again, it can be observed that the same quality final
solutions are found regardless of the number of employed processors. This is ex­
plained by the isomorphism of V3,B with N3,B. Moreover, good efficiencies are
achieved using 'D3,B· The quality of final solutions obtained with 'D3,3 is much
better than that obtained with the 2-opt neighborhood at the cost of a substantial
increase in running time.

5.3 The Lin-Kernighan neighborhood

The most effective neighborhood for the TSP is the one proposed by Lin & Kernig­
han [1973] in which a variable number of edges is replaced instead of a fixed
number of edges as done in the 2-opt or 3-opt neighborhoods. Using elaborated
data structures and neighborhood reduction techniques, sophisticated sequential
Lin-Kernighan algorithms require less running time than our parallel 2-opt and
3-opt algorithms and find better quality results. In the remainder of this chapter,
we outline a parallel Lin-Kernighan algorithm that is competitive with the most
advanced sequential implementations of the Lin-Kernighan neighborhood.

The idea· behind the Lin-Kernighan neighborhood structure is that for any
given tour the optimal tour can be obtained from it by exchanging the appropri­
ate set of edges. Its exchange function t). tries to construct this set by repeatedly
removing and adding edges to the given tour. One property of this exchange func­
tion is that the number of edge exchanges is not fixed but depends on the given
tour. Let t E S and let xo E t be an edge in t. Then rA. can be outlined as follows:

(1) Remove edge xo from t. The result is a Hamiltonian path Ho, i.e., a path
that visits each city only once. Set variable i = 0.

(2) Add an edge y; <t t to the end of the Hamiltonian path H; and remove an
edgexi+t E tfromH;,suchthatHi+1 = t\{Xj I 0:::: j:::: i+l}U{Yj I 0::::
j < i + 1} is a minimum-length Hamiltonian path. Edge Xi+t is uniquely
determined by y;. Increment i with one.

(3) Check if tour t', obtained by closing H;, has lower cost than t*, the best
tour found so far. If this is the case, replace t* with t'.

(4) Repeat steps (2)-(3) as long as a given gain criterion is satisfied.

(5) If no tour with lower cost than t is found, set i = 1 and repeat steps (2)­
(4) while selecting a different edge Yt that is added to Ht. If after a given

5.3. The Lin-Kernighan neighborhood 63

number of choices for Yt no shorter tour has been found, set i = 0 and repeat
steps (2)-:(4) for different edges Yo that are added to Ho. Return t*.

Let ti be the tour obtained by closing Hi and let ti+l be the tour obtained from
H;.+l. Then ti+l can be obtained from t; by performing the 2-exchange on t that
removes edges Xi and Xi+ 1· So the exchange function tries to construct a sequence
of 2-exchanges that, performed on initial tour t, results in a shorter tour t*. Every
2-exchange in this sequence removes an edge added by the preceding 2-exchange,
viz., the edge added in step (3) to check if a shorter tour is constructed.

Lett* be a tour with f(t*) < f(t). Then t* can be obtained from t by adding
the set of edges t* \ t to t and removing the set of edges t \ t* from t. Exchange
function t), tries to construct these sets by iteratively choosing one edge Xi+l that
has to be removed and one edge Yi that has to be added, until all edges of both sets
are chosen. The removal of Xi +I decreases the tour length and the addition of Yi
increases the tour length. The net result of the exchange of edge pair (xi+ 1, Yi)
is called the gain and is defined by IXi+II lyil, where lel denotes the length
of an edge e. It is obvious that the cumulative gain of all pairs (xi, Yi) should be
positive, otherwise f(t*) 2: f(t). The gain criterion is based on this observation:
new edge pairs are chosen as long as the cumulative gain of the pairs (Xi+l• y;)
is non-negative.

Let v be the last city of Hamiltonian path Hi. Then edge Yi, which is added to
the end of Hi, is chosen from a predefined set of edges that depends on v. Edge y;
is chosen from this set such that the gain resulting from adding y; and removing
Xi+I to Hi. which is given by lxi+II - lyil, is maximized.

Furthermore, if no sequence of 2-exchanges can be constructed that gives a
shorter tour, then for given edges xo and Yo each 3-exchange that cannot be ob­
tained by performing two consecutive 2-exchanges and that removes xo from t
and adds Yo is applied to t. If no 3-exchange results in a shorter tour, the back­
track mechanism in step (5) ensures a new Hamiltonian path H1 is constructed by
choosing a different yo. Again, if no sequence of 2-exchanges can be constructed
that gives a shorter tour, the above 3-exchange mechanism is applied. This is re­
peated until a shorter tour is found, or a given number of alternatives for yo and
Yt have been examined. Iffor all xo E t and all possible choices for Yo and Yt. r),
cannot find a shorter tour, then the final solution is not only a local minimum with
respect to NA but also with respect to N3. In practice only a restricted number of
alternatives for yo and Yt are examined. Using the exchange function rA outlined
above, we can define the neighborhood structure N>..

Definition 5.7. Let t E S be a tour. The Lin-Kernighan neighborhood structure
NA is defined by NA(t) = {rA(t, xo) I xo Et}. D

Although rA returns a single tour t*, several tours are examined during the con-

64 The Traveling Salesman Problem

struction of t*. The Lin-Kernighan algorithm consists of an iterative improve­
ment algorithm that uses the neighborhood structure N)...

5.3.1 Neighborhood reduction

In the previous section we have outlined how the exchange function 'f).. constructs
a neighbor of a given tour t by repeatedly inserting edges in a Hamiltonian path.
Let y be an edge that is to be added to the Hamiltonian path that ends in city l. We
want to consider only those edges y = (l, m) that are likely to be in an optimal
tour. So for each city l a set of cities, the candidate set for l, is to be determined
such that the edges between l and these cities are likely to be in an optimal tour.

When edge x is removed, edge y is chosen from the candidate set such that
lxl lyl is maximized. The time complexity for selecting y is O(y), where y is
the size of the candidate set. This can be costly for large candidate sets. On the
other hand, a candidate set that is too small may result in poor-quality solutions.
In their original paper, Lin and Kernighan suggest for the candidate set of l the
set of its five nearest neighbors. The disadvantage of such a set is that its size
is fixed, and it does not exploit the geometrical structure of an instance. Reinelt
[1992] suggests another approach based on a Voronoi diagram for a set of cities.
A Delaunay graph is the geometric dual of a Voronoi diagram, and it connects
cities that share a boundary in a Voronoi diagram. The following definition gives
a partition of IR2 into N convex polygons.

Definition 5.8. Let d(c, c') denote the Euclidean distance between two points
c, c' E IR2

, and let V = {et, ... , CN} be a set of points in IR2
, with N > 3.

Define forcE V the Voronoi region vr(c, V) as

vr(c, V) {c" E IR2 I Vc'eV\{c} d(c", c) ~ d(c", c')}.

0

Then for all c" E vr(c, V) no point in V is closer to c" than c. The boundary
that separates different Voronoi regions that have points in common is called a
Voronoi edge. We define the Delaunay graph as follows.

Definition 5.9. Define the Delaunay graph G for a set of points V by

G (V, { (c, c') E V2 I c i= c' 1\ lvr(c, V) n vr(c', V) I> 1 }).

0

A triangulation -a decomposition of a polygon into triangles- that contains the
Delaunay graph can be computed with an algorithm from Fortune [1987]. We call
this triangular graph the extended Delaunay graph. A triangulation contains at
most 3N 3 edges, where N is the number of vertices of G. This means that the

5.3. The Lin-Kernighan neighborhood 65

average number of adjacent cities of a given city is at most six in the extended De­
launay graph The candidate set of a city consists of the cities that can be reached
in k steps in the extended Delaunay graph, with k :::: 1. Such candidate sets are
called k-th order Delaunay sets. We use first and second order Delaunay sets be­
cause higher order sets are too computationally expensive.

5.3.2 Efficient data structures

The following operations are applied to a tour or Hamiltonian path: Pred, Succ,
TWoChange, ThreeChange, and lnBetween. Pred and Succ return the predecessor
and successor, respectively, of a given city in a Hamiltonian path. Two Change re­
verses a part of a Hamiltonian path starting from a given city to the last city in the
path. Three Change performs a 3-exchange on a Hamiltonian path and requires a
boolean returned by lnBetween that denotes whether a given city is located be­
tween two other cities in a path.

Performing a 2-exchange on a tour requires reversal of a part of the tour, which
has a complexity of O(N) for tours of size N if the tour is represented by an array
that lists the cities in tour order. This becomes quite expensive for the exchange
function r >.. that performs sequences of 2-exchanges on Hamiltonian paths. Fred­
man, Johnson, McGeoch & Ostheimer [1993] discuss three tour representations,
two-level trees, segment trees, and splay trees that perform 2-exchanges more ef­
ficiently than the array data structure. We have implemented two-level trees and
segment trees as splay trees catch up with these data structures only for instances
with more than one million cities.

For each representation we explain how to implement operations Succ and In­
Between and how to implement the reversal of a subpath in TWoChange. The im­
plementation of Pred is analogous to that of Succ. ThreeChange is implemented
as a sequence of reversals. There is one operation, we have not mentioned yet.
In an execution of i>.. backtracking may occur, so some of the constructed Hamil­
tonian paths have to be stored for later use. There are two approaches to store
these paths. The easiest way is to copy the entire path, the other, more compli­
cated, way is to reconstruct the required path from the current path by undoing
the 2-exchanges that lead from the required path to the current path. For each
representation, we describe how we store a path

Array representation

The best-known data structure to represent a tour is the array representation. A
tour of size N is represented by two N -sized one-dimensional arrays A and B.
Array A lists the cities in the order as they occur in the tour, and array B is the
inverse of A, i.e., B (A (i)) = i, for 1 ~ i ~N.

Using these two arrays the relative position a city has in a Hamiltonian path

66 The Traveling Salesman Problem

Oties

Figure 5.4: An example of a two-level tree.

is given in array B and therefore operations Succ and InBetween have complexity
0(1). Reversing a part of a Hamiltonian path is done by reversing parts of arrays
A and B, resulting in a O(N) complexity of operation TwoChtmge. Storing both
arrays for backtracking by copying them is an O(N) operation.

Two-level tree representation

A 2-exchange reverses the direction in which a part of the Hamiltonian path is
traversed. The idea of the two-level tree data structure is to partition the path in
approximately equal-sized segments that contain consecutive cities, where each
segment has a reversal bit that indicates the direction in which it should be tra­
versed. Figure 5.4 shows an example of the two-level tree data structure. The
segments are represented by doubly linked lists of cities, each connected to a su­
pervisor. The supervisor contains the represented segment's reversal bit but also
links to the first and last element of its doubly linked list. Furthermore, each su­
pervisor includes the number of elements of its segment and it has a unique iden­
tification number to distinguish it from other supervisor nodes. The Hamiltonian
path can be constructed by walking from segment to segment and traversing each
segment according to its supervisor's reversal bit The two-level tree in figure 5.4
represents the path< 9, 2, 3, 6, 1, 4, 7, 8, 5 >.

Th determine the successor of a city, the city itself in the two-level tree has
to be found. To speed up the search for a city, an array that contains the address
of each city is maintained. If the city is located, the next city -or previous city,
depending on the reversal bit of the supervisor- in the list contains the successor.
If there is no next city, the consecutive supervisors must be checked until a non­
empty segment is found. If there are no empty segments, it follows that operation
Succ has complexity 0(1).

Let the number of segments be r ~ 1, where N is the number of cities and g is
the groupsize, the approximate size of each segment, and let v0 , Vt and v2 be three
cities on the represented Hamiltonian path. To find out whether v1 is visited be­
fore v2, if one starts from vo and follows the Hamiltonian path, the identification

5.3. The Lin-Kernlghan neighborhood 67

number of each city's supervisor is needed. If these three numbers are different
we can determine if Vt is in a segment between the segments that contain vo and
vz. If two or more numbers are the same, the corresponding segments have to
be traversed. Since each segment contains approximately g elements, operation
InBetween has worst-case complexity O(g).

Reversing a part of the path in TwoChange is implemented by reversing the
order of some supervisors, fiipping their reversal bit, and by relocating some cities
to other segments. Due to the number of supervisors and the size of each segment
this can be implemented in O(maxU~l. g}) time. If g is approximately .jN,
then TwoChange has complexity 0(../N). However, a 2-exchange can change
the length of a segment One might argue that to guarantee this complexity the
segments should be rebalanced after each 2-exchange, but this results in a large
overhead and is therefore not efficient Moreover, the more or less random 2-
exchanges can disturb but also restore the balance.

In order to enable backtracking we have to copy the required paths or recon­
struct them from the current path. Copying a path takes O(N) time and recon­
structing a path takes O(l.j N) time, where l is the number of 2-exchanges that
lead from the current path to the required path. In practice l is much smaller than
.jN and therefore we choose to reconstruct the required path.

Segment tree representation

The segment tree representation is based on the observation that it suffices to
specify which segments of a path H need to be reversed to construct H' with­
out explicitly reversing these segments. The following code fragment illustrates
this idea. Here Ho, Ht and Hz are Hamiltonian paths derived from a tour t with
length 100. h[i] is the city at the i-th position in Ho, and TwoChange(c, Ho) is
the Hamiltonian path that is obtained when the path in Ho from c to the last city
in Ho is reversed. a+ b denotes the concatenation of paths a and b.

{Ho = h[l, ... , 100]}

Ht :=TwoChange (h[75], Ho);

{ Ht = h[l, ... , 75] + h[lOO, ... , 76]}

Hz :=TwoChange (h[25], Ht);

{ Hz = h[l, ... , 25] + h[76, ... , 100] + h[75, ... , 26]}

H3 :=TwoChange (h[35], Hz);

{ H3 = h[l, ... , 25] + h[76, ... , 100] + h[75, ... , 36] + h[26, ... , 35]}

The permanent tour is the representation of the current solution in a Lin-Kernig­
han algorithm. Temporary Hamiltonian paths are Hamiltonian paths constructed

68 The Traveling Salesman Problem

T 2 [26
tree link

Figure 5.5: The segment trees for H2 (left) and H3 (right).

in a A.-exchange. In the above example t is the permanent tour, and Ho, H1, Hz, H3
are temporary paths. Temporary paths are represented by a sequence of records
of the form [rev, begin, end] where rev is a boolean and begin and end are ele­
ments of {1, ... , N} for tours of size N. Such a record, called a segment node,
represents the subpath of the permanent tour from position begin to position end,
when rev does not hold, or its reverse when rev holds. The segment nodes are
stored in an array in the order in which the subpaths they represent occur in the
temporary path.

The position a city has in the permanent tour is needed to find its successor.
Given this position, the segment node that contains the city can be found. To ac­
celerate the search for a city in the temporary path, a tree is constructed that con­
tains pointers to all the segment nodes. The inorder traversal of this tree lists the
segments in the order in which they occur in Ho. The tree structures for paths
Hz and H3 are shown in Figure 5.5. We implement the tree as a height-balanced
tree [Bayer, 1972]. Search and insert operations on these trees have complex­
ity O(log i), where i is the number of elements of the tree. The tree structure
grows with the number of 2-exchanges performed on the permanent tour, which
results in more expensive search operations. The example at the beginning of this
section shows that with each 2-exchange at most one new segment node is cre­
ated. If H' is the result of performing l consecutive 2-exchanges on a Hamiltonian
path H, the segment tree that represents H' contains l elements. Because the tree
search operations can be performed in log l time, operations Succ and InBetween
have complexity O(log !). Performing a 2-exchange involves the creation of a
new segment node and the reversal of the order of other segment nodes. Since
there are 0(1) segments, operation TWoChange has complexity O(l).

The Hamiltonian paths Ho and H1 have to be stored in case backtracking takes
place. For the segment tree representation storage of these paths can be done in
0(1) time by copying the array and tree of segment nodes. The permanent tour
is represented using the array representation, because in each call to each oper-'
ation, the position a city has in the permanent tour is needed. Using the array

5.3. The Lin-Kemighan neighborhood 69

representation Succ Two Change BackUp Effectuate
array 0(1) O(N) O(N) -
two-level tree 0(../N) 0(../N) O(k../N) -

1 segment tree O(logk) O(k) 0(1) O(N)

Table 5.6: Complexity of tour operations for tours of size N.

representation the position of a city can be determined in 0(1) time.
Since the path operations become more expensive as the size of the segment

tree increases, we update the permanent tour and reduce the segment tree to a tree
that contains a single segment node as soon as a cost-improving A.-exchange has
been found. 'This is done by effectuating the sequence of 2-exchanges that leads
to the tour t*, which takes 0 (1 N) time, where l is the length of the sequence, or
by reading the segments consecutively, which takes E>(N) time. Which method
is more efficient depends on the contents of the individual segments nodes.

Table 5.6 summarizes the cost of each tour operation for the data structures to
represent a tour. For each tour representation the cost to perform operation Pred
is equal that of operation Succ. It should be noted that for the segment tree tour
representation, the cost to perform a tour operation on a Hamiltonian path Hi de­
pends on i, since the height of a segment tree is equal to log i. Therefore, an upper
bound k is often imposed on the maximum number of attempted 2-exchanges that
are represented in a segment tree. In this way, the maximum height of the segment
tree is bounded by log k.

5.3.3 Computational complexity

Next, we analyze the total time complexity of all tour operations that are per­
formed in the exchange function fA,. The number of times each tour operation
is performed in t'J, depends on the given tour. Therefore, we define the following
sequence of tour operations that is performed if t'J, is called with a Hamiltonian
path Ho that is obtained by removing edge x0 from a tour.

(1) A Hamiltonian path Ht is constructed by adding an edge to and removing
an edge from Ho. One Succ operation is performed for each element of the
candidate set of the last city of Ho to find the edge that should be added.
On average, y Succ operations are performed, where y denotes the average
candidate set size.

(2) Once an edge is found, operation Two Change is performed once and oper­
ation Pred twice.

(3) Steps (1)-(2) are repeated tc times to construct a sequence of Hamiltonian
paths Hi withO.:::: i < tc < k.

70 The T.raveling Salesman Problem

representation complexity
array O(Ky + KN)

two-level tree O(Ky../N)
segment tree O(Ky log" + K2)

Table 5.7: Total complexity of tour operations in r;...

In all, operation Succ is performed at most "Y times, TwoChange at most" times
and Pred at most 2K times. Furthermore, Hamiltonian paths Ho and H1 have to
be stored in case backtracking has to take place.

Table 5.7 presents for each tour representation the total time complexity of
tour operations performed in the exchange function -c;.. to construct a sequence of
" 2-exchanges. N denotes the number of cities and y the size of the candidate
sets. Note that for large candidate set sizes y, e.g. y ~ N, the total complexity
of tour operations for the array representation is O(K N), for the two-level trees
O(KN ,jN), and for the segment trees O(N K log K). This suggests that the two­
level trees and segment trees are not suited for large candidate sets.

For the Delaunay sets defined in Section 5.3.1, the average candidate set size
y is at most six. In that case the complexity of the array, two-level tree and seg­
ment tree representation reduces to O(KN), O(K,jN) and 0(K2), respectively.
Experiments show that in general K is much smaller than N, so the larger N is, the
more efficient the segment tree representation is compared to the array and two­
level tree representations. It should be noted, however, that we have not added the
costs of effectuating the proposed 2-exchanges for the segment tree representa­
tion, which takes O(N) time. If only a few 2-exchanges are needed in r}.. to find a
shorter tour, the given complexities suggest that the two-level tree representation
is more efficient than the segment tree representation. However, if large amounts
of 2-exchanges are evaluated that do not result in shorter tours, the complexity of
7:>.. is dominated by the cost to evaluate these 2-exchanges, which is more expen­
sive for two-level trees than for segment trees.

5.3.4 Computational results

We have implemented the sequential Lin-Kernighan algorithm on a SUN Spare
ELC workstation with 16 Mbyte of memory. There are a few differences between
the algorithm of Lin & Kernighan [19731 and our implementation of it. First of
all, we consider at most five edges for yo and Yt. the edges added to Ho and H1o
for backtracking. This is motivated by the observation that, if any gain is found by
inserting an edge, it is usually one of the first choices for these edges, due to the
way yo and y1 are chosen. We limit the length of the sequence of 2-exchanges
in -c.~. to k, where k 50. For the segment tree representation, each operation

5.3. The Lin-Kemighan neighborhood 71

becomes more expensive when the sequence of performed 2-exchanges becomes
larger. Fredman, Johnson, McGeoch & Ostheimer [1993] mention that a limit of
50 on the length of this sequence does not influence the final tour length.

We used the nearest neighbor heuristic to construct the initial tour. We have
tested our Lin-Kernighan algorithm on several instances from Reinelt's TSP li­
brary. Table 5.8 presents the results. The items in the tables are averages over ten
runs of the algorithm starting from different initial tours. The first column lists
the instances and their sizes. The columns labeled first and second order contain
the computational results obtained with the first and second order Delaunay sets
defined in Section 5 .3.1. We have tested the tour representations with both candi­
date sets. The columns labeled "a", "t" and "s" contain the average running times
in seconds obtained with arrays, two-level trees, and segment trees, respectively.
The column labeled € gives the average relative excess in percentages over the
optimal solution or, when the optimum is not known, over the best-known lower
bound.

We observe that the relative difference in running times between the repre­
sentations becomes smaller as the size of the candidate set increases. This can be
explained by the observation that for larger candidate sets, the total complexity
of all tour operations is increasingly determined by the number of Succ opera­
tions. This operation is more expensive for the two-level trees and in particular
for segment trees than for arrays.

Furthermore, we observe that segment trees outperform two-level trees, and
that two-level trees outperform arrays. In the previous section we have shown
that for small candidate sets, such as the first and second order Delaunay sets,
the running time of rA is dominated by the complexity of a 2-exchange. So for
larger instances the differences between running times becomes larger, provided
that only a small proportion of the examined 2-exchanges leads to a shorter tour,
because segment trees have to be consolidated- that is, proposed 2-exchanges
have to be effectuated whenever a shorter tour is found. Apparent! y this is the case
because the segment trees outperform the two-level trees for larger instances.

We have also tested five instances with complete candidate sets consisting of
all cities. For these five instances, not listed in Table 5.8, the best result is ob­
tained once with first order Delaunay sets, three times with second order Delau­
nay sets and only once with complete candidate sets. For all other instances we
have tested, we obtained better solutions with second order Delaunay sets than
with first order Delaunay sets. For most instances we obtained slightly better re­
sults with third order Delaunay sets than with second order Delaunay sets. This
small improvement in quality is paid for with a large increase in running time.

Another interesting observation is that the relative difference in running times

72 The Travellng Salesman Problem

cand. set first order second order
repr. a t s a t s

T(s) E T(s) E

rd400 15.9 6.7 3.5 1.82 27.5 12.6 10.1 1.48
pcb442 10.0 4.0 2.9 1.42 17.6 9.1 8.5 1.13

u574 34.2 8.4 6.0 2.22 59.5 22.0 19.0 1.90
p654 23.3 11.7 6.9 0.46 45.7 31.8 25.2 1.01

rat783 48.5 17.5 6.5 2.01 75.2 33.7 17.2 1.71
pr1002 121 44 13 2.42 178 74 35 2.45
u1060 132 29 15 2.13 204 82 46 1.89

pcb1173 143 36 15 2.86 167 66 31 1.97
d1291 72 20 9 4.08 142 69 49 3.75
u1432 90 22 12 2.30 131 46 34 2.12
d1655 193 52 19 3.63 274 105 57 3.05
rl1889 297 51 20 2.87 438 123 78 2.56
d2103 132 41 13 3.30 185 91 44 3.26
u2152 221 71 18 3.12 345 110 56 2.61

pr2392 732 226 39 2.88 1003 284 95 2.04
pcb3038 1181 305 50 2.22 1491 418 111 1.87

fl3795 459 169 27 4.92 841 446 131 4.07
fnl4461 2741 654 62 1.88 4578 918 189 1.62
rl5915 2822 277 69 3.05 3201 547 260 2.61
rl5934 2422 254 57 3.29 3764 660 258 2.97

pla7397 3381 1148 105 3.22 3607 1475 227 2.49
rl11849 14562 1282 181 2.83 21411 2195 950 2.30

brd14051 - 10092 374 2.79 - 8433 663 2.72
d18512 23827 475 2.34 - 19401 1005 2.17

pla33810 - 12849 810 2.58 - 21748 1656 2.42
pla85900 - 63831 2795 2.94 - - 6261 2.74

Table 5.8: Computational results for the sequential Lin-Kernighan algorithm.

between our implementation of segment trees and two-level trees is much more
significant than the difference observed by Fredman, Johnson, McGeoch & Ost­
heimer [1993]. This might be explained by the fact that they do not balance the
segment trees. As a consequence, the height of a segment tree obtained after i
2-exchanges is bounded by 2i + 1 in their implementation, whereas it is bounded
by log i in our implementation. This height determines the complexity of Succ
and Pred operations.

5.4 A parallel Lin-Kernighan algorithm

In Section 5.2 we have presented parallel 2-opt and 3-opt algorithms based on
decomposing a solution into a number of disjoint partial solutions consisting of

5.4. A parallel Lin-Kemighan algorithm 73

two separate paths that are assigned to different processors. Subsequently, all
partial solutions can be changed independently from each other since edge ex­
changes only affect the edges involved in a given partial solution. However, ini­
tial experiments showed that such a solution decomposition is not effective for the
Lin-Kernighan neighborhood. Although a larger number of A.-exchanges is ac­
cepted, the total cumulative gain in all these simultaneously performed exchanges
is equal to, or less than, the gain made in a single A.-exchange applied to the entire
tour. So it is too restrictive to limit the edges that can be changed in t) .. beforehand.
Therefore, we outline a different approach in the remainder of this section.

In an algorithm with multiple-step parallelism several consecutive steps in the
neighborhood graph are made in parallel. Let P denote the number of processors.
A Lin-Kernighan algorithm with multiple-step parallelism based on domain de­
composition can then be outlined as follows.

(1) Partition the domain {(t, xo) I xo Et} oftheexchangefunction t">.. applied to
a tour t E S into P subdomains. Each processor evaluates one subdomain
and proposes at most one profitable exchange.

(2) Communicate profitable exchanges to other processors.

(3) Combine and effectuate a subset of the profitable exchanges found in step
(1), which results in a new tour t'.

(4) Replace t by t', and continue steps (1)-(3) until no improvement is found.

A single iteration of our algorithm consists of three phases-that is, evaluating
exchanges in step (1), communicating profitable exchanges in step (2), and ef­
fectuating proposed exchanges in step (3). First, each processor evaluates the ex­
changes that are assigned to it. Each processor has to evaluate at most I !{r l ex­
changes, where N is the number of cities and P the number of processors. Each
processor proposes at most one profitable exchange. As soon as a processor has
found a profitable exchange or it has evaluated all its exchanges, it has to wait
until other processors have finished evaluating their exchanges. Global commu­
nication then takes place to broadcast all proposed exchanges to all processors.
Subsequently, a subset of proposed exchanges has to be effectuated such that a
feasible solution is constructed. Since all processors have knowledge of all pro­
posed exchanges, combination of proposed exchanges can be done locally and
results in the same tour on all processors.

5.4.1 A distributed Lin-Kernighan neighborhood

Recall that a distributed neighborhood consists of a distribution structure, a do­
main distribution, and a combination function. Next, we discuss these compo­
nents for the distributed Lin-Kernighan neighborhood.

74 The Traveling Salesman Problem

Domain distribution. Our distributed Lin-Kernighan neighborhood uses a dis­
tribution structure in which the entire current tour is assigned to each processor.
The domain distribution for the exchange function TA is also easy to formulate
since each application of TA on a tour t requires only a single additional argument,
an edge xo oft. The set of N arguments of TA in a neighborhood NA (t) therefore
consists of all pairs (t, xo) for xo E t. We can partition this set of arguments
into P (almost) equal-sized subsets. Subsequently, each subset is assigned to a
different processor p, and each processor executes TA. with the arguments (t, xo)
chosen from the subset assigned to p to construct its local neighborhood. A dis­
tributed Lin-Kernighan neighborhood that uses the above domain distribution is
isomorphic with the conventional Lin-Kernighan neighborhood as this domain
distribution partitions this neighborhood.

Combination function. Since each processor executes TA on the entire tour t
and without any restriction on edges that may be exchanged, it can occur that the
same edges are replaced or inserted by different processors. This may result in
infeasible solutions when all proposed edge exchanges are effectuated. Even if
proposed edge exchanges are disjoint, it can occur that a tour is split into several
subtours when all exchanges are effectuated. Hence, the combination function
can only effectuate a subset of the proposed exchanges. Essential to obtain a good
speed-up is that the total gain made in each iteration of the parallel algorithm is
as large as possible, i.e., the gain achieved with effectuating a subset of all pro­
posed exchanges should be maximal. This problem, which we call the traveling
salesman combination problem (TSCP), can be formulated as follows.

Definition 5.10 (TSCP). Given are a TSP instance, a tour t, and a collection L
{lt, ... , lq} of q edge sets included in t. Let l~, ... , l~ be sets of edges such that
t \ li u z; E NA (t) for 1 :::: i :::: q' and let L' = {it, ... 'lq, li' ,',. '~~}. Then, the
problem is to find a subset L* of L' such that t* = (t \ Ut~j~q lj) U <UkeL• k)
is a tour, and f (t*) is minimal. D

In the TSCP one is asked to find a subset L *of the proposed exchanges L such that
the tour obtained by replacing the edges in L with the edges in L * has minimal
length. Unfortunately, we have the following result.

Theorem 5.3. The decision variant of the TSCP is NP-complete.
Proof. It is not hard to verify that the TSCP is in NP. Next, we reduce the set
packing problem (SPP) to the TSCP. In the SPP a collection C of finite sets with
elements from a set W is given and a positive integer m ::;: I C 1. The question is
whether C contains at least m mutually disjoint sets. The SPP is NP-complete
[Garey & Johnson, 1979].

5.4. A parallel Lin-Kernighan algorithm 75

We construct a tour t, with ltl = IWI + ICI, as follows. Map each wE W
onto an edge e of a tour t with length d (e) = 0. Associate with each set c e C an
unique edge ee Et on which no w E W is mapped, such that c, whose elements are
mapped onto a set of edges Ee, is mapped onto a tour t~ eNA. (t) with t \ t~ = Ec U
{ec}, i.e., edges le= Ee U {ee} are removed from t to construct t~. rA. adds edges
e' tot~ such that (t~ \ t) n (t~ \ t) = 0 for all c' E C \ {c}. Choose d(ee) = 1 and
d(e') Ofor alle' E t~\t andc E C. Hence, f(t)- f(t~) = lfor all t~ associated
with sets c E C. An SPP instance is now reduced to an TSCP instance in which
the question is whether there exists a tour t* with f (t) - f (t*) :;:: m, because for
all le, le' EL that are included in t but not in t* holds that le n let = 0, otherwise
t* is not a tour since the inserted edges in t~ and t~ are different. Consequently, it
holds that the sets c associated with the edge sets sets leE L * are mutually disjoint.
So the problem of determining whether C contains m mutually disjoint subsets is
equivalent with determining whether there exists a tour t* with /(t)- f(t*) :;:: m
since the gain made by exchanging an edge set l E L * is at most one. o

Considering that the problem of finding an optimal subset of the proposed ex­
changes whose effectuation results in a maximal gain is NP-hard, we use the fol­
lowing heuristic for selecting a subset of the proposed exchanges that is effectu­
ated. The idea is to combine proposed edge reversals to a feasible tour by attempt­
ing to perform them on the current tour in order of descending gain. For this, we
construct the following sequence of tours tp with 0 ~ p ~ P and to t. Let
ep be an edge for which f(rA.(t, ep)) < f(t). Then tp+t = tp if rA.(tp, ep) does
not result in a feasible tour with lower cost. otherwise tp+1 = rA.(tp, ep). A pro­
posed A.-exchange consists of a sequence of k 2-exchanges. To compute tp+l this
sequence of 2-exchanges is performed on tp. If a 2-exchange in the sequence of
rA.(t, ep) removes anedgex which does not occur in tp, i.e., this edge has already
been removed by a previous A.-exchange then rA. (t P• e P) cannot be effectuated, so
tp+l = tp. The part of the sequence of2-exchanges proposed in -cA.(t, ep) up to
the 2-exchange that can no longer be performed can still be effectuated, provided
that it gives a shorter tour t p+ 1·

5.4.2 Computational complexity

The complexity of an iteration of the parallel Lin-Kernighan algorithm depends
on the target-machine on which the algorithm is executed. Our target-machine is
a message-passing MIMD machine with a 2-dimensional torus as interconnection
network. We restrict the complexity discussion to this machine.

Complexity of the proposal phase. The complexity of the proposal phase de­
pends on the representation of a tour. It is at most NIP times the complexity
of TA. as given in Table 5.7, where N is the number of cities and P the number

76 The Traveling Salesman Problem

of processors. After this phase a processor can be idle for some time, until all
other processors have completed the proposal phase, at which point the commu­
nication phase begins. The idle time should of course be minimal, and therefore
a good load balance is important. The load imbalance is determined by the time
between the first and the last processor to finish the evaluation of exchanges. This
amount of time is to be minimized. It is, however, not possible to determine an
equal amount of work for each processor beforehand, because the time needed
to evaluate exchanges depends on the (variable) number of edges replaced in an
exchange. Fortunately, the maximum difference between the first and the last
processor to finish the proposal phase decreases when P increases, because then
the maximum number of exchanges evaluated by processors decreases. Conse­
quently, also the load imbalance decreases with increasing P.

Communication overhead. As soon as all processors have stopped evaluating
exchanges, all-to-all broadcasting of proposed exchanges occurs. This part of the
algorithm is called the communication phase. It makes no difference for the com­
munication overhead whether communication is synchronous or asynchronous,
because even if a processor can send a message to another processor before this
processor wants to receive it, a processor can only proceed as soon as it has re­
ceived the exchanges proposed by all other processors. Using the algorithm of
Section 6.2, all-to-all broadcasting on a two-dimensional 2x x 2y torus can be
done in O(x + y) time, which is equal to O(y' P) if the network topology is a
v' P x v' P torus, where P is the number of processors.

The parallel algorithm performs multiple exchanges in a single iteration. Con­
sequently, the total number of all-to-all broadcasts in a run of the algorithm de­
creases with an increasing number of processors, provided that the total number
of exchanges needed to find local minima is independent of the number of em­
ployed processors. So the time needed for all-to-all broadcasting increases sub­
linearly with an increasing number of processors, but the total number of all-to-all
broadcasts decreases with an increasing number of processors.

Complexity of the combination function. The complexity of effectuating pro­
posed exchanges by the combination function depends on the data structure used
to represent tours. Assume that a proposed .A.-exchange consists of a sequence of
k 2-exchanges in which the edges Xi are replaced by the edges Yi for 0 :::; i :::; k.
Effectuating this proposed exchange is then similar to applying TJ.. to the tour tq in
which the edges Xi that are to be removed by 7:;.. are known beforehand; here tq is
the tour obtained by the combination function through effectuating the preceding
q proposed exchanges. Since Xi is already given, only a single Succ operation has
to be performed to check whether Xi still exists in the tour tq. So for the two-level
tree representation the complexity to effectuate a proposed exchange is eJ (ky' N),

5.4. A parallel Lin-Kernighan algorithm 77

and the total complexity of the combination function to effectuate all proposed ex­
changes is CJ(P k,JN), where k is the maximum number of 2-exchanges in any
proposed A.-exchange.

For the segment trees representation effectuating a proposed A.-exchange on
the permanent tour requires CJ(N) time. So if proposed exchanges are effectu­
ated each time after checking whether a proposed exchange can be performed, the
combination function requires at least Q (P N) time for effectuating P exchanges.
However, it is possible to postpone the effectuation of exchanges on the perma­
nent tour until all proposed exchanges have been checked and implemented in the
segment tree. This implies that a single, possibly large, segment tree is. built that
represents all proposed exchanges. If K denotes the total number of2-exchanges
summed over all proposed .A-exchanges, then the height of this segment tree is
CJ(log K). Since only a single Succ operation has to be performed in each 2-
exchange, the total complexity to build a segment tree that represents the tour
obtained after effectuating all proposed exchanges, is CJ(K log K + K 2). Effectu­
ation of the proposed exchanges on the permanent tour requires CJ(N) time. The
total complexity of the combination function is therefore CJ(N + K log K + K2).

Recall that in each .A-exchange an upper bound on the number of 2-exchanges is
imposed, which is equal to 50 in our implementation. Hence, K = CJ(P) and the
complexity of the combination function is CJ(N + P2). The combination function
effectuates at most P exchanges, which requires CJ(P N) time in a sequential al­
gorithm. So the total amount of time needed for effectuating proposed exchanges
in the parallel Lin-Kernighan algorithm that uses segment trees is less than that
required by a sequential algorithm.

Important issues to obtain a good speed-up with our parallel Lin-Kernighan
algorithm are load balancing, communication overhead, and the proportion of
proposed exchanges effectuated by the combination function. The load imbal­
ance is expected to decrease with an increasing number of processors. The time
needed for all-to-all broadcasting is CJ(,JP), which grows sublinearly with in­
creasing number of processors, but the number of all-to-all broadcasts is expected
to decrease with increasing number of processors. The number of proposed ex­
changes that can be effectuated depends on the tour at hand but is bounded by
NI k, where k is a lower bound for the number of replaced edges in a single .A­
exchange. In our parallel algorithm only the work involved in a rejected exchange
does not contribute to the speed-up, and it is therefore important that most of the
proposed exchanges are effectuated. It is likely that more exchanges are rejected
when the number of processors increases. For a fixed number of processors it is
likely that less exchanges are rejected when larger instances are attempted.

78 The Traveling Salesman Problem

cand. set first order second order
p 1 16 32 48 64 1 16 32 48 64

T(s) speed-up T(s) speed-up
d2103 360 3.3 4.9 6.2 4.9 926 4.7 4.8 7.5 7.7
u2152 517 5.5 9.8 9.5 10.0 1053 5.2 9.0 11.7 11.5

pr2392 1317 5.0 8.8 13.6 16.2 2140 5.6 10.1 12.5 15.7
pcb3038 2091 6.0 12.1 14.3 16.8 2699 6.7 11.0 15.4 16.9

rl5915 2241 4.5 7.7 11.2 12.4 9498 8.1 11.9 15.6 16.8
r15934 2267 4.1 7.9 10.6 12.0 9772 5.7 10.4 13.0 18.4

pla7397 9041 5.7 8.9 13.7 14.9 14987 5.1 9.9 14.5 18.2

Table 5.9: Computational results on the Parsytec GCel for two-level trees.

cand. set first order second order
p 1 16 32 48 64 1 16 32 48 64

J. \SJ I speed-up T(s) speed-up
d2103 70 2.8 4.0 4.5 3.3 400 3.7 3.8 4.5 4.6
u2152 131 4.3 5.7 5.3 6.2 421 4.2 6.1 7.3 7.5

pr2392 252 5.0 6.9 8.6 8.9 671 5.2 7.6 8.8 9.9
pcb3038 356 5.3 8.7 9.2 9.3 810 5.7 8.5 10.2 11.0

rl5915 448 4.9 7.6 9.2 8.8 2197 5.3 7.6 9.1 9.4
rl5934 439 4.5 6.9 8.3 8.4 2321 4.8 6.3 8.5 9.8

pla7397 782 5.2 6.7 8.9 8.8 2026 5.0 7.0 8.5 10.0
rll1849 1352 5.3 8.1 9.7 9.9 4504 5.5 6.7 10.7 11.6

brd14051 2409 6.5 10.2 12.0 13.7 5427 7.2 11.5 13.9 16.4

Table 5.10: Computational results on the Parsytec GCel for segment trees.

cand. set first order second order
p 1 8 16 24 32 1 8 16 24 32

T(s) speed-up T(s) speed-up
rl5915 140 2.5 4.4 5.5 6.8 509 3.2 5.7 6.6 9.8
rl5934 200 3.1 5.5 7.1 8.6 612 3.0 5.6 9.4 8.7

pla7397 815 3.9 6.7 10.5 10.9 904 2.9 4.9 6.5 9.7
rl11849 1645 3.4 7.8 8.8 12.0 3027 3.5 6.6 10.3 13.3

brd14051 2042 1.6 3.6 5.9 7.2 4317 2.2 4.7 8.1 12.8
d18512 6719 3.4 7.8 9.7 11.3 8553 4.1 6.9 12.3 14.4

Table 5.11: Computational results on the Parsytec Xplorer for two-level trees.

5.4. A parallel Lin-Kernighan algorithm 79

cand. set first order second order
p 1 8 16 24 32 1 8 16 24 32

T(s) speed-up T(s) speed-up
r15915 39 3.3 4.6 5.3 6.1 175 3.6 5.2 6.2 7.8
rl5934 41 3.2 4.7 5.4 6.3 178 3.1 4.8 6.8 6.8

pla7397 57 2.8 4.1 5.4 5.3 146 3.2 4.6 5.6 7.0
rl11849 132 3.7 5.5 6.4 7.6 373 3.3 5.2 6.3 7.9

brdl4051 206 4.0 6.0 8.6 9.8 461 4.4 7.0 9.0 10.9
d18512 278 3.8 6.8 8.0 9.7 552 4.1 6.8 9.9 10.8

pla33810 443 2.7 4.3 5.3 6.6 982 3.6 4.9 6.1 8.1
pla85900 1628 2.9 3.9 5.2 6.0 3852 3.1 5.9 6.4 7.7

Table 5.12: Computational results on the Parsytec Xplorer for segment trees.

p 1 8 16 24 32 1 8 16 24 32
T(s) €avg(%)

rl5915 39 12 8.4 7.3 6.4 3.3 2.7 2.8 2.9 2.9
r15934 41 13 8.7 7.5 6.7 3.3 3.1 3.5 3.3 3.2

pla7397 57 20 14 11 11 3.0 3.0 2.7 2.9 3.2
rl11849 132 36 24 21 18 3.0 2.7 2.6 2.5 2.8

brd14051 206 51 34 24 21 2.9 2.7 2.8 2.7 2.7
d18512 278 74 41 34 29 2.4 2.3 2.3 2.3 2.2

pla33810 442 163 104 84 67 2.7 2.6 2.6 2.5 2.6
pla85900 1628 563 431 311 273 2.9 2.7 2.7 2.6 2.6

Table 5.13: Running times and average relative excess E for segment trees and first order
Delaunay sets.

p 1 8 16 24 32 1 8 16 24 32

I T(s) €m(%)

I r15915 174 48 34 28 23 2.6 2.3 2.3 2.3 2.6
r15934 178 46 32 26 21 3.0 2.8 2.9 2.8 2.7

pla7397 143 68 37 29 28 2.6 2.4 2.8 2.5 2.5
rl11849 373 113 72 60 47 2.4 2.4 2.3 2.4 2.4

brd14051 461 106 66 51 42 2.6 2.5 2.6 2.5 2.6
d18512 552 137 81 56 51 2.2 2.2 2.1 2.2 2.1

pla33810 982 272 200 160 121 2.4 2.5 2.3 2.5 2.5
pla85900 3852 1244 658 601 500 2.7 2.7 2.9 2.6 2.6

Table 5.14: Running times and average relative excess c:: for segment trees and second
order Delaunay sets.

80 The Traveling Salesman Problem

5.4.3 Computational results

We have implemented the parallel Lin-Kernighan algorithm in C on two parallel
machines running the Parix operating system. The first one is a Parsytec GCel
that consists of 512 T805 transputers with 4 Mbyte local external memory. The
second one is a Parsytec PowerXplorer that consists of 32 processing units that
are based on the PowerPC 601 microprocessor. Each processing unit has 4 bidi­
rectional communication link interfaces and a local external memory of 32 Mb.
Both machines are configured in a two-dimensional torus. Although the compu­
tational power of a T805 transputer is much less than that of a Power PC processor
-a T805 is roughly 15 times slower-, the ratio of communication vs. compu­
tation time is better for the GCel, which means that communication is relatively
less costly on the GCelthan on the PowerXplorer. A comparison on these two
platforms may therefore indicate the dependence of our algorithm on the com­
munication/computation performance ratio.

We have tested the parallel algorithm on the same instances as the sequential
algorithm. All running times are given in seconds. Tables 5.9 and 5.10 give the
speed-up obtained on the Parsytec GCel. The largest instance we could test on
this network was pla7397 because of memory limitations. Tables 5.11 and 5.12
give the speed-up obtained on the PowerXplorer network. The results are aver­
ages over ten runs of the algorithm starting from different initial nearest neighbor
tours. Each table presents the average running times for the runs on a single pro­
cessor and the average speed-up for the runs on multiple processors.

From these tables we observe that larger and better scaling speed-ups can be
obtained for the two-level tree data structure than for the segment tree data struc­
ture. However, the achieved speed-ups for two-level trees are not sufficient to
make them competitive with segment trees, because the smallest running times
are evidently obtained with the segment tree data structure.

Furthermore, we observe that in most cases better speed-ups are obtained on
the GCel. This is explained by the better communication vs. computation ratio of
this machine. The smallest overall running times, however, are clearly obtained
on the PowerXplorer, because of the much larger computational power of this
machine. Also, we observe that better speed-ups are obtained when using larger
candidate sets, such as those consisting of second order Delaunay sets. This is
explained by the increasing computation time through using larger candidate sets,
which is beneficial for the speed-up of the algorithm.

Thbles 5.13 and 5.14 show that the quality of the solutions found by the par­
allel algorithm is equal to that obtained by the sequential algorithm. This is no
surprise, since the distributed Lin-Kernighan neighborhood used by the paral­
lel algorithm is isomorphic with the conventional Lin-Kernighan neighborhood.

5.4. A parallel Lin-Kemighan algorithm 81

Figure 5.6: Running time profiles for dl8512 (left) and pla85900 (right).

Figure 5.7: Proportional profiles for d18512 (left) and pla85900 (right).

However, most approaches based on partitioning cities either lead to a deterio­
rated solution quality or display little speed-up, which was also observed in our
earlier attempts to design an efficient parallel Lin-Kernighan algorithm.

Figure 5.6 and 5.7 present some more detailed information on the total and
proportional amount of time spent by processors in each of the following four
phases: proposing exchanges, being idle, communicating exchanges, and effec­
tuating exchanges. Measurements are done on the PowerXplorer using segment
trees and first-order Delaunay sets. First, we note that for a given instance, the to­
tal amount of time spent in each phase of the algorithm decreases with an increas­
ing number of processors. TYPically, the total time needed in the proposal phase,
the idle time, and the effectuation time decrease almost linear with an increasing
number of processors. 'Ibis is explained by the observations in Section 5 .4.2. Fur­
thermore, we observe that the proportional amount of time to combine and effec­
tuate proposed exchanges increases for larger instances and decreases for larger
number of processors. 'Ibis is also explained in Section 5.4.2. Finally, we ob­
serve that also the total time needed for communication decreases with an increas­
ing number of processors. 'Ibis indicates that the decrease in the total number of

82 The Traveling Salesman Problem

20

0o~,~ •• ~.~.~ro~25~oo~.,~~-~~ro
!ten ton

Figure 5.8: Total and proportional amounts of proposed and accepted exchanges.

all-to-all broadcasts dominates the increase in time needed for all-to-all broad­
casting. The proportional amount of time spent in communication, however, in­
creases for larger number of processors, and is the bottle-neck for the speed-up of
the algorithm. So the scalabllity of our algorithm for larger number of processors
depends on the efficiency of all-to-all broadcasting.

The typical behavior of the combination function is illustrated in Figure 5.8 in
which the absolute number of proposed and accepted exchanges is given as well
as the proportional amounts for each iteration of the parallel algorithm when ap­
plied to the instance rl5934 using 32 processors. We observe that during the first
iterations of the algorithm all processors find profitable exchanges of which 60%
to 80% can be effectuated. After this, the number of profitable exchanges drops
significantly and the effectuation rate varies between 40% and 100%. Overall it is
fair to say that the combination function utilized in the parallel algorithm is quite
effective, considering the intricate behavior of the exchange function t';, .•

In this chapter we have shown that multiple-step parallelism can be applied
successfully in the design of effective local search algorithms for the TSP. We
have used solution decomposition for the parallel 2-opt and 3-opt algorithms and
domain decomposition for the parallel Lin-Kernighan algorithm. Computational
results show that reasonable speed-ups are achieved and that the parallel Lin­
Kernighan algorithm is competitive with sophisticated sequential implementa­
tions, both with respect to running times and quality of final solutions. Moreover,
multiple-step parallelism based on domain decomposition is fairly robust with re­
spect to the underlying Lin-Kernighan implementation and data structures used
to represent tours. Hence, the proposed approach will give good speed-ups for
mostLin-Kernighan implementations provided that the target machine allows ef­
ficient all-to-all communication.

6
The Steiner Tree Problem

This chapter discusses sequential and parallel local search for the Steiner tree
problem in graphs. We introduce novel neighborhoods whose computational time
and space complexity is smaller than those known in the literature. We present
computational results for benchmark instances from Beasley [1990] and instances
derived from real-world TSP instances, which contain up to 18,512 vertices and
325,093 edges. These results show that good-quality solutions can be obtained
in moderate running times.

Furthermore, we present a parallel local search algorithm based on multiple­
step parallelism and an optimal polynomial-time combination function. Compu­
tational results show that good speed-ups can be obtained without loss in quality
of final solutions.

6.1 Local search for the Steiner tree problem

In the Steiner tree problem in graphs a minimum weight subtree has to be found
that includes a prespecified subset of vertices of a graph. The Steiner tree problem
occurs in several practical applications, such as the design oftelephone, pipeline,
and transportation networks, and the design of integrated circuits. Although the
Steiner tree problem is NP-hard [Hwang, Richards & Winter, 1992], several so­
phisticated optimization algorithms exist that are able to solve instances with up
to 2,500 vertices and 62,500 edges, at the cost however of substantial amounts of
running time, viz., several hours on a powerful workstation or supercomputer. In

83

84 The Steiner Tree Problem

addition many heuristics have been proposed, most of which have running times
that are polynomially bounded at the risk of finding sub-optimal solutions. Hwang,
Richards & Winter [1992] present an overview of both optimization algorithms
and heuristics.

Local search has been applied so far only to relatively small instances of the
Steiner tree problem containing up to 100 vertices, requiring several minutes of
running time. Such instances are well within the range of current optimization
algorithms, using a smaller amount of running time. So up to now local search
has not been competitive with the best known optimization algorithms. In this
chapter we present a local search algorithm that is able to find solutions with a
relative excess of a few percent requiring moderate running times. Moreover, it
is able to handle large problem instances in acceptable amounts of time.

Formally the Steiner tree problem in graphs (STPG) is defined as follows.

Definition 6.1 (STPG). Given are an undirected graph G = (Vo, Eo), a func­
tion d : Eo -+ IN that assigns weights to edges, and a set of terminals X s; V o.
The problem is to find a subtree T = (Vr, Er) of G with X s; Vr s; V o and
Er s; Eo such that the sum of the edge weights LeeEr d (e) is minimal. 0

Vertices in V o \ X are called non-terminals. Since no non-terminals with degree
one are included in an optimal solution, the solution space S consists of all sub­
trees T of G with X s; Vr that contain no non-terminals with degree one. Such
a tree is called a Steiner tree. Non-terminals in a Steiner tree T are called the
Steiner vertices of T. Steiner vertices with a degree at least three are called key
vertices. A key path is a path in a Steiner tree T of which all intermediate vertices
are Steiner vertices with degree two in T and whose end vertices are terminals or
key vertices. It follows directly that a minimal Steiner tree consists of key paths
that are shortest paths between key vertices or terminals. A basic property of the
STPG is that Steiner trees contain at most I X I - 2 key vertices, and consequently
they consist of at most 21 X I 3 key paths.

6.1.1 Neighborhoods for the STPG

The question of finding appropriate neighborhoods for the Steiner tree problem
in graphs has been addressed by several authors. Duin & VoB [1993] distinguish
between node-oriented neighborhoods based on exchanging Steiner vertices, and
edge-oriented neighborhoods based on edge exchanges.

Os borne & Gillett [1991] propose a neighborhood based on the observation
that a Steiner tree T can be represented by its vertices Vr since its edges Er
can be determined by computing a minimum spanning tree for the subgraph of
G induced by Vr. Neighbors are then constructed by adding and removing ele­
ments to and from Vr. A similar neighborhood is used in the genetic algorithm

6.1. Local search for the Steiner tree problem 85

of Kapsalis, Rayward-Smith & Smith [1993]. Although the neighborhood size is
O(IVGI), verification oflocal optimality is computationally expensive for these
neighborhoods, as construction of neighbors requires a minimum spanning tree
computation that has O(IEGilog IVGI) time complexity.

YoB [1992] and Dowsland [1991] propose 1-opt neighborhoods based on ex­
changing key paths. Neighbors are constructed by removing one key path from a
Steiner tree T and connecting the remaining two components by a shortest path
between two arbitrarily chosen vertices, one in each component, such that a Steiner
tree is obtained. A disadvantage of this neighborhood is that the complexity of
verification of local optimality, and thus the complexity of a single local search
step, is O(IXIIVGI2), since a Steinertree T contains at most 21XI- 3 key paths.
Moreover, a pre-processing step of 0(1 VGI 3) is needed to compute shortest paths
between all pairs of vertices, and storing all paths requires 0(1 VG 12) space com­
plexity. Dowsland [1991] furthermore presents an extended 1-opt neighborhood
that consists of the above neighborhood extended with Steiner trees obtained by
connecting the two components by shortest paths from any vertex not in the tree
to any two vertices, one in each component. This extension is needed to prove
complete connectivity of this neighborhood. The time complexity to evaluate all
neighbors in this neighborhood is O(IXIIVGI3), which makes it not suited for lo­
cal search algorithms in which neighborhoods have to be enumerated, e.g., iter­
ative improvement or tabu search.

We present novel neighborhood structures and exchange functions with im­
proved time and space complexities, which makes these neighborhoods more suit­
able for larger problem instances. Moreover no pre-processing step is required to
compute all-pairs shortest paths. The exchange function of these neighborhoods
is based on the following observation. Removal of key path splits a Steiner tree
into components. Reconnection of these components can be considered as a new
STPG instance in which components are treated as terminals. A STPG instance
with two terminals can be solved in polynomial time by computing a shortest path
between these terminals. This observation gives rise to the following neighbor­
hood.

Definition 6.2. Let T be a Steiner tree that consists of K key paths, lt, ... , lK.
Let Si, s: be the two components that remain after removal of key path li from
T. Let sp : P(VG) x P(VG) ---+ P(EG) give a shortest path from a subset of
vertices to another subset of vertices. Then, the neighborhood Nt is defined by

Nt(T) ={Si Us; U sp(Vsi' Vs~) I Si Uli Us;= T A 1:::: i:::: K}.
I

0

The number of key paths in neighboring Steiner trees can differ. Removal of a key

86 The Steiner 'lJ:ee Problem

proc sp (W, W': 'P(Va))
begin

for v E Va \ W dom(v} := oo od
for v E W dom(v) := Ood
Yo := 0; Yt := W; v E W;
while Yt =F 0 1\ v If_ W' do

v E {wE Yt I m(w) = minw'eY1 m(w')};
if v cf. W' then

fi

for v' E {wE Va I (v, w) E Ea} do
if v' cf. Yo then

fi
od

m(v') := min{m(v'), m(v) + d(v, v')};
Yt := Yt U {v'}

Yo :=YoU {v}; Y1 := Yt \ {v}
od {m (v) gives the length of the shortest path from W to W'}

end

Figure 6.1: A multiple-source shortest path algorithm.

path that ends in a key vertex with degree three turns that key vertex into a non
key vertex and the two remaining key paths are merged into a single key path.
Addition of a key path that ends in a non key vertex converts that vertex into a
key vertex, and the key path that passes through it is split into two key paths. So
ITI- 2 :S IT'I :S ITI + 2 forT' E Nt(T), where ITI denotes the number of
key paths in T. The number of key paths whose removal has to be considered
in a given neighborhood Nt(T) is at least lXI- 1 and at most 21XI- 3 since a
Steiner tree T contains at least I X I - 1 and at most 21 X I - 3 key paths. Hence,
the size of a neighborhood is at most 21 X I - 3. An interesting observation is that
solutions only have neighbors with lower or equal cost, because only paths with
at most the length of the removed path are inserted since this length is an upper
bound on the length of the shortest path between components. So an attempted
replacement of a key path in a Steiner tree can lead to the same Steiner tree if no
shorter path exists. In particular this can imply that local minima have no other
neighbors.

The function sp is computed using the algorithm of Figure 6.1. The time
complexity of this algorithm is O(IEallog IV aD if the set Yt is represented by
the classical heap data structure. Identification of the two components that arise

6.1. Local search for the Steiner tree problem 87

when a key path is removed from a Stein er tree can be done in 0(I V c I) time.
An important observation is that the algorithm of Figure 6.1 computes the

shortest paths to vertices in ascending order. In this algorithm m (v) gives the
length of a shortest path to a vertex v E Yo. The algorithm can be terminated as
soon as m (v) ::::: d (1i) for a vertex v E Yo and a removed key path li, because then
the shortest path from Si to s; is at least d(li) long. Consequently, replacement
of 1i cannot lead to a lower-cost tree. This leads to the following upper bound for
the time complexity of the function sp. Let T be a Steiner tree from which a path
1 with length d (1) is removed, which results in two components S, S'. Let W be
the largest set of vertices that are within distance d (1) from S for some 1 in T.
Then, the complexity of the function sp is O(IVcl + IWI2 log lW I).

A consequence of inserting only shortest paths between components is that
the neighborhood N1 is not connected, i.e., it is not always possible to reach a
globally minimal Steiner tree by a sequence of exchanges, as can be seen by a
simple example. Therefore, we present a neighborhood N{ that is a small aug­
mentation of N1 such that it is sufficiently connected, i.e., it is possible to reach
an optimal solution from any solution by a sequence of exchanges. Moreover,
N{ (T) also contains neighbors with higher cost than that of a Steiner tree T, so
here neighborhoods of local minima contain other Steiner trees. Such neighbor­
hoods are needed in tabu search algorithms to escape from local minima.

InN{ also a single key path is replaced with another key path, as is the case
in N1. The supplement of N{ to N1 consists of neighbors constructed by adding
shortest paths from one component to the other component via vertices that are
positioned at a distance of one edge from the other component.

Definition 6.3. Let T be a Steiner tree that consists of K key paths, 1}, ... , 1K.
Then, the neighborhood N{ (T) is equal to

{Sius;usp(Vs;' v)U{(v, v')} I T = SiU1ius; I\V
1
E s: 1\(v, v') E Eel\ 1 ~i ~K}.

D

The complexity of evaluating the cost of all neighbors in a neighborhood N{ (T)
of a Steiner tree T is O(IXIIEcllog IV cl), as all neighbors originating from re­
moval of the same key path can be evaluated in a single execution of the multiple­
source shortest path algorithm. The neighborhood N{ (T) is a strict subset of
the extended 1-opt neighborhood ofDowsland [1991] and all excluded neighbors
originating from removal of a given key path have higher cost than those that are
included inN{ (T). The average cost of neighbors in N{ (T) is therefore lower
than in Dowsland's extended 1-opt neighborhood, which also has a much larger
computational complexitythanN{, viz. O(IXIIVcl3). N{ is not completely con­
nected since it is not possible to transform a Steiner tree into another Steiner tree

88 The Steiner Tree Problem

that differs only in a single key path that is not a shortest path between two com­
ponents. However, we have the following result.

Theorem 6.1. The neighborhood structure N{ is sufficiently connected.
Proof. Let T* be an optimal Steinertree, let T be aSteinertree, andletsp(A, B)
denote a shortest path from component A to B. Partition T* into subtrees such
that all leaves are terminals and all other vertices are Steiner vertices. Let S ~
T* be such a subtree that is not duplicated in T. We consecutively add adjacent
key paths in S to T, starting with the key paths rooted from the leaves in S. We
distinguish between two cases based on whether vertex i with which a vertex a E
T has to be connected, is included in T.

Let i E T, and let sp(a, i) be a key path in T* not in T that is to be added.
Remove a key path l from T not in T* such that addition of sp(a, i) would result
in a Steiner tree. This is always possible since addition of sp(a, i) to T gives a
cycle in T of which at least one key path is not included in T*. Removal of l
splits Tin components A and B with a EA and i E B. Let (j, i) E sp(a, i) and
construct T' = A U B U sp(A, j) U { (j, i)} EN{ (T). If sp(a, j) # sp(A, j) =
sp(a', j), then addition of sp(a, j) toT' results in a cycle. So there exists a key
path in T' not in T* whose replacement with sp(a, j) would result in a Steiner
tree. We can repeat the above procedure, adding one edge of sp(a, i) at a time,
until the entire path sp(a, i) has been added.

Let i fj. T, then i is a key vertex connected with at least three vertices a, b, c E
Sthat also exist in T. Letsp(a, i) beakeypathin T* not in T that is to be added.
Remove akeypathl from T notin T* such that addition of sp(b, a) would result
in a Steiner tree. This is always possible since addition of sp(b, a) to T gives
a cycle in T of which at least one key path is not included in T*. Removal of l
splits Tin components A and B with a E A and b E B. Let (j, a) E sp(a, i)
and construct T' = A u B U sp(B, j) u {(j, a)} E N{(T). Next, remove a
key path l' from T' not in T*, which results in components A' and C, such that
additionofsp(c, j) wouldgiveaSteinertree. Let(j', j) E sp(a, i) and construct
T" =A' u C U sp(C, j') u {(j', j)} E N{(T'). Repeating these steps of adding
edges of sp(a, i) one after the other, starting alternately from b and c, gives a
Steiner tree that includes i, at which point the former case applies.

Sort the key paths of S according to the minimum number of key paths that
need to be traversed to reach a terminal. Once a key path of subtree S in T* has
been added to T, other key paths from S that do not exist in T * are added to T in
order of ascending rank. Repeating this construction for other subtrees S c T*
not duplicated in T gives a valid sequence of exchanges inN{ that transforms a
Steiner tree T into an optimal Steiner tree T*. D

The neighborhood structures N1 and N{ are based on the insertion of a single

6.1. Local search for the Steiner tree problem 89

shortest path between two components. They are inspired by the polynomially
solvable Steiner tree problem with two terminals. Chen [1983] presents a poly­
nomial algorithm for the Steiner tree problem with three terminals. This moti­
vates the following neighborhood in which two paths are removed from a Steiner
tree. Reconnection of the remaining three components can be done optimally in
polynomial time with the following algorithm that improves upon the time com­
plexity of the algorithm of Chen [1983]. The algorithm is based on the following
property.

Property 6.1. Consider an S1PG instance with three terminals s, s', s", and let
T be a minimal Stein er tree with key vertex w. Then, the length of the path in T
from w to s and the length of the path from w to s' is at most d(sp(s, s')). D

Note that it is possible that w coincides with a terminal. If we replace terminals
s, s', s" with three components S, S', S" we see that the key vertex win a mini­
mal Stein er tree that contains the components S, S', S" is included in the set W
of vertices for which the shortest path to S and the shortest path to S' is at most
d (sp(S, S')). This optimal key vertex w can be found by the following algorithm.

(1) Construct the set of vertices for which the shortest path to S is at most
d(sp(S, S')). This set is given by the final value of the set Yt in the al­
gorithm of Figure 6.1 for the computation of sp(S, S'). Similarly, the set
of vertices for which the shortest path to S' is at most d(sp(S, S')) is given
by the final value of Yt in the computation of sp(S', S). The set W of can­
didate key vertices is the intersection of these sets.

(2) Determine the shortest path from W to S" using the algorithm of Figure
6.1. In this algorithm m(v), v E W, has to be initialized as the distance
from S to v plus the distance from S' to v. The root vertex w of this path
is the key vertex in a minimal Steiner tree T for the components S, S', S".

The time complexity to find w is O(IEollog IVol). At most three additional key
paths need to be added to construct a minimal Steiner tree that contains S, S',
and S". Let stp3 (S, S', S") denote this set of key paths that can be found with
the above algorithm. Using the function stp3, we can define the following 2-
exchange neighborhood.

Definition 6.4. Let T be a Steiner tree that consists of K key paths, It, ... , l K.

Let the function stp3 return, on input of three components, the additional key
paths in a minimal Steiner tree that contains these components. Then, the neigh­
borhood Ni (T) is equal to

{SUS'US"Ustp3{S, S', S") IT= SUS'US"Uli Ulj A l::;;i<j::;;K}.

D

90 The Steiner Tree Problem

The size of this neighborhood is O(IXI2) as the number of key paths in a Steiner
tree is at most 21X I - 3. The complexity of identifying S, S', S" is 0(1 VG I), and
the above algorithm to implement the function stp3 requires O(IEollog IVol)
time. Hence, the complexity to verify local optimality of a Steiner tree for Nf is
O(IXI21Eollog IVoD. The time complexity of the algorithm to implement stp3
can bereduced bytenninatingitas soon asm(v) > d(li) +d(lj), wherem(v) is
the summed length of the shortest paths from S, S', and W to v e V0 , because
then replacing key paths li and l i cannot lead to a Steiner tree with lower cost.

For all neighbors T' E Nf (T) holds that f (T') ~ f (T) since neighbors
are constructed by computing a minimal Steiner tree to connect the remaining
components after removal of two key paths. Removal of two key paths can, fur­
thermore, lead to a Steiner tree in which Steiner vertices with degree one exist.
This occurs if the two removed key paths share a key vertex with degree three in
T. The remaining key path from this vertex can also be removed from T, which
leads to an additional cost decrease ofT'. So in some cases three key paths are
removed from a Steiner tree T to construct its neighbors in Nf(T). The neigh­
borhood N1 (T) is generally not a subset of Nz(T), and in some cases their inter­
section can even be empty. However, the following result holds.

Theorem 6.2. Let a Steiner tree T e S be given. If T is a local minimum of
Nf, then T is also a local minimum of Nt. Moreover, let T' E Ni (T) and T" E

Nf(T) with l, l' E T, l f/. T', and l, l' f/. T". then f(T") ~ f(T').
Proof. Let T be a local minimum of Ni and assume that T is not a local minimum
of Nt. Then, for some T' = SUS' U {l} U sp(S uS' u {l}, S") e Ni(T), in
which key path l' is removed, holds f (T') < f (T). T' is also a Steiner tree that
connects the components S, S', S" that arise when key paths l and l' are removed
from T, so f(T') 2:::: f(T), which contradicts the assumption. Furthermore, for
T" =SUS' US" U stp3(S, S', S") E Nf(T) holds that f(T") ~ f(T') as T" is
a minimal Steiner tree that connects the components S, S', and S". o

A disadvantage of the neighborhood N2, which limits its practical usefulness, is
its time complexity of 0(1 X 121Eo I log I VG I) for verifying local optimality. There­
fore, we present the following neighborhood N2 that is a restriction of N2 with a
smaller time complexity for verifying local optimality.

Definition 6.5. Let T be a Steiner tree that consists of K key paths, lt, ... , lx.
Let the function stp3 return, on input of three components, the additional key
paths in a minimal Steiner tree that contains these components. Then, the neigh­
borhood Nz (T) is equal to

{Sus'us"ustp3(S,S',S") 1 T=SUS'US"Ul;UljAlinlr=/=0A1 <j~K}.

0

6.1. Local search for the Steiner tree problem 91

To obtain a neighbor in Nz two key paths are removed that have a vertex in com­
mon, which can be a terminal or a key vertex. TYPically, if this key vertex has de­
gree three in the Steiner tree, the remaining key path is also removed. The three
remaining components are connected using the function stp3 to compute a min­
imal Steiner tree for three components. The size of the neighborhood N2 (T) for
a Steiner tree T is O(tciXI), where tc is the maximum degree of a key vertex in
T. Consequently, the complexity of verifying local optimality ofT for Nz is then
O(tciXIIEollog !Vol), which is substantially less than the complexity of verify­
ing local optimality for N~. Moreover, it still holds that a local minimum of Nz
is a local minimum of N1 since minrre.tV2(T) f(T') :::;: minrne.tV1(T) f(T") for a
Steiner tree T E S for similar reasons as outlined in the proof of Theorem 6.2.

6.1.2 Enumeration of neighborhoods

An important aspect for the running time of an iterative first-improvement algo­
rithm is how neighborhoods are enumerated. Neighborhoods should be enumer­
ated such that exchanges that are not likely to lead to lower-cost solutions are ex­
amined last. Of course it is generally not possible to determine beforehand which
exchanges do not lead to a lower-cost solution, but often exchanges that do not
yield any gain when applied to a Steiner tree T also do not lead to a lower-cost
Steiner tree when applied to a neighbor T' E N (T). This implies that it is prof­
itable to enumerate neighborhoods in such a way that exchanges that have not
yet been examined, are explored first; this is called circular neighborhood search

[Papadimitriou & Steiglitz, 1982]. To this end, a function b is introduced that
assigns a boo lean to arguments of the exchange function that indicates whether
the corresponding exchange has been evaluated and has not led to cost decrease.
While enumerating the neighborhood of the current solution in a local search al­
gorithm, first those exchanges are examined for which this boolean is false. If
no lower-cost neighbor has been found for these exchanges, then the remaining
exchanges are evaluated.

In the neighborhood N1 only a single path is removed in an exchange, so
booleans can be associated with key paths, and the space complexity for storing
the boo lean function b is 0 (IX I). In the neighborhood Nz exchanges can be iden­
tified by marking key vertices, because if a key vertex in a Steiner tree has degree
tllree, neighbors are obtained by removing the three key paths that end in this key
vertex. Considering that most key vertices in a Steiner tree have degree tllree,
we can associate booleans with key vertices to indicate whether they have been
exchanged. The space complexity of b can then be reduced to O(IXI). In tabu
search certain exchanges are also not explored, but an essential difference with
the tabu list in tabu search and the usage of the function b is that b is only used to
achieve circular neighborhood search, not to prohibit exploration of exchanges.

92 The Steiner nee Problem

6.1.3 Computational results

We have implemented iterative first-improvement algorithms that use the neigh­
borhoods N1 and Nz. A Steiner tree is represented by a list of records that contain
key paths. Each record also contains cross references to key paths that share end
vertices with this key path. Furthermore, a function is maintained that gives for
each vertex included in the Steiner tree, a key path that contains this vertex. Given
the end vertices of a key path it is possible to find the corresponding key path by
following the cross references. In this way removal and addition of key paths can
be done in a time linearly bounded by the number of vertices in a key path and
the degrees of the end vertices. It should be noted that removal or addition of key
paths can require that other key paths are joined to one key path or split into two
key paths.

Computational results are presented for 40, randomly generated, instances
from Beasley [1990]. Furthermore, a number of real-world Euclidean traveling
salesman problem instances from Reinelt's TSPLIB are transformed to Steiner
tree problem instances, since for many combinatorial optimization problems it is
observed that real-world instances are typically much harder to solve than ran­
domly generated instances. This transformation is done as follows. The graph
required in an STPG instance is the extended Delaunay graph for the correspond­
ing TSP instance as defined in Definition 5.9. Recall that an extended Delaunay
graph G is a planar graph that contains at most 3n edges, where n is the number
of vertices. We have utilized k-th order Delaunay graphs, with k = 1, 2, 3, 4, to
construct STPG instances with more edges. From each graph, constructed in this
way, three STPG instances are derived by randomly designating 15%, 25%, or
35% of the vertices as terminals. No reduction techniques to reduce Steiner tree
problem instances have been used. Initial solutions are constructed with a short­
est path heuristic [Takahashi & Matsuyama, 1980] as follows. Starting with an
initial terminal, terminals closest to the tree constructed so far are consecutively
connected by shortest paths to this tree until all terminals are added.

Thbles 6.1 and 6.2 present the results obtained with our iterative improvement
algorithm. In these tables lVI, lE I, and lXI give the number of vertices, edges,
and terminals, respectively. For all problems but one (e18), in Beasley's series
D and E, optimal solutions are known [Beasley, 1989] For the Euclidean STPG
instances optimal solutions are only known for the instances f1 - f24 that contain
up to 1,000 vertices. These solutions are computed by the exact algorithm of Duin
[1994], which is among the fastest exact algorithms available for the STPG. It
can handle instances with at most 1,000 vertices due to memory limitations. The
optimal solution value is given in the column "opt". The best solution found in
ten runs of the iterative improvement algorithm is given in the column labeled

6.1. Local search for the Steiner tree problem 93

N"t Nz
lVI lE I lXI opt best Eavg t(s) best Eavg t(s)

d1 1000 -1250 5 106 106 2.64 0.7 106 0.94 1.1
d2 10 220 220 0.73 0.3 220 0.27 0.6
d3 167 1565 1567 0.22 9.4 1565 0.00 13.7
d4 250 1935 1939 0.34 11.9 1935 0.10 16.2
d5 500 3250 3254 0.18 24.7 3251 0.12 44.5
d6 2000 5 67 70 5.67 0.8 67 2.23 1.9
d7 10 103 103 0.00 0.9 103 0.00 1.2
d8 167 1072 1082 1.64 8.2 1075 1.13 11.6
d9 250 1448 1454 0.70 14.5 1450 0.58 23.4
dlO 500 2110 2119 0.70 29.5 2113 0.44 41.0
dll 5000 5 29 29 4.14 0.8 29 3.05 1.0
d12 10 42 42 3.81 0.1 42 0.24 0.3
d13 167 500 509 2.46 9.2 502 1.86 23.5
d14 250 667 674 1.27 15.0 670 0.90 26.3
d15 500 1116 1123 0.79 32.6 1116 0.46 73.8
dl6 25000 5 13 13 3.08 0.1 13 0.00 0.3
d17 10 23 23 4.35 0.3 23 2.64 0.4
d18 167 223 236 7.40 12.3 230 4.41 30.8
dl9 250 310 336 9.32 22.8 321 5.77 53.5
d20 500 537 558 4.49 53.4 547 2.29 112.0
el 2500 3125 5 111 111 0.00 0.2 111 0.00 0.1
e2 10 214 214 2.62 0.5 214 0.00 1.2
e3 417 4013 4035 0.64 57.1 4023 0.34 86.0
e4 625 5101 5118 0.35 85.2 5103 0.20 192.6
e5 1250 8128 8130 0.11 171.4 8128 0.01 305.3
e6 5000 5 73 73 2.04 0.2 73 0.00 0.3
e7 10 145 145 3.70 0.7 145 1.69 2.2
e8 417 2640 2661 0.98 76.2 2655 0.73 170.8
e9 625 3604 3633 1.03 120.1 3617 0.65 212.5
e10 1250 5600 5621 0.47 242.9 5605 0.37 431.0
ell 12500 5 34 34 4.41 0.2 34 0.00 0.4
e12 10 67 67 1.49 0.6 67 0.59 1.0
e13 417 1280 1312 2.82 77.5 1299 1.98 182.3
e14 625 1732 1756 1.59 139.4 1745 1.07 293.1
e15 1250 2784 2794 0.69 265.2 2784 0.28 728.8
e16 62500 5 15 15 6.67 0.3 15 0.00 1.0
e17 10 25 25 4.80 0.8 25 2.40 1.3
e18 417 568* 613 8.87 94.1 593 5.04 300.8
e19 625 758 809 7.68 156.3 790 4.63 397.5
e20 1250 1342 1398 4.71 384.5 1370 2.77 845.9

Table 6.1: Results for Beasley's series D and E.

94 The Steiner 'free Problem

NI N2
lVI lE I lXI opt E:av~ t(s) Eavg t(s)

f1 783 2322 117 2992 1.51 4.4 1.13 7.3
f2 196 3826 0.69 7.5 0.51 12.8
f3 274 4401 1.23 8.9 0.77 21.5
f4 7532 117 2899 1.92 5.1 1.44 10.1
f5 196 3744 1.85 8.8 1.29 26.2
f6 274 4368 1.46 10.1 0.52 27.1
f7 28365 117 2892 1.03 28.9 0.67 54.7
f8 196 3742 1.40 18.2 0.89 35.0
f9 274 4368 0.98 19.5 0.47 44.8
flO 109895 117 2892 1.13 24.9 0.51 42.5
f11 196 3742 1.47 51.5 1.04 124.6
f12 274 4368 1.01 53.9 0.35 163.6
f13 1000 2981 150 6509412 2.30 11.2 1.53 35.9
f14 250 8123458 1.26 16.8 0.91 29.7
f15 350 9804964 1.23 24.0 0.67 57.2
f16 9699 150 6316653 2.27 11.3 1.35 30.2
fl7 250 7946357 0.71 19.5 0.55 34.3
f18 350 9675663 1.06 26.1 0.82 71.9
f19 38080 150 6297956 1.97 20.2 1.05 35.0
f20 250 7931250 0.61 41.8 0.46 84.7
f21 350 9673224 0.94 98.7 0.36 295.7
f22 184597 150 6297956 1.63 66.4 1.01 143.2
f23 250 7931250 0.67 99.1 0.33 161.6
f24 350 9673224 0.50 151.7 0.35 277.1

lVI lE I lXI best Eav~~: t(s) Eavg t(s)
g1 3795 11326 569 13201 0.66 153 0.18 291
g2 949 14693 0.54 276 0.24 497
g3 1328 15868 0.73 367 0.27 1064
g4 52684 569 13070 0.36 237 0.10 503
g5 949 14569 0.54 394 0.10 670
g6 1328 15681 0.60 547 0.27 1551
g7 325093 569 13012 0.49 850 0.11 1867
g8 949 14556 0.50 1171 0.23 2927
g9 1328 15616 0.65 1770 0.20 3009
g10 11849 35532 1777 381324 0.62 2476 0.12 5816
gll 2962 478669 0.68 4296 0.17 12338
g12 4147 559579 0.55 5740 0.14 14940
gl3 14051 42128 2108 153663 0.59 2698 0.06 5002
g14 3513 197335 0.67 4565 0.15 10682
g15 4918 234213 0.63 6177 0.11 14424
g16 18512 55510 2777 204314 0.71 4761 0.09 7998
g17 4628 271714 0.74 7369 0.13 15622
g18 6479 322698 0.67 10338 0.14 30807

Table 6.2: Results for Euclidean instances.

6.2. Parallel local search for the Steiner tree problem 95

"best" and the average relative excess of these ten final solutions in percentages
over the optimal solution, or best known upper bound for the series G, is given by
Eavg· The average running time in seconds on a Sun Classic workstation is given
by t(s).

We observe that our iterative improvement algorithms find solutions with rel­
ative excess of at most a few percents over the optimal solution for the instances of
Beasley [1990] in a small amount of running time (at most a few minutes, whereas
exact algorithms require several hours on supercomputers or powerful worksta­
tions for instances with 2,500 vertices). For several instances optimal solutions
are found. For the Euclidean instances with up to 1,000 vertices we are able to
find solutions with relative excesses of 0.3% - 2.2% in a few seconds. Further­
more, the algorithms are able to handle substantially larger instances in moderate
amounts of running time.

We are able to deal with much larger instances than those studied in other lo­
cal search approaches as presented by Dowsland [1991], Osbome & Gillett [1991],
and Kapsalis, Rayw.ard-Smith & Smith [1993], who all deal with instances of at
most 100 vertices, requiring running times that range from several minutes to a
few hours. Moreover, our approach has limited memory requirements since only
a compact representation of an instance is stored. Most other heuristic and exact
approaches require a pre-processing step of 0(1Val3) time and 0(1Val2) space
to compute and store all-pairs shortest paths, which makes it hard to handle large
instances.

6.2 Parallel local search for the Steiner tree problem

Although good-quality solutions can be found with local search for the STPG,
running times are still considerable for the larger instances. In this section we
investigate the applicability of multiple-step parallelism to reduce these running
times. An algorithm with multiple-step parallelism for the STPG can be outlined
as follows. Here, P denotes the number of processors.

(1) Partition the domain of the exchange function applied to a Steiner tree T
into P subdomains and let each processor evaluate such a subdomain.

(2) Communicate profitable exchanges to other processors.

(3) Effectuate a subset of the profitable exchanges found in step (1), which re­
sults in a new Steiner tree T '.

(4) Replace T by T', and repeat steps (1)- (3) until no improvement is found.

Next, we discuss a distributed neighborhood structure 'Dt that can be employed
in the above algorithm. We restrict our discussion of the time complexity asso­
ciated with V1 to synchronous multiple-step parallelism as our target machine

96 The Steiner Tree Problem

is a message-passing MIMD machine. Synchronization between the steps of the
above multiple-step parallel local search algorithm is typically necessary on this
machine because it has a decentralized architecture in which there is no central
processor that governs accesses to the current Steiner tree.

Domain distribution. The distribution structure of 'Dt assigns the entire cur­
rent Steiner tree to all processors. Th define the domain distribution of 'Dt, we
note that the additional arguments for applying the exchange function 1: associ­
ated with the neighborhood .N1 to a given Steiner tree T are single key paths that
are to be removed from T. So the set of arguments of r that determines the neigh­
borhood .Nt (T) consists of all pairs (T, l), for key paths l E T. This set of argu­
ments is partitioned into P (almost) equally sized subdomains that specify local
neighborhoods. The domain distribution of 'Dt defined in this way partitions the
neighborhood .Nt (T). If T consists of K key paths, then each processor evalu­
ates at most f K I Pl exchanges. So the size of a local neighborhood is 0(lj!),
considering that K is at most 21X I - 3.

Combination function. The combination function of the distributed neighbor­
hood structure 'D1 specifies how proposed exchanges are combined to form a new
Steiner tree. It is not always possible to effectuate all proposed exchanges since
some simultaneous key path replacements can split a Steiner tree into discon­
nected components. So the combination function may only effectuate a subset
of the proposed exchanges. Essential for the speed-up of the algorithm is that the
total gain that results from effectuating exchanges is as large as possible. The
Steiner tree combination problem (STCP) of effectuating a subset of q proposed
exchanges such that the resulting gain is maximized, is formulated as follows.

Definition 6.6 (STCP). Given a Steiner tree T with key paths lt, . . . , lq E T for
q E IN. Let!~, ... 1 l~ be paths such that T \ li u z: E .Nt (T) for alll ~ i ~ q,
and let L = {lt, ... I lq, 1~, ... , !~}. Then, the problem is to find a subset L' of
L such that the cost of Steiner tree T' T \ {it, . . . , lq} U L' is minimal. D

The STCP is closely related to the problem of finding a minimum spanning tree
in which components instead of vertices are to be connected. In the STCP a min­
imum spanning tree is to be found that connects q + 1 components that remain
after removal of l t. ... , lq from T using new key paths l~, ... , l~ or removed key
paths lt, ... , lq. Ifkeypath!psinserted into T' andli is removed, a proposed re­
placement of li with Zi is accepted. In the classical minimum spanning tree prob­
lem all edges are connections between vertices. In the STCP, however, inserted
key paths z; are not necessarily connections between components because an in­
serted path li may end in a removed key path l i in which case z; is not a direct
connection between components.

6.2. Parallel local search for the Steiner tree problem 97

The STCP can be solved polynomially by generalizing the algorithm for find­
ing a minimum spanning tree ofKruskal [1956]. Kruskal's algorithm is based on
the observation that an edge (u, v) has to be included in a minimum spanning tree
for a graph G = (V, E) if there exists a subset U s; V with u e U and v e V \ U
such that (u, v) is a shortest edge between U and V \ U. Let T be a Steiner tree,
and let L be defined as in Definition 6. 6. The STCP can then be solved as follows.

(1) Remove {l1, ... , lq} from T, which results in q + 1 components C0, ••. ,

Cq. Let T' = {Co, ... , Cq} be this set of components.

(2) Select a smallest length path 1 from L whose addition to T' does not give a
cyclic component or else intersects with a key path l' in L. Remove l from
the set L and add it to T'. If l connects two components, merge these com­
ponents to one. l is not necessarily a connection between two components
in T' since it is possible that l ends in a vertex of a key path removed from
T. Addition of l can give a cycle in a component C in T' if l intersects with
a key path l' removed from T. In this case, remove a maximum length key
path from C such that C becomes non-cyclic.

(3) Repeat step (2) until all terminals are contained in a single component, i.e.,
T' includes a Steiner tree. It may occur that T' includes components with­
out terminals or that T' contains paths that end in a non-terminal with de­
gree one. These components or paths can be removed from T'. After this,
T' is a minimum weight tree that spans the components { Co, ... , Cq} us­
ing paths from L, so T' is an optimal solution for the STCP.

Next, we discuss the complexity of the above algorithm to effectuate a subset of
q proposed exchanges. The complexity of selecting the smallest length path from
L is constant if L is sorted in a pre-processing phase. Step (2) requires at most
O(q) time in case a cycle is introduced. It is repeated at most 2q times. The
overall time complexity of the algorithm is therefore O(q2). Thus, it is possible
to determine in polynomial time a subset of q proposed exchanges whose effec­
tuation gives maximum cost decrease of the current Steiner tree T. In particu­
lar, at least one proposed exchange is effectuated by this algorithm, so in each
iteration of the parallel algorithm the cost of the current Steiner tree decreases,
which guarantees termination of the parallel local search algorithm. Moreover,
in each iteration a Steiner tree T' is constructed whose cost is at most that of the
lowest-cost neighbor of the current Steiner tree T, which would be accepted by
a sequential algorithm with best improvement.

Multi improvement. In sequential local search algorithms, two pivoting rules
are distinguished to pick from profitable exchanges. In first-improvement algo­
rithms the first profitable exchange found is the one that is accepted, whereas in

98 The Steiner Tree Problem

best-improvement algorithms all exchanges are evaluated and the one with the
largest gain is accepted. A disadvantage of first improvement in a synchronous
multiple-step parallel algorithm is that it can lead to load imbalance, because syn­
chronization takes place after the proposal phase. Some processors may find a
profitable exchange quickly, while others have to search their entire local neigh­
borhood. Moreover, even the running times required by single exchanges can dif­
fer substantially, as the number of vertices explored in the shortest path algorithm
can vary significantly for different exchanges. Once a profitable exchange has
been found or the entire local neighborhood has been examined, a processor has
to wait until other processors have finished their proposal phase since effectuat­
ing proposed exchanges requires all-to-all broadcasting. Hence, large load im­
balance may occur when first improvement is used as pivoting rule. On the other
hand, best improvement is also not efficient because in each step local neighbor­
hoods are searched entirely, although several steps with equal total gain can often
be made with less computational effort using first improvement.

Therefore, we use a different pivoting rule in our parallel local search algo­
rithm for the S1PG in which the entire local neighborhood is explored, as is the
case in best-improvement algorithms, but instead of selecting only the best ex­
change, all profitable exchanges are memorized and proposed for effectuation.
This pivoting rule is called multi improvement. Through multi improvement more
exchanges are proposed, which leads to a better speed-up, provided that a large
proportion of the proposed exchanges can be effectuated. An additional advan­
tage of this approach over first improvement is that a better load balance is ob­
tained because the entire local neighborhood is always explored, regardless of ob­
served profitable exchanges. This leads to smaller differences in running times of
the proposal phase for processors since the running time for evaluating neighbors
is summed over the entire local neighborhood. The effectiveness of an algorithm
with multi improvement of course strongly depends on the ratio of proposed and
effectuated exchanges, but this holds for best or first improvement as well. Note
that for multi improvement the set of proposed exchanges is independent of the
number of employed processors, so the course of the algorithm does not depend
on the number of employed processors.

Next, we discuss an upper bound for the speed-up of a parallel algorithm with
multi improvement over a sequential algorithm with first improvement. For this
we assume that the amount of time needed to communicate and combine pro­
posed exchanges is negligible compared to the time needed for evaluation of local
neighbors. Let p be the number of exchanges effectuated in the combination step
and let a be the average number of exchanges evaluated by a first-improvement
algorithm to find a profitable exchange. p can be larger than the number of pro-

6.2. Parallel local search for the Steiner tree problem 99

cessors P since all profitable exchanges are proposed, but p is bounded by K,
the number of key paths in the current Steiner tree T. The average running time
of a sequential algoritlun with first improvement to find p profitable exchanges is
ay p, where y is the average time for evaluating an exchange. A lower bound for
the average running time of a parallel multiple-step algoritlun on P processors to
find p profitable exchanges is 'y. So the speed-up is at most P f. If ap ~ K
this would imply that a super-linear speed-up might be achieved with multi im­
provement, in which case it would be beneficial to use multi improvement in a
sequential algoritlun instead of first improvement This observation emphasizes
the importance of adequate neighborhood enumeration, because in a neighbor­
hood for which ap ~ K, it is better to first search an entire neighborhood for
profitable exchanges, which are subsequently effectuated, than to effectuate ex­
changes immediately after finding them. In a local search algoritlun neighbors are
enumerated according to some order imposed on the neighborhood. This order
can change through effectuation of exchanges, which can infer that exchanges ap­
plied to T and T' that remove the same key paths are evaluated in different orders
for neighboring solutions T and T'. If neighbors of T' that are not likely to have
lower cost are examined first through this order change, it might be beneficial to
examine several neighbors of T first before effectuating profitable exchanges.

In our neighborhoods for the STPG neighbors are enumerated according to
a tree traversal order. This order can change through removal and insertion of
key paths. In Section 6.1.2 we have introduced a boolean function that is used
to adapt the enumeration order of neighborhoods in such a way that exchanges
that are not likely to result in lower-cost neighbors, are selected last Hence, first
improvement in combination with a boolean function to guide enumeration of
neighborhoods, is likely to be more effective than multi improvement as pivoting
rule in a sequential local search algoritlun.

Global communication. When a processor has evaluated its local neighbor­
hood and collected the profitable exchanges in this neighborhood, it has to wait
until other processors have finished evaluating their local neighborhoods. As soon
as all processors have explored their local neighborhoods, all-to-all broadcasting
has to take place to communicate all profitable exchanges to all processors. The
algoritlun for all-to-all broadcasting depends on the target machine on which it
is implemented, which is in our case a message-passing MIMD machine config­
ured in a two-dimensional torus.ln this machine processors can only be involved
in a single communication action at a time, either a send or receive.

Eachrow and column in a two-dimensional torus is configured as a ring net­
work. Therefore, we first discuss an algoritlun to perform all-to-all broadcasting
in a ring network with P processors, where P mod 2 = 0. The idea of this algo-

100 The Steiner nee Problem

proc BroadcasLRing(p)
{ 0 ~ p < P 1\ P mod 2 = 0 }
var m : array [0, P) ;
begin

i : = 0 ; m (p) = proposed exchanges processor p ;
{ m(p) =proposed exchanges proc. p 1\ Vo:§;q<PAq#:p m(q) =nil}
while i < P do

if p mod 2 = 0 then (p + 1) ! m(p i), m(p + 1 - i);
(p 1) ? m(p 2- i), m(p - 1 - i)

else(p - 1) ? m(p 1 - i), m(p - i) ;
(p + 1) ! m(p 1 - i) , m(p - i)

fi
i := i +2

od { Vo:§;q<P m(q) =proposed exchanges of processor q}
end

Figure 6.2: Algorithm for all-to-all broadcasting in a ring for processor p.

rithm is as follows. Let each 2i -th processor in a ring, with 0 :5 2i < P, send a
message that contains proposed exchanges to the 2i + 1-th processor in this ring.
Subsequently, each 2i + 1-th processor sends a message that contains not already
sent exchanges to the 2i + 2-th processor. Figure 6.2 presents the algorithm for
all-to-all broadcasting on a ring with P processors. In this algorithm all indexing
is done modulo P. Expression p !m, m' denotes that variables m and m' are con­
secutively sent to processor p, and p?m, m' denotes that variables m and m' are
consecutively received by p.

The time needed for a single communication action depends on the start-up
time to and the message length in bytes multiplied by the time t1 to transfer a byte,
where the start-up time to is usually much larger than the time t1 for transferring a
single byte. In the algorithm of Figure 6.2, P times a communication is initiated
and messages have length 2M, except for the first and the last communication
action in which a message with length M is sent, where M is the maximum length
for encoding proposed exchanges of a processor. So the time complexity of our
broadcasting algorithm is P(to + 2Mtt) - 2Mt1• Any one-to-all broadcasting
algorithm on a ring in which a processor cannot send and receive simultaneously
requires at least ~ communications. An all-to-all broadcasting algorithm on such
a ring requires at least twice as much communications since at a given time stamp
only one of two adjacent processors can send a message through which a one-to­
all broadcast for some processor proceeds. The total time needed for message

6.2. Parallel local search for the Steiner tree problem 101

transfer is at least 2(P- l)Mtt. Thus, our all-to-all broadcasting algorithm on a
ring without simultaneous transmission is optimal.

AU-to-all broadcasting on a two-dimensional2x x 2y torus can then be done
by simultaneously broadcasting proposed exchanges in each row using the algo­
rithm of Figure 6.2, followed by column-wise broadcasting using the same algo­
rithm. Row-wise and column-wise broadcasting requires O(x) and O(y) time,
respectively. The message sizes for broadcasting column-wise are of course much
larger since each message then contains all proposed exchanges in a given row.
The total complexity of all-to-all broadcasting to communicate all proposed ex­
changes to all processors ina2x x2y torus is O(x+y). This is equal to O(.jP) if
the network topology is a .j P x .j P torus, where P is the number of processors.

The total number of executions of this broadcasting algorithm equals the num­
ber of iterations of the parallel algorithm, which is independent of the number of
employed processors since in each iteration all profitable exchanges are collected
regardless of the number of employed processors.

6.2.1 Computational results

We have implemented the parallel iterative multi-improvement algorithm outlined
in the previous section in C on a Parsytec PowerXplorer consisting of 32 process­
ing units that are based on the PowerPC 601 microprocessor. Each processing
unit is running the Parix operating system. The interconnection network topol­
ogy of this message-passing machine is a two-dimensional torus.

We have tested the parallel algorithm on the same instances as the sequen­
tial algorithm. Tables 6.3 and 6.4 give the speed-ups obtained on the PowerX­
plorer machine. The results are averages over ten runs of the algorithm starting
from different initial Steiner trees. Each table presents the average running time
in seconds t (s) of the sequential algorithm, the average speed-up of the parallel
algorithm for a given number of processors P, and the average relative excess Eavg

of the cost of final solutions over the optimal cost for the D and E series or over
the best known upper bounds for the G series. Our sequential algorithm differs
ftom the parallel algorithm since it uses first improvement, whereas the parallel
algorithm uses multi improvement as pivoting rule. However, as we have argued
in the previous section, first improvement is more efficient in a sequential algo­
rithm than multi improvement, provided that neighborhoods are enumerated as
outlined in Section 6.1.2. Therefore, we compute speed-up using first improve­
ment in the sequential algorithm and multi improvement in the parallel algorithm.
Multi improvement furthermore ensures that the course of the algorithm is inde­
pendent of the number of employed processors, and consequently the same final
solutions are found regardless of the number of processors.

From the tables we observe that we obtain an acceptable speed-up that scales

102 The Steiner Tree Problem

p 1 4 8 16 24 32
instance t(s) speed up(P) €avg

d18 8.8 1.8 3.0 5.5 8.8 11.0 7.17
d19 15.4 1.5 2.4 4.7 8.1 9.1 9.12
d20 35.2 2.0 3.4 6.2 9.3 13.0 4.45
e18 65.7 1.6 2.8 5.2 7.1 8.6 8.67
e19 106.7 1.7 3.3 6.0 7.9 9.5 7.51
e20 249.9 1.9 3.6 6.8 9.4 11.6 4.62

Table 6.3: Some computational results for series D and E on PowerXplorer.

p 1 4 8 16 24 32
instance t(s) speed up(P) Eavg

g1 111.1 1.5 2.9 4.9 6.2 7.5 0.67
g2 191.3 1.7 3.3 5.8 7.6 9.2 0.46
g3 245.8 2.0 3.7 6.6 8.2 10.5 0.58
g4 196.3 1.9 3.5 6.3 8.5 9.9 0.43
g5 317.6 1.6 3.0 5.2 7.2 8.8 0.47
g6 432.4 1.9 3.5 6.2 8.7 10.7 0.49
g7 705.6 1.8 3.2 5.8 8.4 10.4 0.47
g8 983.3 1.8 3.5 6.1 8.6 11.0 0.46
g9 1458.9 1.8 3.3 6.0 8.7 11.0 0.64
g10 1674.3 1.4 2.7 4.8 6.9 9.0 0.63
gll 2809.1 1.5 2.8 5.2 7.6 9.6 0.72
g12 3715.0 1.3 2.5 4.7 6.8 8.7 0.43
g13 2061.1 1.4 2.6 4.7 6.9 9.0 0.44
g14 3331.3 1.4 2.6 4.7 6.8 8.7 0.74
g16 3623.2 1.6 3.0 5.4 7.6 10.0 0.59
g17 5543.8 1.3 2.5 4.5 6.4 8.2 0.69

Table 6.4: Computational results for series G on PowerXplorer.

6.2. Parallel local search for the Steiner tree problem 103

Figure 6.3: Running time profile for the instances gl (left) and glO (right).

with the number of processors and the size of the instance. We typically obtain
better speed-ups for the random instances in the series D and E than for the Eu­
clidean instances in the series G. Furthermore, we observe that the quality of the
final solutions found by the parallel algorithm is equal to the quality that is ob­
tained with the sequential algorithm. This can be explained by the isomorphism
of the employed neighborhoods. Moreover, this indicates that the probability of
finding given local minima is equal for multi improvement and first improvement
algorithms.

Next, we investigate the behavior of our algorithm in more detail. Our paral­
lel algorithm consists of three stages, viz., proposing exchanges, communicating,
and combining proposed exchanges. Figure 6.3 gives the total amount of run­
ning time spent in each of these stages for two instances and different numbers of
processors. We observe that the amount of time spent for proposing exchanges
accounts for the bulk of the total running time. This amount of time decreases
almost linearly with increasing number of processors. The communication over­
head of the parallel algorithm, which includes idle time as well, decreases with
increasing number of processors. This implies that the amount of idle time de­
creases with an increasing number of processors since the time needed for broad­
casting increases when more processors are employed. Furthermore, we observe
that the amount of time needed to combine and effectuate proposed exchanges
is negligible compared to the time needed for proposing and communicating ex­
changes.

Essential for obtaining a good speed-up with our parallel algorithm is that a
large proportion of proposed exchanges is effectuated by the combination func­
tion. Figure 6.4 gives for two instances the number of proposed and effectuated
exchanges as function of the iteration number. We observe that initially roughly
30% - 40% of the proposed exchanges can be effectuated. This proportion in­
creases rapidly in the course of the algorithm. This shows that the combination
function outlined in the previous section is quite effective.

104

* ii
i

180

180 .c=-
140

120

100

80

so
40

20

2 3 4
!!&ration

f ~ 150

100

2

The Steiner nee Problem

4
iteration

e 7

Figure 6.4: Proposed and effectuated exchanges for gl (left) and gl 0 (right).

Another interesting observation is that typically only a few iterations of the
parallel algorithm are needed to find a local minimum. This is due to the multi
improvement pivoting rule that proposes a large number of exchanges in each it­
eration, many of which can be effectuated. A small number of iterations implies
that only a few all-to-all broadcasts occur in the course of the algorithm, since in
each iteration only a single all-to-all broadcast is necessary. This accounts for the
small communication overhead of the algorit.hm, which enables a good speed-up
of our parallel local search algorithm for the STPG.

In this chapter we have discussed a parallel local search algorithm for the
STPG based on multiple step parallelism. Our parallel algorithm uses a new piv­
oting rule for proposing exchanges which is better suited for a parallel algorithm.
Furthermore, we have presented an optimal polynomial-time algorithm to imple­
ment the combination function. Computational results show that good speed-ups
can be obtained without any loss in quality of final solutions, which shows that
the proposed algorithm is one of the most effective algorithms to handle large in­
stances of the STPG.

7
Scheduling

Scheduling problems arise in situations where a set of activities has to be pro­
cessed using a limited number of resources. Applications can be found in pro­
duction planning, time tabling, or real-time system controlling. An introduction
to schedlillng can be found in [Pinedo, 1995]. Job shop scheduling is an impor­
tant model in scheduling theory, which serves as a testbed for new algorithmic
ideas and provides a starting point for the more complicated practically relevant
scheduling models [Lawler, Lenstra, Rinnooy Kan & Shmoys, 1993].

In this chapter we study the applicability of multiple-step parallelism in lo­
cal search for the job shop scheduling problem. Furthermore, we present a lo­
cal search algorithm for a generalization of the job shop scheduling problem in
which machines are capable of processing more than one operation at a time and
in which operations may require machine sets for processing and may have sev­
eral alternative machine sets on which they can be processed. Finally, we study
parallel local search approaches to this problem.

7.1 Job shop scheduling

An instance of the job shop scheduling problem (JSSP) consists of a set of jobs
and a set of machines. Each machine can handle at most one job at a time. Each
job consists of a chain of operations, which need to be processed in that order
during an uninterrupted time period of a given length on a given machine. The
problem is to find a schedule, which is defined as an assignment of the operations

105

106 Scheduling

to time intervals, such that the total length of the schedule is minimal [French,
1982]. More formally, the problem can be defined as follows.

Definition 7.1 (JSSP). Given are a set J of jobs, a set M of machines, and a set
0 of operations. For each operation a e 0, there is a job j (a) e J to which it
belongs, a machine m(a) e M on which it must be processed, and a processing
timed(a) e IN. There is a binary relation-< on 0 that decomposes 0 into chains
corresponding to the jobs; more specifically, if a -< b, then j (a) = j (b) and there
is no c e 0 \{a, b} with a -< c and c -< b. The problem is to find a non-negative
start time s(a) for each operation a e 0 such that the schedule length

max(s(a) + d(a))
a eO

is minimal, subject to

s(b) - s(a) 2: d(a) (1)
(2) s(b) s(a) 2: d(a) v s(a) - s(b) ::: d(b)

for all a, b e 0,

if a-< b, and
if m(a) = m(b),

0

The constraints corresponding to (1) are job precedence constraints, and those
corresponding to (2) are machine capacity constraints.

The job shop scheduling problem is NP-hard [Garey & Johnson, 1979] and
local search, in particular tabu search [Nowicki & Smutnicki, 1995], has proved
to belong to the best approximation algorithms for it [Vaessens, 1995]. To apply
local search to the job shop scheduling problem, it is most appropriate to use the
disjunctive graph representation of Roy & Sussmann [1964].

Definition 7.2. A JSSP instance is represented by a vertex weighted disjunctive
graph G = (V, A, E) with vertex set V = 0, arc set A = {(a, b) I a -< b},
and edge set E = {{a, b} I m(a) = m(b)}. A weight d(a) is associated with
each vertex a in V. A feasible solution is represented as a minimal subset E' of
orientations of the edges in E, such that E' gives for each machine a complete
order of the operations that have to be processed on it, and such that the resulting
digraph D = (V, A u E') is acyclic. The start time of an operation v e V is the
length of the longest path up to and without v, and the cost f(D) of a feasible
solution D is the longest path in D. D

The (directed) arcs represent the job precedence constraints and the (undirected)
edges represent the machine capacity constraints. The length of a path is the sum
of the weights of vertices on this path. A digraph D corresponding with a fea­
sible solution contains only oriented edges between immediate successors and
predecessors on a machine, since the orientation of the remaining edges in E is
uniquely determined by E'. So each vertex in D has at most two incoming edges

7.1. Job shop scheduling 107

and at most two outgoing edges, viz., at most one successor and at most one pre­
decessor in its job and on its machine. Given any such orientation E', we can
determine feasible start times by setting each start time s(a) equal to the length
of a longest path in D up to a. The cost of a solution with I 0 I operations can
be computed in 0(1 01) time with Bellman's labeling algorithm [Lawler, 1976],
since the degree of each vertex in D is at most four. The problem is then to find
an orientation of the edges in E that minimizes the longest path in D.

Definition 7.3. Given are a digraph D = (V, E) and a vertex a E V. Then, the
immediate successor and predecessor on the machine and in the job of operation
a are given by sma. pma, sja, and Pia. respectively. st(a, D) is the length of the
longest path in D up to and without a. rt (a, D) is the length of the longest path
in D starting from and including a. l(a, D) is the length of the longest path in D
through a. The start time s(a) is equal to st(a, D). o

Most neighborhoods for the job shop scheduling problem are based on reversing
machine capacity arcs in the digraph representing a schedule-that is, reversing
the order in which operations are processed on a machine. Van Laarhoven, Aarts
& Lenstra [1992] give the following 1-opt neighborhood M. Given a solution
s E S represented by a digraph D, a neighboring solution is obtained by selecting
two operations a and b, with j (a) -:/= j (b), that are adjacent on some machine m
and for which the arc (a, b) is on a longest path in D, and reversing (a, b). More
formally, this leads to the following definition.

Definition 7.4. Given are a schedules E S represented by digraph D = (V, E),
and a, be V withb=sma. Let the exchange function r be given by r(D, a, b)=
(V, (E \{(a, b), (pma, a), (b, smb)}) U {(pma, b), (b, a), (a, smb)}). Then, the
neighborhood Ni(D) = {r(D, a, sma) I a, sma E V 1\ (a, sma) on a longest
path in D}. o

The size of the neighborhood N1 (D) for any digraph D is 0 (I 0 I). Van Laarhoven,
Aarts & Lenstra [1992] showed the following properties for this neighborhood.

(1) The reversal of (a, sma) on a longest path in D results in an acyclic digraph
D' that again corresponds to a feasible solution s'.

(2) Reversals of arcs on a longest path are the only arc reversals that can -but
need not- result in a digraph with a shorter longest path. Furthermore, a
reversal of an arc not on a longest path can lead to an infeasible solution.

(3) N1 is sufficiently connected.

Furthermore, we have the following result, which generalizes an observation made
by Taillard [1994].

108 Scheduling

Pia e-e -----•• ~.,.__, ___ , ... •i a

I ,

• I b ,.'

.-'

,,'> smb

;

pjb ... ---·~.,..__, __ _,...,. •i b

(i)

• I '
I ',
I ',,

',
".> Slna

(ii)

Figure 7.1: Part of a digraph before (i) and after (ii) reversal of an arc (a, b). Dotted arcs
are redundant machine capacity arcs.

Theorem 7.1. Given are a digraph D and jUnctions st and rt as in Definition
7.3. Let digraph D' = r(D, a, b), with b = sma and (a, b) on a longest path in
D, and let mx(D', a, b) = max{l(a, D'), l(b, D')}. Furthermore, let h be the
length of the second longest path in D, which can be equal to f(D), and l' the
length of the longest path in D not through a or b. Then,

(1) mx(D', a, b) 2: f(D)::::;. f(D') = mx(D', a, b),
(2) lz < mx(D', a, b) < f(D) => f(D') = mx(D', a, b), and
(3) lz 2: mx(D', a, b) ::::;. f(D') = max{l', mx(D', a, b)}.

Moreover, mx(D', a, b) is computable in constant time.
Proof Only paths through a or b in D may no longer exist in D' as a conse­
quence of the reversal of (a, b). So in case (1) when mx(D', a, b) 2: f(D),
then f(D') mx(D', a, b) because all paths in D' not through a orb have
lengths of at most f(D). In case (2) when lz < mx(D', a, b) < f(D), then
f(D') = mx(D', a, b) because all paths in D' not through a orb have lengths of
at most lz with lz < mx(D', a, b), and paths in D' through a orb have lengths
of at most mx(D', a, b) and at least one path has length mx(D', a, b). In case
(3) when mx(D', a, b) s lz, then f(D') = max{l', mx(D', a, b)} because the
longest path in D' is the longest path through a orb in D' or the longest path not
through a orb in D', which is equal to that in D. From Figure 7.1 we infer that
st(b, D') max{st(pma, D)+ d(pma), st(pjb, D) +d(pjb)} and st(a, D')
max{st(b, D')+d(b), st(pja, D)+d(pja)}. Also, rt(a, D') = max{rt(sja, D),
rt(smb, D)}+d(a), andrt(b, D') max{rt(a, D'), rt(sjb, D)}+d(b). Hence,
l(a, D') = st(a, D') + rt(a, D') and l(b, D') = st(b, D') + rt(b, D'). This
gives mx(D', a, b) = max{l(a, D'), l(b, D')}. So mx(D', a, b) is given by ex­
pressions that are all computable in constant time. o

7.1. Job shop scheduling 109

7.1.1 Parallel local search for the job shop scheduling problem

In this section we outline a local search algorithm with multiple-step parallelism
for the job shop scheduling problem. Other approaches discussed in Chapter 3
to introduce parallelism in local search are also valuable since most tabu search
algorithms for the job shop scheduling problem use best improvement as pivoting
rule, in which case good speed-ups can be achieved with single-step parallelism,
provided that neighborhoods are sufficiently large; see Section 3.2.1. Moreover,
probabilities of finding optimal solutions using tabu search fit well with exponen­
tial distributions [Taillard, 1994], and in that case good speed-ups can be obtained
with multiple independent walks; see Chapter 4. Multiple-step parallelism can
be incorporated in the above approaches, which may result in even more scalable
hybrid approaches.

In the previous section we have argued that only reversals of arcs on a longest
path can lead to digraphs with shorter longest paths. Furthermore, infeasible di­
graphs can be constructed when arcs not on a longest path are reversed. So a par­
allellocal search algorithm must be based on reversals of arcs on longest paths.
However, a reversal of an arc on a longest path leads to a digraph that has a dif­
ferent longest path, and consequently only a single arc can be reversed on a given
longest path

Our parallel local search algorithm is based on a distributed neighborhood
structure in which local neighborhoods for each processor p comprise arc rever­
sals on the p-th longest path in a digraph.

Definition 7 .5. Let p be an integer between 1 and P, and D = (V, E) a digraph.
Then, for a vertex c E V, stp(c, D) gives the length of the p-th longest path in
D up to and without c, and rtp(c, D) gives the length of the p-th longest path in
D from and including c. Furthermore, Ap(D) denotes the p-th longest path in
D. Let ap, bp E V with (ap, bp) on Ap(D). Then, we recursively define Dp as
D1 = D, and Dp+l = r(Dp, ap, bp) for 1 < P. D

Note that stp(c, D) and rtp(c, D) are descending in p and that the paths speci­
fied by A are not necessarily disjoint. D Pis the graph obtained by effectuating the
reversals on the paths A.q (D) with 1 ::::: q < p. Theorem 7.1 suggests that A P (D) is
often the longest path in Dp. This gives rise to the following local search algo­
rithm with multiple-step parallelism for the job shop scheduling problem. Given
are a digraph D and P processors.

(1) Compute the P longest paths in D and assign Ap(D) to processor p for
1:::Sp:::SP.

(2) Processor p evaluates arc reversals -c(D, ap, bp) with (ap, bp) on Ap(D).
A reversal is proposed ifmx(D', ap, bp)< length(Ap(D)).

110 Scheduling

(3) Effectuate the proposed arc reversals by successively constructing each di­
graph Dp+b which is obtained by reversal of (ap, bp) in Dp, provided that
D p+ 1 is feasible.

(4) ReplaceD with Dp for p such that min1~p~P f(Dp) = f(Dp). Repeat
the above steps until no improvement is found.

The above algorithm is based on the following distributed neighborhood V. The
distribution structure of V assigns to each processor p, with 1 ::::; p ::::; P, the p-th
longest path in a digraph D. The local neighborhood for a processor, specified by
the domain distribution of V, is obtained by reversing arcs on the path assigned to
a processor. Note that the P longest paths in an acyclic digraph can be computed
by a generalization ofBellman's labeling algorithm [Lawler, 1976] that computes
the longest path in an acyclic digraph.

An arc (ap, bp) whose reversal is proposed may not on a longest path in the
graph Dp if the longest path through (ap, bp) in D also passes through (aq, bq) in
D whose reversal is proposed by processor q with 1 ::::; q < p. This implies that
effectuating r(Dp, ap, bp) might lead to an infeasible solution. Furthermore, ef­
fectuating a proposed exchange r(Dp, ap, bp) may result in a digraph with larger
cost if st or rt needed to compute mx(Dp+t. ap, bp) are not equal to the val­
ues of st or rt used to compute mx(D, ap, bp), i.e., reversals of other edges have
resulted in a longer path to or from a vertex that precedes or succeeds ap or bp
in Dp. In order to deal with such situations, it has to be checked whether pro­
posed exchanges lead to feasible digraphs with lower costs, before they are ef­
fectuated. This is done by the combination function of the distributed neighbor­
hood V as follows. Each processor p effectuates proposed reversals (aq, bq) with
1 ::::; q ::::; p and checks whether the resulting digraph Dp defines a feasible sched­
ule with lower cost than the current schedule. The digraph D' that is returned by
the combination function is the digraph Dp with minimal cost found in this way.
The time complexity of this combination function is O(P + I 0 1), since each di­
graph D P is constructed in 0(P) time (cf. Definition 7 .5) and the time complexity
to check whether Dp is a feasible schedule with lower cost is 0(1 0 1).

Discussion. We have implemented a sequential algorithm that simulates an al­
gorithm with multiple-step parallelism based on the distributed neighborhood V
for the job shop scheduling problem. Experiments show that the maximum speed­
up is limited since the number of proposed exchanges that can be effectuated by
the combination function is typically quite small, e.g., for instances with up to
300 operations the maximum speed-up is at most four. Although this picture is
slightly better for larger instances, in particular for instances with many jobs and
few machines, it is fair to say that the application of multiple-step parallelism to
local search for job shop scheduling does not give satisfactory results.

7.2. Resource-constrained scheduling 111

7.2 Resource-constrained scheduling

In the job shop scheduling problem it is assumed that each machine can process
only one operation at a time and that each operation is processed by a prespecified
machine. However, in many practical situations machines are capable of process­
ing more than one operation at a time and processing of operations may require
sets of machines for which several alternative choices exist.

In this section we present a scheduling model that incorporates the above ex­
tensions. In this model each operation can be processed by resource sets for which
alternatives may exist, and an operation's processing time on a particular resource
may depend on the resource set by which it is processed and on the resource at
hand. Furthermore, resources are able to process several operations simultane­
ously-that is, resources are multiple capacitated. For this purpose, each resource
is given an integer capacity, and each operation is given an integer size which
may depend on the resource by which it is processed. A resource can simultane­
ously process only those sets of operations whose sizes do not exceed the capacity
of the resource. Finally, arbitrary precedences between operations are allowed.
The objective is to minimize the maximum completion time over all operations.
Other extensions, such as resource availability constraints that prohibit usage of
resources during given time intervals, and minimum delay time constraints that
force time gaps between operations, can easily be integrated in this model. One
important type of constraint we exclude from our model is the maximum delay
constraint that binds operations in time by stating that an operation must be started
within a given time interval after another operation is completed.

Our model generalizes the resource-constrained single project scheduling
problem, which is one of the few problems in the area of more general scheduling
problems, an area usually referred to as resource-constrained scheduling, that re­
ceived considerable attention in the literature [Lawler, Lenstra, Rinnooy Kan &
Shmoys, 1993]. Our model also generalizes the models presented by Hurink, Ju­
risch & Thole [1994] and Vaessens [1995]. It resembles the model of Nwjten
[1994] except for the possibility of adding additional constraints by means of a
constraint language. Our resource-constrained scheduling problem (RCSP) is de­
scribed as follows.

Definition 7.6 (RCSP). Instances of the resource-constrained scheduling prob­
lem consist of a set of operations 0 and a set of resources R. Furthermore, f r :
0 -+ P(P(R)) gives for each operation a set offeasibleresource sets, cp : R -+
IN gives for each resource its capacity. The functions pt : 0 x R x P(R) ~--+ IN
and sz : 0 x R x P(R) 1-+ N give for each operation o E 0 and resource r E R
in a resource set in fr(o) the processing time and size, respectively, required by
o for processing on r. A binary relation -< defines a partial order on 0.

112 Scheduling

A schedule is a pair (ra, st) where ra : 0 ~ P(R) is mapping that gives for
each operation o e 0 a resource assignment ra(o) e fr(o) and st : 0 ~IN is
a mapping that gives for each operation o a start time such that for all o, o' e 0
witho-< o'

max st(o) + pt(o, r, ra(o)) ~ st(o'),
rera(o)

and for all r e R and t e IN

L sz(o, r, ra(o)) ~ cp(r).

(7.1)

oEO!rEra(o) 1\st(o) ::9 < st(o)+pt(o,r,ra(o)) (7.2)

The problem is to find a schedule (st, ra) such that its length, or makespan,

max st(o) + pt(o, r, ra(o))
oeO 1\ rera(o)

is minimized. 0

Weusect(o, r, ra(o)) to abbreviatest(o)+ pt(o, r, ra(o)). The constraints given
in (7.1) are called precedence constraints and those in (7.2) are capacity con­
straints. The RCSP is NP-hard since it contains the job shop scheduling problem
as a subproblem.

A schedule is left-justified if it is not possible to complete any operation ear­
lier without changing the resource assignment and the order of operations on re­
sources that is determined by their start times. Clearly, there is a left-justified
optimal schedule that can be obtained from an optimal schedule by adjusting its
start times such that each operation is started as soon as possible without chang­
ing the order of operations on resources. So we can restrict the solution space to
left-justified schedules, since such a solution space still contains an optimal so­
lution.

7.2.1 Neighborhoods for the resource-constrained scheduling problem

Most of the literature on resource-constrained scheduling concentrates on exact
algorithms or constructive heuristics [Slowinski & Weglarz, 1989; Blazewicz,
Ecker, Schmidt & Weglarz, 1994]. Local search algorithms belong to the best
approximation algorithms for job shop scheduling, and therefore one may expect
that local search also gives good-quality solutions for more general scheduling
problems such as the resource-constrained scheduling problem.

Only a few attempts to apply local search in this problem area are known to
us. Sampson & Weiss [1993] present a local search algorithm for a, not explic­
itly stated, resource-constrained scheduling problem in which irregular cost func­
tions are allowed. In the neighborhood they propose, neighbors are obtained by
incrementing of decrementing the delay from the earliest possible start time of

7.2. Resource-constrained scheduling 113

any operation. Yoo, Yang & Ignizio [1995] consider a model in which operations
may require resource sets for which alternatives exist and in which resources are
multiple capacitated. The objective is to minimize the makespan. They propose a
neighborhood in which neighbors are obtained by pairwise interchanging any two
operations on a machine. A drawback of this neighborhood is the large propor­
tion of non-improving neighbors. Lean & Balakrishnan [1995] consider a similar
model extended with the possibility to utilize other cost functions, such as mean
tardiness, but without the possibility of alternative resource sets for processing an
operation. They represent solutions by a vector that associates values with oper­
ations. Schedules are constructed using some heuristic that utilizes this vector.
Neighbors are obtained by adapting the values in this vector. A drawback of this
approach is that solutions are manipulated only indirectly without exploiting the
problem structure. Hurink, Jurisch & Thole [1994] and Dauzere-Peres & Paulli
[1995] present local search algorithms for the job shop scheduling problem with
resource alternatives, which is a subclass of the RCSP.

To apply local search to the RCSP, we represent schedules by feasible re­
source assignments for operations and by specifying the order in which opera­
tions are started on resources. Start times of operations can then be determined
by computing a left-justified schedule.

Definition 7.7. Let an RCSP instance be given. A schedule (ra, st) is repre­
sented by resource assignment ra and an acyclic directed graph G = (0, E)
with E = {(o, o') I o -< o'} U E', where E' s; {(o, o') I ra(o) n ra(o') -=!=

0 1\ st(o) :::: st(o')} such that E' is a maximal edge set that gives for each re­
source r a complete order for operations o with r E ra(o). o

Given an acyclic graph Gas specified in Definition 7.7, start times of operations
in a left-justified schedule corresponding with G can be computed using the algo­
rithm of Figure 7.2 that is based on Bellman's labeling algorithm [Lawler, 1976].
In this algorithm S(o) is the set of immediate successors of an operation o in
G. This set contains operations o' with (o, o') E E for which no o" exists with
(o, o") E E and (o", o') E E. The complexity ofthis algorithm is O(IOI(CK +
J)), where C is the maximum capacity of any resource, which is an upper bound
on the number of operations that can be processed simultaneously on a resource,
K the maximum cardinality of a feasible resource set of any operation, and J the
maximum number of successors of any operation in the precedence graph speci­
fied by-<.

A neighborhood structure for the RCSP must be capable of changing resource
assignments of operations and modifying the order in which operations are pro­
cessed by resources. This can be done by an exchange function that removes op­
erations from a schedule and reinserts them in such a way that feasible schedules

114 Scheduling

proc Compute..StarLTime
begin

foro E 0 do n(o) := 0; st(o) := 0 od
foro E 0 do foro' e S(o) do n(o') := n(o') + 1 od od
Y := {o E 0 I n(o) = 0};
while Y # 0 do

o e Y; { st(o) satisfies (7.1)}
increase st(o) until (7.2) is met and st(o') :::; st(o) for (o', o) e E;
foro' e {o" I o -< o"} do update st(o') od
foro' E S(o) do n(o') := n(o')- 1;

if n(o') = 0 then Y := Y U {o'} fi
od
Y := y \ {o};

od { st(o) is start time of o e 0 subjectto (7.1) and (7.2)}
end

Figure 7.2: An algorithm to compute start times of operations.

are constructed in which either resource assignments have been changed or orders
of operations on resources have been modified. To reduce the size of such a neigh­
borhood it is desirable to exclude exchanges that cannot result in neighbors with
lower cost, as is done for the job shop by restricting exchanges to those that mod­
ify the order of operations on a longest path. For the RCSP critical operations,
operations whose removal from a schedule may affect a schedule's makespan, are
defined as follows.

Definition 7.8. Given are an RCSP instance and a feasible schedule (ra, st) for
it, represented by G = (0, E). Add a dummy vertex o* to G that succeeds all
operations in 0, i.e., o -< o* for all o e 0. Define a mapping .A. : 0,. P(0)
that gives for each operation o a set of operations whose removal from G may
affect the start time of o, as follows . .A.(o) = 0 if {(o', o) e E I o' I. o)} = 0,
otherwise .A.(o) = Uo'eOI(d,o)eEAR(o,o') (.A.(o') U {o'}) where R(o, o') =

3rera(o)nra(o')St(o) ::S Ct(o', r, ra(o')) V

(o' -<o A st(o) = max ct(o', r, ra(o'))).
rera(d)

Operation o is critical in G, if and only if o E .A.(o*). 0

If we consider RCSP instances in which all operation sizes and resource capaci­
ties are one, then the set of critical operations defined by Definition 7.8 coincides

7.2. Resource-constrained scheduling 115

with the set of operations on a longest path in a graph, but in general critical op­
erations are not situated on a single path in a graph.

Removal of non-critical operations does not affect the makespan of a sched­
ule, and therefore removal and subsequent reinsertion of non-critical operations
cannot result in lower-cost schedules. This gives rise to the following neighbor­
hood in which only critical operations are reinserted. First, we remark that an
operation o is an active predecessor of o' if o is just finished or still being pro­
cessed on a resource when o' is started on this resource. Neighbors are obtained
by removing a critical operation from a schedule and inserting it before an active
predecessor on a resource while maintaining the same resource assignment, or by
choosing a new resource set for this operation and reinserting the operation on the
resources in this set. Formally, this neighborhood is defined as follows.

Definition 7.9. Let G = (0, E) be a graph that represents a schedule (ra, st).
Let r1, rz be exchange functions such that r1 (G, o', o) = (0, E') is an acyclic
graph with (o, o') E E' and (o', o) E E that represents a schedule (ra, st'), and
such that rz(G, o, a) is an acyclic graph corresponding with a schedule (ra', st')
with ra'(o) = a for a E fr(o) and a :f. ra(o). Then, the neighborhood N1 is
defined by

N1(G) = {r1(G, o', o) I (o', o) E E 1\ 3rera(o)nra(o') st(o) ::5 ct(o', r, ra(o'))
1\ o is critical in G} U {rz(G, o, a) I a E fr(o) 1\ o is critical in G}.

0

Next, we show that this neighborhood is sufficiently connected, which implies
that an optimal solution can be reached starting from an arbitrary solution by a
finite sequence of exchanges. For this we need the following lemma.

Lemma 7.1. Let (ra, st) be a non-optimal schedule represented by G, and let
(ra*, st*) be an optimal schedule represented by G* = (0, E*). Then, the set

{o E 0 I o is critical in G 1\ (ra(o) :f. ra*(o) v
3o'eo3rera(o)nra(o') st(o) ::S ct(o', r, ra(o')) 1\ (o', o) E E 1\ (o, o') E E*)}

is non-empty.
Proof. Assume that for all critical operations o in G holds that ra(o) = ra*(o)
and for all (o', o) E E with st(o) :::: ct(o', r, ra(o')) and r E ra(o') holds
(o', o) E E*. Then, all edges in G that contribute to st(o*) are also included
in G*, and since other edges (o', o) in G* can only increase st*(o*), we have
st*(o*) ::=: st(o*). But we already know that st*(o*) :::: st(o*) and therefore G is
optimal. o

Theorem 7.2. The neighborhood N1 is sufficiently connected.
Proof. Let (ra, st) be a non-optimal schedule represented by G, and (ra*, st*)

116 Scheduling

an optimal schedule represented by G* (0, E*). We construct a sequence of
exchanges leading from G to G* via G; as follows.

(1) Go= G.

(2) If there is a critical operation o in G; with ra(o) f. ra*(o), then G;+l =
r2(G;, o, ra*(o)).

(3) If for all critical operations o ra(o) = ra*(o), then Gi+t = tt(G;,o', o),
where o is a critical operation in G; and o' E 0 is such that (o', o) E Ea;
and 3rEra(o)nra(o') st(o) ::5 ct(o', r, ra(o')) and (o, o') E E*.

It holds that G;+l E N1 (Gi). According to Lemma 7.1 operations o or o' that
meet the conditions in (2) or (3) always exist, unless G; is optimal. Furthermore,
for (3) holds that edges (v', v) E G; exist for which (v, v') E G* and (v, v') E

Gi+l· Reversal of (v', v), in addition to reversal of (o', o), is necessary for achiev­
ing acyclicity of G;+l. These edges (v', v) exist because if all edges (v', v) E G;
on a path from o' to o in G; also occur in G*, then G* would contain a cycle since
(o, o') E G*.

It remains to show that this sequence is finite. For this, define A(G, G*) =
{o E 0 I ra(o) f. ra*(o)} and R(G, G*) = {(o', o) E E I (o, o') E E*}
foragraphG = (O,E). ItholdsthatiA(GHt,G*)I < IA(Gi,G*)IifG;+lis
constructed in (2) and that IR(Gi+t• G*)l < IR(G;, G*)l if G;+l is constructed
in (3). So there exists a k1 :::; I 0 I · A(Go, G*) such that the condition in (2) can
no longer be satisfied for all k > kt in which case Gk+l is constructed from Gk
by applying r1 in (3) only. Moreover, for some k2 :::; kt + IR(Gkp G*)l holds
that the condition in (3) can also no longer be satisfied. According to Lemma 7.1
then holds that Gk2 is an optimal schedule. D

A neighbor in Nt is any acyclic graph that can be obtained by placing a critical
operation before an active predecessor or by changing its resource assignment.
Several feasible graphs may be constructed in which a given resource set is as­
signed to a critical operation. All these graphs are comprised in N 1, which re­
sults in large neighborhood sizes. Moreover, determining feasibility of a graph
obtained by reversing some edges or by changing the resource assignment of a
critical operation cannot be done in constant time, as opposed to the job shop
in which graphs obtained by reversing edges on a longest path are always feasi­
ble. These issues limit the practical usefulness of N 1• Therefore, we restrict the
neighborhood Nt such that it contains less neighbors, which can be constructed
efficiently.

Definition 7.10. Given is a graph G = (0, E) representing a schedule (ra, st).
An insert neighbor G' = (0, E') with given resource assignment ra' is con­
structed as follows. Remove operation a E 0 from G and remove all edges in-

7.2. Resource-constrained scheduling 117

cident with a, resulting in a graph c- = (0 \ {a}, E-). Choose an operation
be 0. Determine, for all r E ra'(a), operation o, e 0 with r e ra'(or) such
that st(o,) < st(b) and st(o') ::::; st(or) for all o' E 0 for which r e ra(o') and
st(o') < st(b). Add to c- edge (o, a), edges (a, o') for all (or, o') e , and
edges (o', a) for all (o', o,) e E-, i.e., Or directly precedes a on resource r. 0

Theorem 7 .3. An insert neighbor G' as specified in Definition 7.10 is acyclic and
represents a feasible schedule.
Proof Let a, b, o,, G, G-, G' be given by Definition 7.1 0. First note that the
existence of a path in G from o e 0 too' e 0 in G implies that st(o) ::::; st(o')
by definition of a graph G. Let o~ denote a direct successor of operation Or in G.
Assume that G' contains a cycle. This cycle must pass through edge (Or', a) and
(a, o~) for some r, r' e R, since G and thus c- are acyclic. So there must be a
path from {or I r e R} to {o~ I r E R} in c-. However, no such path can exist,
because for all r, r' E R holds st(o~) :=: st(b) > st(or) which implies that no
such path exists in G and therefore neither in G-. o

Insert neighbors G' specified by Definition 7.10 can be computed in O(K log L)
time, where K is the maximum cardinality of a feasible resource set of any opera­
tion and L the maximum number of operations assigned to any resource, because
operations Or that directly precede a in G' can be found using binary search.

Using the above observations, we can define a neighborhood N{ that is sim­
ilar to N1, except for the exchange functions r1 and rz that construct only insert
neighbors as given in Definition 7.1 0. N{ has a much smaller computational com­
plexity for verifying local optimality than N1, but the price we pay for this is that
N{ is no longer sufficiently connected, as can be shown by an example. The size
of the neighborhood N{(G) for a graph G is O(A,(o*)F), where F is an upper
bound on the number of feasible resource sets for any operation.

The effectiveness of the neighborhood N{ can be further improved by restrict­
ing the solution space to active schedules. A schedule is active if it is not possi­
ble to complete any operation earlier without changing the resource assignment
of operations or postponing the completion time of any of the other operations.
The construction of active schedules is based on the following observation. If
(o, o') e E for a graph G, then according to Definition 7.7 st(o) ::::;st(o'). Iffor
some t <St(o) the precedence constraints (7.1) and capacity constraints (7.2) for
o' are satisfied without postponing o when o' is started on t, then reversing (o, o')
does not delay any operation and can only decrease the makespan of G. Active
schedules can be constructed with the algorithm of Figure 7.2 by satisfying only
the precedence constraints (7 .1) while assigning the earliest possible start time
to operations at which (7.2) is satisfied, in the order imposed by E. So while
computing a schedule's makespan it is possible to construct, with some additional

118 Scheduling

computational overhead, an active schedule by reversing some edges, which may
have a shorter makespan than the original graph. The time complexity to compute
the makespan of such an active schedule, derived from G, is O(IOI(K L + 1)),
where K is the maximum cardinality of a feasible resource set of any operation,
L is the maximum number of operations assigned to any resource, and J is the
maximum number of successors of any operation in the precedence graph.

Construction of active neighboring schedules may give a larger cost decrease
in a single exchange, but it also results in a larger computational complexity for
each local search step.

7.2.2 Tabu ~earch for the resource-constrained scheduling problem

Tabu search is discussed in Section 2.2. In this section, we outline how tabu search
can be adapted to the RCSP. The tabu list can be implemented for the neighbor­
hood N{ as follows. Intmduce mappings ts : 0 -+ 0 x IN and ta : 0 x
P(R) ~---+ IN. Let I denote the total number of steps performed by a tabu search
algorithm and T the tabn tenure. Then, a proposed reinsertion r{ (G, o', o) is tabu,
ifts(o) = (o', i) withi + T 2:: I, andaproposedresource assignment rf(G, o, a)
is tabu, if t a (o, a) = i with i + T 2:: I. After effectuating a proposed reinsertion
r{(G, o', o), ts(o') is set equal to (o, I), and if a resource assignment r2(G, o, a)
is effectuated, ta(o, a) is set equal to I. Note that the memory requirements to
implement the tabu list are quite limited, viz., 0(I 0 I F) where F is the maximum
number of feasible resource sets for any operation.

The basic tabu search algorithm, outlined above, can be extended in several
ways; see [Glover, Taillard & De Werra, 1993]. Nowicki & Smutnicki [1995]
present a tabu search algorithm for the job shop scheduling problem that is one
of the most effective appmximation algorithms for this problem. In this algo­
rithm restarting from one of the five best solutions found so far takes place if no
improvement of the overall best solution is found for a given number of steps.
We incorporate this approach for intensification of the search in our tabu search
algorithm for the RCSP as follows.

(1) Perform the basic tabu search step by selecting a non-tabu neighbor of the
current solution, while storing the B lowest-cost local minima G; in a list
.C. Also the tabu lists tl(G;) associated with solutions G; are stored.

(2) Repeat step (1) until no solution with lower cost than the overall best is
found for a given number of steps L.

(3) Select the lowest-cost solution G; in .C for which the set of non-tabu neigh­
hors in N{(G;) \ W(G1) is non-empty. Select G' EN{(Gi) \ W(Gi) and
add it to W(G;). Go to step (1) using G' as current solution and tabu list
tl(Gt). If no such G' exists for any solution G; in£, the algorithm stops.

7.2. Resource-constrained scheduling 119

In the above algorithm, the search is intensified around previously found good so­
lutions by exploring different paths from there. Memory requirements for this ap­
proach can be reduced by storing the exchanges that lead to the examined neigh­
bors in W(Gi), instead ofthe actual neighbors themselves.

7.2.3 Computational results

We have implemented the tabu search algorithm with the neighborhood .Nf out­
lined in the previous sections. The parameters of the tabu search algorithm are
chosen as follows. The tabu tenure is randomly chosen in the interval [A, 2A]
where A is equal to the sum of lfr(o) I over all o E 0 divided by the total number
of resources in an instance. A new value for the tabu tenure is chosen after every
2A steps. In this way the probability that the tabu search algorithm starts cycling
in the neighborhood graph is reduced. Furthermore, the length of the list £ in
which the best local minima found are stored, is set to five. The number of steps
L in which the overall best solution must be improved since otherwise restart­
ing from a previously found local minimum takes place is set equal to 2000/ A at
first, and it is set equal to 1000/ A once restarting has occurred. The algorithm is
terminated when either all restarting possibilities are exhausted or when the total
number of examined solutions exceeds 107 I A.

We have tested the algorithm on instances due to Nuijten [1994], who trans­
formed well-known job shop instances into instances oftwo subproblems ofthe
resource-constrained scheduling problem, viz., the multiple capacitated job shop
scheduling problem (MCJSSP) and the job shop scheduling problem with resource
sets and alternatives (RSAJSSP).

The MCJSSP is a generalization of the job shop in which machines can pro­
cess several operations simultaneously. Each machine has an integer capacity and
each operation has an integer size. A machine can process only those subsets of
operations simultaneously whose summed sizes do not exceed its capacity. In­
stances of the MCJSSP are devised from job shop instances by duplicating all op­
erations including processing times, precedences and machine assignments. All
operations have size one, and the machines have capacity two. Upper bounds on
the makespan of the original job shop instances are then upper bounds for the cor­
responding MCJSSP instances. Triplicated instances, in which machines have
capacity three, are constructed similarly.

The RSAJSSP is a generalization of the job shop in which operations may
require several machines for processing. Furthermore, an operation can be pro­
cessed by several alternative machine sets. Machines can only process one opera­
tion at a time. Instances of the RSAJSSP are constructed from job shop instances
as follows. Each operation requires one additional machine for which three alter­
natives exist. The processing times are either the original processing time or this

120 Scheduling

101 IRI cap lb/ub res best f best avg t(s)
fld 100 5 2 666 666 669 0.45 682 21
f2d 100 5 2 655 683 669 2.14 688 35
f3d 100 5 2 593/597 638 645 8.77 661 25
f4d 100 5 2 572/590 590 601 5.07 630 65
f5d 100 5 2 593 593 593 0 596 12
flt 150 5 3 666 671 671 0.75 688 35
f2t 150 5 3 655 704 694 5.95 716 27
f3t 150 5 3 590/597 647 636 7.80 660 36
f4t 150 5 3 570/590 592 615 7.89 645 63
f5t 150 5 3 593 593 593 0 599 12
g1d 150 5 2 926 926 926 0 932 49
g2d 150 5 2 890 890 893 0.33 925 75
g3d 150 5 2 863 863 866 0.35 895 73
g4d 150 5 2 951 951 951 0 967 53
g5d 150 5 2 958 958 958 0 961 90
glt 225 5 3 926 926 926 0 931 59
g2t 225 5 3 890 913 900 1.12 913 101
g3t 225 5 3 863 866 873 1.16 888 135
g4t 225 5 3 951 952 952 0.11 956 132
g5t 225 5 3 958 960 958 0 962 69
ald 200 10 2 888/935 935 962 8.33 993 113
a2d 200 10 2 75on65 765 783 4.40 804 74
a3d 200 10 2 783/844 844 856 0.93 897 101
a4d 200 10 2 730/840 840 849 16.30 872 106
a5d 200 10 2 829/902 902 907 9.41 960 93
fi06d 72 6 2 53/55 55 57 7.55 58 5
fi10d 200 10 2 835/930 963 989 18.44 1021 132
fi20d 200 5 2 1165 1319 1353 16.14 1409 291

Table 7.1: Results for multiple capacitated job shop instances.

7.2. Resource-constrained scheduling 121

101 IRI F lb/ub res best € best avg t(s)
flra 50 5 3 950 956 950 0 954 77
f2ra 50 5 3 881/883 893 883 0.23 887 75
f3ra 50 5 3 795n96 810 796 0.13 807 73
f4ra 50 5 3 836 840 836 0 840 74
f5ra 50 5 3 761 764 761 0 764 76
g1ra 75 5 3 1331 1331 1334 0.23 1342 130
g2ra 75 5 3 1249/1251 1251 1251 0.16 1278 141
g3ra 75 5 3 1275/1276 1276 1277 0.16 1295 134
g4ra 75 5 3 1421/1424 1424 1426 0.35 1432 131
g5ra 75 5 3 1340/1341 1341 1341 0.07 1350 133
alra 100 10 4 901/1082 1122 1082 20.09 1132 226
a2ra 100 10 4 780/901 946 901 15.51 955 212
a3ra 100 10 4 865/1003 1086 1003 15.95 1053 243
a4ra 100 10 4 891/1019 1030 1019 14.37 1065 250
a5ra 100 10 4 908/1078 1127 1078 18.72 1126 230
b1ra 150 10 4 133311478 1489 1478 10.88 1534 284
b2ra 150 10 4 122111365 1368 1365 11.80 1416 283
b3ra 150 10 4 134811498 1498 1506 11.72 1530 272
b4ra 150 10 4 1288/1401 1401 1437 11.57 1452 288
b5ra 150 10 4 1252/1380 1380 1396 11.50 1421 282
c1ra 200 10 4 1753/1884 1884 1925 9.81 1988 323
c2ra 200 10 4 1806/2001 2018 2001 10.79 2058 302
c3ra 200 10 4 1781/1968 1975 1968 10.50 2026 304
c4ra 200 10 4 165511858 1858 1876 13.35 1957 301
c5ra 200 10 4 1780/1942 1942 1963 10.28 2040 305
fi06ra 36 6 3 66 68 66 0 69 27
filOra 100 10 4 954/1114 1202 1114 16.77 1198 233
fi20ra 100 5 3 1703/1724 1724 1726 1.35 1798 175

Table 7.2: Results for job shop instances with resource sets and alternatives.

122 Scheduling

time multiplied by 1.2. Lower bounds for the original job shop instance are then
lower bounds for the corresponding RSAJSSP instances.

Tables 7.1 and 7.2 list the results. In these tables, I 0 I is the number of op­
erations in an instance, IR I is the number of resources, and the column "lb/ub"
gives the best known lower and upper bounds. For the MCJSSP instances the
upper bounds are derived from the original job shop instance, except for the in­
stances a1d, a2d, a3d, and a4d for which these upper bounds could be improved.
All lower bounds are computed by Nuijten [1994]. The column labeled "cap"
gives the capacity of the machines in,the MCJSSP instances, in which each op­
eration has size one. For the RSAJSSP instances F is the number of machine set
alternatives for an operation, where each machine set consists of two machines.
The column "res" gives the results obtained by the randomized constraint satis­
faction algorithm of Nuijten [1994]. The columns labeled "best" and Ebest give
the best solution found in ten runs and its relative excess over the lower bound,
the column "avg" gives the average cost of final solutions, and t(s) is the average
running time in seconds on a Spare 5 workstation.

The tables show that the tabu search algorithm is slightly better than the rl:ll­
domized constraint satisfaction algorithm of Nuijten [1994] for the RSAJSSP in­
stances, but it is outperformed by this algorithm for the MCJSSP instances. So
whereas tabu search algorithms based on similar conceptual ideas as incorpo­
rated in our algorithm clearly outperform constraint satisfaction algorithms for
job shop scheduling [Vaessens, 1995], this no longer seems to hold for the more
general resource-constrained scheduling problem. This may be explained by the
substantial increase of the computational complexity to evaluate the neighbor­
hoods of schedules.

7.2.4 Parallel tabu search for the resource-constrained scheduling problem

In Section 7.1 we have attempted to design a parallel local search algorithm for
the job shop scheduling problem based on multiple-step parallelism. This ap­
proach, however, turned out to be unsatisfactory for this problem. In this section
we consider other options for applying parallelism in tabu search for the resource­
constrained scheduling problem.

Multiple independent walks. In Chapter 4 we have argued that it is possible
to obtain good speed-ups with multiple independent walks of a tabu search algo­
rithm, provided that some rather mild conditions are met. First, the desired final
solution quality should be much lower than the average relative excess of local
minima. Secondly, the probability to find these (sub)optimal solutions should be
given by a geometrical distribution. This condition is typically satisfied when the
time needed to find a local minimum starting from an initial solution is equal to

7.2. Resource-constrained scheduling

16 2%-i
14

... -·~:--·]
12

t 10
................. ·····

l 8 //
e /-4

0
0 5 10 15 20 25 30 35 40 45 50

"'"""""""'

:w

15

t
l 10

5

5 10 15 20 25 <lO 35 40 45 50
Pf~

123

Figure 7.3: Speed-up with multiple independent walks for the instances flt (left) and
fishlOra (right) for finding solutions with a given relative excess.

the time needed to find other local minima starting from local minima.
Next, we study the amount of speed-up that can be obtained with multiple

independent walks of our tabu search algorithm. For this, we perform runs of
our tabu search algorithm in which the algorithm is halted when a solution with
a given relative excess is found. The running time needed by P processors to
find a solution with a given relative excess is then given by the minimum run­
ning time needed for this in P runs. In this way we can compute the average
running time required by different numbers of employed processors and the re­
sulting speed-ups for obtaining a given final solution quality. Figure 7.3 shows
some typical results for the speed-up achieved with multiple independent walks
of our tabu search algorithm for finding solutions with relative excesses of one
and two percent over the best known upper bounds. We observe that this trivial
approach to parallel tabu search for the RCSP results in good speed-ups and ef­
ficiencies -more than 50 percent- for as many as 20 processors, in particular
when solutions with low relative excess are sought.

Single step parallelism. In Chapter 3 we have also argued that it is possible to
obtain good speed-ups with single-step parallelism if best improvement is used
for selecting neighbors. As this is the case in our tabu search algorithm, single­
step parallelism may also be effective here. Single-step parallelism requires de­
composition of a neighborhood into equally sized subsets containing neighbors
that are explored simultaneously. Subsequently, one of the proposed neighbors
replaces the current solution-that is, only a single proposed exchange is effectu­
ated by the combination function; cf. Section 3.2.1. For this, we partition a neigh­
borhood N{ (G) of a solution G into equally sized subsets by imposing an order
on the set A.(o*) that determines the neighborhood of G. Each processor p, with
0 ~p < P, examines IN{ (G) 11 P neighbors whose rank in this order is between
p · IN{ (G) I I P and (p + 1) ·IN{ (G) I I P. The speed-up that can be obtained with

5 10 15 20 25 $0 35 pt-· 5 10 15 20 25 30 35
procusus

Figure 7.4: Speed-up with single-step parallelism for the instances f1 t (left) and fishl Ora
(right).

single-step parallelism depends on the sizes of neighborhoods, the time needed
to evaluate the cost ofneighbors, and the time needed for all-to-all broadcasting.
The sizes of neighborhoods rely also upon the status of the tabu list, in addition
to the solution at hand. All-to-all broadcasting is necessary to communicate all
proposed exchanges to all processors, after which processors can locally replace
the current solution with the lowest-cost neighbor.

We have implemented a tabu search algorithm with single-step parallelism
on a Parsytec PowerXplorer machine consisting of 32 PowerPC processing units
configured in a torus. All-to-all broadcasting is done with the algorithm outlined
in Section 6.2. Figure 7.4 shows the average speed-up using single-step parallel­
ism for the instances fl t and fishlOra. The computational results show that good
speed-ups and efficiencies can be obtained for moderate number of processors.
The scalability, however, is rather limited due to the worse communication vs.
computation ratio for larger number of processors.

An important observation is that it is possible to use more processors effec­
tively, resulting in larger speed-ups, by combining single-step parallelism with
multiple-walk parallelism since single-step parallelism can be used in each walk
of a multiple-walk parallel local search algorithm. For example, performing 20
independent walks, each of which utilizes single-step parallelism using 8 pro­
cessors, would result in a speed-up of 71 requiring 160 processors for the in­
stance fishlOra. So large speed-ups can be obtained for the resource-constrained
scheduling problem using a combination of concepts proposed in this thesis for
parallel local search.

Bibliography

AARTS, E.H.L., F.M.J. DE BONT, J.H.A. HABERS, AND P.J.M. VAN LAAR­
HOVEN [1986], Parallel implementations of the statistical cooling algo­
rithm, Integration 4, 209-238.

AARTS, E.H.L., AND J. KORST [1989], Simulated Annealing and Boltzmann
Machines, Wiley, Chichester.

AARTS, E.H.L., AND J.K. LENSTRA (eds.) [1996], Local Search in Combina­
torial Optimization, Wiley, New York.

AARTS, E.H.L., AND M.G.A. VERHOEVEN [1996], Genetic local search for
the traveling salesman problem, in: T. Back, D. Fogel, and Z. Michalewicz
(eds.), Handbook of Evolutionary Computing, Oxford University Press.

ALLWRIGHT, J.R.A., AND D.B. CARPENTER [1989], A diStributed implemen­
tation of simulated annealing for the traveling salesman problem, Parallel
Computing 10, 335-338.

APPLEGATE, D., R. BIXBY, V. CHV ATAL, AND W. COOK [1995], Finding cuts
in the TSP, Preliminary technical report.

AZENCOTT, R. (ed.) [1992], Simulated Annealing: Parallelization Techniques,
Wiley, New York.

BACHEM, A., B. STECKEMETZ, AND M. WOTTAWA [1994], An efficient paral­
lel cluster heuristic for large traveling salesman problems, Report 94-150,
Zentrum fiir Paralleles Rechnen, Universitat KOln, Germany.

BARBOSA, V., AND E. GAFNI (1989], A distributed implementation of simu­
lated annealing, J. of Parallel and Distributed Computing 6, 411-434.

BARR, R.S., AND B.L. HICKMAN [1993], Reporting computational experi­
ments with parallel algorithms, ORSA Journal on Computing S, 2-18.

BATTITI, R., AND G. TECCHIOLLI [1992], Parallel biased search for combi­
natorial optimization: genetic algorithms and tabu, Microprocessors and
Microsystems 16, 351-367.

BAYER, R. [1972], Symmetric binary b-trees: data structures and maintenance
algorithms, Acta lnformatica 1, 290-306.

BEASLEY, J.E. [1989], An SST-based algorithm for the Steiner problem in
graphs, Networks 19, 1-16.

BEASLEY, J.E. [1990], OR-library: distributing test problems by electronic

125

126 Bibliography

mail, Journal of the Operational Research Society 41, 1069-1072.
BENTLEY, 1 .L. [1990], Experiments on traveling salesman heuristics, Proc. 1st

ACM-SIAM Symposium on Discrete Algorithms, 91-99.
BERTSEKAS, D.P., AND J.N. TSITSIKLIS [1989], Parallel and Distributed

Computation, Prentice-Hall, Englewood Cliffs.
BLAND, R.G., AND D.F. SHALLCROSS [1989], Large traveling salesman prob­

lems arising from experiments in x-ray crystallography, Operations Re­
search Letters 8, 123-133.

BLAZEWICZ, J., K.H. ECKER, G. SCHMIDT, AND 1. WEGLARZ [1994], Sched­
uling in Computer and Manufacturing Systems, Springer-Verlag, Berlin.

BOESE, K.D., A.B. KAHNG, AND S. MUDDU [1994], A new adaptive
multi-start technique for combinatorial global optimization, Operations
Research Letters 16, 101-113.

BOISSIN, N., AND 1. LUTTON [1993], A parallel simulated annealing algorithm,
Parallel Computing 19, 859-872.

CASOTTO, A., F. ROMEO, AND A. SANGIOVANNI-VINCENTELLI [1987], A
parallel simulated annealing algorithm for the placement of macro-cells,
IEEE Transactions on Computer-Aided Design 6, 838-847.

CHAKRAPANI, 1., AND 1. SKORIN-KAPOV [1993a], Connection machine im­
plementation of a tabu search algorithm for the traveling salesman prob­
lem, Journal of Computing and Information Technology 1, 29-36.

CHAKRAPANI, 1., AND 1. SKORIN-KAPOV [1993b], Massively parallel tabu
search for the quadratic assignment problem, Annals of Operations Re­
search 41, 327-342.

CHANDRA, B., H. KARLOFF, AND C. TOVEY [1994], New results on the old
k-opt algorithm for the TSP, Proc. 5th A CM-SIAM Symposium on Discrete
Algorithms, 150-159.

CHEN, N.P. [1983], New algorithmsforSteinertreeongraphs, Proc. ofthelEEE
lnt. Symposium on Circuits and Systems, 1217-1219.

CRAINIC, T.G., M. TOULOUSE, AND M. GENDREAU [1993a], Parallel asyn­
chronous tabu search for multicommodity location-allocation with balanc­
ing requirements, Publication 935, Centre de recherche sur les transports,
Universite de Montreal.

CRAINIC, T.G., M. TOULOUSE, AND M. GENDREAU [1993b], Towards a
taxonomy ofparallel tabu search algorithms, Publication 933, Centre de
recherche sur les transports, Universite de Montreal.

CRAINIC, T.G., M. TOULOUSE, AND M. GENDREAU [1995], Synchronous
tabu search parallelization strategies for multicommodity location­
allocation with balancing requirements, OR Spektrum 17, 113-123.

Bibliography 127

CROES, G.A. [1958], A method for solving traveling salesman problems, Op­
erations Research 6, 791-812.

DAREMA, F., S. KIRKPATRICK, AND V.A. NORTON [1987], Parallel algorithms
for chip placement by simulated annealing, IBM Journal of Research and
Development 31, 391-402.

DAUZERE-PERES, S., AND J. PAULLI [1995], A global tabu search procedure
for the general multiprocessor job shop scheduling problem, Report 95/5,
Institute of Mathematics, University of Aarhus.

DIEKMANN, R., R. LULING, AND J. SIMON [1993], Problem independent dis­
tributed simulated annealing and its applications, in: R.V.V. Vidal (ed.),
Applied Simulated Annealing, LNEMS 396, Springer-Verlag, 18-44.

DODD, N. [1990], Slow annealing versus multiple fast annealing runs- an em­
pirical investigation, Parallel Computing 16, 269-272.

DowsLAND, K.A. [1991], Hill-climbing, simulated annealing and the Steiner
problem in graphs, Engineering Optimization 17,91-107.

DUIN, C.W. [1994], Steiner's Problem in Graphs, Ph.D. thesis, Amsterdam
University.

DUIN, C., AND S. Voss [1993], Steiner tree heuristics- a survey, in: H. Dyck­
hoff, U. Derigs, M. Salomon, and H.C. Tijms (eds.), Proc. 22nd annual
meeting DGOR I NSOR, Springer-Verlag, Berlin, 485-496.

EIKELDER, H.M.M. TEN, M.G.A. VERHOEVEN, T.W.M. VOSSEN, AND
E.H.L. AARTS [1996], A probabilistic analysis of local search, in: I. H.
Osman and J.P. Kelly (eds.), Meta-heuristics: Theory and Applications,
Kluwer Academic, Boston.

FELTEN, E., S. KARLIN, AND S.W. OTTO [1985], Tbetraveling salesman prob­
lem on a hypercubic mimd machine, Proc. lnt. Conference on Parallel
Processing, 6-10.

FERREIRA, A. G., AND J. ZEROVNIK [1993], Bounding the probability of suc­
cess of stochastic methods for global optimization, Computers & Mathe­
matics with Applications 25, 1-8.

FIECHTER, C.N. [1994], A parallel tabu search algorithm for large traveling
salesman problems, Discrete Applied Mathematics 51, 243-267.

FORTUNE, S. [1987], A sweepline algorithm for voronoi diagrams, Algorith­
mica 2, 153-174.

Fox, B.L. [1993], Integrating and accelerating tabu search, simulated annealing,
and genetic algorithms, Annals of Operations Research 41, 47-67.

FREDMAN, M.L., D.S. JOHNSON, L.A. MCGEOCH, AND G. 0STHEIMER
[1993], Data structures for the traveling salesman, Proc. 4th ACM-SIAM
Symposium on Discrete Algorithms, 145-154.

128 Bibliography

FRENCH, S. [1982], Sequencing and Scheduling: An Introduction to the Math­
ematics of the Job-Shop, Wiley, Chichester.

GARCIA, B., J. POTVIN, AND J. ROUSSEAU [1994], Aparallelimplementation
of the tabu search heuristic for vehicle routing problems with time window
constraints, Computers and Operations Research 21, 1025-1033.

GAREY, M.R., AND D.S. JOHNSON [1979], Computers and Intractability: A
Guide to the Theory of NP-completeness, Freeman, San Francisco.

GLOVER, F. [1989], Tabu search- part I. ORSA Journal on Computing 1, 19~
206.

GLOVER, F., E. TAILLARD, AND D. DE WERRA [1993], A user's guide to tabu
search, Annals of Operations Research 41, 3-28.

GREENING, D.R. [1990], Parallel simulated annealing techniques, Physica
D 42, 293-306.

GREENLAW, R., H.J. HOOVER, AND W.L. RUZZO [1995], Limits to Parallel
Computation: P-completeness Theory, Oxford University Press, Oxford.

HURINK, J., B. JURISCH, AND M. THOLE (1994], Tabu search for the job shop
scheduling problem with multi-purpose machines, OR Spektrum 16, 205-
215.

HWANG, F.K., D.S. RICHARDS, AND P. WINTER [1992], The Steiner Tree
Problem, Annals of Discrete Mathematics 53.

JOG, P., J.Y. SUH, AND D. VAN GUCHT [1991], Parallel genetic algorithms ap­
plied to the traveling salesman problem, SIAM Journal on Optimization 1,
515...:..529.

JOHNSON, D.S. [1990], Local optimization and the traveling salesman prob­
lem, Proc. 17th Colloquium on Automata, Languages, and Programming,
LNCS 443, Springer-Verlag, 446-461.

JOHNSON, D.S., AND L.A. MCGEOCH [1996], The traveling salesman prob­
lem: a case study in local optimization, in: [Aarts & Lenstra, 1996].

JOHNSON, D.S., C.H. PAPADIMITRIOU, AND M. YANNAKAKIS [1988], How
easy is local search?, Journal of Computer and System Sciences 37, 79-
100.

]ONES, M. H., AND P. BANERJEE [1987], An improved simulated annealing al­
gorithm for standard cell placement, Proc. of the International Conference
on Computer Design, 83-86.

KAPSALIS, A., V.J. RAYWARD-SMITH, AND G.D. SMITH [1993], Solving the
graphical Steiner tree problem using genetic algorithms, Journal of the
Operational Research Society 44, 397-406.

KERN, W. [1989], A probabilistic analysis of the switching algorithm for the
Euclidian TSP, Mathematical Programming 44, 213-219.

Bibliography 129

KERNIGHAN, B.W., AND S. LIN [1970], An efficient heuristic procedure for
partitioning graphs, Bell System Technical Joumal49, 291-307.

KINDERVATER, G.A.P., J.K. LENSTRA, AND M.W.P. SAVELSBERGH [1993],
Sequential and parallel local search for the time constrained traveling
salesman problem, Discrete Applied Mathematics 42, 211-25.

KIRKPATRICK, S., C.D. GELAIT, JR., AND M.P. VECCHI [1983], Optimiza­
tion by simulated annealing, Science 220, 671-680.

KIRKPATRICK, S., AND G. TOULOUSE [1985], Configuration space analysis of
travelling salesman problems, Journal Physique 46, 1277-1292.

KRAVITZ, S.A., AND R.A. RUTENBAR [1987], Placement by simulated anneal­
ing on a multiprocessor, IEEE Transactions on Computer Aided Design 6,
534-549.

KRUSKAL, C.P., L. RUDOLPH, AND M. SNIR [1990], A complexity theory of
efficient parallel algorithms, Theoretical Computer Science 71,95-132.

KRU SKAL, J. B. [195 6], On the shortest spanning tree of a graph and the traveling
salesman problem, Proc. Amer. Math. Soc. 7, 48-50.

LAARHOVEN, P.J.M. VAN, E.H.L. AARTS, AND J.K. LENSTRA [1992], Job
shop scheduling by simulated annealing, Operations Research 40, 113-
125.

LAWLER, E.L. [1976], Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart & Wilson, New York.

LAWLER, E.L., J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS
[1985], The Traveling Salesman Problem: A Guided Tour of Combinato­
rial Optimization, Wiley, Chichester.

LAWLER, E.L., J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS
[1993], Sequencing and scheduling: Algorithms and complexity, in: S.C.
Graves, A.H.G. Rinnooy Kan, and P. Zipkin (eds.), Handbooks in Opera­
tions Research and Management Science 4, North-Holland.

LEON, V.J., AND R. BALAKRISHNAN [1995], Strength and adaptability of
problem-space based neighborhoods for resource-constrained scheduling,
OR Spektrum 17, 173-182.

LI, Y., AND P.M. PARDALOS [1992], Parallel algorithms for the quadratic as­
signment problem, in: P.M Pardalos (ed.), Advances in Optimization and
Parallel Computing, Kluwer, 177-189.

LIN, S. [1965], Computer solutions ofthe traveling salesman problem, Bell Sys­
tem Technical Journal44, 2245-2269.

LIN, S., AND B.W. KERNIGHAN [1973], An effective heuristic algorithm for
the traveling salesman problem, Operations Research 21,498-516.

MAHFOUD, S.W., AND D.E. GOLDBERG [1995], Parallelrecombinativesimu-

130 Bibliography

lated annealing: a genetic algorithm, Parallel Computing 21, 1-28.
MALEK, M., M. GURUSWAMY; AND M. PANDYA [1989], Serial and parallel

simulated annealing and tabu search for the traveling salesman problem,
Annals of Operations Research 21, 59-84.

MARTIN, 0., S.W. 0TTO, AND E.W. FELTEN [1991], Large-steps markov
chains for the travelling salesman problem, Complex Systems 5, 299-326.

MICHALEWICZ, Z. [1992], Genetic Algorithms+ Data Structures= Evolution
Programs, Springer-Verlag, Berlin.

MosCATO, P. [1993], An introduction to population approaches for optimiza­
tion and hierarchical objective functions: a discussion on the role of tabu
search, Annals of Operations Research 41, 85-122.

MDHLENBEIN, H. [1992], Parallel genetic algorithms in combinatorial opti­
mization, in: 0. Balci (ed.), Computer Science and Operations Research,
Pergamon Press.

MUHLENBEIN, H., M. GORGES-SCHLEUTER, AND 0. KRAMER [1988], Evo­
lution algorithms in combinatorial optimization, Parallel Computing 7,
65-85.

NEMHAUSER, G.L., AND L.A. WOLSEY [1988], Integer and Combinatorial
Optimization, Wiley, New York.

NOWICKI, E., AND C. SMUTNICKI [1995], A fast taboo search algorithm for
the job shop problem, Management Science, to appear.

NUIJTEN, W.P.M. [1994], Time and Resource Constrained Scheduling: A Con­
straint Satisfaction Approach, Ph.D. thesis, Eindhoven University.

OSBORNE, L.J., AND B.E. GILLETT [1991], A comparison of two simulated
annealing algorithms applied to the directed Steiner problem on networks,
ORSA Journal on Computing 3, 213-225.

PAPADIMITRIOU, C.H., AND K. STEIGLITZ [1982], Combinatorial Optimiza­
tion: Algorithms and Complexity, Prentice Hall, Englewood Cliffs.

PAPOULIS, A. [1965], Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, London.

PINEDO, M. [1995], Scheduling: Theory, Algorithms, and Systems, Prentice
Hall, Englewood Cliffs.

RAVIKUMAR, C.P. [1992], Parallel techniques for solving large scale travelling
salesperson problems, Microprocessors and Microsystems 16, 149-158.

REEVES, C.R. (ed.) {1993], Modern Heuristic Techniques for Combinatorial
Problems, Blackwell, London.

REINELT, G. [1991], TSPLIB: A traveling salesman problem library, ORSA
Journal on Computing 3, 376-384.

REINELT, G. [1992], Fast heuristics for large geometric traveling salesman prob-

Bibliography 131

lems, ORSA Journal on Computing 4, 206-217.
REINELT, G. [1994], The Traveling Salesman: Computational Solutions for TSP

Applications, LNCS 840, Springer-Verlag, Berlin.
ROMEO, F., AND A. SANGIOVANNI-VINCENTELLI [1991], A theoretical

framework for simulated annealing, Algorithmica 6, 302-345.
ROSE, J.S., W.M. SNELGROVE, AND Z.G. VRANESIC [1988], Parallel stan­

dard cell placement algorithms with quality equivalent to simulated an­
nealing, IEEE Transactions on Computer-Aided Design 7, 387-396.

ROUSSEL-RAGOT, P., AND G. DREYFUS [1990], Aproblemindependentparal­
lel implementation of simulated annealing: models and experiments, IEEE
Transactions on Computer-Aided Design 9, 827-835.

RoY, B., AND B. SUSSMANN [1964], Les problemes d'ordonnancement avec
constraints disjonctives, Note DS 9 bis, SEMA, Paris, France.

SAMPSON, S.E., AND E.N. WEISS [1993], Local search techniques for the gen­
eralized resource-constrained project scheduling problem, Naval Research
Logistics 40, 665-675.

SAVAGE, J.E., AND M. G. WLOKA [1991], Parallelism in graph-partitioning,
Journal of Parallel and Distributed Computing 13, 257-272.

SECHEN, C. [1988], VLSI Placement and Global Routing using Simulated An­
nealing, Kluwer Academic, Dordrecht.

SHAHOOKAR, K., AND P. MAZUNDER [1991], VLSI cell-placement tech­
niques, ACM Computing Surveys 23, 143-220.

SHONKWILER, R., AND E. VAN VLECK [1994], Parallel speed-up of Monte
Carlo methods for global optimization, Journal of Complexity 10, 64--95.

SLOWINSKI, R., AND J. WEGLARZ (eds.) [1989], Advances in Project Schedul­
ing, Elsevier, Amsterdam.

STADLER, P.F., AND W. SCHNABL [1992], The landscape of the traveling sales­
man problem, Physics Letters A 161, 337-344.

STUART, A., AND J.K. ORD [1987], Kendall's Advanced Theory of Statistics,
Vol 1: Distribution Theory, Griffin & Company, London.

TAILLARD, E. [1990], Some efficient heuristic methods for the ftow shop se­
quencing problem, European Journal of Operational Research 47, 65-74.

TAILLARD, E. [1991]. Robust taboo search for the quadratic assignment prob­
lem, Parallel Computing 17, 443-455.

TAIL LARD, E. [1993], Parallel iterative search methods for vehicle routing prob­
lems, Networks 23, 661-673.

TAILLARD, E. [1994], Parallel taboo search techniques for the job shop schedul­
ing problem, ORSA Journal on Computing 6, 108-117.

TAKAHASHI, H., AND A. MATSUYAMA [1980], An approximate solution for

132 Bibliography

the Steiner tree problem in graphs, Math. Japonica 24, 573-577.
TOVEY, C.A. [1985], Hill climbing with multiple local optima, SIAM Journal

of Discrete Mathematics 6, 383-393.
VAESSENS, R.J.M. [1995], Generalized Job Shop Scheduling: Complexity and

Local Search, Ph.D. thesis, Eindhoven University.
VERHOEVEN, M.G.A., E.H.L. AARTS, E. VAN DE SLUIS, AND R.J.M.

VAESSENS [1992], Parallel local search and the travelling salesman
problem (extended abstract), Parallel Problem Solving from Nature 2,
North-Holland, Amsterdam, 543-552.

VERHOEVEN, M.G.A., AND E.H.L. AARTS [1994], A parallel Lin-Kernighan
algorithm for the traveling salesman problem, in: G. Joubert, D. Trystram,
F. Peters, and D. Evans (eds.), Parallel Computing: Trends and Applica­
tions, Elsevier Science, Amsterdam, 559-563.

VERHOEVEN, M.G.A., AND E.H.L. AARTS [1995a], Parallel local search,
Journal of Heuristics l, 43--65.

VERHOEVEN, M.G.A., AND E.H.L. AARTS [1995b], Parallel local search and
job shop scheduling, in: A. Ferreira and J. Rolim (eds.), Parallel Algo­
rithms for Irregular Problems: State of the Art, Kluwer, Boston, 195-212.

VERHOEVEN, M.G.A., E.H.L. AARTS, AND M.E.M. SEVERENS [1995], Lo­
cal search for the Steiner tree problem, Proc. of Adaptive Decision Tech­
nologies (ADT-95), 345-352.

VERHOEVEN, M.G.A., E.H.L. AARTS, AND P.C.J. SWINKELS [1995], A par­
allel 2-opt atgorithm for the traveling salesman problem, Future Genera­
tion Computer Systems ll, 175-182.

Voss, S. [1992], Steiner's problem in graphs: heuristic methods, Discrete Ap­
plied Mathematics 40, 45-72.

Voss, S. [1993], Tabu search: applications and prospects, in: D.Z. Du and P.M.
Pardalos (eds.), Network Optimization Problems, World Scientific, 333-
353.

WEINBERGER, E.D. [1991], Local properties ofKauffman's N-k model: A tun­
ably rugged energy landscape, Physical Review A 44, 6399--6413.

YANNAKAKIS, M. [1990], The analysis of local search problems and their
heuristics, Proc. 7th Symposium on Theoretical Aspects of Computer
Science, LNCS 415, Springer-Verlag, Berlin, 298-311.

YANNAKAKIS, M. [1996], Computational complexity oflocal search, in: [Aarts
& Lenstra, 1996].

Yoo, J., T. YANG, AND J.P. lGNIZIO [1995], An exchange heuristic for re­
source constrained scheduling with consideration given to opportunities
for parallel processing, Production Planning & Contro/6, 140-150.

Index

0,2
('), 2
9,2
v2. 56
V3,B, 58
Jv2, 10,53
M,B, 57
o*, 114
p.,46

array representation, 65

best improvement, 11, 29
broadcasting, 76, 99
building elements, 9

candidate sets, 14, 64
combination function, 26, 74, 82, 96,

103, 110
communication overhead, 7
connected neighborhood

completely, 12
sufficiently, 12

constructive algorithms, 4
critical operations, 114

Delaunay
k-th order sets, 64
graph,64

distributed neighborhood structure, 26
distribution structure, 26, 74, 96, 110

linear, 54
diversification, 14
domain distribution, 26, 74, 96

efficiency, 6
ejection chains, 13
EP, 7,8
excess ratio, 4
exchange function, 10

133

first improvement, 11, 2 9

genetic local search, 15

hyper neighborhood structure, 20

insert neighbor, 116
instance, 2
intensification, 14
island model, 23
isomorphic, 27
iterated local search, 13, 45
iterative improvement, 9, 1 0

job shop scheduling problem
(JSSP), 106

key path, 84
key vertex, 84

latency, 6
Lin-Kernighan neighborhood, 52,

62-63
load balancing, 7
local minimum, 9, 26
local neighborhood structure, 25

meta heuristics, 13
MIMD,5
multi improvement, 98
multiple-step parallelism, 18, 30-34,

72-77,95-101,109-110
multiple-walk parallelism, 18-20

independent, 20-22, 48-50,
122-123

interacting, 22-24

NC,7
neighborhood graph, 12

134

neighborhood structure, 9
exact, 11

NP-complete, 3
NP-hard, 3

Or-opt, 52, 57

P-complete, 7
partial solutions, 25
pivoting rule, 11
PLS, 11
PLS-complete, 12
population, 20
PowerXplorer, 78
PRAM,5

resource
alternatives, 111
multiple capacitated, 111
sets, 111

resource-constrained scheduling problem
(RCSP), 111

ring, 5, 56

scalability, 6
schedule

active, 117
left-justified, 112

segment tree, 67-69
SIMD,5

· simulated annealing, 14
single-step parallelism, 18, 29-30,

123-124
single-walk parallelism, 18,25-28
solution distribution, 25
speed-up, 6
Steiner tree problem (STPG), 84
step, 10
step probability, 39

tabu search, 13, 118
terminals, 84
time complexity, 2
torus, 5, 99
transputer, 78
traveling salesman problem (TSP), 10

random distance matrix, 39
symmetric, 38

two-level tree, 66-67

variable-depth neighborhood, 13
verification problem, 34
Voronoi region, 64

Index

Samenvatting

Dit proefschrift bebandelt parallelle lokale-zoekalgoritmen voor combinatorische
optimaliseringsproblemen. Dit zijn problemen waarbij een optimale oplossing
gevonden moet worden uit een extreem groot, maar eindig, aantal altematieve
oplossingen met bepaalde kosten. Een grote verscheidenheid aan problemen in
planning- en ontwerpsituaties kunnen gemodelleerd worden als een combinato­
risch optimaliseringsprobleem. Voorbeelden hiervan zijn het opstellen van pro­
duktieroosters in fabrieken en lesroosters in scholen, het berekenen van voertuig­
routes en het berekenen van layouts voor gemtegreerde schakelingen. Instanties
van deze problemen kunnen veelal niet optimaal opgelost worden in aanvaard­
bare tijd en daarom moet er volstaan worden met suboptimale oplossingen.

Lokaal zoeken is een benaderingstechniek voor lastige combinatorische op­
timaliseringsproblemen die in staat is goede kwaliteit oplossingen te vinden voor
een grote klasse van problemen. Een lokaal-zoekalgoritme is gebaseerd op het
herhaaldelijk doorzoeken van buurruimten van oplossingen. Een buurruimte van
een oplossing bestaat uit een verzameling buuroplossingen. Deze oplossingen
worden geconstrueerd door het toepassen van een verwisselingsfunctie die een
aantal elementen uit een oplossing vervangt door andere elementen. Een buur­
ruimte induceert een graaf op de oplosruimte, de buurruimtegraaf, waarin twee
buuroplossingen verbonden zijn door een kant. Een lokaal-zoekalgoritme voert
in deze graaf een wandeling uit die bestaat uit opeenvolgende stappen van oplos­
sing naar buuroplossing. Het klassieke lokaal-zoekalgoritme is iteratieve verbe­
tering waarin alleen stappen worden gemaakt naar buren met lagere kosten tot­
dat een lokaal minimum, een oplossing zonder buren met lagere kosten, bereikt
wordt. Een nadeel van iteratieve verbetering is dat het algoritme kan stoppen in
een lokaal minimum van slechte kwaliteit. Om dit risico te verlagen kan een gro­
tere buurruimte gekozen worden of een andere manier om de wandeling in de
buurruimtegraaf uit te voeren. Voorbeelden van de eerste aanpak zijn variabele­
diepte algoritmen waarin buren verkregen worden door reeksen verwisselingen.
Varianten van lokaal zoeken gebaseerd op de tweede aanpak zijn herhaald lokaal
zoeken, tabu search, simulated annealing en genetisch lokaal zoeken. Kenmer­
kend voor a1 deze varianten is dat ook stappen naar buren met hogere kosten toe­
gelaten zijn.

135

136 Samenvatting

Lokale-zoekalgoritmen vergen vaak lange rekentijden voor de grotere pro­
bleem instanties. In dit proefschrift onderzoeken we de mogelijkheden van paral­
lelle computers om deze rekentijden te verkleinen, waardoor het tevens mogelijk
wordt om grotere instanties te hanteren of om betere oplossingen te vinden in een
gegeven tijdsbestek Het doel van het onderzoek is het ontwerpen van parallelle
lokale zoekalgoritmen die kunnen concurreren met de beste sequenm~le algorit­
men, zowel met betrekking tot rekentijd als kwaliteit van de gevonden oplossin­
gen. Hiertoe onderzoeken we zowel algemene technieken die toepasbaar zijn op
een brede klasse van problemen als technieken die toegesneden zijn op een speci­
fiek probleem. Schaalbaarheid van algoritmen, het gedrag bij toenemend aantal
processoren, is hierbij een belangrijk aspect. Rekenexperimenten op parallelle
computers vormen daarom een belangrijk onderdeel van dit onderzoek.

Eerst presenteren we een overzicht van concepten voor parallelle lokale-zoek­
algoritmen. Hierbij maken we onderscheid tussen een-wandelings en meer-wan­
delings parallellisme. In een-wandelings parallellisme worden meerdere proces­
soren ingezet voor het uitvoeren van een wandeling en in meer -wandelings paral­
lellisme worden verscheidene wandelingen tegelijkertijd door verschillende pro­
cessoren uitgevoerd. Binnen een-wandelings parallellisme maken we verder on­
derscheid tussen een-staps en meer-staps parallellisme. Het idee van een-staps
parallellisme is om buuroplossingen van een oplossing gelijktijdig te evalueren
en vervolgens een stap naar een buuroplossing te maken. In algoritmen met meer­
staps parallellisme worden meerdere opeenvolgende stappen van een wandeling
tegelijkertijd uitgevoerd. In de klasse van meer-wandelings algoritmen maken
we onderscheid tussen algoritmen die onafhankelijke wandelingen uitvoeren en
algoritmen die interactie tussen wandelingen toelaten.

De eenvoudigste aanpak voor parallellokaal zoeken is het gelijktijdig uitvoe­
ren van een aantal onafhankelijke wandelingen. We bestuderen de versnelling, de
factor waarmee de rekentijd afneemt, die behaald kan worden door deze aanpak.
Dit gebeurt aan de hand van een studie voor het handelsreizigersprobleem, een
probleem waarin de kortste route gevonden moet worden voor een rondreis waar­
bij een aantal steden bezocht dient te worden. Voor dit probleem wordt eerst het
gerniddelde gedrag van een twee-verwisselingsbuurruimte bestudeerd. In deze
buurruimte worden buren geconstrueerd door twee trajecten in een tour te ver­
vangen door twee nieuwe trajecten. Met behulp van de analyse voor dit probleem
wordt de versnelling bepaald die verkregen kan worden door een aantal onafhan­
kelijke wandelingen parallel uit te voeren. Het belangrijkste resultaat is dat een
goede versnelling verkregen kan worden voor het vinden van suboptimale oplos­
singen van hoge kwaliteit indien de tijden benodigd voor het vinden van een eer­
ste lokale minimum en daaropvolgende lokale minima vergelijkbaar zijn.

Samenvatting 137

Verder presenteren we een aantal studies van toegesneden aanpakken, geba­
seerd op meer-staps parallellisme, voor een aantal klassieke combinatorische op­
timaliseringsproblemen, waaronder het handelsreizigersprobleem. We ontwer­
pen en analyseren parallelle twee-verwisselings- en drie-verwisselingsalgoritmen
voor dit probleem. Deze algoritmen vinden gelijkwaardige kwaliteit eindoplos­
singen als sequentH~le algoritmen en vertonen een goede versnelling. Verder pre­
senteren we een parallel variabel-diepte algoritme dat gebaseerd is op de Lin­
Kernighan buurruimte. Dit algoritme maakt gebruik van geavanceerde data-struc­
turen en buurruimtereductietechnieken. Het algoritme is gei'mplementeerd op een
parallelle computer bestaande uit 32 processoren en vertoont een aanvaardbare
versnelling. Het algoritme kan concurreren met geavanceerde sequentiele imple­
mentaties uitgevoerd op krachtige werkstations.

In het Steinerbomenprobleem moet een boom met minimaal gewicht gecon­
strueerd worden die ten minste een gegeven deelverzameling van knopen van een
graaf omvat. We introduceren nieuwe buurruimten voor dit probleem. Reken­
resultaten voor grote instanties tonen aan dat goede kwaliteit oplossingen in be­
scheiden rekentijden gevonden kunnen worden. Verder wordt aangetoond dat het
mogelijk is om lokale-zoekalgoritmen met meer -staps parallellisme te ontwerpen
voor dit probleem die, zonder verlies van kwaliteit, een goede versnelling verto­
nen op een parallelle computer.

In het werkplaatsroosterprobleem dient een rooster gevonden te worden voor
een aantal reeksen van taken die elk een bepaalde machine vereisen. Het rooster
dient zodanig te zijn dat alle uit te voeren handelingen binnen een zo kort mo­
gelijke tijd voltooid zijn. We onderzoeken de toepasbaarheid van meer-staps pa­
rallellisme voor dit probleem. Verder presenteren we een lokaal-zoekalgoritme
voor een veel algemener roosterprobleem. In dit probleem is het mogelijk dat
een handeling meerdere hulpmiddelen vergt waarvoor altematieve combinaties
bestaan, en bovendien kunnen hulpmiddelen in meerdere handelingen tegelijker­
tijd gebrnikt worden. Voor dit probleem ontwerpen we nieuwe buurruimten en
buurruimtereductietechnieken. Tevens wordt aangetoond dat het mogelijk is het
algoritme aanzienlijk te versnellen door middel van een combinatie van meer­
wandelings en een-staps parallellisme.

Samenvattend kan gesteld worden dat het mogelijk is om parallellisme effec­
tief aan te wenden in lokale-zoekalgoritmen voor een brede klasse van combina­
torische optimaliseringsproblemen.

Stellingen

behorende bij het proefschrift

Parallel Local Search

van

MG.A. Verhoeven

I

Lokale zoekalgoritmen voor een bredek:lasse van problemenkunnen op eenvoudigewijze in grote
mate versneld worden door meerdere wandelingenin een buurruimtegraaf gelijktijdig uit te voe­
ren en in iedere wandeling buunuimten van oplossingen simultaa:n te evalueren.

11

Er bestaat, mits P;fNP, geen exacte buunuimte voor het job shop schedulingprobleem die poly­
nomiale tijd per iteratie van een lokaal zoekalgoritme vergt. Dit geldt ook voor het graafpartitio­
neringsprobleem.

Ill

Er bestaat geen gedistribueerdebuurruimte voor het handelsreizigersprobleem die isomorf is met
de 3-opt buunuimte uit [1] en waarvoor de rekencomplexiteit voor het verwezenlijken van P 3-
verwisselingen met behulp van P processorenlineair afneemt met P. Dit geldt wel voor de 2-opt
buurruimte uit [1].

[1] Lin, S. [1965], Computer solutions of the traveling salesman problem, Bell System Technical
Journal44, 2245-2269.

IV

Beschouw het job shop schedulingprobleem met de 1-opt buurruimte uit [2]. Het verificatiepro­
bleem, waarin bepaald dient te word en of een gegeven schedule een lokaal minimmn is voor deze
buunuimte, behoorttot de complexiteitsklasseNC.

[2] Van Laarhoven,P.J.M., Aarts, E.H.L., Lenstra, J.K. [1992] Job shop scheduling by simulated
annealing, Operations Research 40, 113-125.

V

Beschouw het Steinerbomenprobleemmet de buurruimteN'1 uit [3]. Gegevenis een Steinerboom
T. Laat T' = T\{lo}U{lb} E Nt(T) voorsleutelpadenlo enl~. Neem verderaandat f(S) 2:: f(T)
voor alle S E Nt(T) \ {T'}. Laat T 11 = T' \{it} U {ll} E N't (T') met f(T") < f(T') voor
sleutelpaden l1 en l~. Dan geldt (i) l 1 is een sub pad van het pad van lo naar 10 in T of (ii) lb en l~
hebben 66n vertex v gemeen en de lengte van t; is kleiner dan het langste sleutelpadin T' en 11 is
een sub pad van het pad van v naar 10 in T'.

[3] Verhoeven, M.G.A., Dit proefschrift,hoofdstuk6.

VI

Het gebruik van standaard testinstanties om de efticientie van een algoritme te bepalen heeft als
risico dat onderzoekersinformatieover deze instanties gebruikenom een algoritme te ontwerpen.
Een goed voorbeeld hiervanis te vindenin [4], waarvan de rekenresultatenalleen gereproduceerd
kunnen worden indien het stopcriterium ,stop als de huidige oplossing een gegeven globaal mi­
nimmn is" gebruikt wordt.

[4] Nowicki, E., Smutnicki, C., A fast taboo search algorithm for the job shop problem, Manage­
ment Science 42, to appear.

VII

De parallelle Boltzmann-machine [5] is een neuraal netwerk met meer-staps parallellisme geba­
seerd op de volgende gedistribueerde buurruimte. De oplossingsdistributie kent aan iedere pro­
cessor een unit toe, delokale buurruimte wordt verkregen door deze unit te inverteren en de com­
binatiefunctie verwezenlijkt alle verwisselingen in het geval van ongelimiteerd parallellisme of
een deelverzameling hiervan in het geval van gelimiteerd parallellisme.

[5] Aarts; E.RL., Korst, J.RM [1989], Simulated Annealing and Boltvnann Machines, Wlley,
Chichester.

VIII

In [6] wordt geconcludeerd dat het tussen de geobserveerde groepen waargenomen verschil in
achteruitgang van taalbegrip significant is. Deze conclusieis echter misleidend want indien de
relatieve achteruitgang beschouwd wordt in plaats van de absolute achteruitgang, is er geen sig­
nificant verschil.

[6] Just, MA., Carpenter, P.A. [1992], A capacity theory of comprehension: individual differen­
ces in working memory, Psychological Review 99, 122-149.

IX
De docent die verantwoordelijkis voor de inhoud van een college heeft vaak geen goed beeld van
de kennisoverdracht via dit college. De benodigde terugkoppeling kan bewerkstelligd worden
door de docent te verplichten een behoorlijk aantal tentamens van het vak te corrigeren.

X

Ben vak kan uit het curriculum verwijderd wordenindien het is toegestaan een onvoldoende voor
dit vak te compenseren middels een voldoende voor een ander vak.

XI

Beschouw het volgende spel dat gebaseerdis op de Tour de France. ledere speler stelt een team
samen bestaande uit een aantal renners. Een renner die eindigt bij de eerste tien in een etappe
krijgt een score van elf punten minus de behaalde positie. De speler met de hoogste teams core,
gesommeerd over alle etappes, wint. Een aldus opgezet spel is geen kansspel zoals bedoeld in de
wet op de kansspelen.

XII

Het feit dat het doen van onderzoekniet gebondenis aan kantooruren wordt door veel onderzoe­
. kers aan de universiteit gebruikt als excuus om een voorschot te nemen op de vierdaagse werk­
week.

XIII

Een positief gevolg van het broeikaseffectis dat Brabant een aangenaam subtropischklimaat za1
krijgen in combinatie met een ligging aan zee.

