85 research outputs found

    Third-Party Data Providers Ruin Simple Mechanisms

    Get PDF
    Motivated by the growing prominence of third-party data providers in online marketplaces, this paper studies the impact of the presence of third-party data providers on mechanism design. When no data provider is present, it has been shown that simple mechanisms are "good enough" -- they can achieve a constant fraction of the revenue of optimal mechanisms. The results in this paper demonstrate that this is no longer true in the presence of a third-party data provider who can provide the bidder with a signal that is correlated with the item type. Specifically, even with a single seller, a single bidder, and a single item of uncertain type for sale, the strategies of pricing each item-type separately (the analog of item pricing for multi-item auctions) and bundling all item-types under a single price (the analog of grand bundling) can both simultaneously be a logarithmic factor worse than the optimal revenue. Further, in the presence of a data provider, item-type partitioning mechanisms---a more general class of mechanisms which divide item-types into disjoint groups and offer prices for each group---still cannot achieve within a loglog\log \log factor of the optimal revenue. Thus, our results highlight that the presence of a data-provider forces the use of more complicated mechanisms in order to achieve a constant fraction of the optimal revenue

    Computer-aided verification in mechanism design

    Full text link
    In mechanism design, the gold standard solution concepts are dominant strategy incentive compatibility and Bayesian incentive compatibility. These solution concepts relieve the (possibly unsophisticated) bidders from the need to engage in complicated strategizing. While incentive properties are simple to state, their proofs are specific to the mechanism and can be quite complex. This raises two concerns. From a practical perspective, checking a complex proof can be a tedious process, often requiring experts knowledgeable in mechanism design. Furthermore, from a modeling perspective, if unsophisticated agents are unconvinced of incentive properties, they may strategize in unpredictable ways. To address both concerns, we explore techniques from computer-aided verification to construct formal proofs of incentive properties. Because formal proofs can be automatically checked, agents do not need to manually check the properties, or even understand the proof. To demonstrate, we present the verification of a sophisticated mechanism: the generic reduction from Bayesian incentive compatible mechanism design to algorithm design given by Hartline, Kleinberg, and Malekian. This mechanism presents new challenges for formal verification, including essential use of randomness from both the execution of the mechanism and from the prior type distributions. As an immediate consequence, our work also formalizes Bayesian incentive compatibility for the entire family of mechanisms derived via this reduction. Finally, as an intermediate step in our formalization, we provide the first formal verification of incentive compatibility for the celebrated Vickrey-Clarke-Groves mechanism

    The Role of Randomness and Noise in Strategic Classification

    Get PDF
    We investigate the problem of designing optimal classifiers in the strategic classification setting, where the classification is part of a game in which players can modify their features to attain a favorable classification outcome (while incurring some cost). Previously, the problem has been considered from a learning-theoretic perspective and from the algorithmic fairness perspective. Our main contributions include 1. Showing that if the objective is to maximize the efficiency of the classification process (defined as the accuracy of the outcome minus the sunk cost of the qualified players manipulating their features to gain a better outcome), then using randomized classifiers (that is, ones where the probability of a given feature vector to be accepted by the classifier is strictly between 0 and 1) is necessary. 2. Showing that in many natural cases, the imposed optimal solution (in terms of efficiency) has the structure where players never change their feature vectors (the randomized classifier is structured in a way, such that the gain in the probability of being classified as a 1 does not justify the expense of changing one's features). 3. Observing that the randomized classification is not a stable best-response from the classifier's viewpoint, and that the classifier doesn't benefit from randomized classifiers without creating instability in the system. 4. Showing that in some cases, a noisier signal leads to better equilibria outcomes -- improving both accuracy and fairness when more than one subpopulation with different feature adjustment costs are involved. This is interesting from a policy perspective, since it is hard to force institutions to stick to a particular randomized classification strategy (especially in a context of a market with multiple classifiers), but it is possible to alter the information environment to make the feature signals inherently noisier.Comment: 22 pages. Appeared in FORC, 202
    corecore