930 research outputs found

    Fourier spectra of measures associated with algorithmically random Brownian motion

    Full text link
    In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infinity. The argument relies heavily on a direct characterisation, due to Asarin and Pokrovskii, of algorithmically random Brownian motion in terms of the prefix free Kolmogorov complexity of finite binary sequences. The study also necessitates a closer look at the potential theory over fractals from a computable point of view.Comment: 24 page

    Natural Halting Probabilities, Partial Randomness, and Zeta Functions

    Get PDF
    We introduce the zeta number, natural halting probability and natural complexity of a Turing machine and we relate them to Chaitin's Omega number, halting probability, and program-size complexity. A classification of Turing machines according to their zeta numbers is proposed: divergent, convergent and tuatara. We prove the existence of universal convergent and tuatara machines. Various results on (algorithmic) randomness and partial randomness are proved. For example, we show that the zeta number of a universal tuatara machine is c.e. and random. A new type of partial randomness, asymptotic randomness, is introduced. Finally we show that in contrast to classical (algorithmic) randomness--which cannot be naturally characterised in terms of plain complexity--asymptotic randomness admits such a characterisation.Comment: Accepted for publication in Information and Computin

    On zeros of Martin-L\"of random Brownian motion

    Full text link
    We investigate the sample path properties of Martin-L\"of random Brownian motion. We show (1) that many classical results which are known to hold almost surely hold for every Martin-L\"of random Brownian path, (2) that the effective dimension of zeroes of a Martin-L\"of random Brownian path must be at least 1/2, and conversely that every real with effective dimension greater than 1/2 must be a zero of some Martin-L\"of random Brownian path, and (3) we will demonstrate a new proof that the solution to the Dirichlet problem in the plane is computable

    Primordial RNA Replication and Applications in PCR Technology

    Full text link
    The emergence of self-replication and information transmission in life's origin remains unexplained despite extensive research on the topic. A hypothesis explaining the transition from a simple organic world to a complex RNA world is offered here based on physical factors in hydrothermal vent systems. An interdisciplinary approach is taken using techniques from thermodynamics, fluid dynamics, oceanography, statistical mechanics, and stochastic processes to examine nucleic acid dynamics and kinetics in a hydrothermal vent from first principles. Analyses are carried out using both analytic and computational methods and confirm the plausibility of a reaction involving the PCR-like assembly of ribonucleotides. The proposal is put into perspective with established theories on the origin of life and more generally the onset of order and information transmission in prebiotic systems. A biomimicry application of this hypothetical process to PCR technology is suggested and its viability is evaluated in a rigorous logical analysis. Optimal temperature curves begin to be established using Monte Carlo simulation, variational calculus, and Fourier analysis. The converse argument is also made but qualitatively, asserting that the success of such a modification to PCR would in turn reconfirm the biological theory.Comment: 20 pages, 7 figure

    The rapid points of a complex oscillation

    Full text link
    By considering a counting-type argument on Brownian sample paths, we prove a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid points of Brownian motion. Because of the nature of the proof we can then apply the concepts to so-called complex oscillations (or 'algorithmically random Brownian motion'), showing that their rapid points have the same dimension.Comment: 11 page

    Kolmogorov complexity and probability measures

    Get PDF
    summary:Classes of strings (infinite sequences resp.) with a specific flow of Kolmogorov complexity are introduced. Namely, lower bounds of Kolmogorov complexity are prescribed to strings (initial segments of infinite sequences resp.) of specified lengths. Dependence of probabilities of the classes on lower bounds of Kolmogorov complexity is the main theme of the paper. Conditions are found under which the probabilities of the classes of the strings are close to one. Similarly, conditions are derived under which the probabilities of the classes of the sequences equal one. It is shown that there are lower bounds of Kolmogorov complexity such that the studied classes of the strings are of probability close to one, classes of the sequences are of probability one, both with respect to almost all probability measures used in practice. A variant of theorem on infinite oscillations is derived

    The Dimensions of Individual Strings and Sequences

    Get PDF
    A constructive version of Hausdorff dimension is developed using constructive supergales, which are betting strategies that generalize the constructive supermartingales used in the theory of individual random sequences. This constructive dimension is used to assign every individual (infinite, binary) sequence S a dimension, which is a real number dim(S) in the interval [0,1]. Sequences that are random (in the sense of Martin-Lof) have dimension 1, while sequences that are decidable, \Sigma^0_1, or \Pi^0_1 have dimension 0. It is shown that for every \Delta^0_2-computable real number \alpha in [0,1] there is a \Delta^0_2 sequence S such that \dim(S) = \alpha. A discrete version of constructive dimension is also developed using termgales, which are supergale-like functions that bet on the terminations of (finite, binary) strings as well as on their successive bits. This discrete dimension is used to assign each individual string w a dimension, which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the limit infimum of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its length and its dimension. This gives a new characterization of algorithmic information and a new proof of Mayordomo's recent theorem stating that the dimension of a sequence is the limit infimum of the average Kolmogorov complexity of its first n bits. Every sequence that is random relative to any computable sequence of coin-toss biases that converge to a real number \beta in (0,1) is shown to have dimension \H(\beta), the binary entropy of \beta.Comment: 31 page
    • …
    corecore