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Abstract

A constructive version of Hausdorff dimension is developed using constrigtipergaleswhich are betting
strategies that generalize the constructive supermartingales used in the theory of individual random sequences.
This constructive dimension is used to assign every individual (infinite, binary) segsi@dimensionwhich is a
real number dims) in the interval[0, 1]. Sequences that are random (in the sense of Martin-L6f) have dimension
1, while sequences that are decidalﬂ%, or 19, have dimension 0. It is shown that for evexg-computable real
numberx in [0, 1] there is aAg sequence such that dindS) = «. A discrete version of constructive dimension is
also developed usingrmgaleswhich are supergale-like functions that bet on the terminations of (finite, binary)
strings as well as on their successive bits. This discrete dimension is used to assign each individual atring
dimension which is a nonnegative real number dim). The dimension of a sequence is shown to be the limit
inferior of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its
length and its dimension. This gives a new characterization of algorithmic information and a new proof of May-
ordomo’s recent theorem stating that the dimension of a sequence is the limit inferior of the average Kolmogorov
complexity of its firstz bits. Every sequence that is random relative to any computable sequence of coin-toss biases
that converge to a real numbgiin (0, 1) is shown to have dimensidi(g8), the binary entropy oB.
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1. Introduction

One of the most dramatic achievements of the theory of computing was Martin-L6f’s 1966 use of
constructive measure theory to give the first satisfactory definition of the randomness of individual infi-
nite binary sequences [29]. The search for such a definition had been a major object of early 20th century
research on the foundations of probability, but a rigorous mathematical formulation had proven so elusive
that the search had been all but abandoned more than two decades earlier. Martin-L6f’s definition says
precisely which infinite binary sequences are random and which are not. The definition is probabilisti-
cally convincing in that it requires each random sequence to pass every algorithmically implementable
statistical test of randomness. The definition is also robust in that subsequent definitions by Schnorr
[39-41], Levin [22], Chaitin [6], Solovay [47], and Shen’ [43,44], using a variety of different approaches,
all define exactly the same sequences to be random. It is noteworthy that all these approaches, like
Martin-L6f's, make essential use of the theory of computing.

A useful characterization of random sequences is that they are those sequences that have maximal
algorithmic information content. Specifically, K (S[0..n — 1]) denotes the Kolmogorov complexity
(algorithmic information content) of the firat bits of an infinite binary sequencg then Levin [22]
and Chaitin [6] have shown thdt is random if and only if there is a constantsuch that for allx,
K(S[0..n — 1]) > n — ¢. Indeed Kolmogorov [19] developed what is now caltég), the “plain Kol-
mogorov complexity,” in order to formulate such a definition of randomness, and Martin-L6f, who was
then visiting Kolmogorov, was motivated by this idea when he defined randomness. (The gdantity
was also developed independently by Solomonoff [46] and Chaitin [4,5].) Martin-L6f [30] subsequently
proved thatC (x) cannot be used to characterize randomness, and Levin [22] and Chaitin [6] introduced
a technical modification of (x), now calledk (x), the “Kolmogorov complexity,” in order to prove the
above characterization of random sequences. Schnorr [41] proved a similar characterization in terms of
another variant, called the “monotone Kolmogorov complexity.”

One conclusion to be drawn from these characterizations is that the definition of random sequences
distinguishes those sequences that have maximal algorithmic information content from those that do
not. It offers no quantitative classification of the sequences that have less than maximal algorithmic
information content. From a technical point of view, this aspect of the definition arises from its use of
constructive measure, which is an algorithmic effectivization of classical Lebesgue measure. Specifical-
ly, an infinite binary sequenceis random if the singleton s¢f} does not have constructive measure 0,
and is nonrandom ifS} does have constructive measure 0. Neither Lebesgue measure nor constructive
measure offers quantitative distinctions among measure 0 sets.

In 1919, Hausdorff [14] augmented classical Lebesgue measure theory with a theory of dimension.
This theory assigns to every subsewnf a given metric space a real number dif), which is now
called theHausdorff dimensioof X. In this paper we are interested in the case where the metric space
is the Cantor spadg, consisting of all infinite binary sequences. In this case, the Hausdorff dimension of
a setX C C (which is defined precisely in Section 3) is a real numbengik) € [0, 1]. The Hausdorff
dimension is monotone, with digi?) = 0 and diny(C) = 1. Moreover, if diny(X) < dimy(C), then
X is a measure 0 subset 6f Hausdorff dimension thus offers a quantitative classification of measure
0 sets. Moreover, Ryabko [36—38] Staiger [48,49], and Cai and Hartmanis [3] have all proven results
establishing quantitative relationships between Hausdorff dimension and Kolmogorov complexity.

Just as Hausdorff [14] augmented Lebesgue measure with a theory of dimension, this paper augments
the theory of individual random sequences with a theory of the dimensions of individual sequences.
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Specifically, we develop a constructive version of Hausdorff dimension and use this to assign every
sequence € C adimensiondim(S) € [0, 1]. Sequences that are random have dimension 1, while se-
guences that are decidab®?, or H(l) have dimension 0. For every real numleek [0, 1] there is a
sequence such that dindS) = «. Moreover, ifa is Ag—computable, then there ismg sequence such
that dim'S) = «. (This generalizes the well-known existencexgsequences that are random.)
Our development of constructive dimension is basedugergaleswhich are natural generalizations
of the constructive supermartingales used by Schnorr [39-41] to characterize randomness. In a recent
paper [27] we have shown that supergales can be used to characterize the classical Hausdorff dimension,
and that resource-bounded supergales can be used to define dimension in complexity classes. In the pres-
ent paper we use constructive (lower semicomputable) supergales to develop constructive dimension.
The dimension of a sequendec C is then the constructive dimension of the singleton{$ét Con-
structive dimension differs markedly from both classical Hausdorff dimension and the resource-bounded
dimension developed in [27], primarily due to the existence of supergales that are optimal. These optimal
supergales are analogous to universal tests of randomness in the theory of random sequences.
Supergales, like supermartingales, are strategies for betting on the successive bits of infinite binary
sequences. In order to define the dimensions of individual striingg0, 1}*, we introducgermgales
which are supergale-like functions that bet on the terminations of strings as well as on their successive
bits. Using termgales, we assign each binary stwngdimensiordim(w), which is a nonnegative real
number. We show that for every sequeisce C,

dim(S) = Iinliorgf dim(S[0..n — 1]). (1.1

We use dimension to prove a new characterization of Kolmogorov complexity. Specifically, we show
that there is a constantsuch that for allw € {0, 1}*,

K (w) — |wldim(w)| < c. (1.2)

That is, the Kolmogorov complexity of a string is (to within a constant additive term) the product of

the string’s length and its dimension. This characterization of Kolmogorov complexity in terms of a
constructivized, discretized version of Hausdorff’'s 1919 theory of dimension is reminiscent of (and
technically related to) the well-known characterization by Levin [22,23] and Chaitin [6] of Kolmogorov

complexity in terms of constructivized discrete probability, i.e., the fact that there is a corstaht

such that for allw € {0, 1}*,

K (w) — log <, (1.3)

m(w) |
wherem is an optimal constructive subprobability measurg@ri}*.

Taken together, (1.1) and (1.2) provide a new proof of Mayordomo’s recent theorem [31] stating that
for every sequencg € C,

dim(s) = liminf X801 = 1D

n—00 n

(1.4)

Facts (1.2) and (1.4) justify the intuition that the dimension of a string or sequence is a measure of its
algorithmic information density

We also investigate the dimensions of sequences that are random relative to computable sequences of
convergent coin-toss biases. Specifically,Aet (8o, B1, B2, ...) be any computable sequence of real
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numberss; € [0, 1] that converge to a real numbere (0, 1) (which must therefore bag-computable).
We show that ifR is any sequence i@ that is random with respect 15) (i.e., a random outcome of a
random experiment in which for eachindependently of all othef, theith bit of R is decided by tossing
a 0/1-valued coin whose probability of 1 ), then the dimension aR is H(B), the binary Shannon
entropy ofp.

We defer discussion of some significant related work until late in the paper, where more context is
available. Specifically, results by Schnorr [40,42], Ryabko [35-38], Staiger [48-50], and Cai and Hart-
manis [3] that relate martingales, supermartingales, and Kolmogorov complexity to Hausdorff dimension
are discussed at the end of Section 6. Classical work by Besicovitch [1], Good [13], and Eggleston [9] re-
lating limiting frequencies and Shannon entropy to Hausdorff dimension is described briefly in Section 7.

2. Preliminaries

We use the sef of integers, the seft of (strictly) positive integers, the sé&t of natural numbers
(i.e., nonnegative integers), the $&bf rational numbers, the s& of real numbers, and the g€ co)
of nonnegative reals.

A stringis a finite, binary stringv € {0, 1}*. We write |w| for the length of a stringv andx for the
empty string. Foi, j € {0, ..., |w| — 1}, we writew[i..j] for the string consisting of th&h through
the jth bits of w andw(i] for w[i..i], theith bit of w. Note that the Oth bitv[0O] is the leftmost bit ofw
andthatwl(i..j] = Aif i > j. A sequencés an infinite, binary sequence.dfis a sequence and;j € N,
then the notations[i..j] and S[i] are defined exactly as for strings. We work in Bantor spaceC
consisting of all sequences. A stringe {0, 1}* is aprefixof a sequencé € C, and we writew C S, if
S[0..]Jw| — 1] = w. Thecylinder generated bg stringw € {0, 1}* is C,, = {§ € C|w C S}. Note that
C,=C.

We also make passing referencesl‘[?), A9, and Eg sets of sequences. These refer to the arithmet-
ical (i.e., effective Borel) hierarchy of sets of sequences and are not central to our development. The
interested reader is referred to [34] or [32] for discussion of this hierarchy.

Thesupportof a sequencd € Cis

SuppS) = {n € N|S[n] = 1}.

The arithmetical hierarchy of sequences is defined from the arithmetical hierarchy of subisetsing
the support function. Thus, for example, a sequefieeC is computably enumerahl@nd we write
S e 29, if supp(S) is ax? (i.e., computably enumerable) subsetofSimilarly, S € M9 if N — supps)
is computably enumerable ade Ag if supp(S) is decidable relative to the halting oracle.

If S, T € C, thenS is 14truth-table reduciblgo 7', and we writeS <,_;; T, if there exist computable
functionsf : N — N andg : N x {0, 1} — {0, 1} such that for alk € N, S[n] = g(n, T[f(n)]). The
sequences$ andT are liruth-table-equivalentand we writeS =1, T, if S <1, T andT <j_4 S.

Definition. A subprobability measuren {0, 1}* is a functionp : {0, 1}* — [0, 1] such that

> pw) <L 2.1)

wel{0,1}*
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A probability measuren {0, 1}* is a subprobability measure ¢, 1}* that satisfies (2.1) with equality.
A subprobability supermeasuan the Cantor spadg is a functionv : {0, 1}* — [0, 1] such that

v(A) <1 (2.2)
and for allw € {0, 1}*,
v(w) = v(w0) + v(wl). (2.3)

A subprobability measuren C is a subprobability supermeasure@ithat satisfies (2.3) with equality
for all w € {0, 1}*, and aprobability measuren C is a subprobability measure @that satisfies (2.2)
with equality. Intuitively, ifv is a probability measure dd andw € {0, 1}*, thenv(w) is the probability
thatw C S when the sequencee C is “chosen according to the probability measure

A biasis a real numbeg € [0, 1]. Intuitively, if we toss a 0/1-valued coin with big theng is the
probability of the outcome 1. Aias sequencis a sequencg = (Bo, B1, P2, - - ) of biases. Iff is a bias

sequence, then th@coin-toss probability measuis the probability” on C defined by
lw|—1

W) =TT iw), (24)
i=0

whereg;(w) = (28; — Dw[i]l + (1 — Bi), i.e., Bi(w) = if w[i] then ; else 1 — B;. That is,u” is the
probability thatS € C,, whenS < C is chosen according to a random experiment in which for each
independently of all othef, thei™ bit of S is decided by tossing a 0/1-valued coin whose probability of
1is B;. In the case where the biasgsare all the same, i.e§ = (8, 8, B, ...) for someg € [0, 1], we

write u# for 1, and (2.4) simplifies to

W (w) = (1= py*Om gHtw), (2.5)
where #b, w) is the number of times the bitappears in the string. Theuniform probability measure
on C is the probability measure = /ﬁ for which (2.5) simplifies to

p(w) =271 (2.6)
for all w € {0, 1}*.

We use several conditions involving the computability of real numbers and real-valued functions in
this paper.

Definition. Let f : D — R, whereD is some discrgte domain suchMs{0, 1}*, N x {0, 1}*, etc.

1. f is computablef there is a computable functiofi: D x N — @ such that for allx, r) € D x N,
lfx,r) = fl <27 A

2. f islower semicomputabliéthere is a computable functiofi: D x N — Q such that
(@) forall(x,7) e D x N, f(x,1) < f(x,t+1) < f(x), and
(b) forallx € D, lim;_ o f(x,1) = f(x).

3. fis Ag—computabldf f is computable relative to the halting oracle.

The following facts are well known and easy to verify:

(i) computability implies lower semicomputability, lower semicomputability impl@computabil-
ity, and the converses of these statements do not hold;
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(i) a function f : D — R is computable if and only if the functions and— f are both lower semi-
computable;
(iii) afunction f : D — Ris lower semicomputable if and only if itewer graph

Graph (f) ={(x,s) e D xQ|s < f(x)}
is computably enumerable.
A sequencer = (ap, o1, a2, .. .) of real numbers isomputabléf the associated functioff; : N —
R, defined byf; (i) = «; for all i € N, is computable. A real numberis computablef the sequence

a = (o, a, a, ...) is computable. Note that E is a computable bias sequence, thehis a computable
probability measure o@.

Definition. A subprobability measure 0j@, 1}* or a subprobability supermeasure®©ris constructive
if it is lower semicomputable.

Definition. If F is a class of functions fronf0, 1}* into [0, co), then anoptimal element ofF is a
function g € F such that for everyf € F there is a real constant > 0 such that for alw € {0, 1}*,
g(w) = af (w).

The following theorem is one of the cornerstones of algorithmic information theory.

Theorem 2.1 (Zvonkin and Levin [55])
(1) There is an optimal constructive subprobability measuaren {0, 1}*.
(2) There is an optimal constructive subprobability supermeabtien C.

Throughout this paper we fimm andM as in Theorem 2.1. The results of this paper are not affected
by the particular choice ah andM.

The reader is referred to the text by Li and Vitanyi [24] for the definition and basic properties of
the Kolmogorov complexityk (w), defined for stringaw € {0, 1}*. The main property of Kolmogo-
rov complexity that we use here is the following theorem, which is another cornerstone of algorithmic
information theory.

Theorem 2.2 (Chaitin [6], Levin [22,23]) There is a constant € N such that for allw € {0, 1}*,

1

Given a setA C {0, 1}* andn € N, we use the abbreviation$—, = AN{0,1}" andA,, = AN
{0, 1}, A prefix sefis a setA C {0, 1}* such that no element of is a prefix of another element df.

Let X be ak-fold product of intervals, each of which i®, 1) or [0,1]. If g: X — R anda =
(a1, ...,ar) € X,thenwe sometimes use()” as an abbreviation for the random variable{0, 1} —
R defined byé (1) = g(a1, ..., o) andé(0) = g(L — 1, ..., 1 —ay). If B € [0, 1], then we also usg
as an abbreviation for the probability measpren {0, 1} in which p(1) = g. Thus, for example,

Epg(a) = Bglar,...,a) + (L= B)gl —az, ..., 1 — )
is the expected value of “the random varialgler)” with respect to “the probability measug” In
particular, Shannonkinary entropyfunction : [0, 1] — [0, 1] is defined by
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1
H(B) = Eglog 5’
with the proviso that 0 Ioé = 0 so thatH is continuous oif0, 1]. Similarly, thebinary Kullback—Leibler
divergencdunction D : [0, 1] x (0, 1) — R is defined by

DB |l o) = Ep |09§,

with the proviso that 0 Io@ = 0 so thatD is continuous o0, 1] x (0, 1). It is well known thatD (8 ||
a) > 0, with equality if and only if8 = «. See the text by Cover and Thomas [8] for further discussion

of H(B) andD(B || «).
Falconer [10] provides a good overview of Hausdorff dimension.

3. Gales and constructive dimension

In this section we define gales and supergales and use these to define classical and constructive Haus-
dorff dimensions in the Cantor spa€e Our definitions are slightly more general than those in [27]
because here we need to define gales and supergales relative to an arbitrary probability me@sure on
that need not be the uniform probability measurdefined in Section 2.

Definition. Letv be a probability measure @, and lets € [0, c0).
1. Av-s-supergalds a functiond : {0, 1}* — [0, co) that satisfies the condition

dw)v(w)® > dw0)v(wi)® +d(wlv(wl)® (3.1)

forall w € {0, 1}*.

A v-s-galeis av-s-supergale that satisfies (3.1) with equality forwalE {0, 1}*.
A v-supermartingalés av-1-supergale.

A v-martingaleis av-1-gale.

An s-supergalés au-s-supergale.

Ans-galeis au-s-gale.

A supermartingalés a 1-supergale.

A martingaleis a 1-gale.

ONoOGOAWN

Observation 3.1.

(1) A subprobability supermeasure @nis a 0-supergalé with d(1) < 1.
(2) A subprobability measure dd is a 0-galed with d(1) < 1.

(3) A probability measure of is a 0-galed with d(A) = 1.

The following obvious but useful observation shows how gales and supergales are affected by varia-
tion of the paramete.

Observation 3.2. Let v be a probability measure a@, let s, s’ € [0, c0), and letd, d’ : {0, 1}* —
[0, c0). Assume that
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dw)v(w)® = d (w)v(w)*

forall w € {0, 1}*.
1. dis av-s-supergale if and only i’ is av-s’-supergale
2. dis av-s-gale if and only ifd’ is av-s’-gale

For example, Observation 3.2 implies that a functon{0, 1}* — [0, co) is ans-gale if and only if
the functiond’ : {0, 1}* — [0, oo) defined byd’ (w) = 23=9*l4(w) is a martingale.
Our next lemma is a generalization of Kraft's inequality [8].

Lemma3.3. Letd be av-s-supergale, where is a probability measure o@ ands € [0, oo). Then for
all w € {0, 1}* and all prefix set$ C {0, 1}*,

Z dwu)v(wu)® <dw)v(w)?’.

ueB

Proof. We first use induction on to show that the lemma holds for all prefix sétsc {0, 1}<". For
n = 0 this is trivial. Assume that it holds far, and letA C {0, 1}@+1 be a prefix set. Define the set

A" ={u €{0,1}"|u0 € A orul € A},

and note tha#i ., is disjoint fromA’. Note also that the set
B=A_,UA

is a prefix set. For allv € {0, 1}*, we have

Z d(wu)v(wu)® < Z [d(wuO)v(wu0)® + d(wul)v(wul)®]

ueA—_,11 ueA’

< Z d(wu)v(wu)?’.

ueA’

It follows by the induction hypothesis that for all € {0, 1}*,
> dwuwpvu)’ =Y dwwvu) + Y dwu)v(wu)®

UEA ueAy ueA—y4+1
< Z d(wu)v(wu)® + Z d(wu)v(wu)®
ueAy ueA’
= Z d(wu)v(wu)®
ueB
<dw)v(w)®.

This completes the proof that for alle N the lemma holds for all prefix sefs C {0, 1}~".
To complete the proof of the lemma, IBtbe an arbitrary prefix set. Then for all € {0, 1}*,

Zd(wu)v(wu)s = sup Z d(wuw)v(wu)® < dw)v(w)®. O

ueB neNMGBgn
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Definition. Letd be av-s-supergale, where is a probability measure dd ands € [0, o).
1. We say that/ succeedsn a sequencé € C if limsup,_, ., d(S[0..n — 1]) = oc.
2. Thesuccess seif d is S®°[d] = {S € C | d succeeds of}.

We now show how to use the success sets of gales and supergales to define Hausdorff dimension.

Notation. Let X C C.
1. Q(X) is the set of alk € [0, co) such that there is anrgaled for which X C S*°[d].
2. G(X) is the set of alk € [0, co) such that there is antsupergalel for which X C S*°[d].

Note thats’ > s € G(X) implies thats’ € G(X).
It was shown in [27] that the following definition is equivalent to the classical definition of Hausdorff
dimension inC.

Definition. TheHausdorff dimensionf a setX C Cis dimy(X) = inf G(X).

The following trivial fact shows that we could equivalently @GX) in place ofG(X) in the above
definition.

Observation 3.4. ForallX € C, G(X) = G(X).

Martin-Lof’s definition of randomness [29] was reformulated in terms of martingales by Schnorr [39]
as follows.

Terminology. A v-s-supergale igonstructivdf it is lower semicomputable.

Definition. Letv be a probability measure @, and letX C C.

(1) X hasconstructivev-measure Pand we writevgonsi(X) = 0, if there is a constructive-martingale
d such thatX C S*°[d].

(2) X hasconstructivev-measure land we writevgonsi(X) = 1, if veonst{C — X) = 0.

Definition. If v is a probability measure o@, then a sequenck € C is v-random and we writeR €
RAND,, if the singleton sefR} does not have constructivemeasure 0 (i.e., there is no constructive
v-martingale that succeeds ®).

It is well known (and easy to see) thanst(RAND,) = 1. The following known result shows that
constructive supermartingales can equivalently be used in place of constructive martingales in defining
randomness.

Theorem 3.5 (see [39,40,52])or every computable probability measuren C and every constructive
v-supermartingalel there is a constructive-martingaled” such thatS*°[d] € S*°[d’].

If vis u, the uniform probability measure @) then we generally omit it from the above terminology.
A sequencer is thusrandom and we writeR € RAND, if {R} does not have constructive measure O.
Optimal constructive supergales are as crucial to constructive dimension as optimal constructive
supermartingales are to the theory of randomness. Recall the subprobability superniastire
Theorem 2.1.
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Notation. For eachs € [0, oco) andw € {0, 1}*,
d® (w) = 2"IM (w).

Theorem 3.6. For every computable real numhee [0, co), the functiord® is an optimal constructive
s-supergale.

Proof. Lets € [0, oo) be computable. It is clear from its definition thait) is a constructive-super-
gale. To see that® has the desired optimality property, lébe an arbitrary constructivesupergale.
Fix 0 < a € @ such thatud (1) < 1, and define : {0, 1}* — [0, 1] by

v(w) = 27ladw)

for all w € {0, 1}*. By Observation 3.2y is a O-supergale. Sinagx) = ad (1) < 1, it follows by Ob-
servation 3.1 that is a subprobability supermeasure ©nSincev is clearly constructive, it follows by
the optimality ofM that there exista > 0 such that for allv € {0, 1}*, M (w) > av(w), whence

d® w) = 2°"IM (w) > 2°"lgv(w) = aad(w).
Sincexa > 0 this shows thad®) is an optimal constructive-supergale. [

We now constructivize the above definition of Hausdorff dimension and develop some fundamental
properties of the resulting constructive dimension.

Notation. Let X C C.
1. GeonstfX) is the set of alls € [0, co) such that there is a constructivegaled for which X C
S°[d].
2. éconstKX) is the set of alls € [0, c0) such that there is constructivesupergaled for which
X C S*®[d].

Note thatifs, s” are computable real numbers with> s, thens € Geonst( X) impliess” € Geonst( X),
ands € GeonstfX) implieSS/ € GeonstfX)-

We have seen that gales and supergales can be used interchangeably in defining classical Hausdorff
dimension (Observation 3.4) and that constructive martingales and constructive supermartingales can
be used interchangeably in defining randomness (Theorem 3.5). In contrast, at the time of this writing,
we do not know whether constructive gales and constructive supergales can be used interchangeably
in defining constructive dimensionN¢TE ADDED IN PROOE This question has recently been answered
affirmatively by Hitchcock [15] and, independently, by Fenner [12].) We also do not know whether an
analog of Theorem 3.6 holds for constructivgales when < 1. We thus define constructive dimension
in terms of constructive supergales.

Definition. Theconstructive dimensioof a setX C C is cdim(X) = inf ?C(mst,(X).
The following observations are clear.
Observation 3.7.

1. ForallX CY CC, cdim(X) < cdim(Y).
2. ForallX C C, cdim(X) > dimy(X).
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3. cdim(C) = 1.
4. ForallX C C,ifcdim(X) < 1, thenuconst(X) = 0.

4. Dimensions of individual sequences

The dimension of an individual sequenge C is simply the constructive dimension of the singleton
set{S}.

Definition. Thedimensiorof a sequencé € Cis
dim(S) = cdim({S}).

The following theorem, which has no analog either in classical Hausdorff dimension or in the re-
source-bounded dimension developed in [27], says that the constructive dimension of a set of sequences
is completely determined by the dimensions of the individual sequences in the set.

Theorem 4.1. Forall X C C,

cdim(X) = supdim(S).
SeX

Proof. LetX C C, and lets* = sups.x dim(S). Itis clear by part 1 of Observation 3.7 that cdixy >
s*. To see that cditX) < s*, let s be a rational number such that- s*. It suffices to show that
cdim(X) <s.

Sinces > s*, for eachS € X there is a constructive-supergalels that succeeds ofi. By Theo-
rem 3.6, then, we havé € S®[ds] € S®°[d®] for all S € X, whenceX C S®°[d®]. Sinced® is a
constructives-supergale, this shows that cdif) < s. O

Hitchcock [16] has recently proven a correspondence principle for constructive dimension. This prin-
ciple says that for any sé&t C C that is a union oﬂ'[(lJ sets (a condition that is certainly satisfiedifis
Eg), the constructive dimension &f is precisely its classical Hausdorff dimension. He also noted that
this principle, together with Theorem 4.1, implies that ttessicalHausdorff dimension of every set
X C Cthatis a union oﬂg’ sets has thpointwise characterization

dimy(X) = supdim(S).
SeX

Theorem 4.1 immediately implies that constructive dimension has the follogangtable stability

property, which is also a property of classical Hausdorff dimension.

Corollary 4.2. Forall Xg, X1, X»,... CC,

cdim (U Xk> = supcdim(Xy).

k=0 keN

Our next objective is to prove a dimension reduction theorem that enables us to exhibit sequences of
arbitraryAg-computabIe dimensions {0, 1].
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Define anapproximatorof a real numbew € [0, 1] to be an ordered paiu, ») of computable func-
tionsa, b : N — Z* with the following properties:
() foralln € N, a(n) < bn);

(il) 1m0 508 = .

It is well known and easy to see that a real number [0, 1] has an approximator if and only if it is
Ag—computable. Moreover, evewg—computable real number has an approximé&io®b) that isnicein
the sense that if we léi(k) = Y%L b(n), thenb(k) = o(b(k)) ask — oo.

Given an approximatofa, b) of aAg—computable real number < [0, 1], we define thea, b)-dilu-
tion function

8abp :C—C
as follows. GivensS e C, if we write

S = wowiwz. ..,
where|w, | = a(n) for eachn € N, then

2. (8) = wo0P @40y opW=ad
Note thatg(, ») (S) =1-+ Sforall S € C.

Theorem 4.3. Leta € [0, 1) be Ag—computable, and letu, b) be a nice approximator at. Then for
al s €C,

dim(ga.»)(S)) = o - dim(S).

Proof. We first introduce some notation that will simplify the proof. (et ) be a nice approximator
of . For eachk € N, let
k—1 N k—1
atky =Y am), bk =) b,
n=0 n=0
and note that
im i(ﬁ =«
k—o0 b(k)
In addition to the dilution functiorg 5 : C — C, we use the functior : {0, 1}* — {0, 1}* defined
recursively as follows. Firsig(1) = A. Next, if w = w'u, where|w’| = a(k) and O< |u| < a(k), then
g(w) = g(w"u. Finally, if w = w'u, where|w’| = @(k) and|u| = a(k), theng(w) = g(w)uQPO—ak)
Note that for allS € C, g5 (S) is the uniquel’ € C such thag(w) E T for all w = S. Note also that
the functiong is one-to-one, so that the strigg(y) is well defined for each e rangeg).
Now fix S € C and letg = dim(S). Our objective is to show that di@. » (S)) = ap.
To see that ding 4.1 (S)) < af, lets > B andr € («, 1) be such that2and 2 are rational. It suffices
to show that dinig(,,») (S)) < st.
Sinces > B, there is a constructivesupergalels that succeeds afi Define a functior : {0, 1}* —
[0, 00) as follows. Lety € {0, 1}*. If there does not exist € C such thaty C g, (T), thend(y) = 0.
Otherwise, letw be the shortest string such that g(w). Then

d(y) = 2"=sIvlgg (w).
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It is routine to check that/ is ansz-supergale, and it is clear thdtis constructive. Also, for each
w € {0, 1}*,

d(g(w)) = 2"18WI=slgg (). (4.1)
Lete = 5% and fixko € N such that for alk > ko,
ak)

0 <t—2¢ and b(k) < eb(k).
(Suchkg exists becaus%% converges te and the approximataw, b) is nice.) For allw € {0, 1}*, if
we choosé andr such thatw| = @(k) +r and 0< r < a(k), and ifk > kg, then we have
st|g(w)] — s|lw| = stig(k) +r)—s@k) +r)
= stb(k) —sa(k) —s(1—t)r
stb(k) — s(t — 2¢)b(k) — sr

>

= 2seb(k) — sr

> 2seb(k) — sb(k)
> seb(k).

Sincee > 0 andS € S™[ds], it follows by (4.1) thatg,.») (S) € S®[d]. Sinced is a constructive
st-supergale, this establishes that dm ) (S)) < st, concluding the proof that dig,,»)(S)) < «p.

To see that dintg..»)(S)) > af, lets < ap be such that 2is rational, and let/ be a constructive
s-supergale. It suffices to show that ) (S) & S*[d].

Define a function?’ : {0, 1}* — [0, o0) by

d'(w) = 21172 18Wd (g (w)).
Using Lemma 3.3, it is easy to check th#tis a constructive-supergale. Since < o, we can choose
t < B suchthat < ar and 2 is rational. The functiod” : {0, 1}* — [0, co) defined by

d”(u)) — 2(t—s)|w|d/(w)

is then a constructive-supergale by Observation 3.2. Since 8 = dim(S), it follows that there is a
constant € N such that for alw C S, d”(w) < 2°.
Lete = %(a — ), hoting that this is positive because< at. Fix ko € N such that for alk > ko,

%@2 s+ e
b(k)

(Suchkg exists becaus%% converges taer, % < «a, and the approximatdu, b) is nice.) Everyy C

and bk) < eb(k).

8. (S) can be written in the forny = g(w)u, wherew C S, |w| = a(k), |g(w)| = E(k), and|u| <
b(k). For suchy we have

d(y) < 2'Md(gw)) < 2?Pd(g(w))
— zb(k)—s|w|+x|g(w)\d/(w)

— 2b(k)+s|g(w)\—t|w|d//(w)
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_ 2b(k)+s'5(k)—:a(k) 4" (w)
< 2b(k)+sl7(k)—t5(k)+c'

If |y| = b(ko), SO thatk > ko, then we have

b(k) + sb(k) — ta(k) < eb(k) + sb(k) — (s + €)b(k) =0,
whence

d(y) < 2°.

Since this holds for all sufficiently long prefixesC g5 (S), it follows thatg ») (S) ¢ S*[d], con-
cluding the proof that diffg 5 (S)) > «p. O

Notation. For eachx € [0, 1], let

DIMg = {S € C[dim(S) = «},
DIM .o = {S € C|dim(S) < o},
DIM _o = {S € C|dim(S) < a}.

Observation 4.4. RAND C DIM .

Proof. This follows immediately from part 4 of Observation 3.7

An important result in the theory of random sequences is the existence of random sequeng:es in

We now use this fact and Theorem 4.3 to show that thereﬁgreequences of ever@sg—computable
dimension in0, 1].

Theorem 4.5. For everyAS-computable real number € [0, 1], DIM, N A # ¢, i.e, there is aAd
sequence such thatdim(S) = a.

Proof. Leta € [0, 1] be Ag-computable. It is well known and easy to see thdias an approxima-
tor (indeed, this characterize.‘sg-computabiIity), and it is routine to transform an approximatotxof
into a nice approximato(a, b) of «. It is well known (see [52,53] or [24]) that there is a sequence
R € RAND N AY. LetS = g(.5)(R). Then Theorem 4.3 and Observation 4.4 tell us that

dim(S) = adim(R) = «. O

Three remarks on the proof of Theorem 4.5 should be made here. First, the proof thatrRAglac
¢ using Kreisel's Basis Lemma [21,33,52,53] and the fact that RAND X@eset cannot directly be
adapted to proving that DIMN Ag # () because Terwijn [51] has shown that DJN not aZg set.
Second, Mayordomo [31] has recently generalized Chaifihsonstruction [6] to give an alternative
construction of sequences in D}M Ag. Third, our proof of Theorem 4.5 via Theorem 4.3 yields even
more, namely, that itr, 8 € [0, 1] are Ag-computable withee > B, then every sequence in D}Ms
1-truth-table-equivalent to some sequence in RIM
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The following theorem shows that Theorem 4.5 cannot be improverf tor 119 sequences.
Theorem 4.6. £2U 19 € DIM,,.

Proof. LetS e E?. By symmetry, it suffices to show that dii5) = 0. For this, let0< s € Q. It suffices
to show that dimiS) < s.
By standard techniques [34,45], 184, S1, ... be a sequence of elements ©fwith the following
properties:
(i) for eachr, S; contains only finitely many 1’s;
(ii) for eachr andn, S;[n] < S;+1[nl;
(iii) for eachn, S[n] = lim;_ o S;[n];
(iv) the set{(z, n)|S;[n] = 1} is computably enumerable.
That is,S; is the “rth finite approximation of.”
Define a functiond : {0, 1}* — [0, oo) as follows. Firstd (1) = 1. Next, assume thalt(w) has been
defined, wheré¢w| = () for some integen > 1. For each: € {0, 1}", define

2Md(w) ol
d(wu) = { i 1 ANSI()- (") — U =u
0 otherwise,

noting thatjwu| = (3) +n = ("}"). For each: such that O< |u| < n define

d(wu) = 2750l Z d(wuv).

[v]=n—|ul

Since there are at mast+ 1 stringsu € {0, 1}" for whichd(wu) > 0, itis clear that/ is ans-supergale.
It is also clear thatl is constructive and that succeeds off, whence dingS) <s. O

The rest of this section concerns the constructive dimensions of the dimension classgsdniiM
DIM _,. We first note that for every € [0, 1], DIM, is the largest set of constructive dimensian

Theorem 4.7. For everyux € [0, 1], the seDIM ., has the following two properties:
(1) cdim(DIM o) = «;
(2) forall X € C, if cdim(X) < «, thenX € DIM .

Proof. Part 1 follows immediately from Theorem 4.1, Theorem 4.5, and the fact tha#wemputable
reals are dense iR. Part 2 follows immediately from part 1 of Observation 3.7

Part 1 of Theorem 4.7 has the following immediate consequence.

Corollary 4.8. For everyx € [0, 1],
cdim(DIM _y) = «.

We show in Section 6 that
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cdim(DIMy) = «
for all realsa € [0, 1].

5. Dimensions of individual strings

In the preceding two sections we have constructivized classical Hausdorff dimension and thereby
defined the dimensions of individual infinite binary sequences. We now push this one step further by
constructivizingand discretizingclassical Hausdorff dimension in order to define the dimensions of
individual finite binary strings.

Recall that the dimension of a sequerfces the infimum of alls > 0 for which there exists a con-
structives-supergalel such that the values af(S[0..n — 1]) are unbounded as— oo. To define the
dimensions of finite strings, we modify this definition in three ways.

I. We replace supergales by termgales, which are supergale-like constructs with special requirements
for handling the terminations of strings.
Il. We replace “unbounded as— oo” by a finite threshold.
Ill. We make the definition universal by using an optimal constructive termgale.
We now carry out this development.

Supergales are well suited to defining the dimensions of infinite sequences, but an adequate defini-
tion of the dimensions of finite strings must also involve betting on the point at which a given string
terminates. We use the termination symbiio mark the end of a binary string. We work in the set

T = {0, 1}* U {0, 1},
consisting of alterminated binary stringgelements off0, 1}*[J) and prefixes thereof. The following
definition is the main idea of this section.
Definition. Fors € [0, c0), ans-termgaleis a function
d: 7T — [0, 00)
such that/(1) < 1 and for allw € {0, 1}*,
d(w) > 27°[d(w0) + d(wl) + d(wD)]. (5.1)
An s-termgaled is a strategy for betting on the successive bits of a binary string and also on the point
at which the string terminates. We require the initial capit@l) to be at most 1. Whedi is used to bet

on a stringw, the final capital is/ (w).
The payoff condition (5.1) may at first glance seem suspicious. In thescask this says that

d(w0) + d(wl) + d(wl
d(w) > (w0) + (u21 ) +d(wl) (5.2)
for all w € {0, 1}*. If each of 0, 1, and] is equally likely to occur, independently of all prior bits, then

(5.2) implies that the conditional expected capital after a bet, givenutiais occurred before the bet, is

dw0) +d(wl) +d(wl) 2
3 = éd(w),
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whence the payoffs are much less than fair, even if equality holds in (5.2). However, the assumption that
0, 1, and] are equally likely to occur is not reasonable because it forces strings to be very short with
overwhelming probability. (In fact, this assumption implies that the average string is only two bits long.
In contrast, the average length of a string with respect to the optimal constructive subprobability measure
m is infinite.) Since we want our theory to apply to long strings, the termination symltsdlould be
regarded as having a vanishingly small probability.

The 1-termgale payoff condition (5.2) is exactly the supermartingale (i.e., 1-supergale) payoff condi-
tion with the additional requirement that the 1-termgale must without compensation divert some of its
capital to bet ori], i.e., the possibility that there is no next bit. Sindecan only occur once, the overall
impact of this requirement is modest. However, the impact is real, and we shall see that it is exactly what
is needed.

Example5.1. Defined : 7 — [0, co) by the recursion
d(n) =1,
3
d(w0) = Ed(w),

1
d(wl) =d(wd) = Zd(w).
Itis clear thatd is a 1-termgale. liv is a binary string of length with ng 0's andn1 1's, then
3 no /1 ni+1
dwd)=|( = -
w=(3) (3)
— 2no(l+|Og 3)—2(n+1) )

In particular, ifng is significantly larger thaq_Jrlzng(n + 1) ~ 0.7737n + 1), thend(wO) is signifi-
cantly greater thad (1) even thoughi loses three-fourths of its capital when theappears.

The following analog of Observation 3.2 is obvious but useful.

Observation 5.2. Letd,d’ : T — [0, c0) ands, s” € [0, 00). If
2—S|x\d(x) — 2—S/|x|d/(x)

for all x € 7, thend is ans-termgale if and only i’ is ans’-termgale

In particular, ifd is a O-termgale ang € [0, co), then the function!’ defined by
d'(x) = 2*Fldx)

for all x € 7 is ans-termgale, and every-termgale can be obtained from a O-termgale in this way.

Lemmab.3. If s € [0, c0) andd is ans-termgale then for allu € {0, 1}*,

> 2 Md@uwn) < 2'd). (5.3)
wef0,1}*



66 J.H. Lutz / Information and Computation 187 (2003) 49-79

Proof. For the first part of the proof, assume tldais a O-termgale, and let € {0, 1}*. We begin by
using induction omn to show that

Yo duwD)+ Y duw) < d) (5.4)

we{0,1)<m we{0,1)m
for allm € N. Form = 0, this is trivial. Assume that it holds fat. Then

Y dwwDy+ Y duw)

wef0,1}<m+1 we(0,1yn+1

= Y dwwD)+ Y dwwd)+ Y [dww)+duwl)]
we{0,1}<m wel0,1)m we{0,1}"

< Y dww+ Y duw)
we{0,1}<m wel0,1}m

<d(u)

by the induction hypothesis. This confirms that (5.4) holds fomadl N. It follows immediately that
> dwwD) <d@)
we{0,1}sm
forallm € N, whence
> dwwD) < d).
we{0,1)*

This is the case = 0 of (5.3).

Now assume that/ is an s-termgale, where € [0, co) is arbitrary. Defined’ : 7 — [0, c0) by
d'(x) = 2~5Klq(x) for all x € 7. Thend’ is a O-termgale by Observation 5.2, so the first part of this
proof tells us that for alk € {0, 1}*,

> 2wy = 2200 3 d(uwD)

we{0,1}* we{0,1}*
< 2_S‘|u[l\d/(u)
= 2%d(u). O

To define optimal termgales we need uniformity in the parameter

Definition.
(1) A termgaleis a familyd = {d®|s € [0, co)} such that eacl® is ans-termgale and for alt, s’ €
[0, 00) andx € 7,

2—S|X|d(3‘)(x) — 2_s/|x|d(s/)(x).
(2) Atermgaled is constructivaf d@ is constructive.

Definition. A constructive termgalé is optimalif for every constructive termgaléthere is a constant
« > 0 such that for alb € [0, co) andw € {0, 1}*, d®) (w) > ad® (w).
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Definition. The termgale induced by subprobability measurg on {0, 1}* is the family d[p] =
{dIp]®|s € [0, o0)}, where eacl[p]®) : T — [0, oo) is defined by

dipl® ) =2 3" p(w)

we{0,1}*

xEwO

forallx € 7.

Theorem 5.4. If pis an optimal constructive subprobability measurel@Onl}*, thend[p] is an optimal
constructive termgale

Proof. Assume the hypothesis. It is clear th#p] is a constructive termgale. To see thHp] is
optimal, letd = {d®|s € [0, co0)} be an arbitrary constructive termgale. Defipe {0, 1}* — [0, c0)
by p(w) = d@wO) for all w € {0, 1}*. By Lemma 5.3 (withu = 1), p is a subprobability measure on
{0, 1}*, andp is constructive becauskis constructive. It follows by the optimality @f that there exists
a > 0 such thap(w) > ap(w) for all w € {0, 1}*. Then for alls € [0, o0) andw € {0, 1}*,

dip]® (wD) = 2°"7Ip(w)
> 2"Hlgp(w)
= 2Bl g©@ (o)
= ad® (wD),

sod[p] is optimal. [
Corollary 5.5. There exists an optimal constructive termgale
Proof. This follows immediately from Theorems 5.4 and 2.1
We can now implement the ideas I-I1l described at the beginning of this section.

Definition. If d is atermgale] € Z*, andw € {0, 1}*, then thedimensiorof w relative tod at signifi-
cance level is

dim, (w) = inf{s € [0, 00) | ) (wD) > 1}.
We write dimy (w) for dim? (w).

Theorem 5.6. If d is an optimal constructive termgal¢hen for every constructive termgadeand
everyl € 7+, there is a constant < [0, oo) such that for allw € {0, 1}*,

di ! <di 4 . 55
img(w) < dimg (w) + =77 (5.5)

Proof. Letd be an optimal constructive termgale, i&be an arbitrary constructive termgale, and let
I € 7*. By the optimality ofd, there is a constant € (0, 1] such that for alk € [0, oo) andw € {0, 1}*,
d®(wd) > ad® (wD). Lety = logl — loga, and note thay € [0, o). Let w € {0, 1}* be arbitrary.
To see that (5.5) holds, let> dim,(w) + %lwl It suffices to show thal® (wJ) > I.
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Lets; =5 — #wl Thensy > dimy(w), so

d® (wD) > ad® (wO)
— az(s—S1)|wD|d(S1)(wD)
= a2Vd"Y (wO)
> a2V

= 1. 0

Corollary 5.7. If dy andd, are optimal constructive termgales ahdl,» € Z ™, then there is a constant
a € [0, 0o) such that for allw € {0, 1}*,
o

1+ |w|

1 -
‘dlmjl(w) - dlmjz(w)‘ <

Corollary 5.7 says that if we base our definition of dimension on an optimal constructive teungale
then both the particular choice dfand the choice of a significance levélave negligible impact on the
dimension dim(w). We thus fix an optimal constructive termgale and define the dimensions of finite
strings as follows.

Definition. Thedimensiorof a stringw € {0, 1}* is
dim(w) = dimg_ (w).

We have seen that the dimension of a sequence is at most 1. In contrast, we will see in Section 6
that the dimension of a string may exceed 1. However, regardless of our chaigetbére is an upper
bound on the dimension of strings.

Lemmab.8. There is a constant € N such that for allw € {0, 1}*, dim(w) < c.

Proof. For eachs € [0, c0), defined® : T — [0, oo) by
49 (x) = 2(s—=2)x| ?f x € {0, 1}*,
26-2HL - if x e {0, 1)*00,
and letd = {d¥|s € [0, 00)}. Itis easy to see thatis a constructive termgale aad®® (w) = 2 for all

w € {0, 1}*, whence dim(w) < 2 for allw € {0, 1}*. It follows by Theorem 5.6 that there is a constant
y € [0, co) such that for alw € {0, 1}*,

dim(w) <2+ <2+4y.

Y
1+ |w|
Thus the present lemma holds with= 2 + [y]. O

We conclude this section by characterizing the dimension of a sequence in terms of the dimensions of
its finite prefixes.

Theorem 5.9. Forall S € C,
dim(S) = liminf dim(S[0..n — 1]).
n—oo
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Proof. LetS € C. To see that dinS) < liminf,_ o dim(S[0..n — 1)), lets ands’ be rational numbers
such that’ > s > liminf,_, o, dim(S[0..n — 1]). It suffices to show that dig$) < s’. By our choice of

s, there is an infinite sef € N such that for allz € J, dim(S[0..n — 1]) < s, Whenced(Ds)(S[O..n —
1]0) > 1. Defined’ : {0, 1}* — [0, o0) by d'(w) = d(D“ )(w) for all w € {0, 1}*. Thend’ is a construc-
tive s’-supergale and for all € J,

d'(S[0..n — 1]) = d®”(5[0..n — 1)
= 26"=9nd) (510..n — 1))
> 20'=9m2=5¢9) (5[0..n — 1]00)
- 2(s/—s)n—s'

SinceJ is infinite, this implies thas € S*°[d’], whence dinS) < s’.

To see that dirgS) > liminf,_ o dim(S[0..n — 1]), lets” ands” be rational numbers such th&t>
s” > dim(S). It suffices to show that there exist infinitely mamy N for which dim(S[0..n — 1]) < s’.
Sinces” > dim(S), there is a constructive’-supergalel such thatS € S°[d]. Defined’ : T — [0, c0)

by
Ay — d(x) if x € {0, 1}*,
W =12~ 2"dw) if x = wh e {0, 10,

Thend' is a constructive’-termgale, so if for each € [0, co) we definal® : 7 — [0, co) by d® (x) =
26=5"Ixlg' (x), then the familyd = {d®)|s € [0, c0)} is a constructive termgale. It follows by the op-
timality of dg that there is a constant > 0 such that for alk € [0, co0) andw € {0, 1}*, dg)(wD) >
ad® (w). SinceS € S*®[d], there are infinitely many € N such thate(2*" — 2")d(S[0..n — 1]) > 1.
For all suchw we have

d¢7(S[0.n — 1]0) > ad®(S[0..n — 1]0)
= ad/(S[0..n — 1]0)
= (2 —2)d(S[0..n — 1))
> 1,

whence dingS[0..n — 1]) < /. O

6. Dimension and Kolmogorov complexity

In this section we show that the Kolmogorov complexity of a string is (up to an additive constant) the
product of its length and its dimension. We use this to derive a new proof of a recent characterization of
the dimension of a sequence in terms of the Kolmogorov complexities of its prefixes. This latter result
is used to establish the existence of sequences of all dimensighslinWe also review some previous
work on martingales, supermartingales, Kolmogorov complexity, and Hausdorff dimension.
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Theorem 6.1. There is a constant € N such that for allw € {0, 1}*,

|K (w) — [w]dim(w)]| < c.

Proof. Letm be the optimal subprobability measure {@1}* from Theorem 2.1. The key fact is that
forall w € {0, 1}* ands € [0, c0),

dim]® (wo) > 1 <= 2" Imw) > 1

= 5> ! log 1 ,
1+ |w| m(w)
SO
dimd[m](w) = 1 Iog 1 .
1+ |w| m(w)
This implies that
log ) = (1 + |w|)dimgm(w). (6.1)

To complete the proof, fix constants, c1, c2 € N such that for alw € {0, 1}*,

K(w) —log — < ¢p, (6.2)

(dimygm (w) — dim(w)| < “fl'w', 6.3)
and

dim(w) < c2. (6.4)

(The constantsg andc; exist by Theorem 2.2 and Lemma 5.8, respectively. The constagxists by
Theorem 5.4 and Corollary 5.7.) Let= co + c1 + ¢2. Then for allw € {0, 1}*, (6.1) and (6.3) tell us
that

log — A+ [whdim(w)| < c1, (6.5)

m(w)
and (6.4) tells us that
[(1+ |w)dim(w) — |[w|dim(w)]| < ¢2. (6.6)
By (6.2), (6.5), (6.6), and the triangle inequality, we have
|K (w) — [wldim(w)| < ¢

forallw e {0, 1}*. O

While Theorem 6.1 establishes a very close connection betWéen and dim(w), it should be noted
that the “self-delimiting” features of the definitions &f(w) and dim(w) are very different. A Turing
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machine used to defin& (w) is self-delimiting in that it is required to detect (halt at) the end of a
programs for w, while a termgale used to define dim is required to detect (bet on) the end of the
stringw itself.

In addition to giving a new characterization of Kolmogorov complexity, Theorem 6.1 enables us to
derive bounds on dimension from known bounds on Kolmogorov complexity. For example, we have the
following. (Note: dim(|w]) is dim(z), wherez is the|w|th string in a standard enumeration{6f 1}*.)

Corollary 6.2. There exist constants, c2 € N with the following properties
(1) Forall w e {0, 1}*, dimw) < 1+ %dimqu)n + L
(2) Foralln € Z* andr € N, if we choosev € {0, 1} according to the uniform probability measure

on{0, 1}, then

Pr[dim(w) o 14 09 iy — L] > 1 22,

w |w|
Proof. This follows immediately from Theorem 6.1 and Theorem 3.3.1 of [24].

Thus typical stringsv of lengthn satisfy

lo 1
dimw) = 1+ " dim(n) + O (-) .
n n
It follows readily that dinjw) often exceeds 1.
Theorem 6.1 characterizes Kolmogorov complexity in terms of dimension. We use this to give a new

proof of a recent characterization of the dimensions of sequences.

Theorem 6.3 (Mayordomo [31]) Forall S € C,

dim(s) — liminf X801 = 1D

n— 00 n
Proof. By Theorem 6.1,
K(S[0.n — 1
jiming KGO =10 it dimesio.n — 1),
n—o00 n n—o00

so the theorem follows by Theorem 5.9]

It should be noted here that Mayordomo proved Theorem 6.3 to improve the weaker result

iimint XS0 = yins) < limsup XSO = 1D
n—o00 n n— 00 n
which appeared in an early version [28] of the present paper that lacked (among other things) Section 5
and the foregoing part of Section 6. As noted in the discussion at the end of this section, Mayordomo’s
theorem can, in turn, be used in conjunction with older results to give alternative proofs of other results
in the present paper.
We can now give an easy proof that there exist sequences of all dimensi@n4jin

Theorem 6.4. For everya € [0, 1], DIM,, # @.
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Proof. Leta € [0, 1]. If « = 0 ora = 1, then DIM, # @ by Theorem 4.6 or Observation 4.4, respec-
tively, so assume that € (0, 1). Let R € RAND, and letS be the sequence constructed by the following
nonterminating, noncomputable procedure.

for n:=0tooco do
S[n]:=if K(S[0..n — 1]) < an then R[n] else0

Every sequence of the forR’ = wR[|w|..c0) is random and thus satisfié;sK(R/[O..n —1]) — l1las
n — oo [24]. On the other hand, every sequence of the féore w0 satisfiesK (T'[0..n — 1]) = o(n)
asn — oo [24]. Finally, it is well known that there is a constan& N such that for alw € {0, 1}* and
b € {0, 1}, |K (wb) — K (w)| < c. These three things together imply that the sequérsatisfies

im X602 =-1D_

n—00 n

whenceS € DIM,, by Theorem 6.3. [J

Corollary 6.5. For everya € [0, 1],
cdim(DIMy) = a.

Proof. This follows immediately from Theorems 4.1 and 6.4

We conclude this section by discussing some earlier work relating martingales, supermartingales,
and Kolmogorov complexity to Hausdorff dimension. Schnorr [40,42] defined a martidgaldave
exponential ordeon a sequencs if

IimSUIDIogd(S[O..n —-1) -
n

n— oo
and proved that no computable martingale can have exponential order on a Church-stochastic sequence.
Terwijn [51] has noted that (6.7) is equivalent to the existence of-ari for which thes-galed® (w) =
26-DIwlg(w) succeeds of. Thus, in the terminology of [27], Schnorr’s result says that thé $ehas
computable dimension 1 for every Church-stochastic sequ&nce
Ryabko [35] proved that

dime ({S fiminf X801 =10 }) —a, 6.8)

n—00 n

0 (6.7)

and Cai and Hartmanis [3] proved that
dimy <{s jiming XSO0 =D _ a}> _

n—00 n

(6.9)

forall e € [0, 1]. Inlight of Theorem 6.3, (6.8) and (6.9) say that gi(BIM ) = « and dimy(DIM ) =
o, SO (6.8) and (6.9) can be regarded as classical analogs of Theorem 4.7(1) and Corollary 6.5, respec-
tively. Note also that Theorem 6.4 follows immediately from (6.9) and Theorem 6.3.

Ryabko [36] proved that

(6.10)

dimy(X) < sup{ lim inf M‘ Se x}
n—00 n

forall X C C, and Staiger [48] established the existence of ¥ets C for which
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dimy(X) < SUp{ lim supw

n—>00 n

S e X}. (6.11)

By Theorems 4.1 and 6.3, (6.10) can now be seen as a statement of Observation 3.7(2).
Ryabko [38] and Staiger [49] defined tbgponent of increasef a martingale/ on a sequencs to
be the number
3g(S) — lim SupIogd(S[O..n 1])’
n—00 n
which is the left-hand side of (6.7). (We are using Staiger’s notation here.) Both papers paid particular
attention to the quantity

A(S) = suprq(S)|d is a computable martingdle (6.13)

By Terwijn’s above-mentioned observation-1.(S) is precisely the computable dimension{sf in
the terminology of [27]. Ryabko [38] proved that

A(S) < 1 liming X810-2 = 1D (6.14)

n—oo n

for every sequencé. By Theorem 6.3, we can now regard (6.14) as stating thatgins no greater
than the computable dimension{df}. Ryabko [38] also proved that

dimy((SIAS) > a)) = 1 — & (6.15)

for all « € [0, 1]. This is yet another analog of Theorem 4.7(1), saying that fow @[O0, 1] the set
DIME,™, consisting of all sequencessuch that the computable dimension{s} is at mosta, has
Hausdorff dimensionr. (Note: The earlier paper [37] proved results similar to (6.14) and (6.15), but
with A(S) replaced by a different quantity, which we may c&l{S), in which the algorithm for the
martingale is only required to halt on inputs of the foumwO0, or w1 for prefixesw of §. It is easy to
see thad/(S) is bounded below by (S) and above by 1 dim(S).)

Staiger [49] provided even more insightsdif= dV is the optimal constructive supermartingale of
Theorem 3.6 above, then StaigergS) is exactly 1— dim(S). He proved that
K(S[0..n — 1))

n

(6.12)

dimy(X) = sup{ liminf
n— oo

S e X} (6.16)

for everyzg setX C C. In light of Theorems 4.1 and 6.3, this is equivalent to the result by Hitchcock
[16], mentioned in Section 4, that cd{xi) = dimy(X) for every Eg setX C C. (It should be noted,
however, that the Staiger and Hitchcock results both preceded the Mayordomo [31] proof of Theorem
6.3 and that Hitchcock’s result holds for arbitrary union?.‘k?fsets.) Staiger [49] also proved that

sup{ Slg( Aq(S)|d is a computable martinga}e: 1—dimy(X) (6.17)

for every Zg setX C C. It is now easy to see that this is equivalent to the result by Hitchcock [16]
that the computable dimension oﬁzg setX C Cis precisely its Hausdorff dimension. Finally, Staiger
[49] characterized Hausdorff dimension in terms of entropy rates, and Staiger [50] gave an enjoyable
exposition of his and Ryabko’s results in terms of an infinite game.

This brief review does not exhaust the results of the cited papers, but it does indicate the emer-
gence of a rich network of relationships among martingales, supermartingales, Kolmogorov complexity,
Hausdorff dimension, constructive dimension, and computable dimension.
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7. Dimension and biased randomness

We now investigate the dimensions of sequences that are random relative to computable sequences of
convergent biases. We first recall two known theorems concerning such sequences.
Given a bias sequenge= (8o, 81, B2, ...), we write RANDE for the set RANI%E (defined in Sec-

tion 3) of all sequences that are random relative toﬁtlfm)in—toss probability measu;zeg (defined in
Section 2). For each nonempty strimge {0, 1}, let
#(1, w)
lw|
where #b, w) is the number of times the bitoccurs inw. For each € [0, 1], we define the set

FREQ; = {s eC }nleoo freq(S[0..n — 1) = ﬁ} .

freq(w) =

The following well-known theorem is a constructive version of the strong law of large numbers.

Theorem 7.1 (folklore). If g is a computable sequence of biases that convergg 4o[0, 1], then
RANDE C FREG.

Definition. Two sequences of biasésandﬁ/ aresquare-summably equivaleaind we Writq§ ~2 f,
if Y7008 — B)? < cc.

The next theorem is a constructive version of a classical theorem of Kakutani [17].

Theorem 7.2 (van Lambalgen [52,53], Vovk [54.])_et,§ andﬁ/ be computable sequences of biases that
converge tqq € (0,1).
(DIf B =2 B/, thenRAND; = RANDj;,.

(2)If B 22 B/, thenRAND; N RAND;, = .

It is well known (and easy to see) that a real numbeasgscomputable if and only if it is the limit
of a computable sequence of reals. Thus Theorems 7.1 and 7.2 tell us that fms%aomputable
biasp € (0, 1), the set FREQ contains infinitely many disjoint sets of the form RAIBIDNhereB is a
computable sequences of biases converging tbhis section is concerned with the dimensions of the
sequences in these sets RANDur main result uses three lemmas.

Our first lemma follows immediately from a result in [27], but it is central to our development and a
direct proof is brief, so we give it here. Recall the notatigyg &), the binary entropy functioft(8),
and the binary Kullback—Leibler divergen&g s || «) discussed in Section 2.

Lemma7.3. Forall g € [0, 1], cdim(FREQ;) < H(B).

Proof. Let 8 € [0, 1], and lets be a rational number with > H(B8). It suffices to show that cdim
(FREQ) < s.

Lete = iﬂr(ﬁ). Fix a rational number € (0, 1) such that
DB |r) <e. (7.2)
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Defined : {0, 1}* — [0, o0) by the recursion
d) =1,
d(w0) =2°(1 — r)d(w),

d(wl) = 2°rd(w).

Itis clear thawd is a constructive-gale.
Toseethat FRERQC S*[d], letS € FREQy. For allnezZ*,letw, = S[0..n — 1] andp, = freq(w,,).
SinceS € FREQ, there existsig € 77 such that for alk > no,

H(pn) < H(B) + € (7.2)
and
D(pn | r) < DB | 1) +e. (7.3)

For alln € Z+ we have
d(wn) = Z‘er#(l’wn)(l — r)#(oswn)’

SO

logd(wn)=n[s + ps logr + (1 — p,) log(1l — r)]
1
=n [s - E,, log ;i|

=n [s —E,, log (i . &)]
Pn T

=n[s —H(pn) — D(pn I V)]
It follows by (7.1), (7.2), and (7.3) that for all > nq,
logd(wy,) > n[s — H(B) — 3¢] = en.
ThusS € $°°[d]. This shows that FREQC §°°[d], whence cdifFREQ;) <s. O

Besicovitch [1] proved that dif(FREQ ) = H(p) for all 8 € [0, 3], where

FRE%z{Sec

lim supfreq(S[0..n — 1]) < B } .

n—oo

Good [13] conjectured that the limit superior could be replaced by a limit here, thus obtainipg dim
(FREQ) = H(B) for all B € [0, 1]. Eggleston [9] (see also [2,11]) proved Good’s conjecture. The fol-
lowing corollary is a constructive version of Eggleston’s theorem.

Corollary 7.4. Forall g € [0, 1], cdim(FREQy) = H(B).

Proof. This follows immediately from Lemma 7.3, Eggleston’s above-mentioned result, and Observa-
tion 3.7(2). O
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Our second lemma gives an asymptotic estimate ow%@[o..n —1) WhenE converges t@3 €
(0, 1) andS has limiting frequencys.

Lemma7.5. If B is a bias sequence that convergegte (0, 1), then for allS € FREQ,

log 1P (S[0..n — 1) = —H(B)n + o(n)

asn — oo.
Proof. Using the abbreviations

. {Iog(l — ) if Sli1=0,

"= log B; if S[i] = 1,
__Jlog(a—-B) if S[i]=0,
“=1logp if S[i] = 1,

a, =freq(S[0..n — 1)),

the hypothesis tells us that

n—1

log u? (510.n = 1)=3"1
i=0
n—1

=Y (& + o(1))
i=0
n—1
= (Z r) +0(n)
i=0
=n[(1 - a,)log(1 — B) + a, log B] + o(n)

=n[(1— B —o0o(1))log(l - B) + (B + 0(1)) log B] + o(n)
=—H(B)n + o(n)

asn — oco. U

_ Our third lemma is the crucial one. Its brief proof uses a natural transformationse$apergale to a
B-supermartingale.

Lemma7.6. If E is a computable sequence of biases that convergedd0, 1), then for every comput-
ables € [0, H(B)) and every constructivesupergaled, the setS>°[d] has constructivgg-measure.

Proof. Let B B, s, andd be as given. By Theorem 7.1, the set FREG@s constructivé—measure 1,
so it suffices to show that the s&€¥°[d] N FREQy has constructivé—measure 0. Let

o(w) = 2~ gw)
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for all w € {0, 1}*. By Observation 3.2y is a 0-supergale. Sincaé is constructive and andE are

computable it follows that the function

d =2
b

isa constructiveﬁ-supermartingale.

Now letS € FREQ;, and for each € N, letw, = S[0..n — 1]. Sinces < H(p), Lemma 7.5 tells us
that for sufficiently large: € N,

sn + log ,uﬁ(w,,) <0,

whence

d(wy)
2 (wy,)
This shows thats*°[d] N FREQs € S*°[d']. Thusd’ testifies thatS>°[d] N FREQs has constructive
B-measure 0. [J

d (wy,) = > d(wy).

By Lemma 7.3 every sequence in FREQas dimension at mog{(8). This upper bound is not in
general tight. For example, ffis Ag-computable, it is easy to see that there are sequences of dimension
0 in FREG. Nevertheless, the following theorem says that the upper bdi(#d is achieved by every
sequence in each of the sets RAB\Ifor WhichE is computable and convergesfo

Theorem 7.7. If ,5 is a computable sequence of biases that convergedqO, 1) and R € RAND;,
thendim(R) = H(B).

Proof. Assume the hypothesis. By Theorem 7.1 and Lemma 7.3,Rird H(B). To see that dirgR) >
H(B), lets € [0, H(B)) be computable, and letbe a constructive-supergale. By Lemma 7.6>°[d]
has constructivg-measure 0. Sinc® € RANDB, this implies thatkR ¢ S°°[d]. Since this holds for all
computables € [0, H(8)) and all constructive-supergaled, it follows that dimR) > H(g). O

Note that Observation 4.4 is exactly the c@ise (3, 3, 1, ...) of Theorem 7.7. Note also that The-
orem 7.7 can be used to give a second (albeit less informative) proof of Theorem 4.5.
Computable bias sequences that converge slow%/hlave played an important role in the investi-

gation of stochasticity versus randomness. First, Theorem 7.2 implies ﬁu’m H bias sequence such
thatd 724 (Bi — %)2 = 00, then RAND; N RAND = #. Also, van Lambalgen [52,53] proved thafiis

any computable bias sequence that convergésiﬂmen every element of RANpis Church-stochastic.
T 1\2 1 1
Taking to converge ta, but to do so slowly enough thi@j’io (Bi — Q). =0 (e.0.8 = it m)
this gave a new proof that not every Church-stochastic sequence is random. More significantly, Shen’
[44] strengthened van Lambalgen'’s latter result by showing thatisfany computable bias sequence
that converges té, then every element of RANDIs Kolmogorov-Loveland stochastic. Again taking

g to converge to% slowly enough thad "2, (ﬂi — %)2 = 00, this allowed Shen’ to conclude that not

every Kolmogorov—Loveland stochastic sequence is random, thereby solving a 20-year-old problem
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of Kolmogorov [18,20] and Loveland [25,26]. Theorems 7.7 and 7.2 have the following immediate
consequence concerning such sequepices

Corollary 7.8. If B isacomputable sequence of biases that converéellm/vly enoughtha} 2, (,Bi —
%)2 = oo, then

RANDB C DIM1 — RAND.

That is, every sequence that is random with respect to such a bias seqﬁfmae example of a
sequence that has dimension 1 but is not random.
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