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Abstract

A constructive version of Hausdorff dimension is developed using constructivesupergales, which are betting
strategies that generalize the constructive supermartingales used in the theory of individual random sequences.
This constructive dimension is used to assign every individual (infinite, binary) sequenceS adimension, which is a
real number dim(S) in the interval[0, 1]. Sequences that are random (in the sense of Martin-Löf) have dimension
1, while sequences that are decidable,�0

1, or �0
1, have dimension 0. It is shown that for every�0

2-computable real
numberα in [0, 1] there is a�0

2 sequenceS such that dim(S) = α. A discrete version of constructive dimension is
also developed usingtermgales, which are supergale-like functions that bet on the terminations of (finite, binary)
strings as well as on their successive bits. This discrete dimension is used to assign each individual stringw a
dimension, which is a nonnegative real number dim(w). The dimension of a sequence is shown to be the limit
inferior of the dimensions of its prefixes. The Kolmogorov complexity of a string is proven to be the product of its
length and its dimension. This gives a new characterization of algorithmic information and a new proof of May-
ordomo’s recent theorem stating that the dimension of a sequence is the limit inferior of the average Kolmogorov
complexity of its firstn bits. Every sequence that is random relative to any computable sequence of coin-toss biases
that converge to a real numberβ in (0, 1) is shown to have dimensionH(β), the binary entropy ofβ.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Algorithmic information; Computability; Constructive dimension; Dimension; Entropy; Gales; Hausdorff dimen-
sion; Kolmogorov complexity; Kullback–Leibler divergence; Martingales; Randomness; Supergales; Termgales

� This work was supported in part by National Science Foundation Grants 9610461 and 9988483.
∗ Fax: +1-515-294-0258.
E-mail address:lutz@cs.iastate.edu.

0890-5401/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0890-5401(03)00187-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82204312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


50 J.H. Lutz / Information and Computation 187 (2003) 49–79

1. Introduction

One of the most dramatic achievements of the theory of computing was Martin-Löf’s 1966 use of
constructive measure theory to give the first satisfactory definition of the randomness of individual infi-
nite binary sequences [29]. The search for such a definition had been a major object of early 20th century
research on the foundations of probability, but a rigorous mathematical formulation had proven so elusive
that the search had been all but abandoned more than two decades earlier. Martin-Löf’s definition says
precisely which infinite binary sequences are random and which are not. The definition is probabilisti-
cally convincing in that it requires each random sequence to pass every algorithmically implementable
statistical test of randomness. The definition is also robust in that subsequent definitions by Schnorr
[39–41], Levin [22], Chaitin [6], Solovay [47], and Shen’ [43,44], using a variety of different approaches,
all define exactly the same sequences to be random. It is noteworthy that all these approaches, like
Martin-Löf’s, make essential use of the theory of computing.

A useful characterization of random sequences is that they are those sequences that have maximal
algorithmic information content. Specifically, ifK(S[0..n − 1]) denotes the Kolmogorov complexity
(algorithmic information content) of the firstn bits of an infinite binary sequenceS, then Levin [22]
and Chaitin [6] have shown thatS is random if and only if there is a constantc such that for alln,
K(S[0..n − 1]) � n − c. Indeed Kolmogorov [19] developed what is now calledC(x), the “plain Kol-
mogorov complexity,” in order to formulate such a definition of randomness, and Martin-Löf, who was
then visiting Kolmogorov, was motivated by this idea when he defined randomness. (The quantityC(x)

was also developed independently by Solomonoff [46] and Chaitin [4,5].) Martin-Löf [30] subsequently
proved thatC(x) cannot be used to characterize randomness, and Levin [22] and Chaitin [6] introduced
a technical modification ofC(x), now calledK(x), the “Kolmogorov complexity,” in order to prove the
above characterization of random sequences. Schnorr [41] proved a similar characterization in terms of
another variant, called the “monotone Kolmogorov complexity.”

One conclusion to be drawn from these characterizations is that the definition of random sequences
distinguishes those sequences that have maximal algorithmic information content from those that do
not. It offers no quantitative classification of the sequences that have less than maximal algorithmic
information content. From a technical point of view, this aspect of the definition arises from its use of
constructive measure, which is an algorithmic effectivization of classical Lebesgue measure. Specifical-
ly, an infinite binary sequenceS is random if the singleton set{S} does not have constructive measure 0,
and is nonrandom if{S} does have constructive measure 0. Neither Lebesgue measure nor constructive
measure offers quantitative distinctions among measure 0 sets.

In 1919, Hausdorff [14] augmented classical Lebesgue measure theory with a theory of dimension.
This theory assigns to every subsetX of a given metric space a real number dimH(X), which is now
called theHausdorff dimensionof X. In this paper we are interested in the case where the metric space
is the Cantor spaceC, consisting of all infinite binary sequences. In this case, the Hausdorff dimension of
a setX ⊆ C (which is defined precisely in Section 3) is a real number dimH(X) ∈ [0, 1]. The Hausdorff
dimension is monotone, with dimH(∅) = 0 and dimH(C) = 1. Moreover, if dimH(X) < dimH(C), then
X is a measure 0 subset ofC. Hausdorff dimension thus offers a quantitative classification of measure
0 sets. Moreover, Ryabko [36–38] Staiger [48,49], and Cai and Hartmanis [3] have all proven results
establishing quantitative relationships between Hausdorff dimension and Kolmogorov complexity.

Just as Hausdorff [14] augmented Lebesgue measure with a theory of dimension, this paper augments
the theory of individual random sequences with a theory of the dimensions of individual sequences.
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Specifically, we develop a constructive version of Hausdorff dimension and use this to assign every
sequenceS ∈ C a dimensiondim(S) ∈ [0, 1]. Sequences that are random have dimension 1, while se-
quences that are decidable,�0

1, or �0
1 have dimension 0. For every real numberα ∈ [0, 1] there is a

sequenceS such that dim(S) = α. Moreover, ifα is �0
2-computable, then there is a�0

2 sequenceS such
that dim(S) = α. (This generalizes the well-known existence of�0

2 sequences that are random.)
Our development of constructive dimension is based onsupergales, which are natural generalizations

of the constructive supermartingales used by Schnorr [39–41] to characterize randomness. In a recent
paper [27] we have shown that supergales can be used to characterize the classical Hausdorff dimension,
and that resource-bounded supergales can be used to define dimension in complexity classes. In the pres-
ent paper we use constructive (lower semicomputable) supergales to develop constructive dimension.
The dimension of a sequenceS ∈ C is then the constructive dimension of the singleton set{S}. Con-
structive dimension differs markedly from both classical Hausdorff dimension and the resource-bounded
dimension developed in [27], primarily due to the existence of supergales that are optimal. These optimal
supergales are analogous to universal tests of randomness in the theory of random sequences.

Supergales, like supermartingales, are strategies for betting on the successive bits of infinite binary
sequences. In order to define the dimensions of individual stringsw ∈ {0, 1}∗, we introducetermgales,
which are supergale-like functions that bet on the terminations of strings as well as on their successive
bits. Using termgales, we assign each binary stringw a dimensiondim(w), which is a nonnegative real
number. We show that for every sequenceS ∈ C,

dim(S) = lim inf
n→∞ dim(S[0..n − 1]). (1.1)

We use dimension to prove a new characterization of Kolmogorov complexity. Specifically, we show
that there is a constantc such that for allw ∈ {0, 1}∗,

|K(w) − |w|dim(w)| � c. (1.2)

That is, the Kolmogorov complexity of a string is (to within a constant additive term) the product of
the string’s length and its dimension. This characterization of Kolmogorov complexity in terms of a
constructivized, discretized version of Hausdorff’s 1919 theory of dimension is reminiscent of (and
technically related to) the well-known characterization by Levin [22,23] and Chaitin [6] of Kolmogorov
complexity in terms of constructivized discrete probability, i.e., the fact that there is a constantc′ ∈ N

such that for allw ∈ {0, 1}∗,∣∣∣∣K(w) − log
1

m(w)

∣∣∣∣ � c′, (1.3)

wherem is an optimal constructive subprobability measure on{0, 1}∗.
Taken together, (1.1) and (1.2) provide a new proof of Mayordomo’s recent theorem [31] stating that

for every sequenceS ∈ C,

dim(S) = lim inf
n→∞

K(S[0..n − 1])
n

. (1.4)

Facts (1.2) and (1.4) justify the intuition that the dimension of a string or sequence is a measure of its
algorithmic information density.

We also investigate the dimensions of sequences that are random relative to computable sequences of
convergent coin-toss biases. Specifically, let�β = (β0, β1, β2, . . .) be any computable sequence of real
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numbersβi ∈ [0, 1] that converge to a real numberβ ∈ (0, 1) (which must therefore be�0
2-computable).

We show that ifR is any sequence inC that is random with respect to�β (i.e., a random outcome of a
random experiment in which for eachi, independently of all otherj , theith bit ofR is decided by tossing
a 0/1-valued coin whose probability of 1 isβi), then the dimension ofR is H(β), the binary Shannon
entropy ofβ.

We defer discussion of some significant related work until late in the paper, where more context is
available. Specifically, results by Schnorr [40,42], Ryabko [35–38], Staiger [48–50], and Cai and Hart-
manis [3] that relate martingales, supermartingales, and Kolmogorov complexity to Hausdorff dimension
are discussed at the end of Section 6. Classical work by Besicovitch [1], Good [13], and Eggleston [9] re-
lating limiting frequencies and Shannon entropy to Hausdorff dimension is described briefly in Section 7.

2. Preliminaries

We use the setZ of integers, the setZ+ of (strictly) positive integers, the setN of natural numbers
(i.e., nonnegative integers), the setQ of rational numbers, the setR of real numbers, and the set[0, ∞)

of nonnegative reals.
A string is a finite, binary stringw ∈ {0, 1}∗. We write|w| for the length of a stringw andλ for the

empty string. Fori, j ∈ {0, . . . , |w| − 1}, we writew[i..j ] for the string consisting of theith through
thej th bits ofw andw[i] for w[i..i], theith bit of w. Note that the 0th bitw[0] is the leftmost bit ofw
and thatw[i..j ] = λ if i > j . A sequenceis an infinite, binary sequence. IfS is a sequence andi, j ∈ N,
then the notationsS[i..j ] andS[i] are defined exactly as for strings. We work in theCantor spaceC
consisting of all sequences. A stringw ∈ {0, 1}∗ is aprefixof a sequenceS ∈ C, and we writew 	 S, if
S[0..|w| − 1] = w. Thecylinder generated bya stringw ∈ {0, 1}∗ is Cw = {S ∈ C|w 	 S}. Note that
Cλ = C.

We also make passing references to�0
1, �0

2, and�0
2 sets of sequences. These refer to the arithmet-

ical (i.e., effective Borel) hierarchy of sets of sequences and are not central to our development. The
interested reader is referred to [34] or [32] for discussion of this hierarchy.

Thesupportof a sequenceS ∈ C is

supp(S) = {n ∈ N|S[n] = 1}.
The arithmetical hierarchy of sequences is defined from the arithmetical hierarchy of subsets ofN using
the support function. Thus, for example, a sequenceS ∈ C is computably enumerable, and we write
S ∈ �0

1, if supp(S) is a�0
1 (i.e., computably enumerable) subset ofN. Similarly,S ∈ �0

1 if N − supp(S)

is computably enumerable andS ∈ �0
2 if supp(S) is decidable relative to the halting oracle.

If S, T ∈ C, thenS is 1-truth-table reducibleto T , and we writeS �1−t t T , if there exist computable
functionsf : N → N andg : N × {0, 1} → {0, 1} such that for alln ∈ N, S[n] = g(n, T [f (n)]). The
sequencesS andT are 1-truth-table-equivalent, and we writeS ≡1−t t T , if S �1−t t T andT �1−t t S.

Definition. A subprobability measureon {0, 1}∗ is a functionp : {0, 1}∗ → [0, 1] such that∑
w∈{0,1}∗

p(w) � 1. (2.1)
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A probability measureon {0, 1}∗ is a subprobability measure on{0, 1}∗ that satisfies (2.1) with equality.
A subprobability supermeasureon the Cantor spaceC is a functionν : {0, 1}∗ → [0, 1] such that

ν(λ) � 1 (2.2)

and for allw ∈ {0, 1}∗,

ν(w) � ν(w0) + ν(w1). (2.3)

A subprobability measureonC is a subprobability supermeasure onC that satisfies (2.3) with equality
for all w ∈ {0, 1}∗, and aprobability measureon C is a subprobability measure onC that satisfies (2.2)
with equality. Intuitively, ifν is a probability measure onC andw ∈ {0, 1}∗, thenν(w) is the probability
thatw 	 S when the sequenceS ∈ C is “chosen according to the probability measureν.”

A bias is a real numberβ ∈ [0, 1]. Intuitively, if we toss a 0/1-valued coin with biasβ, thenβ is the
probability of the outcome 1. Abias sequenceis a sequence�β = (β0, β1, β2, . . .) of biases. If�β is a bias
sequence, then the�β-coin-toss probability measureis the probabilityµ �β on C defined by

µ
�β(w) =

|w|−1∏
i=0

βi(w), (2.4)

whereβi(w) = (2βi − 1)w[i] + (1 − βi), i.e.,βi(w) = if w[i] then βi else 1 − βi . That is,µ �β is the
probability thatS ∈ Cw whenS ∈ C is chosen according to a random experiment in which for eachi,
independently of all otherj , theith bit of S is decided by tossing a 0/1-valued coin whose probability of
1 is βi . In the case where the biasesβi are all the same, i.e.,�β = (β, β, β, . . .) for someβ ∈ [0, 1], we
write µβ for µ

�β , and (2.4) simplifies to

µβ(w) = (1 − β)#(0,w)β#(1,w), (2.5)

where #(b, w) is the number of times the bitb appears in the stringw. Theuniform probability measure

on C is the probability measureµ = µ
1
2 for which (2.5) simplifies to

µ(w) = 2−|w| (2.6)

for all w ∈ {0, 1}∗.
We use several conditions involving the computability of real numbers and real-valued functions in

this paper.

Definition. Let f : D → R, whereD is some discrete domain such asN, {0, 1}∗, N × {0, 1}∗, etc.
1. f is computableif there is a computable function̂f : D × N → Q such that for all(x, r) ∈ D × N,

|f̂ (x, r) − f (x)| � 2−r .
2. f is lower semicomputableif there is a computable function̂f : D × N → Q such that

(a) for all (x, t) ∈ D × N, f̂ (x, t) � f̂ (x, t + 1) < f (x), and

(b) for all x ∈ D, limt→∞ f̂ (x, t) = f (x).

3. f is �0
2-computableif f is computable relative to the halting oracle.

The following facts are well known and easy to verify:
(i) computability implies lower semicomputability, lower semicomputability implies�0

2-computabil-
ity, and the converses of these statements do not hold;
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(ii) a functionf : D → R is computable if and only if the functionsf and−f are both lower semi-
computable;

(iii) a functionf : D → R is lower semicomputable if and only if itslower graph

Graph−(f ) = {(x, s) ∈ D × Q | s < f (x)}
is computably enumerable.

A sequence�α = (α0, α1, α2, . . .) of real numbers iscomputableif the associated functionf�α : N →
R, defined byf�α(i) = αi for all i ∈ N, is computable. A real numberα is computableif the sequence
�α = (α, α, α, . . .) is computable. Note that if�β is a computable bias sequence, thenµ

�β is a computable
probability measure onC.

Definition. A subprobability measure on{0, 1}∗ or a subprobability supermeasure onC is constructive
if it is lower semicomputable.

Definition. If F is a class of functions from{0, 1}∗ into [0, ∞), then anoptimal element ofF is a
functiong ∈ F such that for everyf ∈ F there is a real constantα > 0 such that for allw ∈ {0, 1}∗,
g(w) � αf (w).

The following theorem is one of the cornerstones of algorithmic information theory.

Theorem 2.1 (Zvonkin and Levin [55]).
(1) There is an optimal constructive subprobability measurem on {0, 1}∗.
(2) There is an optimal constructive subprobability supermeasureM on C.

Throughout this paper we fixm andM as in Theorem 2.1. The results of this paper are not affected
by the particular choice ofm andM.

The reader is referred to the text by Li and Vitányi [24] for the definition and basic properties of
the Kolmogorov complexityK(w), defined for stringsw ∈ {0, 1}∗. The main property of Kolmogo-
rov complexity that we use here is the following theorem, which is another cornerstone of algorithmic
information theory.

Theorem 2.2 (Chaitin [6], Levin [22,23]). There is a constantc ∈ N such that for allw ∈ {0, 1}∗,∣∣∣∣K(w) − log
1

m(w)

∣∣∣∣ � c.

Given a setA ⊆ {0, 1}∗ andn ∈ N, we use the abbreviationsA=n = A ∩ {0, 1}n andA�n = A ∩
{0, 1}�n. A prefix setis a setA ⊆ {0, 1}∗ such that no element ofA is a prefix of another element ofA.

Let X be ak-fold product of intervals, each of which is(0, 1) or [0, 1]. If g : X → R and �α =
(α1, . . . , αk) ∈ X, then we sometimes use “g(�α)” as an abbreviation for the random variableξ : {0, 1} →
R defined byξ(1) = g(α1, . . . , αk) andξ(0) = g(1 − α1, . . . , 1 − αk). If β ∈ [0, 1], then we also useβ
as an abbreviation for the probability measurep on {0, 1} in whichp(1) = β. Thus, for example,

Eβg(�α) = βg(α1, . . . , αk) + (1 − β)g(1 − α1, . . . , 1 − αk)

is the expected value of “the random variableg(�α)” with respect to “the probability measureβ.” In
particular, Shannon’sbinary entropyfunctionH : [0, 1] → [0, 1] is defined by
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H(β) = Eβ log
1

β
,

with the proviso that 0 log10 = 0 so thatH is continuous on[0, 1]. Similarly, thebinary Kullback–Leibler
divergencefunctionD : [0, 1] × (0, 1) → R is defined by

D(β ‖ α) = Eβ log
β

α
,

with the proviso that 0 log0
p

= 0 so thatD is continuous on[0, 1] × (0, 1). It is well known thatD(β ‖
α) � 0, with equality if and only ifβ = α. See the text by Cover and Thomas [8] for further discussion
of H(β) andD(β ‖ α).

Falconer [10] provides a good overview of Hausdorff dimension.

3. Gales and constructive dimension

In this section we define gales and supergales and use these to define classical and constructive Haus-
dorff dimensions in the Cantor spaceC. Our definitions are slightly more general than those in [27]
because here we need to define gales and supergales relative to an arbitrary probability measure onC
that need not be the uniform probability measureµ defined in Section 2.

Definition. Let ν be a probability measure onC, and lets ∈ [0, ∞).
1. A ν-s-supergaleis a functiond : {0, 1}∗ → [0, ∞) that satisfies the condition

d(w)ν(w)s � d(w0)ν(w0)s + d(w1)ν(w1)s (3.1)

for all w ∈ {0, 1}∗.
2. A ν-s-gale is aν-s-supergale that satisfies (3.1) with equality for allw ∈ {0, 1}∗.
3. A ν-supermartingaleis aν-1-supergale.
4. A ν-martingaleis aν-1-gale.
5. An s-supergaleis aµ-s-supergale.
6. An s-gale is aµ-s-gale.
7. A supermartingaleis a 1-supergale.
8. A martingaleis a 1-gale.

Observation 3.1.
(1) A subprobability supermeasure onC is a 0-supergaled with d(λ) � 1.

(2) A subprobability measure onC is a 0-galed with d(λ) � 1.

(3) A probability measure onC is a 0-galed with d(λ) = 1.

The following obvious but useful observation shows how gales and supergales are affected by varia-
tion of the parameters.

Observation 3.2. Let ν be a probability measure onC, let s, s′ ∈ [0, ∞), and letd, d ′ : {0, 1}∗ →
[0, ∞). Assume that
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d(w)ν(w)s = d ′(w)ν(w)s
′

for all w ∈ {0, 1}∗.
1. d is aν-s-supergale if and only ifd ′ is aν-s′-supergale.
2. d is aν-s-gale if and only ifd ′ is aν-s′-gale.

For example, Observation 3.2 implies that a functiond : {0, 1}∗ → [0, ∞) is ans-gale if and only if
the functiond ′ : {0, 1}∗ → [0, ∞) defined byd ′(w) = 2(1−s)|w|d(w) is a martingale.

Our next lemma is a generalization of Kraft’s inequality [8].

Lemma 3.3. Letd be aν-s-supergale, whereν is a probability measure onC ands ∈ [0, ∞). Then for
all w ∈ {0, 1}∗ and all prefix setsB ⊆ {0, 1}∗,∑

u∈B

d(wu)ν(wu)s � d(w)ν(w)s.

Proof. We first use induction onn to show that the lemma holds for all prefix setsB ⊆ {0, 1}�n. For
n = 0 this is trivial. Assume that it holds forn, and letA ⊆ {0, 1}�n+1 be a prefix set. Define the set

A′ = {u ∈ {0, 1}n|u0 ∈ A or u1 ∈ A},
and note thatA�n is disjoint fromA′. Note also that the set

B = A�n ∪ A′

is a prefix set. For allw ∈ {0, 1}∗, we have∑
u∈A=n+1

d(wu)ν(wu)s �
∑
u∈A′

[d(wu0)ν(wu0)s + d(wu1)ν(wu1)s]

�
∑
u∈A′

d(wu)ν(wu)s.

It follows by the induction hypothesis that for allw ∈ {0, 1}∗,∑
u∈A

d(wu)ν(wu)s =
∑

u∈A�n

d(wu)ν(wu)s +
∑

u∈A=n+1

d(wu)ν(wu)s

�
∑

u∈A�n

d(wu)ν(wu)s +
∑
u∈A′

d(wu)ν(wu)s

=
∑
u∈B

d(wu)ν(wu)s

�d(w)ν(w)s.

This completes the proof that for alln ∈ N the lemma holds for all prefix setsB ⊆ {0, 1}�n.
To complete the proof of the lemma, letB be an arbitrary prefix set. Then for allw ∈ {0, 1}∗,∑

u∈B

d(wu)ν(wu)s = sup
n∈N

∑
u∈B�n

d(wu)ν(wu)s � d(w)ν(w)s. �
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Definition. Let d be aν-s-supergale, whereν is a probability measure onC ands ∈ [0, ∞).
1. We say thatd succeedson a sequenceS ∈ C if lim supn→∞ d(S[0..n − 1]) = ∞.
2. Thesuccess setof d is S∞[d] = {S ∈ C | d succeeds onS}.

We now show how to use the success sets of gales and supergales to define Hausdorff dimension.

Notation. Let X ⊆ C.
1. G(X) is the set of alls ∈ [0, ∞) such that there is ans-galed for whichX ⊆ S∞[d].
2. Ĝ(X) is the set of alls ∈ [0, ∞) such that there is ans-supergaled for whichX ⊆ S∞[d].

Note thats′ > s ∈ G(X) implies thats′ ∈ G(X).
It was shown in [27] that the following definition is equivalent to the classical definition of Hausdorff

dimension inC.

Definition. TheHausdorff dimensionof a setX ⊆ C is dimH(X) = inf G(X).

The following trivial fact shows that we could equivalently useĜ(X) in place ofG(X) in the above
definition.

Observation 3.4. For allX ⊆ C, G(X) = Ĝ(X).

Martin-Löf’s definition of randomness [29] was reformulated in terms of martingales by Schnorr [39]
as follows.

Terminology. A ν-s-supergale isconstructiveif it is lower semicomputable.

Definition. Let ν be a probability measure onC, and letX ⊆ C.
(1) X hasconstructiveν-measure 0, and we writeνconstr(X) = 0, if there is a constructiveν-martingale

d such thatX ⊆ S∞[d].
(2) X hasconstructiveν-measure 1, and we writeνconstr(X) = 1, if νconstr(C − X) = 0.

Definition. If ν is a probability measure onC, then a sequenceR ∈ C is ν-random, and we writeR ∈
RANDν , if the singleton set{R} does not have constructiveν-measure 0 (i.e., there is no constructive
ν-martingale that succeeds onR).

It is well known (and easy to see) thatνconstr(RANDν) = 1. The following known result shows that
constructive supermartingales can equivalently be used in place of constructive martingales in defining
randomness.

Theorem 3.5 (see [39,40,52]). For every computable probability measureν onC and every constructive
ν-supermartingaled there is a constructiveν-martingaled ′ such thatS∞[d] ⊆ S∞[d ′].

If ν is µ, the uniform probability measure onC, then we generally omit it from the above terminology.
A sequenceR is thusrandom, and we writeR ∈ RAND, if {R} does not have constructive measure 0.

Optimal constructive supergales are as crucial to constructive dimension as optimal constructive
supermartingales are to the theory of randomness. Recall the subprobability supermeasureM of
Theorem 2.1.
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Notation. For eachs ∈ [0, ∞) andw ∈ {0, 1}∗,

d(s)(w) = 2s|w|M(w).

Theorem 3.6. For every computable real numbers ∈ [0, ∞), the functiond(s) is an optimal constructive
s-supergale.

Proof. Let s ∈ [0, ∞) be computable. It is clear from its definition thatd(s) is a constructives-super-
gale. To see thatd(s) has the desired optimality property, letd be an arbitrary constructives-supergale.
Fix 0 < a ∈ Q such thatad(λ) � 1, and defineν : {0, 1}∗ → [0, 1] by

ν(w) = 2−s|w|ad(w)

for all w ∈ {0, 1}∗. By Observation 3.2,ν is a 0-supergale. Sinceν(λ) = ad(λ) � 1, it follows by Ob-
servation 3.1 thatν is a subprobability supermeasure onC. Sinceν is clearly constructive, it follows by
the optimality ofM that there existsα > 0 such that for allw ∈ {0, 1}∗, M(w) � αν(w), whence

d(s)(w) = 2s|w|M(w) � 2s|w|αν(w) = αad(w).

Sinceαa > 0 this shows thatd(s) is an optimal constructives-supergale. �

We now constructivize the above definition of Hausdorff dimension and develop some fundamental
properties of the resulting constructive dimension.

Notation. Let X ⊆ C.
1. Gconstr(X) is the set of alls ∈ [0, ∞) such that there is a constructives-galed for which X ⊆

S∞[d].
2. Ĝconstr(X) is the set of alls ∈ [0, ∞) such that there is constructives-supergaled for which

X ⊆ S∞[d].
Note that ifs, s′ are computable real numbers withs′ > s, thens ∈ Gconstr(X) impliess′ ∈ Gconstr(X),

ands ∈ Ĝconstr(X) impliess′ ∈ Ĝconstr(X).
We have seen that gales and supergales can be used interchangeably in defining classical Hausdorff

dimension (Observation 3.4) and that constructive martingales and constructive supermartingales can
be used interchangeably in defining randomness (Theorem 3.5). In contrast, at the time of this writing,
we do not know whether constructive gales and constructive supergales can be used interchangeably
in defining constructive dimension. (NOTE ADDED IN PROOF: This question has recently been answered
affirmatively by Hitchcock [15] and, independently, by Fenner [12].) We also do not know whether an
analog of Theorem 3.6 holds for constructives-gales whens < 1. We thus define constructive dimension
in terms of constructive supergales.

Definition. Theconstructive dimensionof a setX ⊆ C is cdim(X) = inf Ĝconstr(X).

The following observations are clear.

Observation 3.7.
1. For allX ⊆ Y ⊆ C, cdim(X) � cdim(Y ).
2. For allX ⊆ C, cdim(X) � dimH(X).
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3. cdim(C) = 1.
4. For allX ⊆ C, if cdim(X) < 1, thenµconstr(X) = 0.

4. Dimensions of individual sequences

The dimension of an individual sequenceS ∈ C is simply the constructive dimension of the singleton
set{S}.

Definition. Thedimensionof a sequenceS ∈ C is

dim(S) = cdim({S}).
The following theorem, which has no analog either in classical Hausdorff dimension or in the re-

source-bounded dimension developed in [27], says that the constructive dimension of a set of sequences
is completely determined by the dimensions of the individual sequences in the set.

Theorem 4.1. For all X ⊆ C,

cdim(X) = sup
S∈X

dim(S).

Proof. Let X ⊆ C, and lets∗ = supS∈X dim(S). It is clear by part 1 of Observation 3.7 that cdim(X) �
s∗. To see that cdim(X) � s∗, let s be a rational number such thats > s∗. It suffices to show that
cdim(X) � s.

Sinces > s∗, for eachS ∈ X there is a constructives-supergaledS that succeeds onS. By Theo-
rem 3.6, then, we haveS ∈ S∞[dS] ⊆ S∞[d(s)] for all S ∈ X, whenceX ⊆ S∞[d(s)]. Sinced(s) is a
constructives-supergale, this shows that cdim(X) � s. �

Hitchcock [16] has recently proven a correspondence principle for constructive dimension. This prin-
ciple says that for any setX ⊆ C that is a union of�0

1 sets (a condition that is certainly satisfied ifX is
�0

2), the constructive dimension ofX is precisely its classical Hausdorff dimension. He also noted that
this principle, together with Theorem 4.1, implies that theclassicalHausdorff dimension of every set
X ⊆ C that is a union of�0

1 sets has thepointwise characterization

dimH(X) = sup
S∈X

dim(S).

Theorem 4.1 immediately implies that constructive dimension has the followingcountable stability
property, which is also a property of classical Hausdorff dimension.

Corollary 4.2. For all X0, X1, X2, . . . ⊆ C,

cdim

( ∞⋃
k=0

Xk

)
= sup

k∈N

cdim(Xk).

Our next objective is to prove a dimension reduction theorem that enables us to exhibit sequences of
arbitrary�0

2-computable dimensions in[0, 1].
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Define anapproximatorof a real numberα ∈ [0, 1] to be an ordered pair(a, b) of computable func-
tionsa, b : N → Z+ with the following properties:
(i) for all n ∈ N, a(n) � b(n);

(ii) lim n→∞ a(n)
b(n)

= α.
It is well known and easy to see that a real numberα ∈ [0, 1] has an approximator if and only if it is

�0
2-computable. Moreover, every�0

2-computable real number has an approximator(a, b) that isnice in
the sense that if we let̃b(k) = ∑k−1

n=0 b(n), thenb(k) = o(b̃(k)) ask → ∞.

Given an approximator(a, b) of a �0
2-computable real numberα ∈ [0, 1], we define the(a, b)-dilu-

tion function

g(a,b) : C → C

as follows. GivenS ∈ C, if we write

S = w0w1w2 . . . ,

where|wn| = a(n) for eachn ∈ N, then

g(a,b)(S) = w00b(0)−a(0)w10b(1)−a(1) . . . .

Note thatg(a,b)(S) ≡1−t t S for all S ∈ C.

Theorem 4.3. Let α ∈ [0, 1) be�0
2-computable, and let(a, b) be a nice approximator ofα. Then for

all S ∈ C,

dim(g(a,b)(S)) = α · dim(S).

Proof. We first introduce some notation that will simplify the proof. Let(a, b) be a nice approximator
of α. For eachk ∈ N, let

ã(k) =
k−1∑
n=0

a(n), b̃(k) =
k−1∑
n=0

b(n),

and note that

lim
k→∞

ã(k)

b̃(k)
= α.

In addition to the dilution functiong(a,b) : C → C, we use the functiong : {0, 1}∗ → {0, 1}∗ defined
recursively as follows. First,g(λ) = λ. Next, if w = w′u, where|w′| = ã(k) and 0< |u| < a(k), then
g(w) = g(w′)u. Finally, if w = w′u, where|w′| = ã(k) and|u| = a(k), theng(w) = g(w′)u0b(k)−a(k).
Note that for allS ∈ C, g(a,b)(S) is the uniqueT ∈ C such thatg(w) 	 T for all w 	 S. Note also that
the functiong is one-to-one, so that the stringg−1(y) is well defined for eachy ∈ range(g).

Now fix S ∈ C and letβ = dim(S). Our objective is to show that dim(g(a,b)(S)) = αβ.
To see that dim(g(a,b)(S)) � αβ, let s > β andt ∈ (α, 1) be such that 2s and 2t are rational. It suffices

to show that dim(g(a,b)(S)) � st .
Sinces > β, there is a constructives-supergaledS that succeeds onS. Define a functiond : {0, 1}∗ →

[0, ∞) as follows. Lety ∈ {0, 1}∗. If there does not existT ∈ C such thaty 	 g(a,b)(T ), thend(y) = 0.
Otherwise, letw be the shortest string such thaty 	 g(w). Then

d(y) = 2st |y|−s|w|dS(w).
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It is routine to check thatd is an st-supergale, and it is clear thatd is constructive. Also, for each
w ∈ {0, 1}∗,

d(g(w)) = 2st |g(w)|−s|w|dS(w). (4.1)

Let ε = t−α
4 and fixk0 ∈ N such that for allk � k0,

ã(k)

b̃(k)
� t − 2ε and b(k) � εb̃(k).

(Suchk0 exists becausẽa(k)

b̃(k)
converges toα and the approximator(a, b) is nice.) For allw ∈ {0, 1}∗, if

we choosek andr such that|w| = ã(k) + r and 0� r < a(k), and ifk � k0, then we have

st |g(w)| − s|w| = st (̃b(k) + r) − s(̃a(k) + r)

= st b̃(k) − sã(k) − s(1 − t)r

> stb̃(k) − s(t − 2ε)̃b(k) − sr

= 2sεb̃(k) − sr

> 2sεb̃(k) − sb(k)

� sεb̃(k).

Sinceε > 0 andS ∈ S∞[dS], it follows by (4.1) thatg(a,b)(S) ∈ S∞[d]. Sinced is a constructive
st-supergale, this establishes that dim(g(a,b)(S)) � st , concluding the proof that dim(g(a,b)(S)) � αβ.

To see that dim(g(a,b)(S)) � αβ, let s < αβ be such that 2s is rational, and letd be a constructive
s-supergale. It suffices to show thatg(a,b)(S) �∈ S∞[d].

Define a functiond ′ : {0, 1}∗ → [0, ∞) by

d ′(w) = 2s|w|−s|g(w)|d(g(w)).

Using Lemma 3.3, it is easy to check thatd ′ is a constructives-supergale. Sinces < αβ, we can choose
t < β such thats < αt and 2t is rational. The functiond ′′ : {0, 1}∗ → [0, ∞) defined by

d ′′(w) = 2(t−s)|w|d ′(w)

is then a constructivet-supergale by Observation 3.2. Sincet < β = dim(S), it follows that there is a
constantc ∈ N such that for allw 	 S, d ′′(w) � 2c.

Let ε = t
2(α − s

t
), noting that this is positive becauses < αt . Fix k0 ∈ N such that for allk � k0,

ã(k)

b̃(k)
�

s + ε

t
and b(k) � εb̃(k).

(Suchk0 exists becausẽa(k)

b̃(k)
converges toα, s+ε

t
< α, and the approximator(a, b) is nice.) Everyy 	

g(a,b)(S) can be written in the formy = g(w)u, wherew 	 S, |w| = ã(k), |g(w)| = b̃(k), and|u| <

b(k). For suchy we have

d(y) � 2s|u|d(g(w)) � 2b(k)d(g(w))

= 2b(k)−s|w|+s|g(w)|d ′(w)

= 2b(k)+s|g(w)|−t |w|d ′′(w)
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= 2b(k)+sb̃(k)−t ã(k)d ′′(w)

� 2b(k)+sb̃(k)−t ã(k)+c.

If |y| � b̃(k0), so thatk � k0, then we have

b(k) + sb̃(k) − t ã(k) � εb̃(k) + sb̃(k) − (s + ε)̃b(k) = 0,

whence

d(y) � 2c.

Since this holds for all sufficiently long prefixesy 	 g(a,b)(S), it follows thatg(a,b)(S) �∈ S∞[d], con-
cluding the proof that dim(g(a,b)(S)) � αβ. �

Notation. For eachα ∈ [0, 1], let

DIMα = {S ∈ C|dim(S) = α},
DIM�α = {S ∈ C|dim(S) � α},
DIM<α = {S ∈ C|dim(S) < α}.

Observation 4.4. RAND ⊆ DIM1.

Proof. This follows immediately from part 4 of Observation 3.7.�

An important result in the theory of random sequences is the existence of random sequences in�0
2.

We now use this fact and Theorem 4.3 to show that there are�0
2 sequences of every�0

2-computable
dimension in[0, 1].

Theorem 4.5. For every�0
2-computable real numberα ∈ [0, 1], DIMα ∩ �0

2 �= ∅, i.e., there is a�0
2

sequenceS such thatdim(S) = α.

Proof. Let α ∈ [0, 1] be �0
2-computable. It is well known and easy to see thatα has an approxima-

tor (indeed, this characterizes�0
2-computability), and it is routine to transform an approximator ofα

into a nice approximator(a, b) of α. It is well known (see [52,53] or [24]) that there is a sequence
R ∈ RAND ∩ �0

2. Let S = g(a,b)(R). Then Theorem 4.3 and Observation 4.4 tell us that

dim(S) = αdim(R) = α. �

Three remarks on the proof of Theorem 4.5 should be made here. First, the proof that RAND∩ �0
2 �=

∅ using Kreisel’s Basis Lemma [21,33,52,53] and the fact that RAND is a�0
2 set cannot directly be

adapted to proving that DIMα ∩ �0
2 �= ∅ because Terwijn [51] has shown that DIMα is not a�0

2 set.
Second, Mayordomo [31] has recently generalized Chaitin’s
 construction [6] to give an alternative
construction of sequences in DIMα ∩ �0

2. Third, our proof of Theorem 4.5 via Theorem 4.3 yields even
more, namely, that ifα, β ∈ [0, 1] are�0

2-computable withα � β, then every sequence in DIMα is
1-truth-table-equivalent to some sequence in DIMβ .



J.H. Lutz / Information and Computation 187 (2003) 49–79 63

The following theorem shows that Theorem 4.5 cannot be improved to�0
1 or �0

1 sequences.

Theorem 4.6. �0
1 ∪ �0

1 ⊆ DIM0.

Proof. LetS ∈ �0
1. By symmetry, it suffices to show that dim(S) = 0. For this, let 0< s ∈ Q. It suffices

to show that dim(S) � s.
By standard techniques [34,45], letS0, S1, . . . be a sequence of elements ofC with the following

properties:
(i) for eacht , St contains only finitely many 1’s;

(ii) for eacht andn, St [n] � St+1[n];
(iii) for eachn, S[n] = limt→∞ St [n];
(iv) the set{(t, n)|St [n] = 1} is computably enumerable.
That is,St is the “t th finite approximation ofS.”

Define a functiond : {0, 1}∗ → [0, ∞) as follows. First,d(λ) = 1. Next, assume thatd(w) has been
defined, where|w| = (

n
2

)
for some integern � 1. For eachu ∈ {0, 1}n, define

d(wu) =
{2snd(w)

n+1 if (∃t)St [
(
n
2

)
..
(
n+1

2

) − 1] = u,

0 otherwise,

noting that|wu| = (
n
2

) + n = (
n+1

2

)
. For eachu such that 0< |u| < n define

d(wu) = 2−s(n−|u|) ∑
|v|=n−|u|

d(wuv).

Since there are at mostn + 1 stringsu ∈ {0, 1}n for whichd(wu) > 0, it is clear thatd is ans-supergale.
It is also clear thatd is constructive and thatd succeeds onS, whence dim(S) � s. �

The rest of this section concerns the constructive dimensions of the dimension classes DIM�α and
DIM<α. We first note that for everyα ∈ [0, 1], DIM�α is the largest set of constructive dimensionα.

Theorem 4.7. For everyα ∈ [0, 1], the setDIM�α has the following two properties:
(1) cdim(DIM�α) = α;
(2) for all X ⊆ C, if cdim(X) � α, thenX ⊆ DIM�α.

Proof. Part 1 follows immediately from Theorem 4.1, Theorem 4.5, and the fact that the�0
2-computable

reals are dense inR. Part 2 follows immediately from part 1 of Observation 3.7.�

Part 1 of Theorem 4.7 has the following immediate consequence.

Corollary 4.8. For everyα ∈ [0, 1],
cdim(DIM<α) = α.

We show in Section 6 that
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cdim(DIMα) = α

for all realsα ∈ [0, 1].

5. Dimensions of individual strings

In the preceding two sections we have constructivized classical Hausdorff dimension and thereby
defined the dimensions of individual infinite binary sequences. We now push this one step further by
constructivizingand discretizingclassical Hausdorff dimension in order to define the dimensions of
individual finite binary strings.

Recall that the dimension of a sequenceS is the infimum of alls � 0 for which there exists a con-
structives-supergaled such that the values ofd(S[0..n − 1]) are unbounded asn → ∞. To define the
dimensions of finite strings, we modify this definition in three ways.

I. We replace supergales by termgales, which are supergale-like constructs with special requirements
for handling the terminations of strings.

II. We replace “unbounded asn → ∞” by a finite threshold.
III. We make the definition universal by using an optimal constructive termgale.
We now carry out this development.

Supergales are well suited to defining the dimensions of infinite sequences, but an adequate defini-
tion of the dimensions of finite strings must also involve betting on the point at which a given string
terminates. We use the termination symbol� to mark the end of a binary string. We work in the set

T = {0, 1}∗ ∪ {0, 1}∗�,

consisting of allterminated binary strings(elements of{0, 1}∗�) and prefixes thereof. The following
definition is the main idea of this section.

Definition. For s ∈ [0, ∞), ans-termgaleis a function

d : T → [0, ∞)

such thatd(λ) � 1 and for allw ∈ {0, 1}∗,

d(w) � 2−s[d(w0) + d(w1) + d(w�)]. (5.1)

An s-termgaled is a strategy for betting on the successive bits of a binary string and also on the point
at which the string terminates. We require the initial capitald(λ) to be at most 1. Whend is used to bet
on a stringw, the final capital isd(w�).

The payoff condition (5.1) may at first glance seem suspicious. In the cases = 1, this says that

d(w) �
d(w0) + d(w1) + d(w�)

2
(5.2)

for all w ∈ {0, 1}∗. If each of 0, 1, and� is equally likely to occur, independently of all prior bits, then
(5.2) implies that the conditional expected capital after a bet, given thatw has occurred before the bet, is

d(w0) + d(w1) + d(w�)

3
= 2

3
d(w),
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whence the payoffs are much less than fair, even if equality holds in (5.2). However, the assumption that
0, 1, and� are equally likely to occur is not reasonable because it forces strings to be very short with
overwhelming probability. (In fact, this assumption implies that the average string is only two bits long.
In contrast, the average length of a string with respect to the optimal constructive subprobability measure
m is infinite.) Since we want our theory to apply to long strings, the termination symbol� should be
regarded as having a vanishingly small probability.

The 1-termgale payoff condition (5.2) is exactly the supermartingale (i.e., 1-supergale) payoff condi-
tion with the additional requirement that the 1-termgale must without compensation divert some of its
capital to bet on�, i.e., the possibility that there is no next bit. Since� can only occur once, the overall
impact of this requirement is modest. However, the impact is real, and we shall see that it is exactly what
is needed.

Example 5.1. Defined : T → [0, ∞) by the recursion

d(λ) = 1,

d(w0) = 3

2
d(w),

d(w1) = d(w�) = 1

4
d(w).

It is clear thatd is a 1-termgale. Ifw is a binary string of lengthn with n0 0’s andn1 1’s, then

d(w�)=
(

3

2

)n0
(

1

4

)n1+1

=2n0(1+log 3)−2(n+1).

In particular, ifn0 is significantly larger than 2
1+log 3(n + 1) ≈ 0.7737(n + 1), thend(w�) is signifi-

cantly greater thand(λ) even thoughd loses three-fourths of its capital when the� appears.

The following analog of Observation 3.2 is obvious but useful.

Observation 5.2. Let d, d ′ : T → [0, ∞) ands, s′ ∈ [0, ∞). If

2−s|x|d(x) = 2−s′|x|d ′(x)

for all x ∈ T , thend is ans-termgale if and only ifd ′ is ans′-termgale.

In particular, ifd is a 0-termgale ands ∈ [0, ∞), then the functiond ′ defined by

d ′(x) = 2s|x|d(x)

for all x ∈ T is ans-termgale, and everys-termgale can be obtained from a 0-termgale in this way.

Lemma 5.3. If s ∈ [0, ∞) andd is ans-termgale, then for allu ∈ {0, 1}∗,∑
w∈{0,1}∗

2−s|w|d(uw�) � 2sd(u). (5.3)
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Proof. For the first part of the proof, assume thatd is a 0-termgale, and letu ∈ {0, 1}∗. We begin by
using induction onm to show that∑

w∈{0,1}<m

d(uw�) +
∑

w∈{0,1}m
d(uw) � d(u) (5.4)

for all m ∈ N. Form = 0, this is trivial. Assume that it holds form. Then∑
w∈{0,1}<m+1

d(uw�) +
∑

w∈{0,1}m+1

d(uw)

=
∑

w∈{0,1}<m

d(uw�) +
∑

w∈{0,1}m
d(uw�) +

∑
w∈{0,1}m

[d(uw0) + d(uw1)]

�
∑

w∈{0,1}<m

d(uw�) +
∑

w∈{0,1}m
d(uw)

� d(u)

by the induction hypothesis. This confirms that (5.4) holds for allm ∈ N. It follows immediately that∑
w∈{0,1}�m

d(uw�) � d(u)

for all m ∈ N, whence∑
w∈{0,1}∗

d(uw�) � d(u).

This is the cases = 0 of (5.3).
Now assume thatd is an s-termgale, wheres ∈ [0, ∞) is arbitrary. Defined ′ : T → [0, ∞) by

d ′(x) = 2−s|x|d(x) for all x ∈ T . Thend ′ is a 0-termgale by Observation 5.2, so the first part of this
proof tells us that for allu ∈ {0, 1}∗,∑

w∈{0,1}∗
2−s|w|d(uw�) = 2s|u�| ∑

w∈{0,1}∗
d ′(uw�)

� 2s|u�|d ′(u)

= 2sd(u). �

To define optimal termgales we need uniformity in the parameters.

Definition.
(1) A termgaleis a familyd = {d(s)|s ∈ [0, ∞)} such that eachd(s) is ans-termgale and for alls, s′ ∈

[0, ∞) andx ∈ T ,

2−s|x|d(s)(x) = 2−s′|x|d(s′)(x).

(2) A termgaled is constructiveif d(0) is constructive.

Definition. A constructive termgalẽd is optimalif for every constructive termgaled there is a constant
α > 0 such that for alls ∈ [0, ∞) andw ∈ {0, 1}∗, d̃(s)(w�) � αd(s)(w�).
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Definition. The termgale induced bya subprobability measurep on {0, 1}∗ is the family d[p] =
{d[p](s)|s ∈ [0, ∞)}, where eachd[p](s) : T → [0, ∞) is defined by

d[p](s)(x) = 2s|x| ∑
w∈{0,1}∗

x	w�

p(w)

for all x ∈ T .

Theorem 5.4. If p is an optimal constructive subprobability measure on{0, 1}∗, thend[p] is an optimal
constructive termgale.

Proof. Assume the hypothesis. It is clear thatd[p] is a constructive termgale. To see thatd[p] is
optimal, letd = {d(s)|s ∈ [0, ∞)} be an arbitrary constructive termgale. Definep : {0, 1}∗ → [0, ∞)

by p(w) = d(0)(w�) for all w ∈ {0, 1}∗. By Lemma 5.3 (withu = λ), p is a subprobability measure on
{0, 1}∗, andp is constructive becaused is constructive. It follows by the optimality ofp that there exists
α > 0 such thatp(w) � αp(w) for all w ∈ {0, 1}∗. Then for alls ∈ [0, ∞) andw ∈ {0, 1}∗,

d[p](s)(w�) = 2s|w�|p(w)

� 2s|w�|αp(w)

= 2s|w�|αd(0)(w�)

= αd(s)(w�),

sod[p] is optimal. �

Corollary 5.5. There exists an optimal constructive termgale.

Proof. This follows immediately from Theorems 5.4 and 2.1.�

We can now implement the ideas I–III described at the beginning of this section.

Definition. If d is a termgale,l ∈ Z+, andw ∈ {0, 1}∗, then thedimensionof w relative tod at signifi-
cance levell is

diml
d (w) = inf{s ∈ [0, ∞) | d(s)(w�) > l}.

We write dimd(w) for dim1
d(w).

Theorem 5.6. If d̃ is an optimal constructive termgale, then for every constructive termgaled and
everyl ∈ Z+, there is a constantγ ∈ [0, ∞) such that for allw ∈ {0, 1}∗,

diml

d̃
(w) � dimd(w) + γ

1 + |w| . (5.5)

Proof. Let d̃ be an optimal constructive termgale, letd be an arbitrary constructive termgale, and let
l ∈ Z+. By the optimality ofd̃, there is a constantα ∈ (0, 1] such that for alls ∈ [0, ∞) andw ∈ {0, 1}∗,
d̃(s)(w�) � αd(s)(w�). Let γ = log l − logα, and note thatγ ∈ [0, ∞). Let w ∈ {0, 1}∗ be arbitrary.
To see that (5.5) holds, lets > dimd(w) + γ

1+|w| . It suffices to show that̃d(s)(w�) > l.
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Let s1 = s − γ
1+|w| . Thens1 > dimd(w), so

d̃(s)(w�) � αd(s)(w�)

= α2(s−s1)|w�|d(s1)(w�)

= α2γ d(s1)(w�)

> α2γ

= l. �

Corollary 5.7. If d̃1 andd̃2 are optimal constructive termgales andl1, l2 ∈ Z+, then there is a constant
α ∈ [0, ∞) such that for allw ∈ {0, 1}∗,∣∣∣diml1

d̃1
(w) − diml2

d̃2
(w)

∣∣∣ �
α

1 + |w| .

Corollary 5.7 says that if we base our definition of dimension on an optimal constructive termgaled̃,
then both the particular choice ofd̃ and the choice of a significance levell have negligible impact on the
dimension diml

d̃
(w). We thus fix an optimal constructive termgaled� and define the dimensions of finite

strings as follows.

Definition. Thedimensionof a stringw ∈ {0, 1}∗ is

dim(w) = dimd�(w).

We have seen that the dimension of a sequence is at most 1. In contrast, we will see in Section 6
that the dimension of a string may exceed 1. However, regardless of our choice ofd�, there is an upper
bound on the dimension of strings.

Lemma 5.8. There is a constantc ∈ N such that for allw ∈ {0, 1}∗, dim(w) � c.

Proof. For eachs ∈ [0, ∞), defined(s) : T → [0, ∞) by

d(s)(x) =
{

2(s−2)|x| if x ∈ {0, 1}∗,
2(s−2)|x|+1 if x ∈ {0, 1}∗�,

and letd = {d(s)|s ∈ [0, ∞)}. It is easy to see thatd is a constructive termgale andd(2)(w�) = 2 for all
w ∈ {0, 1}∗, whence dimd(w) � 2 for all w ∈ {0, 1}∗. It follows by Theorem 5.6 that there is a constant
γ ∈ [0, ∞) such that for allw ∈ {0, 1}∗,

dim(w) � 2 + γ

1 + |w| � 2 + γ.

Thus the present lemma holds withc = 2 + �γ �. �

We conclude this section by characterizing the dimension of a sequence in terms of the dimensions of
its finite prefixes.

Theorem 5.9. For all S ∈ C,

dim(S) = lim inf
n→∞ dim(S[0..n − 1]).
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Proof. Let S ∈ C. To see that dim(S) � lim infn→∞ dim(S[0..n − 1]), let s ands′ be rational numbers
such thats′ > s > lim infn→∞ dim(S[0..n − 1]). It suffices to show that dim(S) � s′. By our choice of
s, there is an infinite setJ ⊆ N such that for alln ∈ J , dim(S[0..n − 1]) < s, whenced(s)

� (S[0..n −
1]�) > 1. Defined ′ : {0, 1}∗ → [0, ∞) by d ′(w) = d(s′)

� (w) for all w ∈ {0, 1}∗. Thend ′ is a construc-
tive s′-supergale and for alln ∈ J ,

d ′(S[0..n − 1]) = d(s′)
� (S[0..n − 1])

= 2(s′−s)nd(s)
� (S[0..n − 1])

� 2(s′−s)n2−sd(s)
� (S[0..n − 1]�)

> 2(s′−s)n−s .

SinceJ is infinite, this implies thatS ∈ S∞[d ′], whence dim(S) � s′.
To see that dim(S) � lim infn→∞ dim(S[0..n − 1]), let s′ ands′′ be rational numbers such thats′ >

s′′ > dim(S). It suffices to show that there exist infinitely manyn ∈ N for which dim(S[0..n − 1]) � s′.
Sinces′′ > dim(S), there is a constructives′′-supergaled such thatS ∈ S∞[d]. Defined ′ : T → [0, ∞)

by

d ′(x) =
{
d(x) if x ∈ {0, 1}∗,
(2s′ − 2s′′

)d(w) if x = w� ∈ {0, 1}∗�.

Thend ′ is a constructives′-termgale, so if for eachs ∈ [0, ∞) we defined̃(s) : T → [0, ∞) by d̃(s)(x) =
2(s−s′)|x|d ′(x), then the familyd̃ = {d̃(s)|s ∈ [0, ∞)} is a constructive termgale. It follows by the op-
timality of d� that there is a constantα > 0 such that for alls ∈ [0, ∞) andw ∈ {0, 1}∗, d(s)

� (w�) >

αd̃(s)(w�). SinceS ∈ S∞[d], there are infinitely manyn ∈ N such thatα(2s′ − 2s′′
)d(S[0..n − 1]) > 1.

For all suchn we have

d(s′)
� (S[0..n − 1]�) � αd̃(s′)(S[0..n − 1]�)

= αd ′(S[0..n − 1]�)

= α(2s′ − 2s′′
)d(S[0..n − 1])

> 1,

whence dim(S[0..n − 1]) � s′. �

6. Dimension and Kolmogorov complexity

In this section we show that the Kolmogorov complexity of a string is (up to an additive constant) the
product of its length and its dimension. We use this to derive a new proof of a recent characterization of
the dimension of a sequence in terms of the Kolmogorov complexities of its prefixes. This latter result
is used to establish the existence of sequences of all dimensions in[0, 1]. We also review some previous
work on martingales, supermartingales, Kolmogorov complexity, and Hausdorff dimension.
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Theorem 6.1. There is a constantc ∈ N such that for allw ∈ {0, 1}∗,
|K(w) − |w|dim(w)| � c.

Proof. Let m be the optimal subprobability measure on{0, 1}∗ from Theorem 2.1. The key fact is that
for all w ∈ {0, 1}∗ ands ∈ [0, ∞),

d[m](s)(w�) > 1 ⇐⇒ 2s|w�|m(w) > 1

⇐⇒ s >
1

1 + |w| log
1

m(w)
,

so

dimd[m](w) = 1

1 + |w| log
1

m(w)
.

This implies that

log
1

m(w)
= (1 + |w|)dimd[m](w). (6.1)

To complete the proof, fix constantsc0, c1, c2 ∈ N such that for allw ∈ {0, 1}∗,∣∣∣∣K(w) − log
1

m(w)

∣∣∣∣ � c0, (6.2)

|dimd[m](w) − dim(w)| �
c1

1 + |w| , (6.3)

and

dim(w) � c2. (6.4)

(The constantsc0 andc2 exist by Theorem 2.2 and Lemma 5.8, respectively. The constantc1 exists by
Theorem 5.4 and Corollary 5.7.) Letc = c0 + c1 + c2. Then for allw ∈ {0, 1}∗, (6.1) and (6.3) tell us
that ∣∣∣∣log

1

m(w)
− (1 + |w|)dim(w)

∣∣∣∣ � c1, (6.5)

and (6.4) tells us that

|(1 + |w|)dim(w) − |w|dim(w)| � c2. (6.6)

By (6.2), (6.5), (6.6), and the triangle inequality, we have

|K(w) − |w|dim(w)| � c

for all w ∈ {0, 1}∗. �

While Theorem 6.1 establishes a very close connection betweenK(w) and dim(w), it should be noted
that the “self-delimiting” features of the definitions ofK(w) and dim(w) are very different. A Turing
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machine used to defineK(w) is self-delimiting in that it is required to detect (halt at) the end of a
programπ for w, while a termgale used to define dim(w) is required to detect (bet on) the end of the
stringw itself.

In addition to giving a new characterization of Kolmogorov complexity, Theorem 6.1 enables us to
derive bounds on dimension from known bounds on Kolmogorov complexity. For example, we have the
following. (Note: dim(|w|) is dim(z), wherez is the|w|th string in a standard enumeration of{0, 1}∗.)

Corollary 6.2. There exist constantsc1, c2 ∈ N with the following properties:
(1) For all w ∈ {0, 1}+, dim(w) � 1 + log |w|

|w| dim(|w|) + c1|w| .
(2) For all n ∈ Z+ andr ∈ N, if we choosew ∈ {0, 1}n according to the uniform probability measure

on {0, 1}n, then

Pr

[
dim(w) > 1 + log |w|

|w| dim(|w|) − r

|w|
]

> 1 − 2c2−r .

Proof. This follows immediately from Theorem 6.1 and Theorem 3.3.1 of [24].�

Thus typical stringsw of lengthn satisfy

dim(w) = 1 + logn

n
dim(n) ± O

(
1

n

)
.

It follows readily that dim(w) often exceeds 1.
Theorem 6.1 characterizes Kolmogorov complexity in terms of dimension. We use this to give a new

proof of a recent characterization of the dimensions of sequences.

Theorem 6.3 (Mayordomo [31]). For all S ∈ C,

dim(S) = lim inf
n→∞

K(S[0..n − 1])
n

.

Proof. By Theorem 6.1,

lim inf
n→∞

K(S[0..n − 1])
n

= lim inf
n→∞ dim(S[0..n − 1]),

so the theorem follows by Theorem 5.9.�

It should be noted here that Mayordomo proved Theorem 6.3 to improve the weaker result

lim inf
n→∞

K(S[0..n − 1])
n

� dim(S) � lim sup
n→∞

K(S[0..n − 1])
n

,

which appeared in an early version [28] of the present paper that lacked (among other things) Section 5
and the foregoing part of Section 6. As noted in the discussion at the end of this section, Mayordomo’s
theorem can, in turn, be used in conjunction with older results to give alternative proofs of other results
in the present paper.

We can now give an easy proof that there exist sequences of all dimensions in[0, 1].
Theorem 6.4. For everyα ∈ [0, 1], DIMα �= ∅.
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Proof. Let α ∈ [0, 1]. If α = 0 or α = 1, then DIMα �= ∅ by Theorem 4.6 or Observation 4.4, respec-
tively, so assume thatα ∈ (0, 1). LetR ∈ RAND, and letS be the sequence constructed by the following
nonterminating, noncomputable procedure.

for n :=0 to ∞ do
S[n] := if K(S[0..n − 1]) � αn then R[n] else 0

Every sequence of the formR′ = wR[|w|..∞) is random and thus satisfies1
n
K(R′[0..n − 1]) → 1 as

n → ∞ [24]. On the other hand, every sequence of the formT = w0∞ satisfiesK(T [0..n − 1]) = o(n)

asn → ∞ [24]. Finally, it is well known that there is a constantc ∈ N such that for allw ∈ {0, 1}∗ and
b ∈ {0, 1}, |K(wb) − K(w)| � c. These three things together imply that the sequenceS satisfies

lim
n→∞

K(S[0..n − 1])
n

= α,

whenceS ∈ DIMα by Theorem 6.3. �

Corollary 6.5. For everyα ∈ [0, 1],
cdim(DIMα) = α.

Proof. This follows immediately from Theorems 4.1 and 6.4.�

We conclude this section by discussing some earlier work relating martingales, supermartingales,
and Kolmogorov complexity to Hausdorff dimension. Schnorr [40,42] defined a martingaled to have
exponential orderon a sequenceS if

lim sup
n→∞

logd(S[0..n − 1])
n

> 0 (6.7)

and proved that no computable martingale can have exponential order on a Church-stochastic sequence.
Terwijn [51] has noted that (6.7) is equivalent to the existence of ans < 1 for which thes-galed(s)(w) =
2(s−1)|w|d(w) succeeds onS. Thus, in the terminology of [27], Schnorr’s result says that the set{S} has
computable dimension 1 for every Church-stochastic sequenceS.

Ryabko [35] proved that

dimH

({
S

∣∣∣∣lim inf
n→∞

K(S[0..n − 1])
n

� α

})
= α, (6.8)

and Cai and Hartmanis [3] proved that

dimH

({
S

∣∣∣∣lim inf
n→∞

K(S[0..n − 1])
n

= α

})
= α (6.9)

for all α ∈ [0, 1]. In light of Theorem 6.3, (6.8) and (6.9) say that dimH(DIM�α) = α and dimH(DIMα) =
α, so (6.8) and (6.9) can be regarded as classical analogs of Theorem 4.7(1) and Corollary 6.5, respec-
tively. Note also that Theorem 6.4 follows immediately from (6.9) and Theorem 6.3.

Ryabko [36] proved that

dimH(X) � sup

{
lim inf
n→∞

K(S[0..n − 1])
n

∣∣∣∣ S ∈ X

}
(6.10)

for all X ⊆ C, and Staiger [48] established the existence of setsX ⊆ C for which
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dimH(X) < sup

{
lim sup
n→∞

K(S[0..n − 1])
n

∣∣∣∣ S ∈ X

}
. (6.11)

By Theorems 4.1 and 6.3, (6.10) can now be seen as a statement of Observation 3.7(2).
Ryabko [38] and Staiger [49] defined theexponent of increaseof a martingaled on a sequenceS to

be the number

λd(S) = lim sup
n→∞

logd(S[0..n − 1])
n

, (6.12)

which is the left-hand side of (6.7). (We are using Staiger’s notation here.) Both papers paid particular
attention to the quantity

λ(S) = sup{λd(S)|d is a computable martingale}. (6.13)

By Terwijn’s above-mentioned observation, 1− λ(S) is precisely the computable dimension of{S} in
the terminology of [27]. Ryabko [38] proved that

λ(S) � 1 − lim inf
n→∞

K(S[0..n − 1])
n

(6.14)

for every sequenceS. By Theorem 6.3, we can now regard (6.14) as stating that dim(S) is no greater
than the computable dimension of{S}. Ryabko [38] also proved that

dimH({S|λ(S) � α}) = 1 − α (6.15)

for all α ∈ [0, 1]. This is yet another analog of Theorem 4.7(1), saying that for allα ∈ [0, 1] the set
DIMcomp

�α , consisting of all sequencesS such that the computable dimension of{S} is at mostα, has
Hausdorff dimensionα. (Note: The earlier paper [37] proved results similar to (6.14) and (6.15), but
with λ(S) replaced by a different quantity, which we may callλ′(S), in which the algorithm for the
martingale is only required to halt on inputs of the formw, w0, orw1 for prefixesw of S. It is easy to
see thatλ′(S) is bounded below byλ(S) and above by 1− dim(S).)

Staiger [49] provided even more insights. Ifd = d(1) is the optimal constructive supermartingale of
Theorem 3.6 above, then Staiger’sλd(S) is exactly 1− dim(S). He proved that

dimH(X) = sup

{
lim inf
n→∞

K(S[0..n − 1])
n

∣∣∣∣ S ∈ X

}
(6.16)

for every�0
2 setX ⊆ C. In light of Theorems 4.1 and 6.3, this is equivalent to the result by Hitchcock

[16], mentioned in Section 4, that cdim(X) = dimH(X) for every�0
2 setX ⊆ C. (It should be noted,

however, that the Staiger and Hitchcock results both preceded the Mayordomo [31] proof of Theorem
6.3 and that Hitchcock’s result holds for arbitrary unions of�0

1 sets.) Staiger [49] also proved that

sup

{
inf
S∈X

λd(S)

∣∣∣∣ d is a computable martingale

}
= 1 − dimH(X) (6.17)

for every�0
2 setX ⊆ C. It is now easy to see that this is equivalent to the result by Hitchcock [16]

that the computable dimension of a�0
2 setX ⊆ C is precisely its Hausdorff dimension. Finally, Staiger

[49] characterized Hausdorff dimension in terms of entropy rates, and Staiger [50] gave an enjoyable
exposition of his and Ryabko’s results in terms of an infinite game.

This brief review does not exhaust the results of the cited papers, but it does indicate the emer-
gence of a rich network of relationships among martingales, supermartingales, Kolmogorov complexity,
Hausdorff dimension, constructive dimension, and computable dimension.
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7. Dimension and biased randomness

We now investigate the dimensions of sequences that are random relative to computable sequences of
convergent biases. We first recall two known theorems concerning such sequences.

Given a bias sequence�β = (β0, β1, β2, . . .), we write RAND�β for the set RAND
µ

�β (defined in Sec-

tion 3) of all sequences that are random relative to the�β-coin-toss probability measureµ �β (defined in
Section 2). For each nonempty stringw ∈ {0, 1}+, let

freq(w) = #(1, w)

|w| ,

where #(b, w) is the number of times the bitb occurs inw. For eachβ ∈ [0, 1], we define the set

FREQβ =
{
S ∈ C

∣∣∣ lim
n→∞ freq(S[0..n − 1]) = β

}
.

The following well-known theorem is a constructive version of the strong law of large numbers.

Theorem 7.1 (folklore). If �β is a computable sequence of biases that converge toβ ∈ [0, 1], then
RAND �β ⊆ FREQβ.

Definition. Two sequences of biases�β and �β ′ aresquare-summably equivalent, and we write�β ≈2 �β ′,
if

∑∞
i=0(βi − β ′

i )
2 < ∞.

The next theorem is a constructive version of a classical theorem of Kakutani [17].

Theorem 7.2 (van Lambalgen [52,53], Vovk [54]). Let �β and �β ′ be computable sequences of biases that
converge toβ ∈ (0, 1).

(1)If �β ≈2 �β ′, thenRAND �β = RAND �β ′ .

(2)If �β �≈2 �β ′, thenRAND �β ∩ RAND �β ′ = ∅.

It is well known (and easy to see) that a real number is�0
2-computable if and only if it is the limit

of a computable sequence of reals. Thus Theorems 7.1 and 7.2 tell us that for each�0
2-computable

biasβ ∈ (0, 1), the set FREQβ contains infinitely many disjoint sets of the form RAND�β , where �β is a
computable sequences of biases converging toβ. This section is concerned with the dimensions of the
sequences in these sets RAND�β . Our main result uses three lemmas.

Our first lemma follows immediately from a result in [27], but it is central to our development and a
direct proof is brief, so we give it here. Recall the notation Eβg(�α), the binary entropy functionH(β),
and the binary Kullback–Leibler divergenceD(β ‖ α) discussed in Section 2.

Lemma 7.3. For all β ∈ [0, 1], cdim(FREQβ) � H(β).

Proof. Let β ∈ [0, 1], and lets be a rational number withs > H(β). It suffices to show that cdim
(FREQβ) � s.

Let ε = s−H(β)
4 . Fix a rational numberr ∈ (0, 1) such that

D(β ‖ r) < ε. (7.1)
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Defined : {0, 1}∗ → [0, ∞) by the recursion

d(λ) = 1,

d(w0) = 2s(1 − r)d(w),

d(w1) = 2srd(w).

It is clear thatd is a constructives-gale.
To see that FREQβ ⊆ S∞[d], letS ∈ FREQβ . For alln∈Z+, letwn = S[0..n − 1] andρn = freq(wn).

SinceS ∈ FREQβ , there existsn0 ∈ Z+ such that for alln � n0,

H(ρn) < H(β) + ε (7.2)

and

D(ρn ‖ r) < D(β ‖ r) + ε. (7.3)

For alln ∈ Z+ we have

d(wn) = 2snr#(1,wn)(1 − r)#(0,wn),

so

logd(wn)=n[s + ρn logr + (1 − ρn) log(1 − r)]
=n

[
s − Eρn log

1

r

]
=n

[
s − Eρn log

(
1

ρn

· ρn

r

)]
=n [s − H(ρn) − D(ρn ‖ r)] .

It follows by (7.1), (7.2), and (7.3) that for alln � n0,

logd(wn) > n[s − H(β) − 3ε] = εn.

ThusS ∈ S∞[d]. This shows that FREQβ ⊆ S∞[d], whence cdim(FREQβ) � s. �

Besicovitch [1] proved that dimH(FREQ�β) = H(β) for all β ∈ [
0, 1

2

]
, where

FREQ�β =
{
S ∈ C

∣∣∣∣lim sup
n→∞

freq(S[0..n − 1]) � β

}
.

Good [13] conjectured that the limit superior could be replaced by a limit here, thus obtaining dimH
(FREQβ) = H(β) for all β ∈ [0, 1]. Eggleston [9] (see also [2,11]) proved Good’s conjecture. The fol-
lowing corollary is a constructive version of Eggleston’s theorem.

Corollary 7.4. For all β ∈ [0, 1], cdim(FREQβ) = H(β).

Proof. This follows immediately from Lemma 7.3, Eggleston’s above-mentioned result, and Observa-
tion 3.7(2). �
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Our second lemma gives an asymptotic estimate of logµ
�β(S[0..n − 1]) when �β converges toβ ∈

(0, 1) andS has limiting frequencyβ.

Lemma 7.5. If �β is a bias sequence that converges toβ ∈ (0, 1), then for allS ∈ FREQβ,

logµ
�β(S[0..n − 1]) = −H(β)n + o(n)

asn → ∞.

Proof. Using the abbreviations

τi =
{

log(1 − βi) if S[i] = 0,

logβi if S[i] = 1,

τ̄i =
{

log(1 − β) if S[i] = 0,

logβ if S[i] = 1,

αn= freq(S[0..n − 1]),
the hypothesis tells us that

logµ
�β(S[0..n − 1])=

n−1∑
i=0

τi

=
n−1∑
i=0

(τ̄i + o(1))

=
(

n−1∑
i=0

τ̄i

)
+ o(n)

=n[(1 − αn) log(1 − β) + αn logβ] + o(n)

=n[(1 − β − o(1)) log(1 − β) + (β + o(1)) logβ] + o(n)

=−H(β)n + o(n)

asn → ∞. �

Our third lemma is the crucial one. Its brief proof uses a natural transformation of ans-supergale to a
�β-supermartingale.

Lemma 7.6. If �β is a computable sequence of biases that converge toβ ∈ (0, 1), then for every comput-
ables ∈ [0,H(β)) and every constructives-supergaled, the setS∞[d] has constructive�β-measure0.

Proof. Let �β, β, s, andd be as given. By Theorem 7.1, the set FREQβ has constructive�β-measure 1,
so it suffices to show that the setS∞[d] ∩ FREQβ has constructive�β-measure 0. Let

σ(w) = 2−s|w|d(w)
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for all w ∈ {0, 1}∗. By Observation 3.2,σ is a 0-supergale. Sinced is constructive ands and �β are
computable it follows that the function

d ′ = σ

µ �β

is a constructive�β-supermartingale.
Now letS ∈ FREQβ , and for eachn ∈ N, letwn = S[0..n − 1]. Sinces < H(β), Lemma 7.5 tells us

that for sufficiently largen ∈ N,

sn + logµ
�β(wn) < 0,

whence

d ′(wn) = d(wn)

2snµ �β(wn)
> d(wn).

This shows thatS∞[d] ∩ FREQβ ⊆ S∞[d ′]. Thusd ′ testifies thatS∞[d] ∩ FREQβ has constructive
�β-measure 0. �

By Lemma 7.3 every sequence in FREQβ has dimension at mostH(β). This upper bound is not in
general tight. For example, ifβ is �0

2-computable, it is easy to see that there are sequences of dimension
0 in FREQβ . Nevertheless, the following theorem says that the upper boundH(β) is achieved by every
sequence in each of the sets RAND�β for which �β is computable and converges toβ.

Theorem 7.7. If �β is a computable sequence of biases that converge toβ ∈ (0, 1) andR ∈ RAND �β,

thendim(R) = H(β).

Proof. Assume the hypothesis. By Theorem 7.1 and Lemma 7.3, dim(R) � H(β). To see that dim(R) �
H(β), let s ∈ [0,H(β)) be computable, and letd be a constructives-supergale. By Lemma 7.6,S∞[d]
has constructive�β-measure 0. SinceR ∈ RAND �β , this implies thatR �∈ S∞[d]. Since this holds for all
computables ∈ [0,H(β)) and all constructives-supergalesd, it follows that dim(R) � H(β). �

Note that Observation 4.4 is exactly the case�β = (1
2, 1

2, 1
2, . . .

)
of Theorem 7.7. Note also that The-

orem 7.7 can be used to give a second (albeit less informative) proof of Theorem 4.5.
Computable bias sequences that converge slowly to1

2 have played an important role in the investi-
gation of stochasticity versus randomness. First, Theorem 7.2 implies that if�β is a bias sequence such
that

∑∞
i=0

(
βi − 1

2

)2 = ∞, then RAND�β ∩ RAND = ∅. Also, van Lambalgen [52,53] proved that if�β is

any computable bias sequence that converges to1
2, then every element of RAND�β is Church-stochastic.

Taking �β to converge to12, but to do so slowly enough that
∑∞

i=0

(
βi − 1

2

)2 = ∞ (
e.g.,βi = 1

2 + 1√
i+4

)
,

this gave a new proof that not every Church-stochastic sequence is random. More significantly, Shen’
[44] strengthened van Lambalgen’s latter result by showing that if�β is any computable bias sequence
that converges to12, then every element of RAND�β is Kolmogorov–Loveland stochastic. Again taking

�β to converge to1
2 slowly enough that

∑∞
i=0

(
βi − 1

2

)2 = ∞, this allowed Shen’ to conclude that not
every Kolmogorov–Loveland stochastic sequence is random, thereby solving a 20-year-old problem
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of Kolmogorov [18,20] and Loveland [25,26]. Theorems 7.7 and 7.2 have the following immediate
consequence concerning such sequences�β.

Corollary 7.8. If �β is a computable sequence of biases that converge to1
2 slowly enough that

∑∞
i=0

(
βi −

1
2

)2 = ∞, then

RAND �β ⊆ DIM1 − RAND.

That is, every sequence that is random with respect to such a bias sequence�β is an example of a
sequence that has dimension 1 but is not random.
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