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We introduce the zeta number, natural halting probability and natural complexity of a
Turing machine and we relate them to Chaitin’s Omega number, halting probability, and
program-size complexity. A classification of Turing machines according to their natural
zeta numbers is proposed: divergent (zeta number is infinite), convergent (zeta number
is finite), and tuatara (zeta number is less or equal to one). Every self-delimiting Turing
machine is tuatara, but the converse is not true. Also, there exist universal convergent
and tuatara machines.

The zeta number of a universal self-delimiting Turing machines is c.e. and random,
and for each tuatara machine there effectively exists a self-delimiting Turing machine
whose Chaitin halting probability equals its zeta number; if the tuatara machine is
universal, then the self-delimiting Turing machine can also be taken to be universal.

For each self-delimiting Turing machine there is a tuatara machine whose zeta number
is exactly the Chaitin halting probability of the self-delimiting Turing machine; it is an
open problem whether the tuatara machine can be chosen to be a universal self-delimiting
Turing machine in the case when the original machine is universal.

Let s > 1 be a computable real, T" a universal Turing machine, and K7 be the plain
complexity induced by T. A string = is 1/s — K-random if K7 (z) > m/s — ¢, for some
¢ > 0. In analogy with the notion of Chaitin partial random real we introduce the
notion of a “1/s-K-random real” (a real such that the prefixes of its binary expansion
are 1/s — K-random) as well as the notion of an “asymptotically K-random real” (1/s-
K-random real, for every computable s > 1). The result due to Chaitin and Martin-Lof
showing that the plain complexity K cannot characterise random reals is no longer true
for 1/s — K-random (or Chaitin 1/s—random reals), nor for asymptotically K-random
reals. The zeta number of a universal self-delimiting Turing machine is asymptotically
K-random, but the converse implication fails to be true: there exists a self-delimiting
Turing machine whose zeta number is asymptotically K-random, but not random.

Some open problems conclude the paper.
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