89,184 research outputs found

    Hedonic Coalition Formation for Distributed Task Allocation among Wireless Agents

    Full text link
    Autonomous wireless agents such as unmanned aerial vehicles or mobile base stations present a great potential for deployment in next-generation wireless networks. While current literature has been mainly focused on the use of agents within robotics or software applications, we propose a novel usage model for self-organizing agents suited to wireless networks. In the proposed model, a number of agents are required to collect data from several arbitrarily located tasks. Each task represents a queue of packets that require collection and subsequent wireless transmission by the agents to a central receiver. The problem is modeled as a hedonic coalition formation game between the agents and the tasks that interact in order to form disjoint coalitions. Each formed coalition is modeled as a polling system consisting of a number of agents which move between the different tasks present in the coalition, collect and transmit the packets. Within each coalition, some agents can also take the role of a relay for improving the packet success rate of the transmission. The proposed algorithm allows the tasks and the agents to take distributed decisions to join or leave a coalition, based on the achieved benefit in terms of effective throughput, and the cost in terms of delay. As a result of these decisions, the agents and tasks structure themselves into independent disjoint coalitions which constitute a Nash-stable network partition. Moreover, the proposed algorithm allows the agents and tasks to adapt the topology to environmental changes such as the arrival/removal of tasks or the mobility of the tasks. Simulation results show how the proposed algorithm improves the performance, in terms of average player (agent or task) payoff, of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively to a scheme that allocates nearby tasks equally among agents.Comment: to appear, IEEE Transactions on Mobile Computin

    Energy Parity Games

    Get PDF
    Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objective. Our main results are as follows: (a) exponential memory is necessary and sufficient for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP \cap coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is polynomially equivalent to the problem of deciding the winner in mean-payoff parity games, while optimal strategies may require infinite memory in mean-payoff parity games. As a consequence we obtain a conceptually simple algorithm to solve mean-payoff parity games

    Succinct progress measures for solving parity games

    Get PDF
    The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm based on progress measures, which allows us to reduce the space required from quasi-polynomial to nearly linear. Our key technical tools are a novel concept of ordered tree coding, and a succinct tree coding result that we prove using bounded adaptive multi-counters, both of which are interesting in their own right

    Fixed-Dimensional Energy Games are in Pseudo-Polynomial Time

    Get PDF
    We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.Comment: Corrected proof of Lemma 6.2 (thanks to Dmitry Chistikov for spotting an error in the previous proof

    Study of a Dynamic Cooperative Trading Queue Routing Control Scheme for Freeways and Facilities with Parallel Queues

    Full text link
    This article explores the coalitional stability of a new cooperative control policy for freeways and parallel queuing facilities with multiple servers. Based on predicted future delays per queue or lane, a VOT-heterogeneous population of agents can agree to switch lanes or queues and transfer payments to each other in order to minimize the total cost of the incoming platoon. The strategic interaction is captured by an n-level Stackelberg model with coalitions, while the cooperative structure is formulated as a partition function game (PFG). The stability concept explored is the strong-core for PFGs which we found appropiate given the nature of the problem. This concept ensures that the efficient allocation is individually rational and coalitionally stable. We analyze this control mechanism for two settings: a static vertical queue and a dynamic horizontal queue. For the former, we first characterize the properties of the underlying cooperative game. Our simulation results suggest that the setting is always strong-core stable. For the latter, we propose a new relaxation program for the strong-core concept. Our simulation results on a freeway bottleneck with constant outflow using Newell's car-following model show the imputations to be generally strong-core stable and the coalitional instabilities to remain small with regard to users' costs.Comment: 3 figures. Presented at Annual Meeting Transportation Research Board 2018, Washington DC. Proof of conjecture 1 pendin
    corecore