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Succinct progress measures for solving parity games
Marcin Jurdziński and Ranko Lazić

DIMAP, Department of Computer Science, University of Warwick, UK

Abstract—The recent breakthrough paper by Calude et al.
has given the first algorithm for solving parity games in quasi-
polynomial time, where previously the best algorithms were
mildly subexponential. We devise an alternative quasi-polynomial
time algorithm based on progress measures, which allows us to
reduce the space required from quasi-polynomial to nearly linear.
Our key technical tools are a novel concept of ordered tree coding,
and a succinct tree coding result that we prove using bounded
adaptive multi-counters, both of which are interesting in their
own right.

I. INTRODUCTION

A. Parity games

A parity game is a deceptively simple combinatorial game
played by two players—Even and Odd—on a directed graph.
From the starting vertex, the players keep moving a token along
edges of the graph until a lasso-shaped path is formed, that
is the first time the token revisits some vertex, thus forming
a loop. The set of vertices is partitioned into those owned by
Even and those owned by Odd, and the token is always moved
by the owner of the vertex it is on. Every vertex is labelled
by a positive integer, typically called its priority. What are the
two players trying to achieve? This is the crux of the definition:
they compete for the highest priority that occurs on the loop
of the lasso; if it is even then Even wins, and if it is odd then
Odd wins.

A number of variants of the algorithmic problem of solving
parity games are considered in the literature. The input always
includes a game graph as described above. The deciding the
winner variant has an additional part of the input—the starting
vertex—and the question to answer is whether or not Even
has a winning strategy—a recipe for winning no matter what
choices Odd makes. Alternatively, we may expect that the
algorithm returns the set of starting vertices from which Even
has a winning strategy, or that it returns (a representation of)
a winning strategy itself; the former is referred to as finding
the winning positions, and the latter as strategy synthesis.

A fundamental result for parity games is positional deter-
minacy [6], [23]: each position is either winning for Even or
winning for Odd, and each player has a positional strategy that
is winning for her from each of her winning positions. The
former is straightforward because parity games—the way we
defined them here—are finite games, but the latter is non-trivial.
When playing according to a positional strategy, in every vertex
that a player owns, she always follows the same outgoing edge,
no matter where the token has arrived to the vertex from. The
answer to the strategy synthesis problem typically is in the
form of a positional strategy succinctly represented by a set of

edges: (at least) one edge outgoing from each vertex owned
by Even.

Throughout the paper, we write V and E for the sets of
vertices and edges in a parity game graph and π(v) for the
(positive integer) priority of a vertex v ∈ V . We also use n
to denote the number of vertices; η to denote the numbers of
vertices with an odd priority; m for the number of edges; and
d for the smallest even number that is not smaller than the
priority of any vertex. We say that a cycle is even if and only
if the highest priority of a vertex on the cycle is even. We will
write lg x to denote log2 x, and log x whenever the base of the
logarithm is moot.

Parity games are fundamental in logic and verification
because they capture—in an easy-to-state combinatorial game
form—the intricate expressive power of nesting least and great-
est fixpoint operators (interpreted over appropriate complete
lattices), which play a central role both in the theory and in the
practice of algorithmic verification. In particular, the modal µ-
calculus model checking problem is polynomial-time equivalent
to solving parity games [7], but parity games are much more
broadly applicable to a multitude of modal, temporal, and
fixpoint logics, and in the theory of automata on infinite words
and trees [11].

The problem of solving parity games has been found to be
both in NP and in coNP in the early 1990’s [7]. Such problems
are said to be well characterised [12] and are considered
very unlikely to be NP-complete. Parity games share the
rare complexity-theoretic status of being well characterised,
but not known to be in P, with such prominent problems as
factoring, simple stochastic games, and mean-payoff games [12].
Earlier notable examples include linear programming and
primality, which were known to be well characterised for
many years before breakthrough polynomial-time algorithms
were developed for them in the late 1970’s and the early 2000’s,
respectively.

After decades of algorithmic improvements for the modal
mu-calculus model checking [8], [3], [26] and for solving parity
games [13], [15], [25], [5], [21], a recent breakthrough came
from Calude et al. [4] who gave the first algorithm that works
in quasi-polynomial time, where the best upper bounds known
previously were subexponential of the form nO(

√
n) [15], [21].

Remarkably, Calude et al. have also established fixed parameter
tractability for the key parameter d—the number of distinct
vertex priorities.

B. Progress measures

Our work is inspired by the succinct counting technique of
Calude et al. [4], but it is otherwise rooted in earlier work on978-1-5090-3018-7/17/$31.00 c©2017 IEEE



rankings and progress measures [6], [19], [27], and in particular
it is centered on their uses for algorithmically solving games
on finite game graphs [13], [24], [25].

What is a progress measure? Paraphrasing Klarlund’s [16],
[19], [18], [17] ideas, Vardi [27] coined the following slogans:

A progress measure is a mapping on program states
that quantifies how close each state is to satisfying
a property about infinite computations. On every
program transition the progress measure must change
in a way ensuring that the computation converges
toward the property.

Klarlund and Kozen [19] point out that:
[existence of progress measures] is not surprising
from a recursion-theoretic point of view [and it] is
in essence expressed by the Kleene-Suslin Theorem
of descriptive set theory,

justifying Vardi’s [27] admonishment that:
the goal of research in this area should not be merely
to prove existence of progress measures, but rather to
prove the existence of progress measures with some
desirable properties.

For example, Klarlund [16], [18], as well as Kupferman and
Vardi [20] considered (appropriate relaxations of) progress
measures on infinite graphs and applied them to comple-
mentation and checking emptiness of automata on infinite
words and trees. Jurdziński [13], Piterman and Pnueli [24], and
Schewe [25] focused instead on optimising the magnitude of
progress measures for Mostowski’s parity conditions [22] and
for Rabin conditions [19] on finite graphs in order to improve
the complexity of solving games with parity, Rabin, and Streett
winning conditions.

In the case of parity games, this allowed Jurdziński [13] to
devise the lifting algorithm that works in time nd/2+O(1), where
n is the number of vertices and d is the number of distinct
vertex priorities. Schewe [25] improved the running time to
nd/3+O(1) by combining the divide-and-conquer dominion
technique of Jurdziński et al. [15] with a modification of
the lifting algorithm, using the latter to detect medium-sized
dominions more efficiently.

C. Our contribution

We follow the work of Jurdziński [13] and Schewe [25]
who have developed efficient algorithms for solving parity
games by proving existence of small progress measures. Our
contribution is to prove that every progress measure on a
finite game graph is—in an appropriate sense—equivalent to a
succinctly represented progress measure. This paves the way
to the design of an algorithm that slightly improves the quasi-
polynomial time complexity of the algorithm of Calude et
al. [4], and that significantly improves the space complexity
from quasi-polynomial down to nearly linear.

More specifically and technically, we argue that navigation
paths from the root to nodes in ordered trees of height h and
with at most n leaves can be succinctly encoded using at most
approximately lg h · lg n bits by means of bounded adaptive

multi-counters. The statement and the proof of this tree coding
result are entirely independent of parity games, and they are
notable in their own right. The concept of ordered tree coding
that we introduce seems fundamental and it may find unrelated
applications.

Our application of the tree coding result to parity games is
based on the fact that a progress measure for a graph with n
vertices and d distinct vertex priorities can be viewed as a
labelling of vertices by (the navigation paths from the root to)
leaves of an ordered tree of height d/2 and with at most n
leaves. It then follows that there are approximately at most
2lg d·lgn = nlg d possible encodings to consider for every vertex,
a considerable gain over the naive bound 2d/2·lgn = nd/2

that determined the complexity of Jurdziński’s [13] algorithm.
We argue, however, that the lifting technique developed by
Jurdziński [13] can be adapted to iteratively compute a succinct
representation of a progress measure in the quasi-polynomial
time O

(
nlg d

)
and nearly linear space O(n log n · log d).

D. Related work

The high-level idea of the algorithm of Calude et al. [4]
bears similarity to the approach of Bernet et al. [2]: first devise
a finite safety automaton that recognizes infinite sequences of
priorities that result in a win for Even (in the case of Bernet et
al., given an explicit upper bound on the number of occurrences
of each odd priority before an occurrence of a higher priority),
and then solve the safety game obtained from the product
automaton that simulates the safety automaton on the game
graph.

The key innovation of Calude et al. is their succinct
counting technique which allows them to devise a finite (safety)
automaton (not made explicit, but easy to infer from their
work) with only nO(log d) states, while that of Bernet et al.
may have Ω

(
(n/d)d/2

)
states. On the other hand, Calude

et al. construct the safety game explicitly before solving it,
thus requiring not only quasi-polynomial time but also quasi-
polynomial space, and not just in the worst case but always. In
contrast, Bernet et al. develop a technique for solving the safety
game symbolically without explicitly constructing it, hence
avoiding superpolynomial space complexity; as they point out:
“The algorithm actually turns out to be the same as [the lifting]
algorithm of Jurdzinski” [2] (although, in fact, they bring down
rather than lift up).

Contemporaneously and independently from the early version
of our work [14], Fearnley et al. [9] have developed a technique
of lifting Calude et al.’s [4] play summaries so as to efficiently
solve Calude et al.’s safety game without constructing it
explicitly, and Gimbert and Ibsen-Jensen [10] have given
slightly improved upper bounds on the running time of Calude
et al.’s algorithm. While our succinct progress measures and
bounded adaptive multi-counters are notably different from
Calude et al.’s and Fearnley et al.’s play summaries, the
complexity bounds achieved by us, by Fearnley et al., and
by Gimbert and Ibsen-Jensen are remarkably similar. For the
benchmark case when d ≤ lg n, Calude et al. gave the O(n5)
upper bound on the running time, and our O(mn2.38) bound



is slightly better than the O(mn2.55) improved bound derived
for Calude et al.’s algorithm by Gimbert and Ibsen-Jensen.
In the general case, Calude et al. gave the O(nlg d+6) upper
bound on the running time of their algorithm for finding the
winning positions and O(nlg d+7) for strategy synthesis. For
the case d = ω(log n), we establish the O

(
dmηlg(d/lg η)+1.45

)
running time upper bound, which is roughly the same as the
one obtained by Fearnley et al., and Gimbert and Ibsen-Jensen
achieve the analogous O

(
dmnlg(d/lgn)+1.45

)
upper bound for

Calude et al.’s algorithm. Notably, however, both Fearnley et
al. and Gimbert and Ibsen-Jesen claim those bounds only for
the cases d ≥ log2 η and d = Ω(log2 n), respectively.

II. SUCCINCT TREE CODING

What is an ordered tree? One formalisation is that it is
a prefix-closed set of sequences of elements of a linearly
ordered set. For clarity, in contrast to graphs, we refer to those
sequences as nodes, and the maximal nodes (w.r.t. the prefix
ordering) are called leaves. The root of the tree is the empty
sequence, sequences of length 1 are the children of the root,
sequences of length 2 are their children, and so on. We also
refer to the elements of the linearly ordered set that occur in
the sequences as branching directions: for example, if we use
the non-negative integers with the usual ordering as branching
directions, then the node (3, 0, 5) is the child of the node (3, 0)
reached from it via branching direction 5. Moreover, we refer
to the sequences of branching directions that uniquely identify
nodes as their navigation paths.

What do we mean by ordered-tree coding? The notion we
find useful in the context of this work is an order-preserving
relabelling of branching directions, allowing for the relabellings
at various nodes to differ from one another (or, in other words,
to be adaptive). The intention when coding in this way is to
obtain an isomorphic ordered tree, and the intended purpose
is to be able to more succinctly encode the navigation paths
for each leaf in the tree.

Succinct codes are easily obtained if trees are well balanced.
As a warm-up, consider the ordered tree of height 1 and with `
leaves (that is, the tree consists of the root whose ` children are
all leaves). Whatever the (identity of the) branching directions
from the root to the ` leaves are, for every i = 0, 1, . . . , `− 1,
we can relabel the branching direction of the i-th (according to
the linear order on branching directions) child of the root to be
the binary representation of the number i, which shows that the
navigation path of every leaf in the tree can be described using
only dlg `e bits. The reader is invited to verify that increasing
height while maintaining balance of such ordered trees does not
(much) increase the number of bits (expressed as a function
of the number of leaves) needed to encode the navigation
paths. Consider for example the case of a perfect k-ary tree
of height h; it has ` = kh leaves and every navigation path
can be encoded by h · dlg ke bits, dlg ke bits per each k-ary
branching; argue that it is bounded by 2 lg ` for all k ≥ 2, and
is in fact (1 + o(1)) · lg `.

But what if the tree is not nearly so well balanced? How
many more bits may be needed to encode navigation paths in

arbitrary trees of height h and with ` leaves? The key technical
result of this section, on which the main results of the paper
hinge, is that—thanks to adaptivity of our notion of ordered-tree
coding—(dlg he+ 1)dlg `e bits suffice.

We define the set Bg,h of g-bounded adaptive h-counters
to consist of h-tuples of binary strings whose total length is at
most g. For example, (0, ε, 1, 0) and (ε, 1, ε, 0) are 3-bounded
adaptive 4-counters, but (0, 1, ε, ε, 0) and (10, ε, 01, ε) are not—
the former is a 5-tuple, and the total length of the binary strings
in the latter is 4.

We define a strict linear ordering < on finite binary strings
as follows, for both binary digits b, and for all binary strings s
and s′:

0s < ε, ε < 1s, bs < bs′ iff s < s′. (1)

Equivalently, it is the ordering on the rationals obtained by the
mapping

b1b2 · · · bk 7→
k∑
i=1

(−1)bi+12−i .

We extend the ordering to Bg,h lexicographically. For ex-
ample, (00, ε, 1) < (0, 0, 0) because 00 < 0, and (ε, 011, 1) <
(ε, ε, 000) because 011 < ε.

Lemma 1 (Succinct tree coding). For every ordered tree of
height h and with at most ` leaves there is a tree coding in
which every navigation path is an dlg `e-bounded adaptive
i-counter, where i ≤ h is the length of the path.

Proof. We argue inductively on ` and h.
The base case, ` = 1 and h = 0, is trivial.
Let M be a branching direction from the root such that

both sets of leaves: L< whose first branching direction (i.e.,
from the root) is strictly smaller than M , and L> whose first
branching direction is strictly larger than M , are of size at
most `/2. Also let L= to be the set of leaves whose first
branching direction is M . The required coding is obtained in
the following way:
• If L< 6= ∅, apply the inductive hypothesis to the subtree

with L< as the set of leaves, and append one leading 0 to
the binary strings that code the first branching direction.

• If L> 6= ∅, apply the inductive hypothesis to the subtree
with L> as the set of leaves, and append one leading 1 to
the binary strings that code the first branching direction.

• Let the empty binary string ε be the code of the branching
direction M from the root of the tree, and then obtain
the required coding of the rest of the subtree rooted at
node (M) by applying the inductive hypothesis for trees
of height at most h− 1 and with at most ` leaves.

The lemma is illustrated, for an ordered tree of height 2 and
with 8 leaves, in Figures 1 and 2.

Note that the tree coding lemma implies the promised
(dlg he+ 1)dlg `e upper bound: every dlg `e-bounded adaptive
h-counter can be coded by a sequence of dlg `e single bits,
each followed by the dlg he-bit representation of the number
of the component that the single bit belongs to in the bounded
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Fig. 1. The branching directions are simply numbered in binary. For instance,
the navigation path to the right-most leaf is (10, 100), which uses 5 bits.
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Fig. 2. The same ordered tree is coded succinctly so that, in every navigation
path, the total number of bits is at most dlg 8e = 3 (in this example, it happens
to be at most 2).

adaptive multi-counter. In Section IV we give more refined
estimates of the size of the set

Sη,d =

d/2⋃
i=0

Bdlg ηe,i

of dlg ηe-bounded adaptive i-counters, where 0 ≤ i ≤ d/2,
which is the dominating term in the worst-case running time
bounds of our lifting algorithm for solving parity games.

III. SUCCINCT PROGRESS MEASURES

A. Progress measures

For finite parity game graphs, a progress measure [13] is
a mapping from the n vertices to d/2-tuples of non-negative
integers (that also satisfies the so-called progressiveness condi-
tions on an appropriate set of edges, as detailed below). Note
that an alternative interpretation is that a progress measure
maps every vertex to a leaf in an ordered tree T in which each
of the at most n leaves has a navigation path of length d/2.

What are the conditions that such a mapping needs to satisfy
to be a progress measure? For every priority p ∈ {1, 2, . . . , d},
we obtain the p-truncation (rd−1, rd−3, . . . , r1)|p of the d/2-
tuple (rd−1, rd−3, . . . , r1) of non-negative integers, one per
each odd priority, by removing the components corresponding
to all odd priorities i lower than p. For example, we have
(2, 7, 1, 4)|8 = ε, (2, 7, 1, 4)|5 = (2, 7) and (2, 7, 1, 4)|2 =
(2, 7, 1). We compare tuples using the lexicographic order. We
say that an edge (v, u) ∈ E is progressive in µ if

µ(v)|π(v) ≥ µ(u)|π(v),

and the inequality is strict when π(v) is odd. Finally, the
mapping µ : V → T is a progress measure [13] if:
• for every vertex owned by Even, some outgoing edge is

progressive in µ, and

• for every vertex owned by Odd, every outgoing edge is
progressive in µ.

B. Trimmed progress measures

Observe that the progressiveness condition of every edge
(v, u) ∈ E is formulated by referring to the π(v)-truncations
of the tuples labelling vertices v and u, so if the label of v is
(rd−1, rd−3, . . . , r1) then the components ri for i < π(v) are
superfluous for stating the condition. It is therefore reasonable
to consider trimmed progress measures that label vertices with
tuples (rd−1, rd−3, . . . , rk+2, rk) of length at most d/2, rather
than insisting on all vertices having labels of length exactly d/2.
In the alternative interpretation discussed above, such a trimmed
progress measure may then map some vertices to nodes in an
ordered tree (of height at most d/2) that are not leaves.

We clarify that if two tuples of different lengths are to
be compared lexicographically, and if the shorter one is a
prefix of the longer one, then the shorter one is defined
to be lexicographically strictly smaller than the longer one
For example, we have (1, 0) < (1, 0, 3), but (1, 0, 3) <
(1, 1). Moreover, truncations of tuples of length smaller than
d/2 are defined analogously; in particular, if p ≤ k then
(rd−1, rd−3, . . . , rk)|p = (rd−1, rd−3, . . . , rk).

C. Succinct progress measures

It is well known that existence of a progress measure is
sufficient and necessary for existence of a winning strategy
for Even from every starting vertex [6], [19], [13]. Our main
contribution in this section is the observation (Lemma 4) that
this is also true for existence of a succinct progress measure,
in which the ordered tree T is such that:
• finite binary strings ordered as in (1) are used as branching

directions instead of non-negative integers, and
• for every navigation path, the sum of lengths of the binary

strings used as branching directions is at most dlg ηe;
or in other words, that every navigation path in T is a dlg ηe-
bounded adaptive i-counter, for some i, 0 ≤ i ≤ d/2; recall
that η is the number of vertices with an odd priority.

In succinct progress measures, truncations and lexicographic
ordering of tuples, as well as progressiveness of edges, are
defined analogously. Again, we clarify that if two tuples of
different lengths are to be compared lexicographically, and if
the shorter one is a prefix of the longer one, then the shorter
one is defined to be lexicographically strictly smaller than the
longer one. For example, we have (01, ε) < (01, ε, 00), but
(01, ε, 000) < (1000, ε).

D. Sufficiency

Sufficiency does not require a new argument because the
standard reasoning—for example as in [13, Proposition 4]—
relies only on the ordered tree structure (through truncations),
and not on what ordered set is used for the branching directions.
We provide a proof here for completeness.

Lemma 2 (Sufficiency). If there is a succinct progress measure
then there is a positional strategy for Even that is winning for
her from every starting vertex.



Proof. Let µ be a succinct progress measure. Let Even use a
positional strategy that only follows edges that are progressive
in µ. Since every edge outgoing from vertices owned by Odd is
also progressive in µ, it follows that only progressive edges will
be used in every play consistent with the strategy. Therefore, in
order to verify that the strategy is winning for Even, it suffices
to prove that if all edges in a simple cycle are progressive in µ
then the cycle is even.

Let v1, v2, . . . , vk be a simple cycle in which all edges
(v1, v2), (v2, v3), . . . , (vk−1, vk), and (vk, v1) are progressive
in µ. For the sake of contradiction, suppose that the highest
priority p that occurs on the cycle is odd, and without loss of
generality, let π(v1) = p. By progressivity of all the edges on
the cycle, we have that

µ(v1)|p > µ(v2)|p ≥ · · · ≥ µ(vk)|p ≥ µ(v1)|p ,

absurd.

E. Necessity

We prove necessity by first slightly strengthening the
existence of the least progress measure result [13, Theorem
11], and then by applying the succinct tree coding lemma
(Lemma 1).

As discussed earlier in this section, the range of a progress
measure is the set of nodes in a tree of height d/2 and with
at most n leaves. By applying Lemma 1 to this tree we
may conclude that there is a tree coding in which branching
directions on every navigation path use at most dlg ne bits.
This way we come short [sic] of satisfying our definition of a
succinct progress measure: the definition allows us, on every
path, to use at most dlg ηe bits for branching directions, which
may be strictly smaller than dlg ne.

In order to overcome this hurdle, we first define the operation
of a trimming of a progress measure. Let µ be a progress
measure. We define the trimming µ↓ of µ as follows: for every
vertex v, we let µ↓(v) be the longest prefix of µ(v) whose
last component is not 0; in particular, if µ(v) is a sequence
of 0s of length d/2 then µ↓(v) is the empty sequence. For
convenience, we also define the inverse operation: if µ is a
trimmed progress measure then for every vertex v, we let
µ↑(v) be the sequence of length d/2 obtained by adding an
appropriate number (possibly none) of 0s at the end of µ(v).

Recall that by [13, Corollary 8] and by the proof of [13,
Theorem 11] the least progress measure µ∗ exists, where the
relevant order on mappings from vertices to sequences of non-
negative integers is pointwise lexicographic.

Lemma 3. The trimming µ↓∗ of the least progress measure µ∗
is a trimmed progress measure and the ordered tree that it
maps to has at most η leaves.

Proof. That µ↓∗ is a trimmed progress measure follows routinely
from µ∗ being a progress measure and from the definion of a
trimmed progress measure.

We argue that for every leaf in the ordered tree T that µ↓∗
maps into, there is a vertex v ∈ V with an odd priority, such

that µ↓∗(v) is that leaf, which implies the other claim of the
lemma.

Let λ = (rd−1, rd−3, . . . , rk) be a leaf in T . For the sake
of contradiction, assume that every vertex v ∈ V such that
µ↓∗(v) = λ has an even priority. Note that—by the definition
of a trimming—rk 6= 0, and hence—because µ∗ is the least
progress measure—k > π(v). We define the mapping µλ as
follows:
• if µ↓∗(v) 6= λ then µλ(v) = µ↓∗(v);
• if µ↓∗(v) = λ and k ≥ 3 then

µλ(v) = (rd−1, . . . , rk+2, rk − 1, n+ 1);

• if µ↓∗(v) = λ and k = 1 then

µλ(v) = (rd−1, . . . , r3, r1 − 1).

We argue that µλ is a trimmed progress measure, and hence
µ↑λ is a progress measure, which—because µ↑λ is strictly smaller
than µ∗—duly contradicts the assumption that µ∗ was the least
progress measure.

We only need to verify that every edge (v, u) ∈ E, such that
µ↓∗(v) = λ, and that is progressive in µ↓∗, is also progressive
in µλ. This is straightforward if µ↓∗(u) = λ. Otherwise, we
have µ↓∗(v)|π(v) > µ↓∗(u)|π(v), which implies that

(rd−1, . . . , rk+2, rk − 1) ≥ µ↓∗(u)|k. (2)

We now argue that µλ(v)|π(v) ≥ µλ(u)|π(v) by considering
the following two cases.
• If π(v) = k − 1 then

µλ(v)|π(v) = (rd−1, . . . , rk+2, rk − 1) ≥ µλ(u)|π(v),

where the inequality follows from (2).
• If π(v) < k − 1 then

µλ(v)|π(v) = (rd−1, . . . , rk+2, rk − 1, n+ 1) >

µ↓∗(u)|π(v) = µλ(u)|π(v),

where the inequality follows from (2) and because no
component in the least progress measure µ∗ exceeds n.

Necessity now follows from applying the succinct coding
lemma (Lemma 1) to the tree with at most η leaves, which is
obtained by Lemma 3.

Lemma 4 (Necessity). If there is a strategy for Even that is
winning for her from every starting vertex, then there is a
succinct progress measure.

IV. LIFTING ALGORITHM

Without loss of generality, we assume that η ≤ n/2.
Otherwise, we have that the number of vertices with an even
priority is less than n/2, and we can apply the algorithm below
to the dual game obtained by reducing the priority of each
vertex by 1 and exchanging the roles of the two players; the
winning set and a winning strategy for player Even in the dual
game computed by the algorithm are the winning set and a



winning strategy for player Odd in the original one. Note that
the algorithm can be applied without any asymptotic penalty
(and only cosmetic changes) to games in which vertices of
priority 0 are allowed, and hence the analysis of the algorithm
applies to both the original game and its dual.

A. Algorithm design and correctness

Consider the following linearly ordered set of bounded
adaptive multi-counters:

Sη,d =

d/2⋃
i=0

Bdlg ηe,i ,

and let S>η,d denote the same set with an extra top element >.
We extend the notion of succinct progress measures to mappings
µ : V → S>η,d by:

• defining the truncations of > as >|p = > for all p;
• regarding edges (v, u) ∈ E such that µ(v) = µ(u) = >

and π(v) is odd as progressive in µ.

For any mapping µ : V → S>η,d and edge (v, w) ∈ E, let
lift(µ, v, w) be the least σ ∈ S>η,d such that σ ≥ µ(v) and
(v, w) is progressive in µ[v 7→ σ]. For any vertex v, we define
an operator Liftv on mappings V → S>η,d as follows:

Liftv(µ)(u) =

=


µ(u) if u 6= v,

min(v,w)∈E lift(µ, v, w) if Even owns u = v,

max(v,w)∈E lift(µ, v, w) if Odd owns u = v.

Theorem 5 (Correctness of lifting algorithm).
1) The set of all mappings V → S>η,d ordered pointwise is

a complete lattice.
2) Each operator Liftv is inflationary and monotone.
3) From every µ : V → S>η,d, every sequence of appli-

cations of operators Liftv eventually reaches the least
simultaneous fixed point of all Liftv that is greater than
or equal to µ.

4) A mapping µ : V → S>η,d is a simultaneous fixed point of
all operators Liftv if and only if it is a succinct progress
measure.

5) If µ∗ is the least succinct progress measure, then {v :
µ∗(v) 6= >} is the set of winning positions for Even, and
any choice of edges progressive in µ∗, at least one going
out of each vertex she owns, is her winning positional
strategy.

Proof. 1) The partial order of all mappings V → S>η,d is
the pointwise product of n copies of the finite linear
order S>η,d.

2) We have inflation, i.e. Liftv(µ)(u) ≥ µ(u), by the
definitions of Liftv(µ)(u) and lift(µ, v, w).
For monotonicity, supposing µ ≤ µ′, it suffices to show
that, for every edge (v, w), we have lift(µ, v, w) ≤
lift(µ′, v, w). Writing σ′ for lift(µ′, v, w), we know that

1) Initialise µ : V → S>
η,d so that it maps every vertex v ∈ V to the

bottom element in S>
η,d, which is the empty sequence.

2) While Liftv(µ) 6= µ for some v, update µ to become Liftv(µ).
3) Return the set WEven = {v : µ(v) 6= >} of winning positions

for Even, and her positional winning strategy that for every vertex
v ∈ WEven owned by Even picks an edge outgoing from v that is
progressive in µ.

TABLE I
THE LIFTING ALGORITHM

σ′ ≥ µ′(v) ≥ µ(v). Also (v, w) is progressive in
µ′[v 7→ σ′], giving us that

σ′|π(v) ≥ µ′[v 7→ σ′](w)|π(v) ≥ µ[v 7→ σ′](w)|π(v)

and the first inequality is strict when π(v) is odd unless
µ′[v 7→ σ′](w) = >; but if µ′[v 7→ σ′](w) = > and
µ[v 7→ σ′](w) 6= > then the second inequality is strict, so
in any case (v, w) is progressive in µ[v 7→ σ′]. Therefore
lift(µ, v, w) ≤ σ′.

3) This holds for any family of inflationary monotone
operators on a finite complete lattice. Consider any such
maximal sequence from µ. It is an upward chain from µ
to some µ∗ which is a simultaneous fixed point of all the
operators. For any µ′ ≥ µ which is also a simultaneous
fixed point, a simple induction confirms that µ∗ ≤ µ′.

4) Here we have a rewording of the definition of a succinct
progress measure, cf. Section III.

5) The set of winning positions for Even is contained in
{v : µ∗(v) 6= >} by Lemma 4 because µ∗ is the least
succinct progress measure.
Since µ∗ is a succinct progress measure, we have that,
for every progressive edge (v, w), if µ∗(v) 6= > then
µ∗(w) 6= >. It remains to apply Lemma 2 to the subgame
consisting of the vertices {v : µ∗(v) 6= >}, the chosen
edges from vertices owned by Even, and all edges from
vertices owned by Odd.

Note that the algorithm in Table I is a solution to both
variants of the algorithmic problem of solving parity games: it
finds the winning positions and produces a positional winning
strategy for Even.

B. Algorithm analysis

The following lemma offers various estimates for the size
of the set Sη,d of succinct adaptive multi-counters used in
the lifting algorithm in Table I, and which is the dominating
factor in the worst-case upper bounds on the running time of
the algorithm. A particular focus is the analysis pinpointing
the range of the numbers of distinct priorities d (measured as
functions of the number η of vertices with an odd priority) in
which the algorithm may cease to be polynomial-time. The
“phase transition” occurs when d is logarithmic in η: if d =
o(log η) then the size of Sη,d is O

(
η1+o(1)

)
, if d = Θ(log η)

then the size of Sη,d is bounded by a polynomial in η but its
degree depends on the constant hidden in the big-Θ, and if
d = ω(log η) then the size of Sη,d is superpolynomial in η.



Lemma 6 (Size of Sη,d).
1) |Sη,d| ≤ 2dlg ηe

(dlg ηe+d/2+1
d/2

)
.

2) If d = O(1) then |Sη,d| = O
(
η lgd/2 η

)
.

3) If d/2 = dδ lg ηe, for some positive constant δ, then

|Sη,d| = Θ
(
ηlg(δ+1)+lg(eδ)+1

/√
log η

)
,

where eδ = (1 + 1/δ)δ .
4) If d = o(log η) then |Sη,d| = O

(
η1+o(1)

)
.

5) If d = O(log η) then |Sη,d| is bounded by a polynomial
in η.

6) If d = ω(log η) then |Sη,d| is superpolynomial in η and

|Sη,d| = O
(
dηlg(d/lg η)+1.45

)
.

Proof. 1) There are 2dlg ηe bit sequences of length dlg ηe
and for every i, 0 ≤ i ≤ d/2, there are(

dlg ηe+ i

i

)
=

(
dlg ηe+ i

dlg ηe

)
distinct ways of distributing the number dlg ηe of bits
to i+ 1 components (the i components in the succinct
adaptive i-counter, and an extra one for the “unused”
bits). By the “parallel summation” binomial identity, we
obtain

d/2∑
i=0

(
dlg ηe+ i

i

)
=

(
dlg ηe+ d/2 + 1

d/2

)
.

In cases 3) and 6) below we analyse the simpler
expressions

(dlg ηe+d/2
d/2

)
and

(dlg ηe+d/2
dlg ηe

)
, respectively,

instead of the above
(dlg ηe+d/2+1

d/2

)
, in order to declutter

calculations. This is justified because in each context the
respective simpler expression is within a constant factor
of the latter one, and hence the asymptotic results are
not affected by the simplification.

2) This is easy to verify for d = 2 and d = 4. If d ≥ 6 > 2e
then for sufficiently large η we have:(
dlg ηe+ d/2 + 1

d/2

)
≤(

(dlg ηe+ d/2 + 1) · (2e/d)
)d/2 ≤ dlg ηed/2 .

The former inequality always holds by the inequal-
ity

(
k
`

)
≤
(
ek
`

)`
applied to the binomial coefficient(dlg ηe+d/2+1

d/2

)
. The latter inequality holds for sufficiently

large η because—by the assumption that d > 2e—we
have that 2e/d < 1, and hence the inequality holds for
all η large enough that d/2 + 1 ≤ (1− 2e/d)dlg ηe.

3) To avoid hassle, consider only the values of η and δ, such
that both lg η and δ lg η are integers. Let d = 2δ lg η and
apply [1, Lemma 4.7.1] (reproduced as Lemma 9 in the
Appendix) to the binomial coefficient(

lg η + d/2

d/2

)
=

(
lg η + δ lg η

δ lg η

)
=

(
(δ + 1) lg η

δ lg η

)
,

obtaining

|Sη,d| = Θ

(
η
(δ+1)H

(
δ
δ+1

)
+1

/√
log η

)
,

where H(p) = −p lg p − (1 − p) lg(1 − p) is the bina-
ry entropy function, defined for p ∈ [0, 1]. A skilful
combinator will be able to verify the identity

(δ + 1)H

(
δ

δ + 1

)
= lg(δ + 1) + lg(eδ) .

4) This is a corollary of part 3) by observing that
limδ↓0 eδ = 1 and hence:

lim
δ↓0

(lg(δ + 1) + lg(eδ) + 1) = 1 .

5) Again, this is a corollary of part 3) by observing that the
expression lg(δ + 1) + lg(eδ) + 1 is O(1) as a function
of η.

6) The first statement is a corollary of part 3) by observing
that limδ→∞ lg(δ + 1) = ∞ and limδ→∞ eδ = e, and
hence:

lim
δ→∞

(lg(δ + 1) + lg(eδ) + 1) =∞ .

In order to prove the latter statement, note that

lg

(
dlg ηe+ d/2

dlg ηe

)
≤

dlg ηe ·
[

lg
(
dlg ηe+ d/2

)
− lgdlg ηe+ lg e

]
=

dlg ηe ·
[

lg
(
(1 + o(1))d/2

)
− lgdlg ηe+ lg e

]
=

dlg ηe ·
[

lg d− lgdlg ηe+ lg(e/2) + o(1)
]
,

where the first inequality is obtained by taking the lg of
both sides of the inequality

(
k
`

)
≤
(
ek
`

)`
applied to the

binomial coefficient
(dlg ηe+d/2
dlg ηe

)
, and the second relation

follows from the assumption that d = ω(log η).
Then we have

|Sη,d| = O

(
2dlg ηe·

(
1+lg d−lg lg η+lg(e/2)+o(1)

))
=

O

(
2(1+lg η)·

(
lg d−lg lg η+lg e+o(1)

))
=

O
(
dηlg(d/lg η)+1.45

)
,

where the latter holds because

2lg d−lg lg η+O(1) = O(d/lg η) ,

and lg e+ o(1) < 1.4427 for sufficiently large η.

Theorem 7 (Complexity of lifting algorithm).
1) If d = O(1) then the algorithm runs in time

O
(
mη lgd/2+1 η

)
.

2) If d = o(log η) then the algorithm runs in time

O(mη1+o(1)) .



3) If d ≤ 2dδ lg ηe, for some positive constant δ, then the
algorithm runs in time

O
(
mηlg(δ+1)+lg(eδ)+1

√
log η log log η

)
.

In particular, if d ≤ dlg ηe, then the running time is

O
(
mη2.38

)
.

4) If d = ω(log η) then the algorithm runs in time

O
(
dmηlg(d/lg η)+1.45

)
.

The algorithm works in space O(n log n · log d).

Proof. The work space requirement is dominated by the
number of bits needed to store a single mapping µ : V → S>η,d,
which is at most ndlg ηedlg de.

We claim that the Liftv operators can be implemented to
work in time O(deg(v) · log η · log d). It then follows, since
the algorithm lifts each vertex at most |Sη,d| times, that its
running time is bounded by

O

(∑
v∈V

deg(v) · log η · log d · |Sη,d|

)
=

O (m log η · log d · |Sη,d|) .

From there, the various stated bounds are obtained by Lemma 6.
For the last statement in part 3), note that if δ = 1/2 then
d ≤ dlg ηe implies d/2 ≤ dδ lg ηe, and

lg(δ + 1) + lg(eδ) + 1 =
3

2
lg 3 < 2.3775 .

To establish the claim, it suffices to observe that every
bounded adaptive multi-counter lift(µ, v, w) ∈ S>η,d is com-
putable in time O(log η · log d). The computation is most
involved when π(v) is odd and µ(v)|π(v) ≤ µ(w)|π(v) 6= >,
which imply that lift(µ, v, w) is the least σ ∈ S>η,d such that
σ|π(v) > µ(w)|π(v). Writing (sd−1, sd−3, . . . , sk+2, sk) for
µ(w), there are five cases:
• If k > π(v) and the total length of si is less than dlg ηe,

then obtain σ as

(sd−1, . . . , sk+2, sk, 0 · · · 0) ,

where the padding by 0s is up to the total length dlg ηe
of σ.

• If k ≤ π(v) and the total length of si for i ≥ π(v) is less
than dlg ηe, then obtain σ as

(sd−1, . . . , sπ(v)+2, sπ(v)10 · · · 0) ,

where the padding by 0s (if any) is up to the total length
dlg ηe of σ.

• If the total length of si for i ≥ π(v) equals dlg ηe, j is
the least odd priority such that sj 6= ε (in this case,

necessarily, j ≥ π(v)), and sj is of the form s′0

`︷ ︸︸ ︷
1 · · · 1

(where possibly ` = 0), obtain σ as

(sd−1, . . . , sj+4, sj+2, s
′) .

• If the total length of si for i ≥ π(v) equals dlg ηe, j is
the least odd priority such that sj 6= ε (again, j ≥ π(v)),

sj is of the form

`︷ ︸︸ ︷
1 · · · 1, and j < d− 1, obtain σ assd−1, . . . , sj+4, sj+21

`−1︷ ︸︸ ︷
0 · · · 0

 .

• Otherwise, σ = >.

Corollary 8 ([4]). Solving parity games is in FPT.

Proof. The algorithm runs in time

max
{

2O(d log d), O
(
mη2.38

)}
.
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APPENDIX

A. Estimates for binomial coefficients

We outsource the challenge—and the tedium—of rigorously
applying Stirling’s approximation to estimating binomial co-
efficients

(
k
`

)
, where ` = Θ(k), to Ash [1]. The following is

Lemma 4.7.1 from page 113 in his book.

Lemma 9 (Estimating binomial coefficients). If 0 < p < 1
and pk is an integer, then

2kH(p)√
8p(1− p)k

≤
(
k

pk

)
≤ 2kH(p)√

2πp(1− p)k
,

where H(p) = −p lg p− (1−p) lg(1−p) is the binary entropy
function.
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