273 research outputs found

    The High Performance Linpack (HPL) Benchmark Evaluation on UTP High Performance Computing Cluster

    Get PDF
    UTP High Performance Computing Cluster (HPCC) is a collection of computing nodes using commercially available hardware interconnected within a network to communicate among the nodes. This campus wide cluster is used by researchers from internal UTP and external parties to compute intensive applications. However, the HPCC has never been benchmarked before. It is imperative to carry out a performance study to measure the true computing ability of this cluster. This project aims to test the performance of a campus wide computing cluster using a selected benchmarking tool, the High Performance Linkpack (HPL). HPL is selected as a result of comparative studies and analysis with other HPC performance benhmarking tool. The optimal configuration of parameters of the HPL benchmark will be determined and run in the cluster to obtain the best performance. Through this research project, it is the hope of the author that the outcome of this research project will help to determine the peak potential performance of the computing cluste

    Main memory in HPC: do we need more, or could we live with less?

    Get PDF
    An important aspect of High-Performance Computing (HPC) system design is the choice of main memory capacity. This choice becomes increasingly important now that 3D-stacked memories are entering the market. Compared with conventional Dual In-line Memory Modules (DIMMs), 3D memory chiplets provide better performance and energy efficiency but lower memory capacities. Therefore, the adoption of 3D-stacked memories in the HPC domain depends on whether we can find use cases that require much less memory than is available now. This study analyzes the memory capacity requirements of important HPC benchmarks and applications. We find that the High-Performance Conjugate Gradients (HPCG) benchmark could be an important success story for 3D-stacked memories in HPC, but High-Performance Linpack (HPL) is likely to be constrained by 3D memory capacity. The study also emphasizes that the analysis of memory footprints of production HPC applications is complex and that it requires an understanding of application scalability and target category, i.e., whether the users target capability or capacity computing. The results show that most of the HPC applications under study have per-core memory footprints in the range of hundreds of megabytes, but we also detect applications and use cases that require gigabytes per core. Overall, the study identifies the HPC applications and use cases with memory footprints that could be provided by 3D-stacked memory chiplets, making a first step toward adoption of this novel technology in the HPC domain.This work was supported by the Collaboration Agreement between Samsung Electronics Co., Ltd. and BSC, Spanish Government through Severo Ochoa programme (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). This work has also received funding from the European Union’s Horizon 2020 research and innovation programme under ExaNoDe project (grant agreement No 671578). Darko Zivanovic holds the Severo Ochoa grant (SVP-2014-068501) of the Ministry of Economy and Competitiveness of Spain. The authors thank Harald Servat from BSC and Vladimir Marjanovi´c from High Performance Computing Center Stuttgart for their technical support.Postprint (published version

    ScotGrid: A Prototype Tier 2 Centre

    Full text link
    ScotGrid is a prototype regional computing centre formed as a collaboration between the universities of Durham, Edinburgh and Glasgow as part of the UK's national particle physics grid, GridPP. We outline the resources available at the three core sites and our optimisation efforts for our user communities. We discuss the work which has been conducted in extending the centre to embrace new projects both from particle physics and new user communities and explain our methodology for doing this.Comment: 4 pages, 4 diagrams. Presented at Computing for High Energy and Nuclear Physics 2004 (CHEP '04). Interlaken, Switzerland, September 200

    Avaliação de clusters baseados em sistemas em um chip para a computação de alto desempenho: uma revisão

    Get PDF
    High-performance computing systems are the maximum expression in the field of processing for large amounts of data. However, their energy consumption is an aspect of great importance, which was not considered decades ago. Hence, software developers and hardware providers are obligated to approach new challenges to address energy consumption, and costs. Constructing a computational cluster with a large amount of systems on a chip can result in a powerful, ecologic platform, with the capacity to offer sufficient performance for different applications, as long as low costs and minimum energy consumption can be maintained. As a result, energy efficient hardware has an opportunity to impact upon the area of high-performance computing. This article presents a systematic review of the evaluations conducted on clusters of  ystems on a Chip for High-Performance computing in the research setting.Los sistemas de computación de alto desempeño son la máxima expresión en el campo de procesamiento para grandes cantidades de datos. Sin embargo, su consumo de energía es un aspecto de gran importancia que no era tenido en cuenta en décadas pasadas. Por lo tanto, desarrolladores de software y proveedores de hardware están obligados a enfocarse en nuevos retos para abordar el consumo de energía y costos. Construir un clúster informático con una gran cantidad de sistemas en un chip puede dar como resultado una plataforma poderosa, ecológica y capaz de ofrecer el rendimiento suficiente para diferentes aplicaciones, siempre y cuando se puedan mantener bajos costos y el menor consumo de energía posible. Como resultado, el hardware eficiente en el consumo de energía tiene la oportunidad de tener un impacto en el área de la computación de alto desempeño. En este artículo se presenta una revisión sistemática para conocer las evaluaciones realizadas a clústeres de sistemas en un chip para computación de alto desempeño en el ámbito investigativo. Os sistemas de computação de alto desempenho são a máxima expressão no campo de processamento para grandes quantidades de dados. No entanto, seu consumo de energia é um aspecto de grande importância que não era levado em consideração em décadas passadas. Portanto, desenvolvedores de software e provedores de hardware estão obrigados a focar-se em novos desafios para abordar o consumo de energia e  ustos. Construir um cluster informático com uma grande quantidade de sistemas em um chip pode dar como resultado uma plataforma poderosa, ecológica e capaz de oferecer o rendimento suficiente para diferentes aplicações, desde que possam ser mantidos baixos custos e o menor consumo de energia possível. Como resultado, o hardware eficiente no consumo de energia tem a oportunidade de ter um impacto na área da computação de alto desempenho. Neste artigo, apresenta-se uma revisão sistemática para conhecer as avaliações realizadas a clusters de sistemas em um chip para computação de alto desempenho no âmbito investigativo.&nbsp

    Detailed Power Measurement with Arm Embedded Boards

    Get PDF
    Power and energy are becoming important considerations in today\u27s electronic equipment. The amount of power required to run a supercomputer for an hour could supply an ordinary household for many months. The need for low-power computing also extends to smaller devices, such as mobile phones, laptops and embedded devices. In order to optimize power usage of electronic equipment, we need to collect information on the power consumption of these devices. Unfortunately it is not easy to do this on modern computing systems. Existing measuring equipment is often expensive, inaccurate, and difficult to operate. The main goal of this project is to create low-cost, accurate, stable, and easy-to-operate measurement equipment. We design a low-cost low-overhead power measurement device using a Teensy embedded board. We then test our device by measuring the power consumption of a Raspberry Pi embedded board under a variety of different workloads. We compare the results with existing measurement equipment and analyze the advantages and shortcomings of our design

    Benchmarking: More Aspects of High Performance Computing

    Full text link

    Application benchmark results for Big Red, an IBM e1350 BladeCenter Cluster

    Get PDF
    The purpose of this report is to present the results of benchmark tests with Big Red, an IBM e1350 BladeCenter Cluster. This report is particularly focused on providing details of system architecture and test run results in detail to allow for analysis in other reports and comparison with other systems, rather than presenting such analysis here
    corecore