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Power and energy are becoming important considerations in today's electronic

equipment. The amount of power required to run a supercomputer for an hour

could supply an ordinary household for many months. The need for low-power

computing also extends to smaller devices, such as mobile phones, laptops and

embedded devices.

In order to optimize power usage of electronic equipment, we need to collect

information on the power consumption of these devices. Unfortunately it is not easy

to do this on modern computing systems. Existing measuring equipment is often

expensive, inaccurate, and di�cult to operate. The main goal of this project is to

create low-cost, accurate, stable, and easy-to-operate measurement equipment.

We design a low-cost low-overhead power measurement device using a Teensy

embedded board. We then test our device by measuring the power consumption of a

Raspberry Pi embedded board under a variety of di�erent workloads. We compare

the results with existing measurement equipment and analyze the advantages and

shortcomings of our design.
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Chapter 1

INTRODUCTION AND MOTIVATION

In the design of modern electronic equipment, energy and power consumption

have become increasingly important. In order to design better products, engineers

need to understand the power behavior of previous products, which they can use to

roughly estimate the performance of new products and future energy costs. It is not

easy to measure power data. There are a variety of issues with existing measuring

equipment, including high initial cost, data inaccuracies, low sampling rate and high

operational di�culty.

The goal of this research is to design a low cost, stable, high resolution, high

sampling rate, and easy-to-use measurement device to collect power consumption

data. These data should be trustworthy and easy to analyze.

1.1 Motivation

Our research group wanted to obtain high-sample rate power measurements and

found this was much more di�cult than imagined. Our explorations of this area

show that much work can be done in this �eld. The research has wider impacts than

just gathering power measurements for our research group. In terms of commercial

design, power savings are always a good thing, from large-scale devices down to

small-scale embedded systems. A typical large-scale computing environment is a

supercomputer. In the Top 500 supercomputer list as of June 2017, the No. 1

Sunway TaihuLight has 10,649,600 cores and uses 15,371 kW of power [2]. Powering

this supercomputer for a day uses electricity roughly equivalent to a month of

electricity consumption for 700 Bangor, Maine, area people [1]. Even if we can only

shave 0.1 Watts of power o� of each processor core of this supercomputer, the total

power savings would be signi�cant.

1



Mobile phones are typical of modern embedded systems; power saving means

that the phone can run for longer. Who does not want their cell phone to last longer

after each charge? Saving power is not always easy. As System on Chip (SoC)

technology advances, saving energy from the hardware becomes more and more

di�cult. Many companies have given up on saving energy from the hardware and

try to �nd a way from software. Saving energy also reduces heat, fan noise, and

provides other bene�ts. In order to optimize software to consume less power, there

has to be some way to quantify the power usage. Our goal is to provide ways to

gather this information.

1.2 Background

Power and energy are two commonly used physical properties. They represent

di�erent things, but usually can be transformed into each other.

1.2.1 Power

In physics, power is the rate of doing work. It is the amount of energy consumed

per unit time. Electric power is the rate, per unit time, at which electrical energy is

transferred by an electric circuit. The International System of Units (SI unit) of

power is the Watt, one Joule per second. Power is very important in the circuit, not

enough power will stop the circuit, while too much power will overload the circuit.

The electric power in Watts produced by an electric current of I Amperes

consisting of a charge of Q Coulombs every t seconds passing through an electric

potential (voltage) di�erence of V Volts [7] can be found by:

P =
V ∗Q

t
= V ∗ I = I2 ∗R =

V 2

R

where Q is electric charge in Coulombs, t is time in seconds, I is electric current in

Amperes, and V is electric potential (or voltage) in Volts.

2



In the acquisition of electricity data, sometimes it is di�cult to know the exact

resistance of the system, so it is best to use the form of this formula without

resistance to calculate the power.

1.2.2 Energy

In physics, energy is the property that must be transferred to an object in order

to perform work on or to heat the object. Electrical energy is the energy newly

derived from electric potential energy or kinetic energy. The SI unit for energy is

the Joule, but the energy unit used for everyday electricity, particularly for utility

bills, is the kilowatt-hour (kWh); one kWh is equivalent to 3.6× 106J (3600 kJ or

3.6 MJ) [7].

Energy can be used to measure the total electricity consumption of a device.

The relationship between energy and power conversion is as follows:

E = P ∗ t

1.3 Measurement

In the actual measurement of devices, we mainly focus on power. Power is a key

metric with performance optimization because measuring energy requires the

additional measurement of time, which is more complex. Energy is also important,

but energy and power can be converted to each other. By optimizing for power,

energy can also be optimized.

In order to get more accurate reference data we try to keep the conditions in the

experiment simple. We could face various problems during measurements, including

power supply instability, unknown external device power consumption, and software

interference. It is almost impossible to completely avoid the interference of these

factors in the actual measurement, but we can gradually weaken the in�uence of

3



these factors by constantly tracking them. Increasing the sampling rate and

accuracy can help characterize the in�uence of these external factors.

4



Chapter 2

RELATED WORK

Power measurement is di�cult, but it is necessary for many types of analysis.

There is much previous work with regards to power measurement.

2.1 Estimated Power

Instead of measuring power, it is possible to estimate power usage by creating

models based on various parameters, such as performance counter data,

temperature, etc. [26, 9].

An extension of this is the Running Average Power Limit (RAPL) measurements

found in recent Intel processors [11, 24]. These are typically estimated power values

that are provided by a helper processor and can be read by the user. While useful,

we prefer to do actual power measurement. Also, RAPL readings are only available

on Intel systems, and not available on ARM based platforms.

2.2 Commercial Devices

You can buy devices that can measure power at the wall outlet, such as the

WattsUpPro? power meter [15]. These tend to be expensive (over $100) and only

have a resolution of 1Hz. Also you cannot get detailed power measurement, only

total system power.

Hackenberg et al. [19] validate RAPL power measurements in a server, but use

multi-thousand dollar calibrated voltmeters.

Desrochers et al. [12] measure detailed DRAM memory power consumption, but

use a commercial digital/analog data acquisition device which is much more

expensive that the device we propose.
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2.3 Low-Cost Power Measurement

Paradis [21] looked into using Teensy boards to measure performance of

server-class workloads. Our goal is to extend this but to also measure embedded

systems.

Others have tried taking extremely small embedded devices and creating small

data acquisition devices suitable for power measurement, such as the IViny based on

the ATtiny85 [5].

Scha� and Weaver [25] investigate the accuracy of an Adafruit USB Power

Gauge with an ATtiny85 and INA169 current sensor. They �nd that the A/D

converter on the ATtiny85 is not as accurate as using a dedicated volt meter to

measure the results from the current sensor.

Moreno et al. [20] use the sound card of a desktop system as a low-cost A/D

converter for obtaining low-cost power measurements.

Bedard et al. [8] propose PowerMon2, a device that measures power inside of a

server system.

Ge et al. [16] instrument an entire cluster for �ne-grained power measurement,

but this involved intrusive instrumentation of each machine.

Rashti et al. [23] design a PCIe card capable of measuring server power. We wish

to measure embedded systems power though.

2.4 Raspberry Pi Power Measurement

Other researchers have measured the power of Raspberry Pi systems.

Geerling [17] has done a similar experiment with the Dramble cluster. They

measure the Raspberry Pi power, and note that one must be sure to turn o� the

HDMI interface and LEDs to save power. Unfortunately full experimental details

are not given.
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Cloutier et al. [10] instrument a Raspberry Pi cluster and allow measurement at

a per-node level using SPI A/D converters. This is not a general purpose solution

though. They also provide power measurements of Raspberry Pis, but only for the

Linpack benchmark.

On the Raspberry Pi Forum, Eames designed a similar experiment [13].

However, the experimental process is not rigorous, and the experimenter did not

�nish the whole experiment completely. Eames also measured the Raspberry Pi 2's

power [14] relatively systematically. We carry out similar experiments. This was

done because there is no comprehensive o�cial results for how much power a

Raspberry Pi consumes.
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Chapter 3

EXPERIMENTAL SETUP

3.1 Hardware

This section will talk about the hardware component of our power measurement

setup. A diagram of our test setup is shown in Figure 3.1.

3.1.1 Teensy

The core part of our measurement device is a Teensy development board, shown

in Figure 3.2. The Teensy is used to collect data and to upload this data to the

computer for subsequent analysis. We use a Teensy model 3.1 in this work. This

model has a MK20DX256 32 bit ARM Cortex-M4 72 MHz processor, one 12-bit

resolution ADC with 18 MHz frequency and 10 easy to use analog pins [6]. The

Teensy can be operated from 3.6 to 6.0 volts. Also the Teensy has a 3.3V (100 mA

max) internal power supply. Unfortunately, the Teensy 3.1 is currently discontinued.

Figure 3.1: Our test setup.
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Figure 3.2: Teensy 3.1 USB development board.

The lowest model currently available is Teensy 3.2, priced at $19.80. The main

di�erence between the Teensy 3.1 and 3.2 is that the Teensy 3.2 adds a more

powerful 3.3 volt regulator, with the ability to directly power ESP8266 Wi�,

WIZ820io Ethernet and other power-hungry 3.3V add-on boards. These features

should not a�ect this experiment, so it should be possible to reproduce this

experiment with Teensy 3.2 without any problems.

3.1.2 INA122 Instrumentation Ampli�er

The Teensy is a low-end embedded board, so while it has an analog to digital

converter, it is not capable of measuring the small voltages required in our work. To

reduce the error, we use an instrumentation ampli�er. The INA122 instrumentation

ampli�er can provide gain proportional to a gain resistor RG as shown in Figure 3.3:

G = 5 +
200k

RG

The voltages we are measuring are roughly from 10mV to 50mV, and the Teensy

cannot measure voltages above 3.3V, so we increase the voltage range to fall

between 1V and 2V. We chose a RG of 7.5k, made by putting a 4.2k Ohm resistor

and a 3.3k Ohm resistor in series. Their actual resistance is 4.22k Ohms and 3.25k

Ohms, so by using the formula, we get an actual gain of 5 + 200k/7.47k = 31.77.
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Figure 3.3: INA122 Instrumentation Ampli�er block diagram

3.1.3 Voltmeter

To validate our measurements we need a reference. For this purpose we use a

model Tenma 72�7770 multimeter as shown in Figure 3.4. The detailed values for

the resistors in Section 3.1.2 are also measured by this multimeter.

3.1.4 Self-made power supply cable

For our experiments we will be measuring the power usage of a Raspberry Pi.

To measure the power, we will need to measure the current draw across a sense

resistor. The Pi does not have such a resistor built in, so we need to add a resistor.

We built a custom cable that lets us insert a 0.1 Ohm resistor in series with the 5V

power supply entering the Pi, as shown in Figure 3.5.
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Figure 3.4: Tenma 72�7770 Voltmeter

3.2 Source code and Software Tool

This section describes the various programs used for measurement, as well as the

core logic code for the Teensy. Some of the software failed for a variety of reasons,

as will be discussed.

3.2.1 Operating System and Virtual Machine Setup

A virtual machine solution was used because development and experiments

alternated between Windows and Linux. The primary system was Windows, so a

Linux virtual machine was run under Oracle VirtualBox. The version of VirtualBox

used was 5.1.28. In order to share the serial port with Windows, the extended

package and VBOXADDITIONS was also installed. Linux is running Ubuntu Mate

64-bit version, the kernel version is 3.19.0-49-generic.

3.2.2 Teensyduino Environment

Teensyduino is a development environment based on Arduino, so before installing

Teensy, we have to install Arduino �rst. In Windows, this is straightforward, just go
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Figure 3.5: Custom-built power supply cable

to the Arduino website, download the program and install it. Then download the

Teensyduino Windows Installer and install that. My main problem with the

Windows version of Teensyduino is that Windows can not identify Teensy from the

serial port. The Windows Serial Installer is available on Teensy's website, but

sometimes it does not work. Windows can download the program to the Teensy, but

the Teensy can not return the data. Three di�erent computers were tried, all of

them running on the Windows 7 operating system: one worked, the other two did

not. Online it was found that someone solved this problem successfully by

modifying the registry, but that did not work on either of these two computers.

On Linux, we also have to install Arduino �rst. When installing using apt-get,

the Teensyduino Linux Installer will not work, so we need to note that the

Teensyduino Linux Installer will only work for personal installation. Also under

Linux we have to install udev rules.

The Teensyduino version used is 1.24, the newest version at the time of writing

is 1.4 The more detailed di�erences between these two versions is discussed in

Section 3.2.4.
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3.2.3 Linux Perf Tool

The Linux perf tool [18] is used for performance measurement. It enables

applications to take advantage of the hardware performance measurement unit

(PMU), tracepoint, and special counters in the kernel to gather performance data.

Not only does it analyze the per-thread performance of a given application, it can

also be used to analyze performance issues with the kernel. This can be used to �nd

performance bottlenecks.

Typing sudo apt-get install linux-perf-4.4 in a Linux terminal will

automatically install the perf tool. To use perf, one runs perf stat [program].

This will record statistics and provide an overview and performance summary of the

program being debugged in a concise and condensed manner.

3.2.4 Main Program

This section discusses the code for the Teensy that implements our interface.

3.2.4.1 Initialization

The �rst part of our code does the initialization, as shown in Figure 3.6. This

sets the Teensy's ADC resolution, average value and sampling speed, conversion

speed and reference voltage. It also sets the serial transmission speed and LED

indicator. The resolution of a Teensy ADC can reach up to 16-bit, but this will

cause greater memory pressure, so here the resolution is set to 12-bit. The

conversion speed is set to high speed, which is the highest speed within specs for

resolutions less than 16 bits. For the sampling speed, the higher impedance should

reduce the sampling speed; in this experiment, the impedance is small, so we set the

sampling speed to high speed. We also set the reference voltage to 3.3 volts,

combined with 12-bit resolution, meaning that the read data is converted to the

actual voltage using the formula (3.3/4096)× data. Also note the commented out
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Figure 3.6: Main program initialization

Figure 3.7: User interface

section, which is the di�erence between the code in this experiment at the

Teensyduino 1.24 and 1.4 versions.

3.2.4.2 User Interface

Our code provides a helpful interface, making it easier for users to use the

program. An example of the interface is shown in Figure 3.7.

Figure 3.8: User interface help
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Figure 3.9: Check settings interface

Figure 3.10: Main Logic

If the user does not know how to use this program they can enter `h' to display

the help interface, shown in Figure 3.8.

The default behavior is to open ADC channel 1, the sampling frequency is 1 Hz,

and the sampling time is 1 second. Users can change these values at any time, but

they also can type `d' to check what the existing values are. It should be noted that

after each restart the settings on the Teensy will be restored to the default values.

The �check� interface is shown in Figure 3.9.

3.2.4.3 Main Logic

This section describes the most important part of the program, the main logic,

as shown in Figure 3.10.
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Figure 3.11: Data Transfer

This code will sequentially scan each open port, take one data element from each

port, and repeat until each port has taken over 1000 elements. It will then return

the data to the computer through the serial port. The data transfer code is shown

in Figure 3.11.

The bene�t of this code is that it can loop inde�nitely, no matter how long it

takes to sample and how much data it needs. The disadvantage is when the data is

returned through the serial port, data will temporarily suspend the sampling of the
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Figure 3.12: Compiling the sleep benchmark

Figure 3.13: Using the sleep benchmark

ADC. A three-minute benchmark will take about three minutes and 10 seconds, so

that sampling timeliness was a�ected.

Obtaining the data in one transaction was tried, but the Teensy 3.1's �each�

array can only hold roughly 3,200 data elements, and the Teensy will stop working

if it exceeds that number. A �multi-dimensional� array can bring that number to

around 14,400, but that �gure was still far behind being able to support taking a

three-minute benchmark at a 1kHz sample rate. We made the trade-o� of taking

1000 elements at time, while incurring some data loss. This allows the program to

run stably over a long time period.

During the sampling process, an LED indicator is lit so the user can tell whether

sampling is still underway.

3.3 Benchmarks

Various benchmarks were used to test the power measurement capabilities of the

device. Namely Sleep, Bzip2, Iozone and Linpack.

3.3.1 Sleep

This benchmark was created for this work, using the C language sleep()

function which tells the operating system to sleep (and potentially go into a

low-power energy saving mode). This was used to test the Raspberry Pi while in

low-power idle mode.
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Figure 3.14: Using the Bzip2 benchmark

Figure 3.15: Iozone installation.

Figure 3.12 shows how to compile the sleep benchmark. Figure 3.13 shows how

to run the benchmark in the terminal while using the perf tool to monitor the

operation of the program.

3.3.2 Bzip2

Bzip2 is a lossless compression software by Julian Seward based on the

Burrows-Wheeler algorithm. It compresses better than the traditional LZ77 / LZ78

compression algorithms [3]. It is free software and is widely found in many

distributions of UNIX and Linux. It can compress normal data �les by 10% to 15%,

and compression rates and decompression e�ciencies are high.

Figure 3.14 shows how to use the perf tool to monitor the operation of this

program.

3.3.3 Iozone

Iozone [4] is a �le system benchmark tool. It can test the read and write

performance of the �le system in di�erent operating systems. It can test the

performance of hard disks in di�erent modes such as read, write, re-read, re-write,

Figure 3.16: Using the Iozone benchmark.
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Figure 3.17: HPL install attempt.

Figure 3.18: Linpack100 installation.

read backwards, read strided, fread, fwrite, random read, pread, mmap, aio_read,

aio_write.

Iozone was installed following the steps in Figure 3.15.

Figure 3.16 shows how we run iozone in our experiments. The maximum test

�lesize is 16M.

3.3.4 Linpack

Linpack [22] is internationally known as a popular benchmark for testing

�oating-point performance of high-Performance computer systems. It involves using

Figure 3.19: Using Linpack100.
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Gaussian elimination to solve the �rst-order N-ary linear algebraic equations,

exercising the �oating-point performance of the system being evaluated.

Linpack tests include three categories, Linpack100, Linpack1000 and High

Performance Linpack (HPL). HPL is used for supercomputer benchmarking and

ranking on the TOP500 list [2]. Although it is possible to run HPL on the

Raspberry Pi, I was personally unable to get it working. Details on the attempt are

shown in Figure 3.17 for reference. Instead the Linpack100 benchmark was used.

Linpack100 solves a dense linear algebraic equation of order 100, which allows

optimization with the compiler optimizations only, with no changes to the code.

The installation method is shown in Figure 3.18.

Figure 3.19 shows how to use the perf tool to monitor the operation of this

program, including inputting the algebraic equation and order number.
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Chapter 4

RESULTS AND DISCUSSION

This chapter contains the experimental results and analysis of the di�erences

between the expected values and the experimental results. Static (system idle) and

dynamic (system active) benchmarks are compared as well as results between a

Raspberry Pi 2 and Raspberry Pi B.

4.1 Results

In this section the experimental results are shown in two categories: static and

dynamic.

Static refers to the Raspberry Pi in idle mode. With the system idle, external

devices such as keyboards, monitors, and network cables were gradually added, with

the increase in power consumption noted. Since the system is idle, the voltage

measured is relatively stable. We con�rmed the data accuracy of the static data by

comparing against voltmeter readings. It should be noted that the voltage of static

data is only relatively stable, it still �uctuates, especially after connecting a network

cable.

Dynamic data refers to the operation while running benchmarks. Under this

kind of load the voltage has large �uctuations, making it harder to validate against

the voltage meter readings. We tried to use the perf tool for data reference, but

unfortunately the Raspberry Pi does not have a built-in power meter that can be

read using this interface.
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Figure 4.1: Raspberry Pi B Idle. The Y axis ranges from 1.625W to 1.775W

4.1.1 Raspberry Pi Power Measurement

Figure 4.1 shows the initial static data for the Raspberry Pi B. The ampli�ed

measurement is 1.121mV, with a maximum of 35.3mV across the sense resistor

(equal to a power of 1.765W).

4.1.2 External Devices

In this section, we show the data obtained after the Raspberry Pi is connected to

external devices. The purpose of this is to test whether the Teensy can measure the

increased power consumption of these external devices. The data are: keyboard +

Raspberry Pi, keyboard + display + Raspberry Pi, and Ethernet + Raspberry Pi.

The above data sampling is performed on Raspberry Pi 2 and Raspberry Pi

respectively, and a total of six groups of data are obtained, which are shown in

Figure 4.2 and Figure 4.3.

First of all, in Figure 4.2, one can clearly see that the voltage increases with the

addition of external devices. There is one problem to be aware of, that some of the

readings were signi�cantly higher during the second half of the test. I suspect that
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Figure 4.2: Raspberry Pi 2 External Devices

the Raspberry Pi 2 exchanged data over Ethernet in this short period of time,

resulting in a brief rise in energy consumption. We found that the power

consumption of Ethernet was signi�cantly higher than that of the keyboard +

display.

Figure 4.3 shows the Raspberry Pi B data. We cannot explain why for the

second half of the keyboard + monitor measurements the results were lower than at

other times.

Comparison of results between the Teensy and voltmeter are shown in Table 4.1.

The error in Table 4.1 is relatively small, which should indicate that the Teensy will

be relatively accurate when it comes to measuring higher voltage data.
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Figure 4.3: Raspberry Pi B External Devices.

Table 4.1: Pi measurement error.

4.2 Benchmark Results

4.2.1 Sleep

The sleep benchmark runs the C sleep() function for 170 seconds. This

benchmark puts the Pi into idle mode, although some daemons and other system

activity may still be running in the background and this can cause �uctuations.

Figure 4.4 shows the power results, and Figure 4.6 shows the perf results.
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One thing to note in Figure 4.6, we can see that this benchmark ran for 170

seconds. In Figure 4.4 the area with relatively large noise lasted for less than 140

seconds at a sampling frequency of 1000 Hz. The Sleep equation ran for less than

140 seconds and Perf showed that the program ran for 170 seconds and it is unclear

why. �nd the possible explanation.

The Teensy data and perf tool data for Raspberry Pi B are shown in Figures 4.5

and 4.7. We can see a similar result to the Pi2 results. The di�erence is that there

are more outliers in the sleep area. This may indicate that the Raspberry Pi was

running other programs simultaneously while executing the sleep() function.

4.2.2 Bzip2 Results

Bzip2 is a compression benchmark included as part of the SPEC CPU2006

Benchmark suite [27]. SPEC's version of Bzip2 performs no �le I/O other than

reading the input. All compression and decompression happens entirely in memory.

This is to help isolate the work done to only the CPU and memory subsystem. The

results of the Raspberry Pi 2 Teensy data and Perf tools are shown in Figures 4.8

and 4.10.

In Figure 4.8 we can see an area of signi�cantly higher reading than the rest. In

the Perf tool, it shows that the Bzip2 benchmark ran for 45.7 seconds. and we see

the region did continue for roughly the same amount of time, indicating that Teensy

did observe the Bzip2 benchmark. However, in this region, the readings are very

messy and dense, and we can not determine the accuracy of these readings.

Figure 4.9 shows the Teensy results on Raspberry Pi B. Not only do these

�gures clearly show the approximate time of the Bzip2 benchmark, but there are

also signi�cant �uctuations in the curve. The perf results in Figure 4.11 are

incomplete because the ARM1176 chip in the PiB is not capable of splitting out

user and kernel mode events separately.
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Figure 4.4: Sleep benchmark on Pi 2

Figure 4.5: Sleep benchmark on Pi B
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Figure 4.6: Sleep perf results on Pi 2

Figure 4.7: Sleep perf results on Pi B
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By comparing the Pi2 and PiB results, we can conclude that Teensy can indeed

observe dynamic data. However, because of noise, we can not tell if the Teensy's

reading is correct when the data changes rapidly.

4.2.3 Iozone Results

Iozone is a benchmark for stress testing �le I/O. Figures 4.12 and 4.13 show

Teensy data for Raspberry Pi 2 and Raspberry Pi B. Figures 4.14 and 4.15 are the

results of the Perf tool.

This data shows disk I/O (SD card in the case of the Raspberry Pi) and should

not be stressing the CPU or memory much.

4.2.4 Linpack100 Results

Linpack is a benchmark for testing �oating-point performance of

high-performance computer systems. Figures 4.16 and 4.17 show the results on Pi2

and PiB. The perf results are shown in Figures 4.18 and 4.19.

The use of �oating point makes the power usage rise rapidly. The smaller

�uctuations as the program progresses are hard to make out.

4.3 Power and Energy

In this section we will show the energy and power used by Raspberry Pi 2 and

Raspberry Pi B for the benchmarks. It should be noted that for static data, the

value is relatively stable, so the results will be more accurate. However, dynamic

data has more variation and it can be harder to �nd the benchmark start and stop

points.

Table 4.2 shows the data from idle mode. The result we should see is Raspberry

Pi B power and energy consumption is much higher than Raspberry Pi 2. This is

likely due to the more advanced power regulation circuitry introduced starting with

the Pi B+ model. For comparison, Eames [14] reports Pi 2 current in Idle mode is
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Table 4.2: Idle Energy

Table 4.3: Energy used by external devices

Table 4.4: Sleep Energy

Table 4.5: Bzip2 Energy

Table 4.6: Iozone Energy

Table 4.7: Linpack100 Energy

0.230A while that of Pi B current is 0.360A. Our data is 0.2096A and 0.3373A,

respectively which is very close to the �gures given.

Next is the data for the external devices, shown in Table 4.3. With the

Raspberry Pi 2, the keyboard power is 0.018W, HDMI interface power is 0.081W,

and Ethernet power is 0.1985W. On Raspberry Pi B, the power of the keyboard is

0.081W, the power of the HDMI interface is 0.1285W, and the power of the

Ethernet is 0.3515W. It can be seen that Raspberry Pi 2 has a signi�cantly lower

power consumption in all aspects than Raspberry Pi B.
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Tables 4.4, 4.5, 4.6 and 4.7 show the power and energy consumption data for the

four benchmarks Sleep, Bzip2, Iozone, and Linpack.

Because it is not possible to determine the end time of the Sleep benchmark, the

average power and total energy consumption can only be calculated using a total

length of 180 seconds, and it is possible to consume less energy during Sleep

benchmarks than in Idle mode.

Among the four benchmarks above, Iozone has the highest energy consumption

and Linpack has the lowest energy consumption. This is primarily due to

Linpack100 having a short runtime.
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Figure 4.8: Bzip2 benchmark results on Pi 2

Figure 4.9: Bzip2 benchmark on Pi B
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Figure 4.10: Bzip2 perf results on Pi 2

Figure 4.11: Bzip2 perf results on Pi B
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Figure 4.12: Iozone results Pi 2

Figure 4.13: Iozone results on Pi B
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Figure 4.14: Iozone perf results on Pi 2

Figure 4.15: Iozone perf results on Pi B
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Figure 4.16: Linpack100 results on Pi 2

Figure 4.17: Linpack100 results on Pi B
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Figure 4.18: Linpack100 perf results on Pi 2

Figure 4.19: Linpack100 perf results on Pi B
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This experiment had various goals, most of which were achieved.

The �rst and primary goal was designing a low-cost power measurement board.

The equipment for the entire experiment, including Teensy, ampli�ers and resistors,

cost no more than $30. The two most expensive parts were a Teensy 3.1 and

INA122 ampli�er that cost $19.80 and $6.32, respectively.

The second goal was stability and long-term stability of the measurement board.

We achieved this, with the device still working properly after reading Raspberry Pi

data in idle mode for up to 1 day at a sampling frequency of 1kHz.

The third goal was high sampling resolution. The 12-bit resolution of the ADC

was su�cient for most situations, but it does limit measurement accuracy especially

at low voltages. There also appears to be noise in in the output, and it is unclear

whether this is due to actual changes in power or if it is inherent in our

measurement setup. Although the noise can be eliminated by post-processing, this

may a�ect the accuracy of our measurements.

An additional goal was the ability to upload the data e�ciently to another

machine. The Teensy is severely memory constrained, thus it must regularly upload

data to another computer. The transfer of data over the serial port is slow relative

to the sampling speed. This means that every time we upload data to a computer,

we lose a portion of the data. Even though there is not a lot of data in this section,

it is a blow to the timeliness, completeness, and overall accuracy of the data.

Another goal was high sampling speeds. We manage 1kHz, which is many orders

of magnitude faster than the 1Hz provided by some devices. However, the speed of
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modern computer CPUs is in the GHz range, so when we test these computers we

potentially lose a lot of detail. E�orts were made to raise the sampling frequency,

but the cost of increasing the sampling frequency was a dramatic drop in stability.

This is mostly a problem with our data-capture program, but there may be

limitations inherent in the Teensy architecture as well.

A �nal goal was ease of use. After downloading the program to the Teensy, the

user only needs to install the serial port driver and a serial port testing program to

use it easily. Drivers can be downloaded from the o�cial website of Teensy and the

serial port testing program can be easily found on Google. The user interface text is

human readable. The more di�cult-to-understand parts have clarifying notes and

examples available so that users can easily use it on the �rst try.

5.2 Future Work

There are several future items potentially worth doing.

The Teensy 3.1 used in this experiment has been discontinued, and the new

Teensy models provide performance improvements. It would be good to try out

these new models of Teensy.

There is a lack of trustworthy comparative data available for this experiment.

We would like to test a number of additional competing devices that can provide

similar power measurements, and analyze the di�erences in results gathered from

these devices.
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