6 research outputs found

    Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Get PDF
    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions

    The Mechanisms And Roles Of Feedback Loops For Visual Processing

    Get PDF
    Signal flow in the brain is not unidirectional; feedback represents a key element in neural signal processing. To address the question on how do neural feedback loops work in terms of synapses, microcircuitry, and systems dynamics, we developed a chick midbrain slice preparation to study and characterize one important feedback loop within the avian visual system: isthmotectal feedbackloop. The isthmotectal feedback loop consists of the optic tectum: OT) and three nucleus isthmi: Imc, Ipc and SLu. The tectal layer 10 neurons project to ipsilateral Imc, Ipc and SLu in a topographic way. In turn Ipc and SLu send back topographical: local) cholinergic terminals to the OT, whereas Imc sends non-topographical: global) GABAergic projections to the OT, and also to the Ipc and the SLu. We first study the cellular properties of Ipc neurons and found that almost all Ipc cells exhibited spontaneous activity characterized with a barrage of EPSPs and occasional spikes. Further experiments reveal the involvement of GABA in mediating the spontaneous synaptic inputs to the Ipc neurons. Next we investigate the mechanisms of oscillatory bursting in Ipc, which is observed in vivo, by building a model network based on the in vitro experimental results. Our simulation results conclude that strong feedforward excitation and spike-rate adaptation can generate oscillatory bursting in Ipc neuron in response to a constant input. Then we consider the effect of distributed synaptic delays measured within the isthmotectal feedback loop and elucidate that distributed delays can stabilize the system and lead to an increased range of parameters for which the system converges to a stable fixed point. Next we explore the functional features of GABAergic projection from Imc to Ipc and find that Imc has a regulatory role on actions of Ipc neurons in that stimulating Imc can evoke action potentials in Ipc neurons while it also can suppress the firing in Ipc neurons which is generated by somatic current injection. The mechanism of regulatory action is further studied by a two-compartment neuron model. Last, we lay out several open questions in this area which may worth further investigation

    Complex dynamics is abolished in delayed recurrent systems with distributed feedback times, Complexity 8

    No full text
    Feedback systems with a single delay time—as described by delay-differential equations—are known to exhibit various dynamical behaviors including complex oscillations and chaos. Here we show that the consideration of a broad distribution of delay times instead of a single delay results in a shift of the dynamical bifurcations toward higher parameter values, yielding a larger set of parameters with fixed point behavior or simple oscillatory behavior. We demonstrate similar phenomena in three different systems: neuronal feedback in the hippocampus, white blood cell production, i.e., the Mackey-Glass equation, and population dynamics in theoretical ecology. Our results suggest that the observed simplification of the dynamics is independent of the shape of the delay distribution and the precise nature of the feedback. The existence of distributed delay times may yield a mechanism to avoid irregular fluctuations in biological feedback systems. © 2003 Wiley Periodicals, Inc. Key Words: delay-differential equations; distributed delays; Mackey-Glass equation; hippocampus; population dynamic

    Acquisition and Mining of the Whole Mouse Brain Microstructure

    Get PDF
    Charting out the complete brain microstructure of a mammalian species is a grand challenge. Recent advances in serial sectioning microscopy such as the Knife- Edge Scanning Microscopy (KESM), a high-throughput and high-resolution physical sectioning technique, have the potential to finally address this challenge. Nevertheless, there still are several obstacles remaining to be overcome. First, many of these serial sectioning microscopy methods are still experimental and are not fully automated. Second, even when the full raw data have been obtained, morphological reconstruction, visualization/editing, statistics gathering, connectivity inference, and network analysis remain tough problems due to the unprecedented amounts of data. I designed a general data acquisition and analysis framework to overcome these challenges with a focus on data from the C57BL/6 mouse brain. Since there has been no such complete microstructure data from any mammalian species, the sheer amount of data can overwhelm researchers. To address the problems, I constructed a general software framework for automated data acquisition and computational analysis of the KESM data, and conducted two scientific case studies to discuss how the mouse brain microstructure from the KESM can be utilized. I expect the data, tools, and studies resulting from this dissertation research to greatly contribute to computational neuroanatomy and computational neuroscience
    corecore