274,272 research outputs found

    k-core decomposition: a tool for the visualization of large scale networks

    Full text link
    We use the k-core decomposition to visualize large scale complex networks in two dimensions. This decomposition, based on a recursive pruning of the least connected vertices, allows to disentangle the hierarchical structure of networks by progressively focusing on their central cores. By using this strategy we develop a general visualization algorithm that can be used to compare the structural properties of various networks and highlight their hierarchical structure. The low computational complexity of the algorithm, O(n+e), where 'n' is the size of the network, and 'e' is the number of edges, makes it suitable for the visualization of very large sparse networks. We apply the proposed visualization tool to several real and synthetic graphs, showing its utility in finding specific structural fingerprints of computer generated and real world networks

    On the Optimization of Visualizations of Complex Phenomena

    Get PDF
    The problem of perceptually optimizing complex visualizations is a difficult one, involving perceptual as well as aesthetic issues. In our experience, controlled experiments are quite limited in their ability to uncover interrelationships among visualization parameters, and thus may not be the most useful way to develop rules-of-thumb or theory to guide the production of high-quality visualizations. In this paper, we propose a new experimental approach to optimizing visualization quality that integrates some of the strong points of controlled experiments with methods more suited to investigating complex highly-coupled phenomena. We use human-in-the-loop experiments to search through visualization parameter space, generating large databases of rated visualization solutions. This is followed by data mining to extract results such as exemplar visualizations, guidelines for producing visualizations, and hypotheses about strategies leading to strong visualizations. The approach can easily address both perceptual and aesthetic concerns, and can handle complex parameter interactions. We suggest a genetic algorithm as a valuable way of guiding the human-in-the-loop search through visualization parameter space. We describe our methods for using clustering, histogramming, principal component analysis, and neural networks for data mining. The experimental approach is illustrated with a study of the problem of optimal texturing for viewing layered surfaces so that both surfaces are maximally observable

    DyNetVis: a system for visualization of dynamic networks

    Get PDF
    The concept of networks has been important in the study of complex systems. In networks, links connect pairs of nodes forming complex structures. Studies have shown that networks not only contain structure but may also evolve in time. The addition of the temporal dimension adds complexity on the analysis and requests the development of innovative methods for the visualization of real-life networks. In this paper we introduce the Dynamic Network Visualization System (DyNetVis), a software tool for visualization of dynamic networks. The system provides several tools for user interaction and offers two coordinated visual layouts, named structural and temporal. Structural refers to standard network drawing techniques, in which a single snapshot of nodes and links are placed in a plane, whereas the temporal layout allows for simultaneously visualization of several temporal snapshots of the dynamic network. In addition, we also investigate two approaches for temporal layout visualization: (i) Recurrent Neighbors, a node ordering strategy that highlights frequent connections in time, and (ii) Temporal Activity Map (TAM), a layout technique with focus on nodes activity. We illustrate the applicability of the layouts and interaction functionalities provided by the system in two visual analysis case studies, demonstrating their advantages to improve the overall user experience on visualization and exploratory data analysis on dynamic networks

    Visualizing Sensor Network Coverage with Location Uncertainty

    Full text link
    We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks
    corecore