102 research outputs found

    Injector Design Tool Improvements: User's manual for FDNS V.4.5

    Get PDF
    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort

    Simulation of fluid suspended particle behaviour subject to transverse standing acoustic fields

    Get PDF
    The computational study addressed the effectiveness with which a standing wave acoustic field could be used to deflect quartz particles carried in water at 20°C through a simple parallelepiped control volume representative of a vertically orientated duct geometry dimensioned 50 × 50 × 70 cm 3 , with square base. An acoustically driven planar standing wave field produces quasi-static oscillatory pressure gradients within resonant cavities, which are responsible for acoustic forces, which act on particles, located within the acoustic field. These forces drive particles to nodal (no fluctuation) or anti-nodal (continuous fluctuation) planes of pressure. Standing wave fields are generally produced by a transducer driving into a fluid through an adhesively bonded matching layer. The wave is reflected at the opposite boundary layer terminating in an air backing. The chamber is dimensioned so as to produce constructive wave interference between the two waves travelling in opposite directions. The acoustic force has been used in small scale filtration systems to deflect particles and on larger scales as a pre filtration agglomerator clumping very small particles which are otherwise poorly filtered in isolation by conventional methods. The study was twofold, in that a major component of the study comprised developing the architecture of the computational model, the other part comprising qualitative model validation through parameter variation. The study involved coupling between Computational Fluid Dynamics (CFD) Software (OpenFOAM) and Discrete Element Modelling (DEM) Software (LIGGGHTS), through a coupling code (CFDEM) built as an extension to OpenFOAM and tailored for LIGGGHTS. The acoustic field was assumed ideal i.e. in a lossless medium with perfect reflection at the opposite wall. Particle-particle and particle-wall collisions were circumvented by using larger time increments, inadequate to resolve col- lisions, and inserting particles in the bulk of the flow away from any wall boundary. Twenty particles with uniform radial size distribution in the range 5-30 micron were seeded in the flow field about 10 cm from the bottom inlet, and carried in the z direction at various flow speeds, 0.1 ms − 1 , 0.5 ms − 1 and 1 ms − 1 , whilst being subject to acoustic forces in the x direction, to investigate deflection response and transducer lengths required to achieve adequate lateral deflection. The model accounted for drag, buoyancy, gravity and primary acoustic forces. Flow velocities distinguished by those maxi mum velocities recorded at duct centrelines were obtained by adjusting pressure gradients across the domain. The fluid continuum was modelled through Reynolds Averaged Navier Stokes (RANS) equa- tions, supplemented by an eddy viscosity k − two equation turbulence model. The flow profile was validated against the analytic Darcy-Weisbach pressure to mean velocity relation. Two acoustic driv- ing frequencies, 14794 Hz and 26629 Hz , were investigated for each flow rate to determine the effect frequency had on acoustic force magnitude, nodal distribution and particle residence time. Acoustic deflection efficiency was measured as that time or particle vertical travel length required, coinciding with a lateral deflection to within 1.5 mm of an adjacent nodal plane. From a computational point of interest acoustic force dependencies and trends were qualitatively evaluated for consistency with theoretic equations and published literatur

    Numerical, analytical, experimental study of fluid dynamic forces in seals

    Get PDF
    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress

    Wind prediction modelling and validation using coherent Doppler LIDAR data

    Get PDF
    A physically-based wind model is applied to determine wind speed and direction and to conduct a model sensitivity analysis. The model is later coupled with a microclimatic model utilizing a novel technique to support short term forecasting at Lake Turkana Wind Fam site, Kenya. Improved statistical comparisons of wind speed and direction are achieved between the model and in situ observations. Coherent Doppler LIDAR observations agreed well with the microclimatic model

    Machine layout and performance

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    DEVELOPMENT OF A COMPUTATIONAL MODEL FOR A SIMULTANEOUS SIMULATION OF INTERNAL FLOW AND SPRAY BREAK-UP OF THE DIESEL INJECTION PROCESS

    Full text link
    El proceso de atomización desde una vena o lámina líquida hasta multitud de gotas dispersas en un medio gaseoso ha sido un fenómeno de interés desde hace varias décadas, especialmente en el campo de los motores de combustión interna alternativos. Multitud de estudios experimentales han sido publicados al respecto, pues una buena mezcla de aire-combustible asegura una evaporación y combustión mucho más eficientes, aumentando la potencia del motor y reduciendo la cantidad de contaminantes emitidos. Con el auge de las técnicas computacionales, muchos modelos han sido desarrollados para estudiar este proceso de atomización y mezcla. Uno de los últimos modelos que han aparecido es el llamado ELSA (Eulerian-Lagrangian Spray Atomization), que utiliza un modelo Euleriano para la parte densa del chorro y cambia a un modelo Lagrangiano cuando la concentración de líquido es suficientemente pequeña, aprovechando de esta manera las ventajas de ambos. En el presente trabajo se ha desarrollado un modelo puramente Euleriano para estudiar la influencia de la geometría interna de la tobera de inyección en el proceso de atomización y mezcla. Se ha estudiado únicamente el proceso de inyección diésel. Este modelo permite resolver en un único dominio el flujo interno y el externo, evitando así las comunes simplificaciones y limitaciones de la interpolación entre ambos dominios resueltos por separado. Los resultados actuales son prometedores, el modelo predice con un error aceptable la penetración del chorro, el flujo másico y de cantidad de movimiento, los perfiles de velocidad y concentración, así como otros parámetros característicos del chorro.Martí Gómez-Aldaraví, P. (2014). DEVELOPMENT OF A COMPUTATIONAL MODEL FOR A SIMULTANEOUS SIMULATION OF INTERNAL FLOW AND SPRAY BREAK-UP OF THE DIESEL INJECTION PROCESS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43719TESISPremios Extraordinarios de tesis doctorale

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.The development of EC-Earth3 was supported by the European Union's Horizon 2020 research and innovation program under project IS-ENES3, the third phase of the distributed e-infrastructure of the European Network for Earth System Modelling (ENES) (grant agreement no. 824084, PRIMAVERA grant no. 641727, and CRESCENDO grant no. 641816). Etienne Tourigny and Raffaele Bernardello have received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement nos. 748750 (SPFireSD project) and 708063 (NeTNPPAO project). Ivana Cvijanovic was supported by Generalitat de Catalunya (Secretaria d'Universitats i Recerca del Departament d’Empresa i Coneixement) through the Beatriu de Pinós program. Yohan Ruprich-Robert was funded by the European Union's Horizon 2020 research and innovation program in the framework of Marie Skłodowska-Curie grant INADEC (grant agreement 800154). Paul A. Miller, Lars Nieradzik, David Wårlind, Roland Schrödner, and Benjamin Smith acknowledge financial support from the strategic research area “Modeling the Regional and Global Earth System” (MERGE) and the Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI). Paul A. Miller, David Wårlind, and Benjamin Smith acknowledge financial support from the Swedish national strategic e-science research program eSSENCE. Paul A. Miller further acknowledges financial support from the Swedish Research Council (Vetenskapsrådet) under project no. 621-2013-5487. Shuting Yang acknowledges financial support from a Synergy Grant from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement 610055) as part of the ice2ice project and the NordForsk-funded Nordic Centre of Excellence project (award 76654) ARCPATH. Marianne Sloth Madsen acknowledges financial support from the Danish National Center for Climate Research (NCKF). Andrea Alessandri and Peter Anthoni acknowledge funding from the Helmholtz Association in its ATMO program. Thomas Arsouze, Arthur Ramos, and Valentina Sicardi received funding from the Ministerio de Ciencia, Innovación y Universidades as part of the DeCUSO project (CGL2017-84493-R).​​​​​​​Peer Reviewed"Article signat per 61 autors/es: Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho11, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang"Postprint (author's final draft
    corecore