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Executive Summary

NASA/ Lewis Research Center is sponsoring a program for providing computer codes for

analyzing and designing turbomachinery seals for future aerospace and engine systems. The

program is made up of three principal components: 1) the development of advanced 3-D

Computational Fluid dynamics codes 2) The production of simpler 2-D industrial codes and 3)

the development of a Knowledge Based System(KBS) that contains an expert system to assist in

seal selection and design.

The 3-D code is being produced by a major subcontractor, Computational Fluid Dynamics

Research Corporation (CFDRC) of Huntsville ,AL., who are enhancing an existing CFD code,

REFLEQS. The first task of CFDRC has been to concentrate on cylindrical geometries with

straight, tapered and stepped bores. Improvements have been made by adoption of a colocated

grid formulation, incorporation of higher-order, time-accurate schemes for transient analysis

and high-order discretization schemes for spatial derivatives. This report describes the

mathematical formulations and presents a variety of 2-D results, including labyrinth and brush

seal flows. Extensions to 3-D are presently in progress.

'Three industrial codes have been produced which are capable of being run on a PC.

SPIRALG predicts performance characteristics of gas-lubricated, spiral-groove

cylindrical and face seals including eccentricity and misalignment ( four degrees of

freedom which consistof two orthogonaldisplacementsand two orthogonalangular

rnisaligunents),which representextensionstothepresentstateof the art.The code

producessealloadsand moments, minimum fdm thickness,axialflow,power loss

and up to thirtytwo frequency dependent cross-coupledspring and damping

coefficients. Arbitrary placement of grooving and the dam region is permitted as well

as user selection of the spiral-groove pumping direction. The code is coupled to an

optimization code that will allow for determination of optimum groove geometry on

the bases of stiffness, pumping capacity and flow. A code option is the use of a
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Romberg extrapolation procedure for producing rapid and accurate results. Included in

this report is a comprehensive theoretical development of the code, several sample

cases and validation information.

The industrial code ICYL is intended for use in analyzing cylindrical seals operating

with incompressible fluids. The code includes film turbulence, and inertia effects at

inlet and exit and at boundaries where sharp clearance discontinuities result, such as

hydrostatic recesses. Configurations include plain circular, hydrostatic, multi-lobe,

tapered and Rayleigh Step geometries. An important feature of the code is the

incorporation of roughness on the seal housing or rotating shaft. It thus permits

analysis of damping seals which are finding favor in advanced cryogenic

turbomachines. The code produces seal loads, and righting moments, flows, power

loss,clearanceand pressuredistributions,up to thirtytwo cross-coupleddynamic

springand damping coefficientsas wellas criticalmass and frequency.This report

describesthe theoreticaldevelopment , includesexamples of code usage and

validationagainstothercodesand informationintheliterature.

The industrial code GCYL analyzes cylindricalgas seal configurations.

Configurations include plain circular, hydrostatic, multi-lobe, tapered and Rayleigh

Step geometries. The code produces seal loads, and righting moments, flows, power

loss, clearance and pressure distributions, and up to thirty two frequency dependent,

cross-coupled dynamic spring and damping coefficients. This report describes the

theoretical development, includes examples of code usage and validation against

other codes and information in the literature.

The functions of the Knowledge Based system are 1) to integrate the scientific and industrial

codes 2) to provide a user friendly graphical user interface and 3) to include an expert system for

seal selection, analysis and design. A significant requirement is portability between a PC and

UNIX based workstation. The two operating systems selected arc OS/2 with the Presentation

Manager interface for the PC and UNIX with OSF/MOTIF for a workstation. A two track

development effort is being pursued. The scientific codes arc being developed under UNIX and

--V--



the industrial codes are being developed using the OS/2 operating system. The user interfaces are

being developed using object oriented tools and C-H- which are portable between OS/2 and

UNIX. The initialdevelopment platform will be OS/2 and porting to UNIX will be

accomplished by recompilation.This reportdiscusses development plans and presents some

OS/2 graphicaluser interfacesaccomplished with the industrialcodes.

In addition to code .and interface development, the project requires technology transfer to both

government and non-government facilities. A peer panel has been established, whose function is

to guide program development, and annual workshops are held to transfer information. The first

workshop was held on March 26, 1991.
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1.0 INTRODUCTION

NASA's advanced engine programs are aimed at progressively higher efficiencies, greater

reliability, and longer life. Turbomachinery for future aerospace engine systems will require

advanced seal configurations to control leakage, control lubricant and coolant flow, prevent

entrance of contamination, inhibit the mixture of incompatible fluids, and assist in the control of

rotor response.

A seven year program has been devised with the objective of providing to NASA and the U.S.

Aerospace Industry, three dimensional scientific codes and simpler industrial codes for analyzing

and designing optimized advanced seals with minimal development time.

The program provides three interdependent parallel paths:

1. The development of scientific Computational Fluid Dynamics (CFD) codes capable of

producing full three-dimensional flow field information to enhance understanding of

flow phenomena and mechanisms, to contribute design guidance for complex situations,

and to furnish accuracy standards for less sophisticated analyses. All tasks involving

three-dimensional code development will be accomplished by a major subcontractor to

MTI, CFD Research Corporation (CFDRC)

2. The development of industrial codes for expeditious analysis, design and optimization of

turbomachinery seals. The industrial codes will consist of a series of separate,

stand-alone codes that will be integrated by a Knowledge Based System (KBS).

3. The development of expert systems to assist users to select an appropriate seal type for

their application, provide design guidance, and assist in interpreting data from the

analysis programs.

The analysis codes and the expert systems developed by the three activities will be integrated

into a unified system by the KBS which will provide access to and link all the various

components. The key features of the KBS include the following:
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• - Access to all analysis codes and expert systems

• An easy- to- use, consistent user interface for all KBS components

• Utility functions such as printing and browsing output files

• Plotting of output data from analysis programs

• Database of analytical models and other supporting information

• Portability between PC and Workstation environments

An important aspect of the contract is technology transfer to the industrial, government and

academic communities. This is being accomplished through annual workshops, reports, and code

distribution through NASA. The fLrst workshop was convened on March 26, 1991 with over 65

attendees. A Peer Review Panel has also been established consisting of seal experts and

cognizant representatives from industry, government and the academia. The Peer Panel provides

technical guidance to the program.

This report covers the effort completed during the first year of the program wldch included the

following:

• The development of advanced algorithms and validation of the CFD codes with

emphasis on cylindrical geometries.

• Delivery of three industrial codes to NASA for Beta testing

• A gas lubricated spiral groove code SPIRALG for analyzing spiral groove

cylindrical and face seals.

• A cylindrical incompressible seal code ICYL for analyzing a wide variety of

cylindrical geometries including roughened surface seals.

• A cylindrical compressible seal code GCYL for analyzing a wide variety of

cylindrical gas seal geometries.

• The establishment of a detailed plan for the implementation of the Knowledge Based

System using the PC and OS/2 as the principal up front interface and operating system

respectively. Several industrial codes were implemented and information is presented

in this report. As a result of the fh'st workshop, a need for a UNIX operating system

was expressed by the attendees and the members of the Peer Panel. Resolution is

presently being accomplished by KBS software that will be portable to both operating
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systems and will be operable utilizing PC's or Workstations. The PC can only act as

an interface for the scientific codes that must reside on a mainframe or workstation.

The industrial codes can be self contained in a PC environment. The universal

approach to the KBS will be presented at the next workshop and described in the next

annual report.
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2. 0 COMPUTATIONAL FLUID-DYNAMICS DEVELOPMENTS

2.1. Introduction

2.1.1 Development of the cylindrical seals CFD code

The objective of Task I is to develop a three-dimensional CFD code for analysis of

flows in straight,tapered and stepped cylindrical seal configurations. This code will

be capable of solving three-dimensional Navier-Stokes equations in generaI£zed,

body-fitted coordinates with provisions for polar and cylindrical systems. The

features which are relevant to the seals program include:

1. Stationary and rotating coordinate systems;

2. Steady-state and time-accurate solution capability;

3. Advanced turbulence models for high shear rotating flows;

4. Incompressible and compressible flow solutions;

5. Variable physical properties (viscosity,density, specific heat, etc.);

6. Cavitation effects;

7. Provision for stepped surfaces and injection ports;

8. Inclusion of viscous dissipation and phase changes in energy equation;

9. Treatment of sources due to external fields, e.g. electromagnetic and

electrostatic;

10. Variable surface roughness treatment;

11. Provision for effects of pre-swirl and upstream effects; and

12. Customized input and output features for cylindrical seals.

The code will utilize solution procedures and schemes that are accurate, efficient

and robust to include all these characteristics for high-aspect ratio computational

cells typicalIy encountered in seal geometries.
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2.1.2 Focus of Work for the First Year

During the past year the focus of work has been to develop, implement and test

several new concepts in the basic code REFLEQS. The two-dimensional version of

REFLEQS was selected as the starting point for all the development work. Two-

dimensional problems are sufficiently general, so that once proven, the concepts can

be extended to three dimensions in a straightforward manner; at the same time the

complexity of the coding is sufficiently low so that rapid development and incorpo-

ration of these concepts in the 2-D code are possible. Following are the modifica-

tions and improvements which were made in the basic REFLEQS code.

1. Adaptation of a colocated grid formulation in which the velocity compo-

nents as well as the scalars are stored at the computational cell center as

against the earlier staggered grid formulation where the velodty compo-

nents are stored on the cell faces;

2. Use of Cartesian velocity components as the primary velocity variables in

place of the velocity projections which were used before;

3. Incorporation of high-order time-accurate schemes for transient flow

analyses which include a) PISO algorithm, b) Crank-Nicholson method,

and c) three-point second-order backward time-differencing method; and

4. High-order discretization schemes for spatial derivatives. These include,

in addition to central differencing, third-order upwind-biased scheme,

Osher-Chakravarty scheme, and minimod limiter scheme.

Some of the items described above merit further attention at this point, and the

merits of these and the reasons for implementation are discussed below.

2.1.2.1 Colocated _rid formulation with C_artesian Components. Figure 2.1 illustrates
v

the velocity-pressure location arrangement for staggered and colocated grid configu-

rations.
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Figure Z1 Examples of Staggered and Colocated Grids

A number of CFD codes currently in use are based on the staggered grid approach.

These codes use finite volume methods with segregated or coupled equation

solution methods. The chief reason for the use of staggered grid approach is to

avoid the phenomenon of the odd-even decoupling of pressure when solving

_incompressible flows. By locating the velocity nodes on the cell faces instead of the

cell centers, these velocities now can be linked directly to the pressures at the two

nearest cell-centers. This provides a strong coupling between the velocities and the

pressures and avoids the checkerboard pressure pattern. In recent years, however,

interest in colocated grid formulation has been renewed t'3. Coupled with this

approach is also the use of Cartesian components as the primary velocity compo-

nents. This combination offers a number of advantages which are listed below.

1. A common control volume for mass, momentum and energy conserva-

tion eliminates many calculations which are repeated for the various

control volumes in the staggered grid, e.g. evaluation of the link coeffi-

dents that are needed to set up the discretized form of the flow equations

except the mass equation;

2. In a single grid cell, the number of interpolations required to calculate the

velocity components at the cell faces is minimized;

3. In a staggered grid, the boundary condition implementation is more

involved due to the physically displaced control volumes. In a single grid
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cell the boundaries are the same for all variables, and the treatment is

uniform;

4. The use of Cartesian components ensures that the treatment of body-fitted

coordinate (BFC) and complex grids is relatively simple and easy to

understand and implement. Use of Cartesian components also simplifies

the procedure of velocity interpolation to cell faces. Use of any other

primary velodty variable can make the interpolation procedure very

cumbersome in a complex geometry, since the local angle relations must

be taken into account; and

5. Implementation of higher-order spatial discretization schemes is simpler

with the single cell approach.

The main drawback of the colocated grid formulation is that the coupling between

the pressure and velocities cannot be maintained as easily as in the staggered

approach. Recently, however, several methods have been proposed and used

successfully to overcome the problem of odd-even decoupling of pressure. The

particular formulation used in the present work is discussed in detail in a later

section.

2.1.2.2 PISO Algorithm. The earlier formulation in REFLEQS for transient flow
v

calculations involved several iterations of the overall solution procedure for each

time step. The solution procedure thus could become expensive since, in effect,

each time-step solution involved the solution of the corresponding steady-state

solution. The PISO algorithm is designed to calculate transient flows with a non-

iterative scheme. The algorithm consists of a predictor step where an intermediate

solution is calculated, followed by a series (typically 2 or 3) of corrector steps which

improve the accuracy of the predicted solution. Several of the steps in the overall

scheme are implicit, so that the algorithm is much more stable with respect to the

time step size as compared to an explicit Eme-marching scheme. Due to the non-

iterative nature of the PISO algorithm the overall computational costs for this

method can be substantially smaller than the iterative methods. The algorithm can
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also be set up to achieve higher order time-accuracy. For these reasons, the devel-

opment of PISO algorithm for transient analyses was considered.

2.2 Mathematical Formulation

In this section a discussion of the theoretical details of the various procedures

implemented in the 2-D code is given. The basic differential and finite difference

equations for the fluid flow are shown. A discussion of the mass interpolation

procedure used in the code follows next, and finally the solution steps needed in the

two basic algorithms: SIMPLEC and PISO are given.

2.2.1 Flow Equations and Discrefization

In the Cartesian tensor form the fluid flow equations can be written as

Continuity Op _- _(pu i) = 0 (2.1)

Ot Ox i

momentum O(_i) + !(PUiUj)=.
o_t

or, alternatively, the general transport equation for any flow property, _, is

(2.2)

(2.3)

where Bi is the body force, r is the diffusion coefficient, and S# is the source term

associated with the variable 0. This source term, then, would contain the pressure

terms and other body force terms for the momentum equations.

The flow equations are next transformed to a generalized, Body-Fitted Coordinate

(BFC) system which allows the grid to conform to the problem geometry. The

switch to the BFC system (_,'q) is done using the transformation
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(2.4)

The partial derivatives can then be transformed as:

b _ + r/x b__

(2.5)

The two-dimensional general transport equation for ¢ then becomes

where U and V are the contravariant velocity components and S' is the source term

associated with curvilinear nonorthogonal part of the viscous stress tensor.

U= J(_xU + _yV) (2.7)

v--I (nxu + nyv) (2.8)

s = ]r(v _.vn + r(vn.v{) a (2.9)

with u and v as the Cartesian velodty components along x and y directions. S' is the

additional source term which is generated during the transformation of the

diffusion terms; it is zero for an orthogonal grid. J is the Jacobian of the transforma-

tion,

O(x,Y) I x_ z_ I (2.10)l = _ = y_ y_
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The transformed continuity equation is

_(Jp) + O(pU) + _(pV....__)= 0 (2.11)

Ot 0_ On

For the solution methods used in the present work the transport equations are

integrated over a general computational cell in the grid to generate algebraic

equations which link the variables in the cell with those in the surrounding ceils.

, _ ,,,

_/ _ /_'_/
4115/1 m

Figure 2.2 Computational Control Volume Grid and Nomenclature

The discretized transport equation for a variable 0 then is given by

V * 0 n1,,,,+,_;)o,=_:a_o,,;,,+,_;+is+,,_ (2.12)

where V is the volume of the cell ,the subscript nb denotes all neighboring cells and

anb@ etc.are the link coefficients which consist of the convective and diffusive terms

linking the cell centers with those around it, and the form of the coefficients

depends on the method used for spatial differencing. Thus, e.g.,for the upwind

scheme,
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(Sv/)e+max(O,..(pU)e rle) (2.13)

ap$ is obtained by summing all the link coefficients of neighboring cells.

The transport equation, Equation 2.12 is written for u and v velocities and solved

sequentially to update the values of the components to u* and v*.

The updated velocity components at this point do not satisfy the continuity

equation. To impose this the flow variables are assumed to have a form

u n*l = u" + u (2.14)

v n*l = v" + v' (2.15)

p.,l = p" + p' (2.16)

pn.l = p- + p" (2.17)

The momentum equations are rewritten for the velocity corrections as

( ( )apu + up -- _._ anb u Unb - du_ p_ _z + durl PrI fix

apv + Vp = _._anb v Vnb- dv_ p_ _y + dvrlPrl fly

(2.18)

(2.19)

where the subscript for pressure denotes partial derivatives. The method of

treatment of the term under t.he summation sign decides the algorithm which is being

used. If Unb = 0 is assumed the summation term is simply dropped and a SIMPLEC

type algorithm results. In the SIMPLEC algorithm the individual corrections at

t

neighbors are taken to be the same as at point P, i.e. Unb. Up. With this approxima-

tion the summation term is merged with the term on the left hand side. In the

I

PISO algorithm, discussed in section 2.2.3, the neighbor velocity corrections Unb are
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evaluated with the last iteration (correction) level of the predictor-correctors

procedure.

The continuity equation is then integrated over the typical computational cell to

give

t |

-- + (pUe) Ae sin ate- (pllw) Aw sin O_w+ (p V _ An sin an-(pV _ As sin as = m
ztt

where

m =(pU)e Aesin o_e-(pU_ Awsin o_w+(pV)nAnsin_.n-(pV_ Assin as (2.20)

Vfl

c1s

As _ s11

Ao

Figure 2.3 Control Volume Nomenclature for BFC Grids

Referring to Figure 2.3,a denotes the angle between the constant _ and r/lines,and

the subscriptsw,e,n,srefer to the sides of the cell,and A denotes the area of a cell

side. The correctionin the contravariantcomponents are

V BU'= u'G+
t | i

V =ur/x+v r/y

(2.21)

(2.22)

2-9



Expressions for u' and v °, Equations 2.21 and 2.22 are now substituted in Equation

2.20 to provide a pressure-correction equation of the form

+% pp - _ a,,_,P,,b"m

For incompressible flows the p' term is taken as zero.

expressed as

p'
' =___P__p'

P RT P

t

and is absorbed in the coefficient associated with pp.

(2.23)

For compressible flows it is

(2.24)

Solution of Equation 2.23

provides pressure corrections at the cellcenters which then are used to calculate

correctionsin other variables:

'u =- u_ +durlPrl

)v' =- v_ _y + dvn Pn fly

t pB

a R---T

(2.25)

(2.26)

(2.27)

Finally these corrections are used to update the velocities, pressure and the density.

u .+1 = u ° + u' (2.28)

v ,+1 = v" + v' (2.29)

9.+1 = p, + p' (2.30)

p,+l - pn + p' (2.31)

This completes a typical iteration in the SIMPLEC procedure for steady-state

equations. For steady solutions the time-step At provides one form of underre-

laxation. The PISO algorithm also follows similar steps, and at this point the

predictor and the fh'st corrector step in this algorithm would be complete.
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Evaluation of the mass source term in Equation 2.20 is critical to the success of the

colocated grid formulation. To calculate the mass source term the contravariant

components at cell faces are needed which in turn are interpolated from the cell-

centers. Improper interpolation procedures can lead to odd-even decoupling of

pressure. The formulation used in the present work is described in the following

subsection.

2.2.2 Mass-Carryi'ng Veloclty Interpolation

The basic concepts of this interpolation procedure will be developed for a I-D

problem for ease of understanding. The procedure outlined is similar to that in

Reference 2. Extension to two dimensions is described next.

W P E

Figure 2.4 Schematic Grid for Mass-Carrying Velocity Interpolation

For this 1-D problem, the contravariant component, U, is the same as the Cartesian

component u. The value of u at the cell face 'e' is to be calculated using the veloci-

ties at P and E. Use of a simple average to get:

ue = 12 (u P + uE) (2.32)

leads to odd-even decoupling of pressure. This is due to the fact that with this

definition, the velocities at the cell faces do not directly depend on the pressure

difference between the neighboring cell centers. This strong coupling is achieved in

the staggered grid by physically shifting the location of cell face e. In the colocated

grid formulation, the cell face velocities must be calculated with a direct coupling
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with neighboring pressures. To achieve this, the momentum equations for the

velocities at P, E and e are written:

' + SpP

G

where anb'-- ap • dp ffi ap '

(2.33)

(2.34)

(2.35)

[Here the prime denotes that the term is divided by the coefficient associated with

the velocity at P or E or e.] At this point the effect of time step and/or underre-

laxation is ignored; it will be added at a later stage.

The various terms in Equation 2.35 are then approximated using the corresponding

terms in Equations 2.33 and 2.34. Thus

anb u unb + S = ar_ Unb + S + anbu unb + S (2.36)

and

,- d'p +d (2.37)

Substitution in Equation 2.35 yields

ue _" anbu unb + $ + an_ Unb + S - dp + dF.
2 /_OXJe

(2.38)

Expansion of the terms under the summation signs gives rise to a large connectivity

with nodal velocities and is complicated to evaluate. Instead, these terms are

expressed as
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anbu unb + S p - up - dp

anbu Unb + S E = UE" dr -_x E

(2.39)

(2.40)

Using these expressions in Equation 2.38 one obtains

which ismuch simpler to evaluate. Ifa furtherapproximation ismade:

(2.41)

(2.42)

the final form of ue is obtained:

2 t__x lpd..

(2.43)

TIRe other cellface velocity,uw now can be calculated in a similar fashion. When

these velocitiesare used to calculatethe mass source term, the pressure derivatives

add together to generate a fourth-order derivative of pressure. This serves to

suppress odd-even decoupling of pressure by providing a stronger coupling between

cellpressures.

Next step is to include the effect of time derivatives and/or underrelaxation terms.

Improperly done, this can give rise to steady-state solutions which depend on the

size of the underrelaxation used. The following analysis is similar to that developed

in Reference 4. Equations 2.39 to 2.41 are rewritten as

= - + Sp + Up
(2.44)
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apu + u E --(_ anb + S E + u E

At

(2.45)

(2.46)

where it is assumed that the time term serves as the underrelaxation factor for

steady solution. These equations now have a modified coefficient with the veloci-

ties, and also include a term with last iteration/time-step values of the velocities,

denoted by the superscript o.

Following an analysis similar to that given earlier, the expression for ue is now

2 L axlP ax

(o).At apu +

written as

and the term associated with the time term is calculated as

+

(2.47)

pV apu + 9V
/itIe apu + _t p At IEJ

(2.48)

Equation 2.48 is the final form of the interpolation procedure that can be used to

calculate cell face velocities. Extension of these concepts to two-dimensional BFC

grids isdiscussed below.

A typical computational cell in a 2-D BFC grid is shown in Figur e 2.5. The contra-

variant components, U and V along the _ and 7? axes are to be calculated using the

velocities at the surrounding cell centers.
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/ v.71 

Figure 2.5 Convective Fluxes Passing Through BFC Control Volume Cell Faces

The components are given by

u,= + (2.49)

v, =(ulnx+ vlny)_ (2.50)

Thus, to arrive at the cell face contravariant components, both u and v have to be

interpolated at each face. Consider the component at face 'e'. To calculate the

Cartesian components the momentum equations at cell centers P and E are used.

These are

(2.51)

(2.52)

t

where terms such as du_r now contain the metric coefficients which multiply the

pressure derivatives. Similar expressions for these components at cell center P can

be written. Since Ue is the component along the _ direction, the pressure redistribu-

tion is applied only in the _ direction. Thus,
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u_--12(uP÷ _E)-d=_ 2Lkaa_jE

(÷° ZAt apu

+

(2.53)

' op ÷
v. =2Z(vP+ v_)-d,,_;_ 2L_a_/_-

At apv

(2.54)

Finally, the contravariant component Ue is calculated using Equation 2.49. The

component along the 77 direction at, e.g., the south face is evaluated using the

Cartesians at cell centers P and S, and the pressure redistribution terms along I/

direction only are taken into account.

This is the basic formulation which has been incorporated in the 2-D code to avoid

the odd-even decoupling of pressure in the colocated grid formulation. Extension of

this concept to a 3-D grid is straightforward, and not discussed here.

2.2.3 Solution Algorithm_

A description of the solution algorithms currently implemented in the 2-D code is

given in this subsection. The major solution steps are outlined for four schemes: 1)

Modified SIMPLEC, 2) Crank-Nicholson, 3) Three-point backward time-differencing,

and 4) PISO. The ftrst three schemes use essentially the same basic solution algo-

rithm, while the PISO scheme requires additional steps.

1. Modified SIMPLEC: This algorithm consists of three main steps.

a. Evaluation of an intermediate velocity field, u* and v* by soIving

momentum equations such as 2.12 with lagged pressure terms;
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b. The continuity equation, Equation 2.20 is solved next for pressure

corrections. These are used to update pressures and velocities. Density is a

updated for compressible flows;

In the standard SIMPLEC procedure this marks the end of an iteration and step (a) is

taken next. In the modified SIMPLEC procedure, a step is added to ensure a tighter

continuity condition.

C With the updated flow variables in step (b) the mass source term in

Equation 2.20 is reevaluated. Using the new mass source term the continu-

ity equation is solved for pressure corrections. These are then used to

update the flow variables again. The link coefficients in the pressure

equation are kept frozen during this step. Step (c) isrepeated tilla suitable

criterion is reached. At this point one iteration is considered complete

and the next iterationstarted with step (a).

Steps (a) to (c) are repeated tilla suitable convergence criterion is reached. This

algorithm is the default option for steady-state flow solutions.

2. Crank-Nicholson Scheme: This algorithm is adopted for transient flow analysis

and is formally second-order accurate in time. This is achieved by evaluating all

convective and diffusive fluxes at time level (n + I/2) where n is the old time level.

The algorithm consists of the following steps:

a. Evaluate all flux terms using the last time-step variable values, i.e. at level

n. These fluxes are not updated till the next time-step is taken;

b. Intermediate velocity field u*, v* is calculated using Equation 2.12 with

lagged pressure. The convective and diffusive fluxes are calculated using

the following expression.

0%+fD)--=¢c+fD)k+ =)0%+fD)" (2.55)

2-17



C.

where the superscript k denotes the iteration level, a is called the Crank-

Nicholson parameter, and controls the implicitness of the scheme as well

as the time-accuracy. The scheme is second order in time for a = 0.5;.

Pressure corrections are evaluated using Equation 2.20. The mass source

term in this equation is evaluated using

m = am k + (1- a)rn. (2.56)

If needed, iterations on this step are done by updating the mass-source

term. This is done in a fashion outlined in step (c) of the SIMPLEC

procedure;

d. Steps (b) to (c) are repeated till a convergence criterion is reached. At this

point the solutions at iteration level k are taken to be solutions at new

time level n+l;

e. Time is advanced by a step, and calculat/ons are started at step (a).

By changing the value of _, the order of accuracy and nature of the scheme can be

changed. Thus a = 1 corresponds to the Euler backward time discretization which is

implicit in time and first-order accurate.

3. Three-voint backward time-discretization: This is another second-order time-

accurate method for transient flow analysis. The high-order accuracy is achieved by

discretization of the time derivative using a three-point method.

O_ 30n+1.4on + on-1 (2.57)

at 2_t

where superscripts n-l, n, and n+l denote different time levels. This is also an

iterative algorithm and the steps are:
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a. Time terms are calculated based on the expression given above;

b. This step essentially involves iterations of the SIMPLEC procedure with

the additional time term at n-1 carried as a source; and

c. At convergence of step (b), the variables are updated and a new time step

is taken. Calculations for this step start from step (a).

4. PISO Al_orithm: This is the non-iterativealgorithm implemented in the 2-D
w

code for transient flow analysis. The solution steps consist of a predictor step

followed by a seriesof correctorsteps;the basic procedure isoutlined in a paper by

Issas. The algorithms for incompressible and compressible flows differsomewhat

and each isoutlined below.

Incompressible flows. For these flows there is no density variation, so that the

energy equation need not be calculatedduring the predictor-correctorsequence for

velodties and pressure. The algorithm steps are:

a. With a new time-step, an intermediate velocity field, u* and v* is

calculated using momentum equations, Equation 2.12. This is the

predictorstep;

b. For the firstcorrector,the pressure correctionequation, Equation 2.20 is

solved to yield pressure corrections. These are then used to update flow

variables to u*',v** and p*;

c. A pressure correction equation followed by an explicit momentum

corrector equation completes the second corrector step. The pressure

correctionequation is

Z (" v,;,,) ' -" "anbvVnb" , P =p -p

(2.58)

The pressure correctionsare used in the momentum correction equation

for u"
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cL

gUp u_ "°_ u_ ° (2.59)

where the tilde denotes that the time term has been absorbed in that term.

A similar equation for v' is solved. With these corrections, the flow

variables are updated to u***, v***, and p**. This completes one time step

in thisalgorithm. The corrected variablevalues are taken as the new time-

level values; and

A new time step in taken and calculationsstartedat step (a).

Compressible Flows. PISO algorithm for compressible flows ismore involved, since

the density variationshave to be calculated. This is incorporated in the momentum

and continuityequations. In addition,the energy equation has to be solved at each

correctorstage to update the temperature. The solution steps in thismethod are:

a. With a new time-step the firstpredictor and corrector steps are taken

using the procedures outlined in Equations 2.12 and 2.20. The values of

the variables at thisstage are u**,v**,p*,and p*;

b. Using the updated values,the energy equation is assembled and solved to

generate the corrected values of the temperature T*;

c The second corrector step now involves solution of p' again using a

correctionequation. The form of thisequation is:

_ . , pV °

Z " ") •9 anbv v -Vnb +b, p =p*'-p (2.60)

Solution of this equation, the p' field is then used to update the velocity

fields to u*** and v*** using equations such as:

(2.61)
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A similar equation for v*** is used. At the end of this step, the flow

variables are updated to u***,v***,p** and P**;

cL The energy equation is again assembled and solved to yield the corrected

values of the temperature, T**. This isthe second energy correctorstep;

e. This completes the so-calledtwo stage scheme. Ifdesired the steps (d) and

(e)can be repeated to add more correctorstages. At the end of thisseries,

the updated values of the flow variablesare taken to be the new time level

values; and

L A new time step istaken and the calculationsare startedat step (a).

2.3 Status of the 2-D Code

In the present form, the 2-D code is based on the colocated grid formulation de-

scribed above, and uses the Cartesian components as the primary velocityvariables.

The modified SIMPLEC algorithm is the default for steady-state flow solutions,

while the schemes availablefor transientanalyses are:

1. First-orderaccurate backward differencing;

2. Three-point, second-order accurate time differencing;

3. Crank-Nicholson scheme; and

4. PISO scheme.

A comprehensive set of boundary conditions isprovided which includes:

1. Specified velocities;

2. Specifiedpressure;

3. Wall boundary;

4. Symmetry condition; and

5. Zero-gradient extrapolationcondition.
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Profiles for all the flow variables can also be specified at all boundaries if known, e.g.

for pre-swirl inlet conditions in a seal flow.

In the colocated formulation, the pressure at cell faces is used to calculate the

pressure derivatives needed in the momentum equations. Proper evaluation of

pressures at the boundaries thus becomes important. Two types of second-order

accurate pressure extrapolation procedures are used at the boundaries in the 2-D

code.

l
y& wc e P e E

_E I

_/'/i "////,

_ eP
b
_,_Yp

Ayo) 2
"/'///L

Figure 2.6 Nomenclature for Pressure Boundary Condition Interpolation

o For an inflow condition the slope at the boundary is assumed to be the same

as at the nearest cell center. Referring to Figure 2.6, the boundary pressure can

be calculated as

(2Axp + _E) AXp

. For extrapolation, symmetry, and wall conditions, the slope at the boundary is

calculated using a second order extrapolation. The slope at the boundary is

given by:
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If the slope is specifiedto be zero, the expression for the pressure at the boundary

becomes

(2.64)

For swirling flows the centrifugal acceleration has to be taken into account. This is

accomplished by specifying the pressure slope in terms of the angular speed co at the

boundary.

+ (2 e +
3Lirp+ _x S (2.66)

Finally,if a body-force is present, such as gravity,itisused to specify the pressure

derivative. Thus, e.g. for gravity force, the pressure derivative and boundary

pressure are given by

O._) =. (Pg)n (2.67)
n

(2.68)

The code is capable of handling incompressible and compressible flow. Several

turbulence models are incorporated which are I) mixing length model, 2) low

Reynolds number k-e model, 3) standard k-¢ model with wall functions, and 4)

multi-scalek-e model.

One of the problems specific to seal geometries is a rotor undergoing whirling

motion in a seal as shown in Figure 2.7. The 2-D code can be used to simulate such a

rotor with the assumption that the axial pressure gradient is zero, or in other words,

when there is no leakage. To facilitate this, a coordinate frame whirling with the
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rotor is selected. When the whirl orbit is circular,this transformation reduces the

time-dependent problem to a quasi-steady one. The momentum equations are then

solved in terms of the relativevelocities.Rotation of the axes gives riseto addition-

al source terms, the Coriolis and centrifugalaccelerations,which are added to the

momentum equations.

at
Centrifugal (2.69)

where _ is the whirling angular speed. Finally,the velocityboundary conditions at

the rotor and statorwall have to be modified, and are given by

stator: _ = - oJx 7

where _, is the position vector joining the centers of the rotor and the stator, and o_

is the angular speed of the rotor. This formulation also has been incorporated in the

2-D code, and can be invoked by specifying a non-zero angular speed for precession.

Figure 2.7

I

I

Schematics of Rotor/Stator Configuration With Circular Whirling Orbit

2-24



2.4 2-D Code Test Results

The 2-D code has already been used to calculate a range of standard flow solutions.

These computational test cases were designed to assess overall accuracy of the code

as well as the accuracy of the various physical models. Presented in this section are

solutions for a number of selected test cases which have a direct relevance to the

seals application. Accuracy of the numerical results is checked against analytical

solutions in several cases. Two seal calculations are also presented at the end of the

section which are checked against experimental data. These test cases serve to prove

the capability of the computer code to calculate accurate and physically sound

solutions.
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2.4.1 [:low in an Annulus Between Two Cylinders

Problem Specification

• Developing flow in an annulus between two cylinders.

* Narrow annulus, ratio of inner to outer radii = 0.995.

• Laminar flow, Reynolds number based on outer radius = 100.

• Slug flow at inlet, fully-developed at the exit.

Benchmark Data

• Analytical solution for fully-developed flow.

.Grid

• 20 cells in both axial and radial directions, evenly spaced.

• A maximum aspect ratio of 3x104.

Boundary Conditions

• Uniform flow at the inlet.

• Fixed pressure at the outlet.

• Wall conditions at both cylinder surfaces.

Results

Flow description is given in Figure 2.8a.

Figure 2.8b shows the calculated axial velocity as a function of radius at the

last axial station. The analytical solution for the fully-developed flow is

also plotted for comparison. Excellent agreement between numerical and

analytical results is obtained.
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Figure 2.8 Flow in an Annulus Between Two Cylinders. Ri 11% = 0.995, 20 x 20 grid,

grid aspect ratio = 3 x 104, ReRo = 100
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2.4.2 Flow Between Rotating Cylinders

Problem specification

* How in the annulus between two cylinders.

• Inner cylinder rotating at 28650 rpm., stationary outer cylinder.

• Narrow annulus, ratio of inner to outer radii = 0.995.

• Laminar flow, no flow in axial and radial directions.

B(_nchmark data

• Analytical solution for the stable Taylor-Couette flow.

• 4 ceils in the axial and 50 ceils in the radial direction.

• Maximum aspect ratio = 3.6x104.

Boundary cQndition_

• Periodicity in axial direction, solutions at first and last axial stations are

taken as identical.

• Wall conditions with specified angular speed =28650 rpm. at inner

cylinder.

• Wall conditions with zero angular speed at outer cylinder.

Results

Flow conditions and geometry shown in Figure 2.9a.

Computed tangential velocity as a function of radius shown in Figure 2.9b.

Corresponding analytical solution also plotted for comparison.
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Figure 2.9 Flow Between Rotating Cylinders,RiIRo = 0.995,C0o= 0,c0i= 28650 rpm.

4 x 50 grid,aspect ratio= 3.6x 104
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2.4.3

Problem specification

• Planar flow between two parallel, infinite plates.

• Top plate moving at a constant speed.

• Uniform pressure gradient is applied.

Benchmark data

• Analytical solution for Couette flow.

Grid

• 3 cells in the flow direction, 20 cells across the gap in the plates with even

spacing in both directions.

Boundary _'on_litigns

• Periodicityconditions imposed at the cross-planes.

• Stationarywall atbottom plate.

• Wall condition with specifiedvelocityat top plate.

Physical models

• The pressure gradient term is included as a special source term in the

main-flow momentum equation.

Result_

Flow geometry and parameters are shown in Figure 2.10a.

Flow solutionsare obtained at several values of pressure gradient parame-

ter ranging from -3 to +3. The corresponding numerical and analyticalu

velocityprofilesare shown in Figure 2.10b.
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Figure 2.10 Couette Flow. Pressure Gradient CoefficientP = 21_U
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2.4.4 Planar Wedge F10w

Problem specification

• Laminar flow in a narrow wedge-shaped passage. The top block is at rest;

the bottom plate is moving.

• Flow passage is very narrow (L/h -- 3x103)

Benchmark 4ata

• Analytical solution for the planar wedge flow.

Grid

• BFC grid with 192 ceils along the length and 40 cells across the gap, evenly

spaced.

Boundary ¢0n4ition3

• Wall condition on the sliderblock.

• Wall condition with specifiedvelocityon the bottom plate.

• Specifiedpressures at the two passage openings.

Results

• Grid in shown in Figure 2.11a.

• Streamline pattern in the passage in shown in Figure 2.11b.

• Comparison of computed and analytical u velocity profiles at several

locationsalong the length are shown in Figure 2.11c.

• Pressure across the passage is constant;computed and analyticalpressure

profilesalong the length are shown in Figure 2.11d.
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Figure 2.11 Planar Wedge Flow. Length = 0.1m, Height: Minimum = 3 x 10"Sm,

Maximum = 3 x 10"4m, y Scale Enlarged 200 times in (a) and (b)
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Figure 2.11 Planar Wedge Flow Continued
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2.4.5 Laminar Flow Over Backstev

Problem specification

• Laminar flow over a planar backward fadng step; expansion ratio = 1:1.94.

• Reynolds number = 100, 300, 389, 500 and 648.

Benchmark _lata

• Experimental data of Armaly, et al. 6.

• 110 ceils in the flow-wise direction, 40 cells across. Cells clustered near the

step in flow direction, and in the passage upstream of the step.

]3Qundary conditions

* Specified uniform axial velocity at inlet; value of the axial velocity varied

depending of the Reynolds number.

• Specified pressure at outflow boundary.

• No-slip at all wall boundaries.

Results

• Reattachment length for the flow as a function of the Reynolds number is

plotted in Figure 2.12a. Computed results are compared with experimen-

tal results 6.

• Figure 2.12b shows the streamline pattern for Reynolds number = 500.
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2.4.6 Turbulent Flow in a Plane Channel

Problem specification

• Turbulent flow in a planar channel; Reynolds number = 61,600.

• Treated as a developing flow problem, with fully developed flow at the

channel end.

Benchmark data

• Hot-wire measurements by Laufer 7.

Gri.... d

• 50 cells in the flow direction with even spacing. 40 cells in the cross

direction with clustering near the wall for a specified cell width.

Boundary_ conditions

• Uniform flow specified at inlet.

• Constant pressure at the outflow.

• Wall conditions at upper and lower walls.

Physical models

• Standard k-g model for turbulence with wall functions.

Results

How details are shown in Figure 2.13a.

Computed profiles of turbulence kinetic energy and streamwise velocity at

the laststation are plotted in Figures 2.13b and 2.13c. Also shown in these

figures are the experimental data from Laufer 7.
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2.4.7 Turbulent Flow Induced bv Rotating Disk in a Cavi_

Problem specification

• Calculation of the flow induced by a rotating disk in an enclosed cavity.

Benchmark data

• Experimental measurements from Daily and Nece s.

* 40 cellsin the axialdirection,60 cellsin the radialdirectionwith clustering

near the walls.

Boundary conditions

• Specified angular velocity for the rotor walls.

• Wall conditions for all other boundaries.

Numerics and physical models

• Central differencing with 0.05 damping.

• Standard k-g model with wall functions.

Results

Flow geometry as shown in Figure 2.14a.

Normalized radialand tangentialvelocitiesat a given radius are shown in

Figures 2.14b and 2.14c. Also shown in the figures are the experimental

data from Daily and Nece s.
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2.4.8 Flow Between Stator and Whirlin_ Rotor
v

Problem specification

• Flow in the clearance between a stator and a whirling rotor.

• Circular whirl orbit assumed. Calculations are performed in a coordinate

frame whirling with the rotor.

• Solutions computed at whirl speeds of 0.01, 0.5 and 1 times the shaft

angular speed.

Benchmark data

° None.

Gri_._. a

• 40 cells in the circumferential direction and 10 cells in the clearance,

evenly spaced.

Boundary_ condition_

• Wall conditions with wall velocities corresponding to the transformed
frame.

• Cyclic conditions assumed in the circumferential direction.

Numerics and physical models

• Central differencing with 0.05 damping.

• Standard k-e model for turbulence.

Results

Grid and flow geometry shown in Figure 2.15a.

Pressure distribution in the clearance shown at the three whirl frequencies

in Figures 2.15b through 2.15d.
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(c) Pressure Contours, Subsynchronous Whirl C2= 0.50)

(d) Pressure Contours, $ubsynchronous Whirl f_ = 0.01o)

Figure 2.15 Flow in the Seal Clearance for a Whirling Rotor Continued
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2.4.9 Flow Over a Bank of Tubes (Brush Seals)

Problem specification

• Planar flow over a bank of tubes. This flow is similar to that in a brush

seal.

_en_hmark data

• None.

Gri_._Ad

• Three rows of tubes with three tubes in each row considered.

• 60 ceils in both directions; a BFC grid is employed.

Boundary ¢_nditions

• Specified uniform velodty at the inlet.

• Specified pressure at the outflow.

• Symmetry conditions specified at the two remaining outer boundaries.

• Wall conditions specified on all tube surfaces.

• Tubes simulated using blocked cells.

Results

• Grid and flow geometry is shown in Figure 2.16a.

• Computed pressure contours for this flow are shown in Figure 2.16b.
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2.4.10 Annular Seal Fl0w

Problem specification

• Calculation of turbulent flow in an annular seal.

Experimental _iata

Gri___dd

• Experimental data by Morrison, et al. 9.

• 25 cells in the radial direction, 58 cells in the axial direction; cells in radial

direction clustered near the walls.

Boundary_ conditions

• Experimental profiles of the velocities and turbulence quantifies at inlet

boundary.

• Specified pressure at the outflow boundary.

• Wall condition with specified angular speed at rotor wall.

• Stationary wall conditions at stator wall.

Numerics and physical models

• Central differencing with 0.01 damping.

• Standard two equation k-e model for turbulence.

Results

• Geometry of the rotor is shown in Figure 2.17a, and the experimental

setup is shown in Figure 2.17b.

• Computed and experimental contours of the axial, azimuthal and radial

velocities are shown in Figures 2.18, 2.19 and 2.20, respectively.

• Figure 2.21 shows the computed turbulent kinetic energy profiles.
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2.4.11 Seven Cavity Labyrinth Seal

Problem specification

• Calculation of turbulent flow in a seven-cavity labyrinth seal.

Ex-oerimental data

• Experimental data by Morrison, et al. 1°.

• 30 cells in the axial and radial directions per cavity.

• 10 cells in the radial clearance between the rotor tooth and the stator.

• Stretching used to cluster the grid near the rotor and stator walls.

Boundary_ conditions

• Experimental profiles for velocities and turbulence quantities

boundary.

• Specified pressure at outflow boundary.

• Wall condition with specified angular velocity at rotor walls.
• Wall conditions at stator wall.

at inlet

Numerics and physical models

• Central differencing with 0.01 damping.

• Standard two equation k-e model for turbulence.

Re_ul_

• Detailsof the rotor are shown in Figure 2.22a,and the experimental setup

isshown in Figure 2.22b.

• Computed and numerical velocityvector plots are shown in Figure 2.23.

• Computed and experimental contours of the axial,radial and tangential

velocitiesare shown in Figures 2.24,2.25 and 2.26,respectively.

• Figure 2.27 shows computed contours of the turbulent kineticenergy.
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3.0 Industrial Code SPIRALG - Gas-Lubricated, Spiral Groove, Cylindrical and Face

Seals

Spiral groove bearings and seals are used to provide stability, load support and pumping for both cylindrical

and face seal geometries. In the case of a cylindrical seal, grooves are usually designed to pump against

each other in a symmetric arrangement to provide enhanced stability. A lightly loaded cylindrical seal

operating at a low compressibility number will produce a force that is neady 90 degrees out of phase with

the displacement which will tend to destabilize the rotating shaft. The introduction of spiral grooves can

significantly Increase the component of force in phase wtth the displacement and decrease the out of phase

component thereby Improving stability.

In the case of a face seal or thrust beadng, spiral grooves are often Introduced as the pdmary means of load

supporL Since a symmetric arrangement is not possible In a redial geometry, the grooves are usually

designed to pump towards an ungrooved dam region. The resistance of the dam region Increases as the

film thlckness decreases hence the pumping pressure rise Increases thereby gMng dse to a positive axial

stiffness. The spiral grooves can also be used to pump against an appliad pressure gradient thereby

resulting in either reduced or reversed leakage.

The computer code SPIRALG predicts performance characteristics of gas lubricated, spiral-groove,

cylindrical and face seals. Performance cheractedstics include load capacity, leakage flow, power

requirements and dynamic characteristics in the form of stiffness and damping coefficients in 4 degrees of

freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance charactedstlcs

are computed as functions of seal and groove geometry, loads or film thicknesses, running speed, fluid

viscosity, and boundary pressures.

The basic assumptions that have gone Into the computer code are listed below:

I. The flow is assumed to be laminar and Isothermal.

2. Inertial effects are neglected.

3. The gas is assumed to be ideal.

D The film thickness is assumed to be small compared with seal lengths and diameters but large

compared with surface roughness and the mean free path of the gas.
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o Narrow groove theory is used which characterizes the effects of grooves by a global pressure

distribution without requiring computations on a groove by groove basis. This Involves neglectlng

edge effects and local compressibility effects associated with groove to groove pressure variations.

In general, narrow groove theory is valid when there are a sufficiently large number of grooves so

that 2rsJr_/Ng < < 1, wherep is the groove angle and Ng Is the number of grooves.

So Transient effects are treated with the use of small perturbations on a primary steady state flow.

These transient effects are characterized by stiffness and damping coefficients that are dependent

on the disturbance frequenciss.

° Although displacements and misalignments are treated, machined surfaces for face seals are

assumed to be fiat and machined dearances for cylindrical seals are assumed to be constant.

The above assumptions still leave the code applicable to a broad range of applications. Seals generally

have small clearances and {]asses have low densitles resultlng In sufficiently low Reynolds numbers for

laminar flow. Practical designs should contain a fairly large number of grooves to ensure smooth, Isotropic

operation. At high sealed pressure differences, the Now could become sonic thereby invalidating the first

two assumptions but this will usually not be the case and can readily be checked based on the predicted

leakage flow. Elastic and thermal distortions as well as rnachining tolerances should also be estimated to

validate the constant clearance assumption. The overall accuracy of the program will depend on the grid

size used. Factors such as high compressibility or squeeze numbers, small values of the minimum film

thickness to clearance ratio and large values of the length to diameter ratio could require either a large

number of grid points or carefully selected variable grids.
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3.1 Theoretical Development

The first formulation of the equations governing gas lubricated spiral groove bearings is generally credited

to Vohr and Pan [1]'. A more concise formulation is given in a second report [2] by these authors that has

been used by Smalley [3] as a starting point in his generalized numerical treatment of the performance of

spiral groove gas bearings. The work performed by $malley may be applied to both beadngs and seals.

A principal limitation in all of the above references relates to the fact that solutions have only been provided

for one dirnenslonal forms of the equations which have been obtained by IInearizing them based on near

, concentric end aligned conditlon¢ The work described here deals with the numerical solution of the

nonlinear equations for gas lubricated spiral groove seals at both eccentric and misaligned conditions.

Formulation of equations goveming gas lubricated spiral groove seals

For completeness, a derivation of the narrow groove equations for spiral groove gas beadngs and seals

along the lines of that developed in Reference 2 will be provided here. Coordinate variables will be used

to make the equations applicable to both cylindrical and face seals as can he seen with the aid of Figure

3-1. The circumferential coordinate, 8, is as shown In Figure 3-1. The transverse coordinate is described

by the variable, s, which is taken to equal the radial coordinate, r, for a face seal and the axial coordinate,

z, for a cylindrical seal. The quantity r, when It appears will denote radial position for a face seal and should

be set equal to the shaft radius, RIo for a cylindrical seal.

The isothermal, compressible form of the "Reynolds" equation may he written as a flow balance equating

the divergence of the flow vector, ¢1',to the flow per unit area squeezed out by the time rate of decrease

of the film thickness, q_ .

la i laq_
O.ql.r_(rq. ) + r_ " q_ '

(3-1)

The local flow vector ¢1"= _/ + q'j represents the mass flow rate per unit transverse length divided

by the density at a reference pressure, Po, which may be written in vactor form as

"Numbers in brackets refer to references given at the end of this section.

WII

Nomenclature is given at the end of this s_-_n.
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Face Seal

Cylindrical Seal

Figure 3-1 Coordinate system for spiral groove analysis.
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12p Po 2 Po

Sincesurfacemotionwillbe inthecircumferentialdirection,thesurfacevelocityvectorsmaybe written as

u, = re,)1_ and u2 = r_ 21 and the components of ¢!' become

q_ = - h' .p.._lap I + r =, ÷_,pl h
12p Po r 8e 2 Po '

(3-2)

q l =_ I1= .p__apI . (3-3)
121=Po as

The "squeeze film" term or displaced mass flow per unit area due to fllm motion, divided by the density at

P0 is

q_ = ----1 a(P_h) (3-4)
Po at

One could substitute Equations (3-2) - (3-4) for the corresponding flow quantities in Equation (3-1) to obtain

the usual form of the compressible Reynolds Equation which could in principle be solved, for any film

thickness profile, h(e,8) and appropriate boundary conditions, for the pressures or flow components to

obtain the pressure distribution. These could in turn be Integrated to obtain the vadous forces and moments

associated with the given beadng geometry. The torque opposing the motion of say the smooth surface

may be determined, once the pressure distribution is known, by integrating the shear stress relationship that

arises in the development of Reynolds equation

,_,. h_ap__÷ .r == - ='
2rae h "

(3-s)

The difficulty encountered in obtaining full numedcel eolutions to the above equations relates to the

complexity of the grid network necessary to adequately deecdbe the geometry of a surface containlng the

large number of spiral grooves usually required to provide sufficiently smooth pressure distributions to make

the load characteristics Independent of whether shaft displacement Is over a ridge or over a groove. Narrow

groove theory is generally used to circumvent this difficulty (References 1 - 3) It will be implemented here,

as well and is described below

Narrow groove theory provides the limiting form of the solution to Equations (3-1) - (3-5) as the number of
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grooves,No,becomeslarge,withthegrooveangle,p andthegrooveto pitchratio,=, held constant. The

discontinuities in film thickness associated with the grooves will give rise to discontinuities in the pressure

gradients at the ridge-groove Interfaces as Illustrated schernatically in Figure 3-2. The local pressure profile

p' is shown by the sawtooth lines whose lower vertices, for purposes of illustration, are connected by the

"global"pressure profile, p. The global pressure profile does not necessarily lie at the lower vertices of the

local pressure profile but could lie anywhere between the lower and upper vertices. In the limit as the

number of grooves becomes large the curve connecting _ upper vertices will approach the curve

connecting the lower vertices. This limiting behavior is not true of alY_, 8p'_$ or h, which will have

different values over lands and grooves no matter how large the number of grooves. Narrow groove theory

requires the development of expressions for the local (primed) quantities in terms of global quantities that

approach single valued limits as the number of grooves becomes large. The local film thickness and

pressure derivatives over the grooves will be denoted by hO, _iY/a6)O and (_lY/as)¢ respectively and

by he (alY/'de)r and (ap'/3$)r over the ridges. (The subscript r has been used here to denote ridges

for consistency with References 1 - 3 and should not be confused when used in a different context later to

denote the right hand boundary pressure or with the radial position variable, r, which is not used as a

subscript.)

When the number of grooves becomes large, the sawtooth portion of the Iocalpressure variation may be

approximated with linear representations as shown in Rgure 3-2. Thus, equating pressures over a groove-

ridge pair in the circumferential direction

Noting that &Og/&O

equation becomes

Ae" Ae Lae),Ae

= = and AOr/AO • 1 -= and replacing Ap/AO with ap/'d} as &0 -. 0, the above

ae)= Lae j,

The corresponding relationship in the transverse direction,

is obtained in a similar manner.

LaB)o r
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Theremainingtwo equationsrequiredto solveforthefour localpressurederivativesareobtainedfrom

continuityconsiderations.

First,thepressuremustbecontinuousat eachgroove-ridgeinterface,thusthederivativeof thepressure

In the directionof the interface,Vp'o_, must also be continuous. The second requirement is for

continuity of the flow normal to each groove-ridge Interface as measured in a frame of reference moving with

the grooves, ('q' -rr_lhpr/p 0 i)-_lp. The unit tangentand normal vectors for a logarithmic spiral are

given by

= co=i + six], _ = sir_i-co=i •

The first of the above conditions requires continuity of

_--_-rS--_/ + Idn p-_ /

at each groove-ridge interface or

r to_)0 i r t_}, r
(3-S)

• The second condition requires continuity of

! I
(_ - reh-_)=dnp - q_cosp

Po

One may substitute Equations (3-2) and (3-3) for the circumferential and transverse components of the flow

vector at each groove-rldge Interface, respectively to obtaln

].l=.[ r tae), °

hr
12,[ r _ae), - ta=),J + -_-r(ee-e,)sinp .

(3-9)

The density variation term, lY/p o is continuous at each interface and cancels out of Equation (3-9).
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Equations (3-6) - (3-9) represent the four linear equations needed to solve for the local pressure derivatives.

We may obtain the solution by first solving Equations (3-8) and (3-9) for the components of the local

pressure gradient over the grooves in terms of those over the ridges. The resulting equations may be

written as

() "= h;co_l_ +h_sine_ 1 __ + h_-h_slnl3oosl3
s r 60 s

ho , ho r
(3-1o)

+ 6pr(_ a- _l)#dn2p_ ,
$

he

() " " '-(+'/"";"+°"";+°(+'/h_-h;sinpc°sPs r 6e s aS r
o_ O hll r he

(3-11)

- 6pr(. a - wl)a, inpoosp_
$

ho

One may now substitute Equation (3-10) for (ap'lae)l in Equation (3-6) and Equation (3-11) for

(Sp'/&)g inEquation (3-7) to obtain 2 linear equations for the components of the ridge pr'-,=amre gradient

which may in turn be solved to yield the following expressions:

1/_._/ = [ho--(h,# #-hrS)cos_13)]l-_-roe- :(he#-h'#)sinpc°sl_---8_...... - 61_r(ue- u,)=(he-h,)sinl_

r i, aO )r (I - ,)he s ÷ ,h,: '

(_3-12)

-" PTae ....1(__ / (h:-h:)sini_cos 1 81)+ [h:_m(h:_htl)sirrtp)]__

.ri, 8t),= _ .)hoZ..h a

* 61Lr(we - w1),.(h o - h,)sin pomp

The components of the local groove pressure gradimt may ge expressed in terms of the above ridge

components by simple rearrangement of Equations (3-6) and (3-7):

rLae) o a r ae r _ r80 '
(3-14)
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8sg = as r =as
Now that expressions have been developed for the components of the local pressure gradients in terms of

global ones, it is necessary to determine the global flow components q= and oe and a global squeeze film

term qAthat may be substituted for the local ones in the flow balance given by Equation (3-1). These global

flow components are determined by matching mass flow rates over a groove-ridge pair with the mass flows

obtained by Integration of the local flow components over the same interval.

If eo is taken as the circumferential coordinate at the start of a groove, the transverse flow crossing an arc

at fixed s, subtending a groove-ridge pair in the Interval 0o < 0 < 80+&8 is given by the left hand term

in the relationship

!q=lrd e h s , hr p__(_ap._/r,e .q.r,8 "- - =rz_e= 1"2_ Pol, o_ ),

The approximation to the Integral in the above expression was obtained by dividing the Integration Interval,

A8 into sub-Intervals for the groove, A0 o and ridge, &e r and approximating q'=, noting that as the number

of grooves becomes large ap'j_$, wgl approach a constant value within each sub-Interval. Since the

pressure at the groove-ridge interface is continuous, the local density variation term, p'/Po was replaced

by its global value P/Po" The far right hand term in the above expression is based on the definition of the

transverse component of the global flow rate described above. The dght two equalities may be solved for

q= as

hs / s (ao'_
q.'- ..0 p_,f_ap__/ h, P-(1-,)i._-) "12p Po _c_)o 1"_ Po r

(3-16)

One may obtain a relationship for the circumferential flow component oe in a similar manner by Integrating

q'e, given by Equation (3-3), at fixed 8, over a groove-ridge pair ( I 0 < • < lie+& • ), approximating the

integral over each sub-interval as above and equating the result to oe& L The resulting expression may be

written as

qe . - h--_--P-- = l(-aP-_/ hr$ P-C1- =)1(8P/I + r °' + _'_P_[=h,, + (i_ =)hr] (3-17)
121. P0 rl, ae)¢ 121. Po r_,Se)r z Po "

By integrating the squeeze film term qA', given by Equation (3-4), over an area rAO& s, equating it to

qAr&O&S and noting that the groove area fraction will be = and the ridge area fraction will be 1 - =, the
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following expression is obtained:

qA = --- (P[=ho +(1 -¢)hr] ) . (3-18)
P0

The global shear stress qr, may be determined by Integrating the local shear stress _r', given by Equation

(3-5), with respect toe over the Interval 60 < 6 < 80+&8, invoking the narrow groove approximations and

equating the result to _r&6. The resulting expression may be written in the form

Equation (3-1) may now be applied directly to the global flow vector ¢i = qai + q=], as _7o¢i= qA and

by substituting Equation (3-18) for q^ and putting the result in dimensionless form one obtains:

_.(_ . 1 a tRY" laQeR-"_" -') + FI _" " [("++Hr)(1 *P)]
(3-2o)

The components of the global flow vector, oe and q= are given In terms of the local pressure derivatives

by Equations (3-16) and (3-17) respectively. These local derivatives are, in turn, given in terms of the global

ones by Equations (3-12) - (3-15). The global flow components may be expressed completely in terms of

global pressure derivatives by first substituting Equations (3-14) and (3-15) for the local pressure derivatives

over the grooves and then substituting Equations (3-12) and (3-13) for the local pressure derivatives over

the ridges. One may then collect terms and put the resulting two equations In dimensionless form to obtain

the following expressions for the components of the dimensionless flow vector Q = Qel + O=]:

The dimensionless variables associated with the above equations are

(3-=1)

(3-22)

The dimensionless gage pressure P in the above equations is taken relative to the absolute pressure Po
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= 121_R°q' Hr = C'' RoS Ror 2Ae h_thr (3-23)
p=P-P_._oo (_ _ h, S=--, R=--, E=--t, P=

Po ' CSPo

which will henceforth be taken as the minimum of the two boundary pressures in absolute units.

dimensionless parameters associated with the above equations are

A= 8F_)P_ A, =Ag_)=(1 ,,)=inp (_ = ==-=' _ (hg:hr) . I--SL- (3-24)
poC= ' - ' _'6) = I., ' = Ir+l =

and the column matrix containing spiral groove coefficlent¢ ki(= J5,1'), in tho above equations is

The

k m

-(1 - =)(7_ - 1)tsin=p +F =

(1 - =)p1 +,

==(1- =)(P - 1)'t$1nl3oosp

(1 - =)1<1+ =

=(1- =)(P - 1)==o==p+P'
(1 - =)_ + ,,

(PS- 1)

(1 - =)]'1 + ,,

(1- =)r +=
P

0"- 1)sinp
(1 - ")1"= + =

=(I - =)(I "= - I)(1" - 1)slnp cosp

(1 - =)1"= + =

=(1 - =)(r a - 1)(7' - 1)¢o_p + ,,1"+ (1 - =)#

(1 - =:)¢4+ =

(3-25)

Only the first 4 components of k are used in Equations (3-21) - (3-22). The remaining components are used

in evaluating the shear stress. The relationships for Ir1, 1=1,2,3,4 derived here are consistent with

Equation (3.27) of Reference 2.

The global shear stress is obtained by substituting Equation (3-14) for (_p'/'d6)g/r in Equation (3-19) then

substituting Equation (3-12) for _p'[ae)r/r in the resulting expression. The latter result may be expressed

in dimensionless form as
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I[V=A R R aP . H, ael

which is consistent with Equation (3.88) of Reference 2.

(3-2s)

The equations presented thus far are directly applicable to either a cylindrical seal or a face seal. As

mentioned earlier, a face seal is represented in the above equations by setting the transverse coordinate s

equal to the redial coordinate r. This is equivalent to setting S = R Indimensionless form. A cylindrical seal

is represented in dimensionless form by setting S = Z and R ,, 1.

The quantities required to characterize the groove dimensions are shown in Figure 2. If by convention =

is taken to be positive (surface motion in the direction of Increasing 8), then the groove angle, 13,will be

the angle measured from the groove to the direction of surface motion associated with e. A positive acute

value of B will tend to pump in the positive S direction If the grooves are on the stator and in the negative

S direction for grooves on the rotor. By setting the groove depth parameter _ = O, P becomes 1 and

Equations (3-20) - (3-26) reduce to those for ungrooved seals. By treating k and 8 as sectionally continuous

functions of S, these equations may be applied to composite smooth and grooved geometries with Q= and

P held continuous at all transition boundaries.

The film thickness relationship for H r, which may be applied to either a cylindrical seal or a face seal Is

Hr - 1 - % - (e=.tS)cose - (ey-#S)sine (3-27)

with Zz = 0 for a cylindrical seal and ex = _y = 0 for a face seal.

The boundary pressures will be taken to be Pl and Pr at the Inside and outside radii respectively for a face

seal or at the two ends (z = -I./2 and Z = I./2) for a cylindrical seal. This is expressed In dimensionless

form

P - P, atS -S,, P - PratS - St. (3-28)

The remaining boundary condition relates to periodicity with respect to e which requires P and Qe to have

the same values at 6 = 0 as they do at e = 2_:

P[e.o" P]..=, end O, le.o" Qele.=. • (3-29)

The above treatment is Intended to represent • complete statement of the mathematical problem for
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determining the pressures and surface shear stresses in plain or spiral groove face or cylindrical seals. The

rest of this section will deal with the numerical determination of the pressure distribution and the

computation of related quantities such as loads, leakage, power loss, stiffness and damping.

Discretization of pressure equations

Discretization will be carded out with the use of the cell method [4] which Involves the performance of a flow

balance about each Interior grid poinL One may Integrate Equation (3-20) over an arbitrary control area

.within a seal

and apply the divergence theorem to the first Integral on the left to obtain the relationship

_(_'_dS+ I-_[(,,+ .Hr)(1 +P)]dA- 0 .
(3-30)

which will be used as a starting point in the discretization process.

A grid network may be set up along with flow control areas about each grid point as shown In Rgure 3-3.

The grid will contain M lines In the S direction Including boundaries and N lines in the 0 direction from

8 = 0 to 6 = 2z, Inclusive. The grid points at the Intersections of these Iinea are noted by the solid circles.

Flow control areas to be used in evaluation of the Integrals In Equation (3-30) are set up about each grid

point as shown by the shaded area in Figure 3-3. The comers of the flow control area denoted by the

shaded points marked 1,2,3, and 4 are located at the geometric centers of the rectangles formed by the grid
4"

lines and will be referred to as half grid points. The flow components labeled Q i= etc., represent the

components of the flow vector in the positive coordinate directions as Indicated by the arrows. The

subscripts (12 etc.) refer to the line connecting points 1 and 2, and the superscripts (+,-) refer to the

positive or negative side of the point of Intersection with the grid line.

We will adopt the convention that the subscripts i,j refer to grid points and subscripts such as i+½,J+_ refer

to half grid points. The value of the radius R at half grid point 2 would thus be Ri._. The differential cordrol

length, dS, in Equation (3-30) will be approximated by the lengths of the vadous Iinea or arcs bounding the
+

flow control area thus AS _'=refers to the length of the line associated with Q 12 descdbad above which for

this example would be & SJ2. Similarly the arc length associated with Q14would be & S;4 = RI+,AA0j.1/2.
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e

1,J+1

Figure 3-3 Schematic of grid network and flow control area for discretization process
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The area element dA will be made up of the parts of the flow control area In each of the four quadrants

about the center point (l,j) and numbered based on the shaded half grid point that each contains. Thus

A_, 1 = (RI+Ri+_,)&ej&SJ8, etc. and the discretized form of Equation (3-30) may be written as:

O,=&S,= +Q,=&S,= + QI*d&SI*4 ÷ QI"4AS1"4-Q_&_ - Q_&_- Q;,&S_, - Q=_,_S=_. (3- 3] )

The flow components on the left hand side of Equation (3-31) are obtained from discretizatlon of Equations

(3-21) and (3-22). A numbering system for the 9 pressures at the grid point (i,j) and the 8 surrounding

points is shown in Figure 3-1, where P1 = PI+I,H, Ps = Pi,i etc. The determination of the flows out of the

sub-area containing the half grid point labeled 1 is discussed here as an example. The flow component

Q _2, is determined from Equation (3-21). The derivative of the pressure normal to the line connecting points

1 and 2 is evaluated at the Intersection of the line with the grid line. The tangential derivative Is evaluated

at the haft grid point, 1 as the average of the difference between I=3and P6 with that between P2 and P=p

divided by A Sr Thus,

laP ,, Pe - P_._..__!8¢IP , (P= - Pe) + (P= - Pi) (for O1"=).
R _ R,AOI ' aS 2&S e

The flow component O_"4 Is determined in a similar manner from Equation (3-22). The normal derivative is

approximated as the difference between P= and Ps divided by d SI and the tangential derivative is

approximated as the average of the differences between P3 and Pz and Ps and Ps, divided by Ri+_&0 j.

o_P , P= -P_..._._=, 181 = , (Ps - P=) + (Pe - Ps) (for a;',=).
¢_ AS e R o_ 2 P,=_&Sj

For both of the above flow components the pressure in the (1 +P) term appearing In Equations (3-21) and

(3-22) Is evaluated at the half grid point by averaging the four surrounding pressures (P2+P3+Ps+P6)/4.

All of the remaining quantities (R, Hr k1, k.a k3, k4, =, p and _ ) are evaluated directly at the half grid point.

The flow balances over the other quadrants are performed ina similar manner. For steady state conditions,

the right hand side of Equation (3-31) will be 0 and the flow balance about any interior grid point (I,J) may

be written in the form
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F! (Hr, P1. P2, Ps, P4. Ps, PG,1=7.Po, Pe) = 0 (3-32)

The definition of Fij may be extended to make Equation (3-32) applicable to the ends of the seal as well as

the interior points by applying Equation (3-28) at the endpoints as follows:

Fll =Ps-P, (I,,1) and Ful "Ps- Pr (I=M) .

The solution to Equation (3-32) may be used to provide all of the steady state quantities such as pressures,

forces, moments, flow rate and power loss. The Inclusion of the right hand side of Equation (3-31) will be

necessary for determination of frequency dependent stiffness end damping coefficients which will be

discussed later.

Newton-Raphson Iinearization procedure

The Newton-Raphson [5] procedure Is perhaps the most widely used method for obtaining solutions to non-

linear systems of algebraic equations and is described in many textbooks on numerical methods such as

Reference 5. A procedure similar to that used here Is described In a paper by Artiles, Walowtt end Shapiro

(6].

The procedure is started with an Initial pressure distribution that satisfies the end conditions given by

Equation (3-28). A new set of approximations to the pressures in Equation (3-32), PkMw may be obtained

by lineadzing Fi about a previousJy established sat of approximations Pk aS follows:

F,. o
k=l O_Pk

where a forward difference

.._ . F|(Hr,P,,-,Pk+vI,--,PI) - FI(Hr, PI,...,Pg )

8Pk

(3-33)

may be used to numerically evaluate the partial derivatives.

Pressures without the superscript new relate to the previous or "old"approximation. It should be noted that

the function Fij will not be 0 unless the pressures comprIsing its arguments are exact. If we go back to

using grid notation for P (PIJ in place of Ps etc.) and introduce the column vector {pjnew} as the M new
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pressures at the Jth column of grid points, Equation (3-33) .nay be written in the following form:

[CI]{PI "°*} + [EJ]{PI__} + [DI]{Pp'_} - {R !} . (3-34)

where [Cl], [Ei] and [Dl] are td-diagonal matdces whose intedor elements, from Equation (3-33), are

C_.- _=1 F._._- _1 D_,. - _ k--1,0,1 : I-2,_,M-1 .
aPl_kJ ' o_)14rJ_l ' o_pi4cj.1 '

The Interior elements of the column vector {R j} are

1

RIJ _ + +. (c,!,_.e,.., ' J eF_.,.kP,._,j-1 DU.k 0*k.J.1)- Fq
k--1

The above equations may also be applied to the comer elements to produce the result

C J, - CIM_ - 1, E_., - EIM.M" D_., - I_. - 0, R I " P,. R-J-" Pr

Equation (3-34) represents a linear system of simultaneous equations that may be solved by various matrix

inversion procedures. The method used here Is the column or transfer matrix method, which Is described

in References 4 and 7. It has been used extensively in solving finite difference problems associated with

vadous forms of the lubrication equations and produces accurate results In a fairly efficient manner.

Convergence of the Newton-Raphson procedure is generally obtained within 3 - 6 Iterations depending on

degree of nonlinearity and the accuracy required.

Determination of loads, moments, torque and leakage

The dimensionless loads and moments may be obtained by integrating the pressure distribution over the

seal area as shown below:

=1 Sr 211 _r _lll Sr

W.- f f ecosOadSdO,V_y-f f PslnORdSdO, _/,- f f eRdSdO.
o s_ o_ o q

_=.- f f PsinORSdSdO,

bs,

_,- f f P=sORSdSdO.
o s_

(3-ss)
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The dimensionless torque is obtained from Integration of the shear stress given by Equation (3-26) over the

seal area:

=,,8,

_' = sign(_) / / _ RdSd0.
0 s_

(3-36)

The sign(_) term has been added to make the torque positive when it opposes the net surface motion

regardless of which surface (smooth or grooved) is moving.

Finally, the dimensionless leakage flow, Qin going Into the seal at S = SI may be obtained from Integration

of Oe, given by Equation (3-21), over the cimumference of the seal:

Q_ = _=QeRd6. (3-37)

The integrand in the above expression is evaluated by summing the flow components to the right of the first

6 grid line in the same manner as that used in developing Equation (3-31). It should be noted that any

value of S can be used since QJnIs independent of S.

The physical quantities corresponding to the dimensionless ones given above are

.. CIP0(__ R_P0C_" (3-38)
WI_y_I'R_P°_/Ir'Y't}' MIx'_I'R°Sp°IQII=_' q_ 1-_ '' T-

In the above equations the loads Wx and Wy apply only to a cylindrical seal and Wz applies only to a face

seal. The leakage flow qin is the volumetric flow rate going Into the seal measured at pressure Po"
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Determination of stiffness and damping coefficients

Equation (3-20) with flow components Oe and Q= given by Equations (3-21) and (3-22) represents a second

order non-linear partial differential equation that may be used to define a second order non-linear operator

G, such that

G(P, Hr) - ---_-[(,,g + H,)(1 + P)] .
(3-s9)

The deterrnination of P under steady state conditions, where the right hand side of Equation (3-39) is 0, was

described sedler in this section. These steady state pressures wig now be referred to as _. The vadous

eccentricities and rotations used in determining Hr from Equation (3-27) may, for convenience, be put in the

form of a row matrix as

[ [%,_,t], (face seal)
(3-40)

[=] " _[[%,¢/.4).Ir], (shaft seal)

and Equation (3-27) may be written as

Hr - 1 + [G]{e} , (3-41)

where the column vector {a}is given by

l-1 ,Seine,-scose}, (faceseal){e} - {-cose,-zine,ssine,-scose}, (shaftseal)
(3-42)

One could develop a perturbation analysis for prediction of stiffness and damping coeffidents with the

following procedure: (a) perturb say the ith component of the eccentricity matrix in Equation (3-40) by _le',

where 11 is a small parameter and c' Is time dependent; (b) express Hr In the form Hr = FI + 11G'{a} and

the corresponding pressures as P = jb + _!{P'}; (c) substitute the above expressions for P and H r in

Equation (3-39); (d) expand the resulting expression neglecting terms of order tl 2 and higher; (e) collect

terms of order tl. The resulting expression could be written in the form:

St{W} +{bl='= -(=8+R)a-_. PI - (l+_){a}_ ,
a at

(3-43)

where St is a second order linear operator given by
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a, ÷ a (:3-44)

The coefficients in the above equations (A1, A2, {b} etc.) will depend on the coordinate variables as well

as P, _ and their various derivatives. Only the form of the above equations is Important to the numerical

procedure under development and the significant amount of algebraic manipulation required to determine

these coefficients will be shown to be unnecessary.

If the time dependence of the eccentricity is restricted to oscillatory disturbances one may set e' = •_'_

and look for sdutlons In the form {P' } = {P*}e s'_, where {P*} is complex but Independent of time.

When this transformation is Introduced Into Equation (3-43), the result is

StIP'} + {b} - -_o[(ai*A)lP'} + (1 +l_)(a}] (3-45)

The representation of {P°} and the eccentdcity coefficients {a} as column vectors relates to the fact that

each of the eccentricities must be perturbed to obtain the compete stiffneas matrix but Equation (3-45) is

solved Independently for each perturbation. The pedodic boundary conditions given by Equation (3-29) also

apply to Equation (3-39) (continuity of {P'} and a{P'}/'d8 is sufficient when Hr and the spiral groove

coefficients kt,_,k 4 are continuous functions of 8 as they are here). The end boundary conditions given

by Equation (3-28) become {P'} = 0 at S = SI and S = Sr

If Equation (3-45) were solved for {P'} subject to the above boundary conditions, all of the dirnensionless

stiffness and damping coefficients could be obtained by substituting {P°} for P in Equation (3-35). The real

parts of the computed forces and moments would be in phase with the eccentricity perturbations and

constitute the dimensionless stiffness coefficients. Thus k_ would correspond to the real part of _/y

computed from the component of {P"} associated with the perturbation in • x and k_y would correspond

to the real part of _1x computed from the component of {P°} associated with the perturbation in Gy etc.

In a similar manner, the dimensionless damping coefficients which are 90' out of phase with the eccentricity

perturbations would be obtained by dividing the imaginary parts of the forces and moments computed In

the manner described above by o.

The parameter a, is a dimensionless disturbance frequency referred to as the "squeeze number" and is given

by o = 2An/e where n is the angular velocity of the disturbance. The limiting form of the stiffness and

damping coefficients as a -- O, is of Interest as it applies to Incompressible flow, and the limiting stiffnesses

are used in the homing procedure that has been Implemented for determining eccentdcitles from given loads

which will be described later. This limiting form may be obtained by expressing Equation (3-45) in terms
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of its real and imaginary parts as

_{Pi} + {bl - o2(=J +I:I){Pa} , (3-46)

2{P=} " -(¢8 + A){P.} - (1 + 15){a} (3-47)

where

{p.} . (p=} + 8olpe} . (3-48)

The column vectors {Pro} and {Ps} are the "stiffness"and "damping" pressures respectively. If one formally

sets o = 0 In Equation (3-46) it decouples from Equation (3-47) and may be solved directly. Since the right

hand side of Equation (3-46) becomes 0, the stiffness pressures are the same as those that would be

obtained by computing the steady state pressures at a perturbed eccentricity, subtracting the unperturbed

pressures and dividing by the eccentricity parturbation. This latter method is frequently used for computing

steady state stilfneseas in incompressible flow and has been Implemented here for the computation of

"stiffnesses at 0 frequency" used in the above mentioned homing procedure. The 0 frequency damping

pressures may be obtained by solving Equation (3-47) wlth {P=} as determined from the solution to

Equatlon (3-46).

The above discussion assumed that the perturbation coefficients In Equations (3-40) - (3-42) were

determined prior to setting up the finite discretized equations for their solution. Identical results can be

achieved by direct numerical perturbation of the difference equations. This approach, which has been

Implemented here and Is described below, avoids algebraic error in determining the perturbation coefficients

and may be used in complex situations where analytical determination of the perturbation coefficients is not

feasible.

After desired convergence of the Newton-Raphson process has been achieved under steady (unperturbed)

conditions one may denote the resulting steady state pressure vectors as {_j} and the coefficient matrices

as [_J], etc. and Equation (3-34) may be written as

[(_l]{I51} + [¢:l]{i_j_,} + [l_J]{l_l.,.=} - {i_ j} . (3-49)

One may now perturb the kth component of the eccentricity vector by an amount _, recalculate [_i] at the

new film thickness (but old pressure distribution, _) then subtract [_i] at the old film thickness and divide

the difference by tl to numerically obtain the derivative of [_J with respect to c k which will be denoted by



[_iJ_].Thus

- [OJ]l.,

The matdcas [EJ_], [_J and {RJJ=}are obtained in a similar manner from the other coefflclent matdces.

If we introduce a disturbance to • k of magnitude ('q, as was done in dedving Equation (3-43), then the

change In the coefficient matrix [_i] would be e'_ [_i.k] with corresponding changes inthe other coefficient

matrice¢ If we disturb Equation (3-49) by replacing {i_j} with {_j} +. {l_k}, [h.j] with [_i] + e'n [_i.k],

etc. and collect terms of order 11, the following expression is obtained:

If we set e' to unity In Equation (3-50) then {p_k} will become the 0 frequency stiffness pressure (the

change in steady state pressure per unit change In eccentricity). It should be noted that the coefficients of

the 0 frequency stiffness pressures in Equation (3-50) are the same as those for the steady state pressures

in Equation (3-49); only the right hand side has changed. Equation (3-50) thus represents the construction

of the discretlzed form of Equation (3-43) when e = O. In order to complete the process for e ,= O, one

may Introduce the same disturbances to the right hand side of Equation (3-31), with Hr = [t + e'_ {a} and

add the terms of order _ to the dght hand side of Equation (3-50). The terms to be added are

_([CJ]{l_k)*{--Rl'k}(')/at, where ["Cj] are diagonal matrices whose components are

and {"R!_} are column vectors whose components are

" -+ " ,+5.4+", ,"- " - (+.5=)
Rpk=(1 +ISI)(aI_.I_AA,,i ai_.l_ ai--pl-,; Am +ai_.l_AA=)'(1 +1511) .

The far right side of Equation (3-52) is a quadradically equivalent mprasentatlon that was used in the

computer program described in Section 3. One may now set e' = _ in Equation (3-50) and look for

solutions in the form {_k} = {p_k}em,_' by introducing these substitutions into Equation (3-50) and

combining terms to obtain the final set of linear difference equations for the complex stiffness pressures

{p;k}:

[C.J]lpj.k) + [[_ j]lPj._k) + [01]{pl-k} = [Rl.k} _ [(_l.k]lPi } _ [_J_]{Pl-' } -[Ol'k] [ISJ" } ' (3-S3)
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where [C °j] = [_:J] + _le [CJ] and {1:1j_} = {_J,k}. _le {-RJJ¢}.

The system of equations given by Equation (3-53) has been solved by the column method In a directly

analogous manner to that used in solving Equation (3-34). The principal difference lies in the fact that all

of the matrix operations were performed using complex arithmetic. The dimensionless, frequency dependent

stiffness and damping coefficients were computed from the complex stiffness pressures in the previously

described manner. Relationships of the following type may be used to calculate the physical stiffness and

damping coeft_ents from the dimensionless ones:..

. K... x,.. (3-s4)

and

(3-ss)

where K0 = PoRo2/C and B0 - 12_Ro4/C 3.

Optimization of groove perametem for maximum stagnation pressure in • concentric cylinddoal seal

Since spiral grooves are solely responsible for the axial stiffness of an aligned, gas lubricated face seal with

parallel surfaces under steady state conditions, it is often desirable to optimize groove parameters for

maximum axial stiffness. An optimization procedure for doing this has been Implemented in the computer

code SPIRALP descdbed in Reference 8. The analogous situation is not as evident in a concentric gas

lubdcated cylindrical seal which will have considerable, if not maximum stiffness without spiral grooves. A

large portion of the stiffness in the absence of spiral grooves will be cross coupled, particularly at low values

of A, thus giving rise to stability problems which may be alleviated with the use of spiral grooves. The

criteria for optimizing groove geometry from a dynamic standpoint would thus depend on both the desired

load capacity and the vadous other elements in the system affecting rotordynamlc performance.

An alternate approach for developing • stand alone criterion for optimizing groove geometry in a cylindrical

seal is to maximize the pressure gradient that the grooves can generate at stagnation. If the grooves are

being used to pump against a pressure gradient, the maximum stagnation pressure gradient would represent

the maximum pressure gradient that the grooves could pump against without allowing any net flow to go

through. It would also represent the maximum axial pressure gradient that the grooves could generate in

an aligned, symmetric herringbone bearing in the absence of an Imposed pressure gradient. In any event,

the stagnation pressure gradient is a strong measure of spiral groove performance and even though

optimizing it Is not a precise criterion for optimizing dynamic performance, computations obtained with
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geometries optimized in this manner should provide a strong Indication of the maximum benefits obtainable

with the use of spiral grooves.

The stagnation pressure gradient for a cylindrical seal under concentric conditions may be obtained from

Equation (3-22) by setting Q= = 0 (stagnation), aP/ae = 0, H r = 1 (concentric), S = Z and R = 1

(cyflnddcal seal). The resulting equation may be solved forAP/AZ making use of the definition ofA 6 given

by Equation (3-24) and the definitions of kt and k4 given by Equation (3-25) to obtain the following

relationship

- A(__=(1 -=)sinpcosp(r = -1) .
az =(1 - =)(P- 1)=¢n=p+_ '

The right hand side of the above equation may be treated as • function of =, p and _ (I' = 1 + 8 ) and has

a maximum value ofaP/_Z = 0.09118AG at=op t = 0.5, Popt = 0.2736 (15.68")and8 = 2.653.

The variation of the pressure gradient near the optimum point is shown In Figure 3- 4. The curve marked

= was obtained by holding p and _ at their optimum values and varying =, The other curves were obtained

in an analogous manner. The curves show the sensltivlty of the optimum pressure gradient to the vadous

parameters and verify the exlstance of a relative maxlmum at the optlmum point,

Other approaches to the optimization problem are given In Reference 2 for spiral groove beadngs and

Reference 9 for spiral groove viscous pumps.
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Figure 3-4 The variation of the stagnation pressure gradient about the optimum point

3-26



3.2 Description of Computer Code SPIRAL(] and Subroutine SPIRAL

A FORTRAN subroutine, SPIRAL, has been wdtten to implement the analysis developed under Section 3.1.2

in dimensionless form. The analysis has been programmed In this form to permit easy Incorporation into

the knowledge base system currently under development. SPIRAL and Its associated sub-programs

constitute a self contained system that has no input-output other than the arguments passed to it through

SPIRAL and is thus Independent of the operating system. SPIRAL has been compged, in Its present form

with Version 5.0 of the Mlcrosofte Fortran Compiler and should work with many other compgers with

relatively little modification. Significant user information is Included In the Users Manual, Reference (I0).

The analytical procedure contained in Section 3-2 has been oriented toward determining pressure

distribution, load, flow, torque, stiffnessand damping for a given film thickness distribution. In practice it

is often desirable to determine the equilibrium film thickness or eccentricities from prescribed loads and

possibly moments. SPIRAL provides a homing option for determining the eccentricities based on the steady

state bearing stlffnesses. This homing option is based on the procedure described below.

If one were to write the dimensionless load and eccentricity as column vectors {_V'} and {G} (transpose row

matrix [c]) and take the previous estimate (or Initial guess) of {_} as {_ }old and the load vector computed

from {e }old as {_/}old, the steady state stiffness matrix [r(] could be used to arrive at a new approximation

for {= }. The method for doing this is shown by first writing the equation for the change in load as

{_V} - {W}old = [K] ({e } - {E }old)" The new approximation to k} is obtained by inverting the stiffness

matrix and solving for {G} as k} = {G}old + [_]-l({_f/}. {l_f}okl). This approach is in effect the

application of the Newton-Raphson method for determining the eccentricities.

While the above approach can be very effective it can also diverge if the Initial guesses are bed. This

divergence Is usually accompanied by the generation of negative film thicknesses In the course of the

iteration process. In order to attempt to correct this problem, an optional numerical damping algorithm has

been Implemented which replaces {G} with {c} = (=}old + p[r(]t({_ - {1_P/}okl)when the originally

calculated value of {=} would result in a negative film thickness.

The cell method of discretization is designed to obtain quadratic accuracy. Numerical testing Indicates that

this has apparently been achieved. One may make use of this property to obtain greater accuracy, (or the

same degree of accuracy with coarser grids and ensuing reductions In computer time) with the use of

Romberg extrapolation. Suppose for example we computed the dimensionless torque TI"with a coarse grid

and denoted it by =ro then halved the grid spacing in both directions and recomputed rr denoting It as rrf

(subscript denotes fine grid). If the truncation error were to approach 0 as the square of the grid spacing

and rrr were the true solution then (=rf- =l'r)= _1"©- rrr)/4, or _r = (4rl'f" fro)�3. The above extrapolation
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can, inprincipal, increase the rate of convergence from quadratic to cubic. The subroutine SPIRAL, provides

the option of implementing Romberg extrapolation.

The logic used in SPIRAL for performing the pressure Iterations, computing stiffness and damping

coefficients, homing in on eccentricities and Implementing Romberg extrapolation is shown in Figure 3-5.

It can be seen there that when the homing process Is Implemented, It Is completed for both coarse grid

and fine grid solutions prior to performing the Romberg extrapolation. The extrapolation is thus performed

with sdutions obtained at two different displaoements. When the dIsplacements are specified, extrapolations

are performed with solutions obtained at the same displaoernent, which b believed to be a more accurate

approach. If one were to compute displacements for a given loading and then recompute the loading from

the dIsplacements using Romberg extrapolation for both computations the computed loading would thus

differ siightly from the Input loading even though all tolerances were met. The degree of thIs difference will

depend on the grid size and oaution should be exercised in using Romberg extrapolation when homing in

on the displacements with very coarse grids.

3-2S



t

Initialize ]pressures i _ I _'tatt J_
set grid, etc.J

Figure 3-5 Flow diagram for logic used in SUBROUTINE SPIRAL

3-29



3.3 Sample Problems

A number of sample problems have been prepared to demonstrate the behavior and various features of the

computer program. They are Intended primarily for Illustration and do not necessarily represent

recommended seal designs.

Cases 1 - 3 serve to show the Improvement in accuracy that can be obtained with the use of Romberg

extrapolation for a concentric, asymmetric cylindrical seal. The seal is divided into two regions of equal

length as shown in Figure 3-7. The atatlona_ surface in the first region has a groove geometry optimized

for maximum stagnation pressure as described at the end of Section 3-2. The grooves am oriented to

produce a pumping component in the positive axial direction to partially offset the larger negative one

caused by the imposed pressure gradient. The second region is smooth. The case 1 results were obtained

without the use of Romberg extrapolation. Romberg extrapolation was used In Case 2 with coarse grid

solution obtained for the same grid geometry as used in Case 1. Since the grid spacing is halved in each

direction when obtaining the fine grid solution, Case 2 should represent a much more accurate solution than

Case 1. It also took approximetely 11 times as long to run. Romberg extrapolation was used in Case 3 with

twice the grid spacing as that used In Case 2 and took only 25% longer to run than Case 1. The direct

stiffness coefficisnts, Kxx,calculated for Cases 1 - 3 are 54684, 57622 and 57342 Ib/in, respectively. Using

Case 2 as a standard, the error in the Case 1 stiffness is 5.1% while the error in the Case 3 stiffness is only

.5%.

A symmetric "herringbone groove" pattern is used in Case 4 with the same overall geometry as that used

In Cases 1 - 3. The groove pattern on the stator in region 2 IS the same as that for region 1 wtth the

exception of the sign of the groove angle. The grid geometry IS the same as that used In Case I but the

operating conditions differ in that there Is no Imposed pressure gradient and the shaft IS displaced in the

x direction and tilted about the y axis. It can be seen that the Imposed displacement and tilt produces non-

zero values for the calculated forces and moments. The results of Case 5 were obtained by proscribing the

forces and _nts computed for Case 4. The Initialguess for the shaft displacement for Case 5 was taken

to be somewhat larger than prescribed for Case 4 and Initial guess for the tilt was taken as 0. The

displacements calculated for Case 5 are essentially the same as those imposed in Case 4. Case 6 illustrates

the usa of the program with SI units.

The remaining 2 cases correspond to a mechanical face seal under a very high Imposed pressure gradient

with spiral grooves on the outside surface of the stator odented to pump Inward with the pressure gradient.

The stator geometry is shown schematically In Figure 3-8, with the land width somewhat enlarged for clarity.

The inward pumping is Induced by the counterclockwise motion of the rotor. Solutions to this problem will
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be approximate in nature in that choking is likely to occur (not treated here as a result of assumed

Isothermal flow with negligible Inertia) which will raise the effective film pressure at the inside radius to a

value somewhat higher than that prescribed. These cases are provided to Illustrate the use of the program

with a face seal and the evaluation of the internal accuracy of the program. Case 8 was obtained by halving

the grid spacing used in Case 7, in both directions. This procedure provides a test for truncation error,

which is small in this case, that is recommended for frequent use in determining appropriate grid spacing.
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Figure 3-6 Schematic of shaft seal for Cases 1 - 3
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( CASE 1 ) Asymmetric cyl. seal with grooves pumping against pres. grad.

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, C_CE- 2.0000E+O0, 2.0000E+O0, 5.0000E-04 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.0000E+04, 1.0000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.4700E+01, 6.4700E+01 (PSI)

VISCOSITY - 2.9000E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01 (PSI)

ITERATIONSAND _OR CODE IS LAST P_SSV'_ =ALC_TION - 3 0

CALCULATED FORCES IN X.Y DIRECTIONS - -2.1540E-14..2927E-14 (IN-LBICALCULATED MOMENTS ABOUT X,Y AXES -8.6002E-15, -2 I 2544E-13 (LB

MZSZ_a_ FILM THIC_ESS - S.0000E-04 (IN)

FLOW--2.1757E+00 (IN**3/SEC)MEASUREDAT 1.4700E+01 (PSI)

TORQUE - 7.4543E-02 (IN-LB), FILM POWER LOSS - 1.1827E-02 (HP)

COMPRESSIBILITY NUMBER - 4.9582E+00, SQUEEZE NUMBER - 9.9163E+00

DYNAMICCOEFFZCI_S ( FORCEUNZT/ DZSP. UNIT )

Kx 5 x IN) IN) vhl (PAD) Dsl (RAD) UNIT-2.7046E+04 -5.0468E+04 LB
Ky -3.0916E+04 5.4684E+04 6.0468E+04 -2.7046E+04 LB
Kphl 7.8082E+03 -8.1693E+03 -3.4030E+03 1.0593E+04 IN-LB
Kpsi 8.1693E+03 7.8082E+03 -!.0593E+04 -3.4030E+03 IN-LB
Bx I.I158E+02 -2.9219E+01 1.8107E+01 6.2395E+01 LB-SEC
By 2.9219E+01 I.I158E+02 -6.2395E+01 1.8107E+01 LB-SEC
Bphl -I.0745E+01 -1.7276E+01 1.7903E+01 -7.7389E+00 IN-LB-SEC
Bpsi 1.7276E+O1 -I.O745E+01 7.7389E+00 1.7903E+01 IN-LB-SEC
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( CASE 2 ) Rombergextrapolation with coarse grid the same as Case 1

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+O0, 2.0000E+O0, 5.0000E-04

ROTATION SPEED, DISTURBANCE SPEED - 1.0000E+04, 1.0000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.4700E+01, 6.4700E+01

VISCOSITY - 2.9000E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCULATION - 3 0

CALCULATED FORCES IN X,Y DIRECTIONS - 3.0897E-13..32_9E.13 (IN-LBICALCULATED MOMENTS ABOUT X,YAXES - -9.7768E-14, 1 I 7781Eo13 (LB

MINIMUM FII_ THICKNESS - 5.0000E-04 (IN)

FLOW - -2.1749E+00 (IN**3/SEC) MEASURED AT 1.4700E+O1 (PSI)

TORQUE - 7.4550E-02 (IN-LB), FILM POWER LOSS - 1.1829E-02 (HP)

COMPRESSIBILITY NUMBER- 4.9582E+00, SQUEEZE NUMBER- 9.9163E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. x IN) IN) uhl (RAD) usl (PAD) FORCEUNIT
Kx 5.76_2E+04 3._5_7E_04 LB-2.9332E+04 -5.4855E+04
Ky -3.2577E+04 5.7622E+04 6.4855E+04 -2.9332E+04 LB
K_hl 8.1664E+03 -8.4866E+03 -3.6583E+03 1.2003E+04 IN-LB
Kpsi 8.4866E+03 8.1664E+03 _.2003E+04 -3.6583E+O3 IN-LB
Bx 1.1837E+02 -3.1897E+01 "2 .0183E+01 6.7544E+01 LB-SEC
By 3.1897E+01 1.1837E+02 -6.7544E+01 2.0183E+01 LB-SEC
Bphl -1.2229E+01 -1.8217E+01 1.9551E+O1 -9.0828E+00 IN-LB-SEC
Bpsi 1.8217E+01 -1.2229E+01 9.0828E+00 1.9551E+O1 IN-LB-SEC

(IN)

(PSI)

(PSI)
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( CASE 3 ) Romberg extrapolation with fine grid the same as Case 1

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE- 2.0000E+O0, 2.0000E+O0, 5.0000E-04

ROTATION SPEED, DISTURBANCE SPEED - 1.000OR+04, 1.0000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.4700E+01, 6.4700E+01

VISCOSITY - 2.9000E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01

ITERATIONS AND ERROR CODE IN LAST PRESSURE _TION - 3 0

CALCULATED FORCES IN X.Y DIRECTIONS - -2 5045E-14. 8 0461E-14 (13CALCULATED MOMENTS ABOUT X,Y AXES -3.28i6E-14, -I.0084E-14 (IN-131

MINIMUM FILM THICKNESS - 5.0000E-04 (IN)

FLOW - -2.1750E+O0 (IN**3/SEC) MEASURED AT 1.4700E+O1 (PSI)

TORQUE - 7.4549E-02 (IN-LB), FILM POWER LOSS - 1.1828E-02 (HP)

COMPRESSIBILITY NUMBER - 4.9582E+00, SQUEEZE NUMBER - 9.9163E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP.
Kx
_y
Kph.t
_psl
_X

By
Bphl
Bpsl

x IN) IN) vhl (PAD) Dsl (PAD)
5 73_2E+04 3._5_9E+04 29001 ÷0 

-3 2559E+04 5.7342E+04 6.4238E+04 -2.9001E+04
8 2990E+03 -8.5936E+03 -3.7301E+03 1.1766E+O4

8 5936E+03 8.2990E+03 -1.1766E+04 -3.7301E+O31766E+02 -3.1507E+01 1.9728E+01 6.6992E+01
3 1507E+01 1.1766E+02 -6.6992E+01 1.9728E+01

-1 1932E+01 -1.8433E+01 1.9494E+01 -8.7410E+O0
i 8433E+01 -I.1932E+01 8.7410E+O0 1.9494E+01

FORCE UNIT
13
13
IN-13
IN-13
13-SEC
13-SEC
IN-13-SEC
IN-13-SEC

(IN)

(PSI)

(PSI)
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( CASE 4 ) Displaced and tilted symmetric cyl. seal, no pres. grad.

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+00, 2.0000E+O0, 5.0000E-04 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.0000E+04, 1.0000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.4700E+01, 1.4700E+01 (PSI)

VISCOSITY - 2.9000E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCULATION - 4 0

CALCULATED FORCES IN X,Y DIRECTIONS 3.3938E+00. -3 0660E+00 (LBCALCULATED MOMENTS ABOD'T X,Y AXES _.6476E-01, 3.6468E-01 (IN°LBi

MINIMUM FILM THICKNESS - 2.5000E-04 (IN)

FLOW - 2.0302E-02 (IN**3/SEC) MEASURED AT 1.4700E+01 (PSI)

TORQUE - 5.8726E-02 (IN-LB), FILM POWER LOSS - 9.3178E-03 (HP)

COMPRESSIBILITY NUMBER - 4.9582E+00, SQUEEZE NUMBER - 9.9163E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. WIT )

IN) Dhl (RAD) Dsl (PAD) FORCE UNIT
DISP. 4._6_04 9._4_5E+03 LB-2.8523E+02-B.3206E+01
Kx -9.4351E+03 4.0515E+04 2.5345E+02 1.2957E+02 LBKy
Kphi -2.9470E+01 2.1556E+02 4.8420E+03 1.5075E+03 IN-LB

_psl -1.2690E+02 .1.3977E+01 -1.4889E+03 4.8095E+03 IN-LBBx 2.3280E+O1 .3471E+01 1.0865E-01 6.3426E-01 LB-SEC
1 .3609E+01 2.2299E+01 -1.3412E-01 2.1028E-01 LB-SECBy

Bphi -7.2952E-02 -I.0697E-01 4.5324E+00 -I.0203E+00 IN-LB-SEC
Bpsl 4.7944E-01 -7.1164E-02 9.5944E-01 4.8461E+00 IN-LB-SEC
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( CASE 5 ) Sameseal as Case 4 with applied forces instead of displ.

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+O0, 2.0000E+O0, 5.0000E-04 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.0000E+04, I.O000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.4700E+01, 1.4700E+01 (PSI)

VISCOSITY - 2.9000E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01 (PSI)

ERROR CODE - 0, ITERATIONS IN HOMING PROCESS - 3

CALCULATED DISPLACEMENTS IN X,Y DIRECTIONS - 1.2500E-04, -1.1010E-09 (IN)
CALCULATED TILTS ABOUT X,Y AXES - 9.8499E-I0, 1.2500E-04 (RAD)

ITERATIONS IN LAST PRESSURE C4kLCULATION - 1

CALCULATED FORCES IN X.Y DIRECTIONS - 3.3938E+00. 64_SE-010660E+00(IN-LBI(LBCALCULATED MOMENTS ABOUT X,Y AXES - 2.6476E-01, 3. -3

MINIMUM FILM THICKNESS - 2.5000E-04 (IN)

FLOW - 2.0301E-02 (IN**3/SEC) MEASURED AT 1.4700E+01 (PSI)

TORQUE - 5.8726E-02 (IN-LB), FILM POWER LOSS - 9.3178E-03 (HP)

COMPRESSIBILITY NUMBER - 4.9582E+00, SQUEEZE NUMBER - 9.9163E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

x IN) IN) phi (It&D) psi (PAD) FORCE UNIT
DISP. 4.06_7E+04 9._4_5E+03 13-2.8523E+02-8.3205E+01Kx
Ky -9.4351E+03 4.0515E+04 2.5345E+O2 1.2957E+02 LB

5075E+03 IN-LB
Kph£ -2.9469E+01 2.1556E+02 4.8420E+03 _8095E+03 IN-LB
_psl -I.2690E+02 7.3975E+01 -1.4889E+03
_x 2.3280E+01 -1.3471E+01 1.0865E-01 6.3425E-01 LB-SEC
By 1.3609E+01 2.2299E+01 -1.3412E-01 2.1028E-01 LB-SEC
Bphi -7.2948E-02 -I.0696E-01 4.5324E+00 -I.0203E+00 IN-LB-SEC
Bpsl 4.7943E-01 -7.I166E-02 9.5944E-01 4.8461E+00 IN-LB-SEC
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( CASE 6 ) Smne as Case 4 with SI units

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 5.0800E-02, 5.0800E-O2, 1.2700E-05

ROTATION SPEED, DISTURBANCE SPEED - 1.0000E+04, I.O000E+04 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.0135E+05, 1.0135E+05

VISCOSITY - 1.9995E-05 (Pa-SEC), AMBIENT PRESSURE - 1.0135E+05

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCULATION - 4 0

CALCULATED FORCES IN X,Y DIRECTIONS 1.5097E+01, -1.3638E+01 (N)
CALCULATED MDMENTS ABOUT X,YAXES - _.9914E-02, 4.1204E-02 (N-m)

MINIMUM FILM THICKNESS - 6.3500E-06 (m)

FLOW - 3.3268E-07 (m**3/SEC) MEASURED AT 1.0135E+05 (Pa)

TORQUE - 6.6352E-03 (N-m), FILM FOWERLOSS - 6.9483E+00 (WATT)

COMPRESSIBILITY NUMBER - 4.9584E+00, SQUEEZE NUMBER - 9.9167E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP.
Kx
_y
Kphl
K#si
5X
By
Bphi
Bpsi

7 12v2=+06 1• -3.70IOE+02 -1.2688E+03
-1.6523E+06 7.O953E+06 1.1274E+03 5.7639E+O2
-1.3110E+02 9.5888E+02 5 4708E+02 1.7032E+02
-5.6446E+02 3.2904E+02 -1 6822E+02 5.434!E+02

4.0768E+03 -2.3592E+03 4 8331E-01 2.8213E+00
2.3833E+03 3.9051E+03 -5 9660E-01 9.3536E-01

-3.2450E-01 -4.7582E_01 5 1209E-01 -1.1528E-01
2.1326E+00 -3.1658E-01 1 0841E-01 5.4754E-01

FORCE UNIT
N
N
N-m
N-m
N-SEC
N-SEC
N-m-SEC
N-m-SEC

(=)

(Pa)

(ea)
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Figure 3-7 Stator with inward pumping grooves for Cases 7 and 8
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( CASE 7 ) Face seal for pipe line compressor

SPIRAL GROOVE FACE SEAL, ROTATING SURFACE IS SMOOTH

ID, OD, REFERENCE FILM THICKNESS - 3.7930E+00, 4.5050E+00, 1.0000E-04 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.4500E+04, 1.4500E+04 (RPM)

INSIDE, OUTSIDE PRESSURE - 1.4700E+01, 9.1470E+02 (PSI)

VISCOSITY - 1.7500E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCULATION - 4 0

CALCULATED FORCE IN Z DIRECTION - 3.4246E+03 (LB)
CALCULATED MOMENTS ABOUT X,YAXES - -I.0069E-12, -5-.7018E-12 (IN-LB)

MINIMUM FILM THICKNESS - 1.0000E-04 (IN)

FLOW - -1.3026E+02 (IN**3/SEC) MEASURED AT 1.4700E+01 (PSI)

TORQUE - 3.2695E-01 (IN-LB), FILM PO_rER LOSS - 7.5219E-02 (HP)

COMPRESSIBILITY NUMBER - 5.5030E+02, SQUEEZE NUMBER - I.I006E+03

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. 01_7E+06Kz 7 z IN) vhl (PAD) vsi (PAD) FORCE UNIT. -5.7791E+00-5.7802E+00 LB
Kphl -6.0544E-03 1.2466E+07 1.6134E+06 IN-LB

Kpsi 2_0659E-02 -1.6134E+06 1.2466E+07 IN-LBBz 8634E+02 1.7180E-04 1.7161E-04 LB-SEC
Bphl - 2269E-07 6.6669E÷02 -7.0380E+01 IN-LB-SEC
Bpsi -I.0207E-06 7.0380E+01 6.6669E+02 IN-LB-SEC
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( CASE 8 ) Same as case 7 with half the grid spacing in each direction

SPIRAL GROOVE FACE SEAL, ROTATING SURFACE IS SMOOTH

ID, OD, REFERENCE FILM THICKNESS - 3.7930E+00, 4.5050E+00,

ROTATION SPEED, DISTURBANCE SPEED - 1.4500E+04, 1.4500E+04

INSIDE, OUTSIDE PRESSURE - 1.4700E+01, 9.1470E+02 (PSI)

VISCOSITY- 1.7500E-09 (PSI-SEC), AMBIENT PRESSURE - 1.4700E+01

ITERATIONS AND ERROR CODE IN LAST PRESSURE C_TION - 4

CALCULATED FORCE IN Z DIRECTION - 3.4282E+O3 (LB)
CALCULATED MOMENTS ABOUT X,YAXES - 5.0522E-12, 2:5739E-12

FILMTHIC ESS - 1.0000E-04 (IN)
FLOW - -1.3026E+02 (IN**3/SEC) MEASURED AT 1.4700E+01 (PSI)

TORQUE - 3.2695E-01 (IN-LB), FILM POWER LOSS - 7.5219E-02 (HP)

COMPRESSIBILITY NUMBER - 5.5030E+02, SQUEEZE NUMBER - I.I006E+03

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN) vhi (RAD) vsl (PAD) UNIT
Kz 7.03_8E+06 FORCE-5.8003E+00 -5.8209E+00 LB

hl -4.1461E-02 1.2507E+07 1.6209E+06 IN-LB
sl -1.4393E-02 -1.6209E+06 1.2507E+07 IN-LB

z 2.8690E+02 1.7193E-04 1.7350E-04 LB-SEC
Bph+ 6 6840E-07 6, 6815E+02 -7.0687E+O1 IN-LB-SEC
_psz 7.0000E-07 7.0687E+O1 6.6815E+O2 IN-LB-SEC

I.O000E-04

(RPM)

0

(IN-LB)

(IN)

(PSI)
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3.4 Verification

SPIRALG has been compared with the results of two computer codes. The first of these is MTI Computer

Code PN471 which is fully described in Reference 3. The program is based on perturbation analyses and

is only applicable to bearings and seals operating In the concentric, aligned position (ex=-ey._=tlr :0).

The program does not predict loads and moments that would occur at finite displacements but it does

predict stiffness and damping values as well as flow, torque, and power loss for spiral groove beadngs as

well as cylindrical and face seals. Since the program solves ordinary rather than partial differential equations

it can be made to rapidly produce highly accurate results for evelueting the accuracy of SPIRALG. The

second MTI computer code, named GASBEAR, is used to verify SPIRALG under displaced and misallgned

conditions. GASBEAR was written for use in conjunction with plane Journal beadngs and cylindrical seals.

It does not treat spiral grooves or face seal¢ Since SPIRALG does not contain any special Instructions for

treating concentric behavior and has relativelyfew Instructions for distinguishing between face and cylindrical

seals, the above two programs should provide reasonable verification. Since the treatment of the effects

of spiral grooves under eccentric and misaligned conditions is believed to be new, terms that become

significant only under those conditions remain unverified.

The results of 7 verification tests are reported on the following pages. A SPIRALG output listing followed

by the relevant output from the verification code, converted to equivalent units and format, is given for each

case. The somewhat strange looking input values (unit ambient pressure, high RPM but low viscosity etc.)

were selected to simplify the conversion process between dimensional quantities and the dimensionless

ones that were used throughout the development of the code. The compressibility number of A ,, 10 used

for all cases and the seal pressure ratio of 2 used for imposed pressure gradients should be typical of many

practical applications under fairly compressible conditions.

Cases 1 - 6 show comparisons between SPIRALG and PN471. Romberg extrapolation was used for each

of these cases, with 21 grid points in the circumferential direction and 5 sub-intervals In each of the two

regions in the transverse direction for the coarse grid solution. The fine grid solutions thus use 41

circumferential points and 10 sub-intervals per region in the transverse direction.

The first case verifies stiffness and damping values for a synchronous disturbance acting on a cylindrical

seal with a herringbone groove pattern and an imposed pressure gradient. Cases 2 and 3 verify the

differences in stiffnessand damping values predicted to occur for a cylindrical seal when grooves are placed

on the rotor (with groove angles reversed) rather than on the stator. The static quantities (flow, torque and

power loss) remain unchanged. Cases 4 - 6 show comparisons between SPIRALG and PN471 for a spiral

groove face seal with an imposed pressure gradient at three different disturbance frequencies; zero (case

4), synchronous (case 5) and ten times synchronous (case 6).
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Case 7 shows a comparison between SPIRALG and GASBEAR for and eccentric, tilted cylindrical seal with

an Imposed pressure gradient. The grid size was chosen to match the maximum size allowable for the

available version of GASBEAR. A separate program was written to perform Romberg extrapolations with

the results of GASBEAR. The agreement between the two programs is good. The apparent discrepancy

between the moments about the y axis is a result of the fact that the component is very small. The relative

error obtained by dividing the discrepancy by the absolute magnitude of the moment vector is 0.33%.
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( CASE 1 ) Concentric cyl. seal with pres. grad. lamda-10, slgma-20

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+00, 2.0000E+O0, 1.0000E-03 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 1.9099E+05 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 2.0000E+O0, I.O000E+O0 (PSI)

VISCOSITY - 8.3333E-11 (PSI-SEC), AMBIENT PRESSURE - 1.0000E+00 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCULATION - 2 0

-81153E-16 (LB
CALCULATED FORCES IN X,Y DIRECTIONS - "l"0902E'lS".44"SE-160 (IN-LB))CALCULATED MOMENTS ABOUT X,YAXES - -9.3565E-16, -2

MINIMUM FILM THICKNESS - I.O000E-03 (IN)

FLOW - 1.2816E+01 (IN**3/SEC) MEASURED AT 1.0000E+O0 (PSI)

TORQUE - 1.7015E-02 (IN-LB)o FILM POWER LOSS - 5.1562E-02 (HP)

COMPRESSIBILITY NUMBER - 1.0000E+OI, SQUEEZE NUMBER - 2.0000E+OI

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. .46_7E+O3 9._3_9E+01 FORCEKx 5 x IN) IN) Dhl (RAD) psi (RAD) UNIT-5.8886E+01 2.6847E+02 LB
Ky -9.0379E+01 5.4607E+03 -2.6847E+02 -6.8886E+O1 LB
Kphl -I.0824E+O2 -1.7773E+01 7.0561E+02 1.9521E+02 IN-LB
K_si 1.7773E+01 -I.0824E+02 -1.9521E+02 7.0561E+02 IN-LB
_x 7.3200E-02 -5.5832E-02 -1.5172E-02 -2.9538E-02 LB-SEC
By 5.5832E-02 7.3200E-02 2.9538E-02 -1.5172E-02 LB-SEC
Bphl 1.9442E-03 6.9321E-03 2.7091E-02 -I.1690E-02 IN-LB-SEC
Bpsi -6.9321E-03 1.9442E-03 1.1690E-02 2.7091E-02 IN-LB-SEC
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COMPARISON OF CASE 1 WITH PN471

FLOW - 1.282E+01 (IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

TORQUE - 1.701E-02 (IN-LB), FILM POWER LOSS - 5.156E-02

DISP.
Kx

KPh_

By
Bph+
Bpsl

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

x IN) IN) Dhl (RAD) Dsl (RAD)
5 46_8E+03 9._2_2E+01 -E.8846E+OI 2.6823E+O2

-9 0292E+01 5.4608E+03 -2.6823E+02 -6.8846E+01
0809E+02 -1.7525E+01 7.0356E+02 1.9537E+02
7525E+01 -I.0809E+02 -1.9537E+02 7.0356E+02

7 3215E-02 -5.5805E-02 -1.5192E-02 -2.9534E-02
sSOSE-027.3nEE-022.9534E-02-1.5192E-02

6.9195E-03_9403E-03 _.9195E-03 2.7097E-02 -_.1667E-02- .9403E°03 1.1667E-02 .7097E-O2

(HP)

FORCE UNIT
13
13
IN-13
IN-LB
LB-SEC
LB-SEC
IN-LB-SEC
IN-LB-SEC
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( CASE 2 ) Concentric asymmetric cyl. seal, lamda-lO, sigma-0

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+O0, 2.0000E+O0, I.O000E-03

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 0.O000E+O0 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - I.O000E+O0, 1.0000E+00

VISCOSITY - 8.3333E-11 (PSI-SEC), AMBIENT PRESSURE - 1.0000E+O0

ITERATIONS AND ERROR CODE IN LAST PRESSURE CAI_TION - 2 0

CALCULATED FORCES IN X.Y DIRECTIONS - -2.8151E-15..21_SE.I 7 (IN-LBICALCULATED MOMENTS ABOUT X,Y AXES - 2.7524E-16, -5 -l 6233E-15 (LB

MINIMUM FII2_THICKNESS - I.O000E-03 (IN)

FLOW - 3.5000E+O0 (IN**3/SEC) MEASURED AT 1.0000E+O0 (PSI)

TORQUE - 1.8850E-02 (IN-LB), FILM POWER LOSS - 5.7122E-02 (HP)

COMPRESSIBILITY NUMBER - I.O000E+01, SQUEEZE NUMBER - O.0000E+O0

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

FORCEUNIT
KxDISP" 4.96_7E+03 1._6_9E+03 vhi (RAD) 2670s RAD-_.9960E+02 LB
Ky -1.5689E+03 4.9657E+03 -2.6673E+02 -4.9960E+02 LB
K_h_ 5.3012E+01 -3.6877E+02 6.0778E+02 5.3984E+02 IN-LB
K_sl 3.6877E+02 5.3012E+01 -5.3984E+02 6.0778E+02 IN-LB
vx -6.9953E-02 -I.1123E-01 4.3933E-02 -1.2462E-02 LB-SEC
By I.I123E-01 -6.9953E-02 1.2462E-02 4.3933E-02 LE-SEC
Bphl -8.3037E-03 -4.4522E-03 2.2471E-02 -4.3624E-02 IN-LB-SEC
Bpsl 4.4522E-03 -8.3037E-03 4.3624E-02 2.2471E-02 IN-LB-SEC

(IN)

(PSl)

(PSi)
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COMPARISON OF CASE 2 WITH PN471

FLOW - 3.500E+00

TORQUE - 1.885E-02 (IN-LB),

(IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

FILM POWER LOSS - 5.712E-02 (HP)

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

Dhl (RAD) psi (RAD) FORCE UNIT
-_.9982E+02 2.6552E+02 LB
-2.6552E+02 -4.9982E+02 LB
6.0602E+02 5.3900E+02 IN-LB

-5.3900E+02 6.0602E+02 IN-LB
4.3975E-02 -1.2344E-02 LB-SEC
1.2344E-02 4.3975E-02 13-SEC
2.2617E-02 -4.3536E-02 IN-LB-SEC
4.3536E-02 2.2617E-02 IN-LB-SEC

DISP. x IN) IN)
Kx 4.96_8E+03 I._6_2E+03

MY -1.5692E+03 4.9648E+03
Kphi 5.3156E+01 -3.6793E+02
_psl 3.6793E+02 5.3156E+01
Bx -6.9955E-02 -1.1143E-01
By I.I143E-01 -6.9955E-02
Bphi -8.3373E-03 -4.4940E-03
_psl 4.4940E-03 -8.3373E-03
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( CASE 3 ) Same case with grooves on moving surf., groove angle rev.

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS GROOVED

LENGTH, DIAMETER, CLEARANCE - 2.0000E+00, 2.0000E+O0, I.O000E-03 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 0.O000E+O0 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 1.0000E+O0, 1.0000E+O0 (PSI)

viscosiTy - 8.3333E-11 (PSI-SEC), A_I_cr PRESSU_ - I.O000E+00 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE _TION - 2 0

CALCULATED FORCES IN X,Y DIRECTIONS - -3.4729E-16..23_E.I 7 (IN-LBICALCULATEDMOMENTS ABOUT X,YAX_S Z.6213E-16, 6 -1 2658E-IS (LS

MINIMUM FILM THICKNESS - l.O000Z-03 (IN)

FLOW - 3.5000E+00 (IN**3/SEC) MEASURED AT 1.0000E+O0 (PSI)

TORQUE - 1.8850E-02 (IN-LB), FILM POWER LOSS - 5.7122E-02 (HP)

COMPRESSIBILITY NUMBER - 1.O000E+01, SQUEEZE NUMBER- 0.0000E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. x IN) IN) FORCEUNITKx 4.52_IE+03 1._9_3E+03 vhi (RAD) vsi (PAD)-3.6977E+02 2.1989E+O2 LB
Ky -1.2933E+03 4.5241E+03 -2.1989E+02 -3.6977E+02 LB
Kphl 3.4694E+02 -4.7068E+02 5.9016E+02 5.1362E+02 IN-LB

Kpsl 4.7068E+02 3.4694E+02 -5.1362E+02 .2 9016E+02 IN-LB_x -2.3432E-02 -1.2667E-01 3.4823E-02 _9373E-03 LB-SEC
By 1.2667E-01 -2.3432E-02 5.9373E-03 3.4823E-02 LB-SEC
Bph_ -2.7769E-02 6.0874E-03 2.3559E-02 -4.4038E-02 IN-LB-SEC
Bps_ -6.0874E-03 -2.7769E-02 4.4038E-02 2.3559E-02 IN-LB-SEC
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COMPARISON OF CASE 3 WITH PN471

FLOW - 3.500E+00 (IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

TORQUE - 1.885E-02 (IN-LB), FILM POWER LOSS - 5.712E-02 (HP)

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

x IN) IN) _hi (RAD) Dsl (PAD) FORCE UNIT
DISP. .52_6E+03 I._9_4E+03 13Kx 4 -3.6992E+02 2.1883E+02
Ky -1.2934E+03 4.5236E+03 -2.1883E+02 -3.6992E+02 13
Kphl 3.4697E+02 -4.6939E+02 5.8843E+02 5.1292E+02 IN-LB
Kpsl 4.6939E+02 3.4697E+02 -5.1292E+02 5.8843E+02 IN-LB
5x -2.3471E-02 -1.2673E-01 3.4849E-02 -5.8520E-03 LB-SEC
By 1.2673E-01 -2.3471E-02 5.8520E-03 3.4849E-02 LB-SEC
Bphl -2.7798E-02 5.9155E-03 2.3693E-02 -4.3962E-02 IN-LB-SEC
Bps_ -5.9155E-03 -2.7798E-02 4.3962E-02 _.3693E-02 IN-13-SEC
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( CASE 4 ) Face seal, no tilt, with pres. grad., lamda-lO, slgma-0

SPIRAL GROOVE FACE SEAL, ROTATING SURFACE IS SMOOTH

ID, OD, REFERENCE FILM THICKNESS - I.O000E+O0, 2.0000E+O0,

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, O.O000E+O0

INSIDE, OUTSIDE PRESSURE - 2.0000E+O0, 1.0000E+O0 (PSI)

VISCOSITY - 8.3333E-11 (PSI-SEC), AMBIENT PRESSURE - 1.0000E+O0

ITERATIONS AND ERROR CODE IN LAST PRESSURE CAILIFIATION - 2

CALCULATED FORCE IN Z DIRECTION - 1.3612E+00 (LB_
 LCm  ED MOMENTS OUTX,YAX S - -3.0782E-16, :I794E-IS
MINIMUM FILM THICKNESS - I.O000E-03 (IN)

FLOW - 2.2763E+01 (IN**3/SEC) MEASURED AT 1.O000E+O0 (PSI)

TORQUE - 2.2645E-03 (IN-LB), FILM POWER LOSS - 6.8621E-03 (HP)

COMPRESSIBILITY NUMBER - 1.0000E+OI, SQUEEZE NUMBER - O.O000E+O0

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN)
3.95(4E+022 Dhl (PAD) psi (RAD) FORCE UNITKz -_.8585E-04 -_.8576E-04 LB

Kphl -6.1349E-07 2.0998E+02 8.2256E+O1 IN-LB
3 .0546E-07 -82256E+01 2.0998E+02 IN-LB

"2.9491E-02 -7.3530E-07 -7.3551E-07 LB-SEC
Bphl -I.1280E-09 7.0914E-03 -1.8082E-03 IN-LB-SEC
Bpsl -2.3148E-09 1.8082E-03 7.0914E-03 IN-LB-SEC

I.O000E-03

(RPM)

0

(IN-LB)

(IN)

(Psi)
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COMPARISON OF CASE 4 WITH PN471

CALCULATED FORCE IN Z DIRECTION - 1.3612E+00 (liB)

FLOW - 2.2763E+01 (IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

TORQUE - 2.2644E-03 (IN-LB), FILM POWER LOSS - 6.8620E-03 (HP)

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN)
3.95_4E+O2Z phi (RAD) psi (RAD) FORCE UNITKz LB

Kphl 2.0998E+02 8.2240E+01 IN-LB
Kpsl -8.2240E+01 2.0998E+02 IN-LB
5z 2.9485E-02 LB-SEC
_pht 7.0901E-03 -1.8058E-03 IN-LB-SEC
psl 1. 8058E-03 7.0901E-O3 IN-LB-SEC
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( CASE 5 ) Face seal, no tilt, with pres. grad., lamda-lO, sigma-20

SPIRAL GROOVE FACE SEAL, ROTATING SURFACE IS SMOOTH

ID, OD, REFERENCE FILM THICKNESS- I.O000E+O0, 2.0000E+O0, 1.0000E-03 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 1.9099E+05 (RPM)

INSIDE, OUTSIDE PRESSURE - 2.000OR+00, 1.0000E+O0 (PSI)

VISCOSITY - 8.3333E-11 (PSI-SEC), AMBIENT PRESSURE - 1.0000E+O0 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE CAI_TION - 2 0

CALCULATED FORCE IN Z DIRECTION -. i. 3612E+O0CALCULATED MOMENTS ABOUT X,Y AXES -3.0782E-16, (I.1794E-15 (IN-LB)

MINIMUM FILM THICKNESS - 1.0000E-03 (IN)

FLOW - 2.2763E+01 (IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

TORQUE - 2.2645E-03 (IN-LB), FILM POWER LOSS - 6.8621E-03 (HP)

COMPRESSIBILITY NUMBER - 1.0000E+01, SQUEEZE NUMBER - 2.0000E+01

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN)
5.35(6E+026 phi (RAD) psi (RAD) FORCE UNITKz -2.9756E-04 -2.9746E-04 LB

Kphl -2.1294E-07 2.4013E+02 7.0968E+01 IN-LB
Kpsi 2.5103E-07 -7.0968E+01 2.4013E+02 IN-LB
Bz 2.7697E-02 3.8068E-09 3.8070E-09 LB-SEC
Bphi 2.2173E-12 6.7533E-03 -1.6346E-03 IN-LB-SEC
Bpsi -2.0783E-12 1.6346E-03 6.7533E-03 IN-LB-SEC
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COMPARISON OF CASE 5 WITH PN471

CALCULATED FORCE IN Z DIRECTION - 1.3612E+00 (LB)

FLOW - 2.2763E+01 (IN**3/SEC) MEASURED AT I.O000E+O0 (PSI)

TORQUE - 2.2644E-03 (IN-LB), FILM POWER LOSS - 6.8620E-03 (HP)

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN)
5.35_7E+02_ phi (RAD) psl (RAD) FORCED'NITKz LB

Kphl 2.4011E+02 7.0959E+01 IN-LB
Kpsl -7.0959E+01 2.4011E+02 IN-LB
5z 2.7692E-02 LB-SEC

hl 6.7528E-03 -1.6341E-03 IN-LB-SEC
psl 1.6341E-03 6.7528E-03 IN-LB-SEC
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( CASE 6 ) Face seal, no tilt, with pres. grad., lamda-10, sigma-200

SPIRAL GROOVE FACE SEAL, ROTATING SURFACE IS SMOOTH

ID, OD, REFERENCE FILM THICKNESS - 1.0000E+O0, 2.0000E+O0, I.O000E-03 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 1.9099E+06 (RPM)

INSIDE, OUTSIDE PRESSURE - 2.0000E+O0, 1.0000E+O0 (PSI)

VISCOSITY - 8.3333E-II (PSI-SEC), AMBIENT PRESSURE - I.O000E+O0 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE CALCIKATION - 2 0

CALCULATED FORCE IN Z DIRECTION -_ 1.3612E+00 (LB)1794E-1511CALCULATED MOMENTS ABOUT X,Y AXES -3.0782E-16, (IN-LB)

MINIMUM FILM THICKNESS - 1.0000E-03 (IN)

FLOW - 2.2763E+01 (IN**3/SEC) SURED AT 1.0000E+O0 (PSI)

TORQUE - 2.2645E-03 (IN-LB), FILM POWER LOSS - 6.8621E-03 (HP)

COMPRESSIBILITY NUMBER - 1.0000E+OI, SQUEEZE NUMBER - 2.0000E+02

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN) phi (RAD) psi (PAD) UNIT
Kz 2.38_2E+03 FORCE-_.1732E-05 -5.1685E-05 LB
Kphl -2.5267E-08 7.2912E+02 -7.4833E+00 IN-LB
Kpsi 5.8389E-08 7.4833E+00 7.2912E+02 IN-LB
Bz 4.1358E-03 5.3850E-10 5.3818E-!0 LB-SEC
Bphl 4.2377E-13 1.2426E-03 -5.8922E-05 IN-LB-SEC
Bpsl -5.5928E-13 5.8922E-05 1.2426E-03 IN-LB-SEC
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COMPARISONOF CASE 6 WITH PN471

CALCULATED FORCE IN Z DIRECTION - 1.3612E+00 (LB)

FLOW - 2.2763E+01 (IN**3/SEC) MEASURED AT 1.0000E+O0 (PSI)

TORQUE - 2.2644E-03 (IN-LB), FILM POWER LOSS - 6.8620E-03 (HP)

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. z IN)
2.38_0E+031 phi (RAD) psi (RAD) FORCE UNITKz 13

Kphi 7.2907E+02 -7.4987E+00 IN-LB
Kpsi 7.4987E+00 7.2907E+02 IN-LB
Bz 4.1383E-03 LB-SEC

hi 1.2438E-03 -_:8939E-05 IN-LB-SECpsl 5.8939E-05 2438E-03 IN-LB-SEC
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( CASE 7 ) Misaligned shaft seal with pres. grad. to comp. w/ GASBEAR

SPIRAL GROOVE SHAFT SEAL, ROTATING SURFACE IS SMOOTH

LENGTH, DIAMETER, CLEARANCE - 2.0000E+00, 2.0000E+00, I.O000E-03 (IN)

ROTATION SPEED, DISTURBANCE SPEED - 1.9099E+05, 0.0000E+00 (RPM)

PRESSURE AT START, END AXIAL BOUNDARIES - 2.0000E+O0, 1.0000E+00 (PSI)

VISCOSITY - 8.3333E-II (PSI-SEC), AMBIENT PRESSURE - 1.0000E+O0 (PSI)

ITERATIONS AND ERROR CODE IN LAST PRESSURE _TION - 3 0

CALCULATED FORCES IN X,Y DIRECTIONS - 3.1535E+00. 1.2350E+00 (LB)
CALCULATED MOMENTS ABOUT X,YAXES-- 3.7793E-01, -1.9883E-03 (IN-LB)

MINIMUM FILM THICKNESS - 5.0000E-04 (IN)

FLOW - 4.7315E+00 (IN**3/SEC) MEASURED AT 1.0000E+O0 (PSI)

TORQUE - 2.3248E-02 (IN-LB), FILM POWER LOSS - 7.0448E-02 (HP)

COMPRESSIBILITY NUMBER - I.O000E+01, SQUEEZE NUMBER - 0.0000E+00

DYNAMIC COEFFICIENTS ( FORCE UNIT / DISP. UNIT )

DISP. x IN) IN) phi (RAD) psi (RAD) FORCE UNIT
Kx 9 22_7E+03 4._I_3E+03• 5.7870E+021.1084E+03 13
Ky -2.6167E+03 9.5964E+03 4.7033E+02 8.7124E+02 LB
Kphl -9.8594E+01 6.5068E+02 1.5189E+03 7.7760E+02 IN-LB
Kpsi 7.1674E+02 -9.7210E+01 -1.0491E+03 1.2765E+03 IN-LB
Bx -2.0553E-01 -4.5816E-01 -1.0900E-01 6.2037E-02 LB-SEC
By 2.5253E-01 -2.9852E-01 -6.7612E-02 -7.7454E-02 LB-SEC
Bphl 2.3869E-02 1.4706E-02 3.7737E-02 °8.3553E-02 IN-LB-SEC
Bpsi -7.4893E-02 -5.8155E-02 5.7003E-02 6.7719E-02 IN-LB-SEC
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COMPARISON OF CASE 7 WITH GASBEAR USING SAME GRID AND ROMBERG EXTRAPOLATION

CALCULATED FORCES IN X,Y DIRECTIONS
CALCULATED MOMENTS ABOUT X,Y AXES - - 3.1529E+00. 3904E-04 (IN-LBI3.7751E-01, -7. 1 2362E+00 (LB

/ DISP. UNIT )DYNAMIC COEFFICIENTS ( FORCE UNIT

DISP. x IN) IN)
9.22(7E+0384.VO(7E+O3B9 Dhl (RAD) _si (RAD) FORCE UNITKx I.I044E+03 5.7867E+02 LB

Ky -2.6113E+03 9.5993E+03 4.7249E+02 8.7343E+02 LB
Kphi -I.0249E+02 6.5339E+02 1.5237E+03 7.7076E+02 IN-LB
Kpsi 7.1455E+02 -9.4976E+01 -I.0403E+03 1.2793E+03 IN-LB
Bx -2.0561E-01 -4.5802E-01 -I.0909E-01 6.1715E-02 LB-SEC
By 2.5292E-01 -2.9885E-01 -6.7494E-02 -7.7535E-02 LB-SEC
Bphl 2.3875E-02 1.4639E-02 3.7502E-02 -8.3706E-02 IN-LB-SEC
Bpsi -7.4561E-02 -5.7965E-02 5.6982E-02 6.7347E-02 IN-LB-SEC
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3.6 Nomenclature

Ai

{a}

a_j

B,y

_X

Bxy

B**
B_,

_x

Bo

[B]

{b}
C

[d]

[d]

[d 'k]

[c'J]

[[Y]

[[Y]

[DJ'"]

[Ej]

[EJ]

[Ej,k]

ex,ey

e z

Fi,i

G

R

dimensionless flow control area, (area/R02)

coefficients of second order linear operator defined by Eq. (44), 1= 1,_ ,6

column vector of eccentricity coefficients defined by Eq. (41)

kth component of {a} evaluated at grid point (i,J)

damping coefficient relating force in x direction to velocity in y direction, Bxx, Byx, Byy and Bzz are

simflady defined

damping coefficient relating moment about x axis to angular velocity about y axis, B4,1,,Be# and

Bit are similarly defined

damping coefficient relating force in x direction to angular velocity about x axis, B_t, B_, Bye,

B= and B_ are similarly defined

damping coefficient relating moment about x axis to velocity in x direction, Btx, Bey, Bty, Bez and

Bt z are elm=ladydefined

dimensionless damping coefficient Bxy/Bo, same definitions apply to Bxx, Byx, Byy, Bzz

dimensionless damping coefficient Bet/(BoR02), same definitions apply to B_I,, Bte, Bit

dimensionless damping coefficient B_e/(BoRo), same definitions apply to Bx$, B_e, Bye, B=_, Bz$

dimensionless damping coefficient Bex/(BoRo), same definitions apply to Btx, Bey, Bty, Bez, Btz

characteristic damping constant, 12_R04/C 3

dimensionless damping coefficients in matrix form

column vector of coefficients of •,, arising from Iinearization of Eq. (39)

clearance (cylindrical seal) or reference Fdmthickness (face seal)

coefficient matrix used in Newton-Raphson lineadzation procedure, see Eq. (34)

coefficient matrix obtained from steady state solution

derivative of [Cj] with respect to • k

diagonal coefficient matrix whose components are given by Eq. (51)

complex coefficient matrix used in complex stiffness solution, [C i] + _o [_J]

coefficient matrix used in Newton-Raphson Iinearizatlon procedure, see Eq. (34)

coefficient matrix obtained from steady state solution

derivative of [@] with respect to •k

coefficient matrix used in Newton-Raphson Iineartzation procedure, see Eq. (34)

coefficient matrix obtained from steady state solution

derivative of [Ej] with respect to • k

eccentricity in x,y direction (cylindrical seal)

axial displacement, (face seal)

residual outflow function from flow balance at grid point (i,j)

second order non-linear operator defined by Eq. (39)

steady state, unperturbed, value of Hr
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H r

hg

hr

i,j,k
qq

i,j

%

Ko_

K_x

%

K,,

Ko
[rq
kt

L

L

Ig

Ir

M

Mx,My

Mx,My

N

Ng

P

P

Pi,j

Pi

PI,Pr

dimensionless film thickness, hr/C

film thickness over grooves, see Fig. 2

film thickness over ridges, see Fig. 2

subscripts used generically as Indices

unit vectors in 6,s directions

unit Imaginary number, 4":1

stiffness coefficient relating force in x direction to displacement In y direction, Kxx,K_, Kyyand Kzz

are similarly defined

stlffness coefficient relating moment about x axis to rotation about y axis, K_, Kee and Ket are

simhdy defined

stiffness coefficient relating force in x direction to rotation about x axis, Kx$, Ky$, KW, K=_ and

K_ are similarly defined

stiffness coefficient relating moment about x axis to displacement In x direction, Kex, I_y, Key,

Kez and Kez are similarly defined

dimensionless stiffness coefficient Kxy/KO, same definitions apply to Kxx,Kyx, Kyy, Fr,zz

dimensionless stiffness coelficient Ke,/(KoRo2), same definitior_ apply to K4_, F_¢, K$,

dimensionless stiffness coefficient K_/(KoRo ), same definitions apply to Fret, r_, F_, r_, F_

dimensio  stiffn =co ci samed,=nitk,r applytoK,x,r%,r%y, r%z
characteristic stiffness constant, PoRo=/C

dimensionless stiffnesses in metrix form

spiral groove coefficient defined by Eq. (25), i= 1,2,..,8

seal length, see Fig. 1

dimensionless length, L/(2Ro)

groove width, r&eg

ridge width, r&Or

second order linear operator defined by Eq. (44)

number of grid points In s direction

applied moment about x,y axis

dimensionless moment, (Mx,My)/(Ro3PO)

number of grid points in 6 direction

number of spiral grooves

unit vector normal to

unit vector normal to groove

dimensionless pressure, (P'Po)/Po

steady state unperturbed value of P

dimensionless pressure, P, at grid point (i,J)

dimensionless pressure, P, at point i shown In Fig. 3, 1=1,_,9

dimensionless boundary pressures (Pt'Po)/Po, (Pr'PO)/Po
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{P'}

{Pi
{p'}

{p;k}

{Pro}

P

p,

Po

PI'Pr

6

a,,o 
4- -

Q i j,Qij

Qin

qs,Oe

qA

qin

qk
R

R0

Ri

{Rj}

{Rj}

{RJ'"}

{Rj'k}

r

S

SI,S,

S

Sg

sl

Sr

T

column vector of dimensionless pressure disturbances due to perturbation in {t }

column vector of disturbance pressures associated with c k

complex amplitude of {P, }, {P, } = {P'}e _°_

column vector of complex stiffness pressures associated with t k

real pert of {P'}

Imaginary pert of {P'}

global pressure in absolute units

local pressure In absolute units

reference pressure in absolute units, normally taken to be the minimum of the boundary pressures

boundary pressures in absolute un_ at st,st

dimensionless flow vector, 1_, Roll/COoC3)

components of dimensionless flow vector in s_ directions

dlmenslonless flow components shown in Fig. 3

dlmenslonless flow rate, l_qin/(Po C3)

global flow vector, mass flow rate per unit transverse length divided by density at pressure Po

components of q in s,8 directions

global mass flow rate per unit area displaced by rate of decrease of film, divided by density at Po

volumetdc flow rate measured at pressure Po

local flow vector, mass flow rate per unit transverse length divided by density at pressure Po

components of ¢1' in s_ directions

local mass flow rate per unit area displaced by rate of decrease of film, divided by density at Po

dlmensionless coordinate, r/Ro, taken as 1 for cyiinddcai seal

reference radius, taken as outside radius for face seal and shaft radius for cylindrical seal

Inside radius of face seal

column vector used in Newton-Raphson Iineadzation procedure, see Eq. (34)

column vector obtained from steady state solution

derivative of {Rj} with respect to =k

column vectors whose components are given by Eq. (52)

complex column vectors used complex stiffness solution {Rj'k} -,_{Rj,k}

radial coordinate, taken as R0 for cylinddcal seal

dimensionless coordinate, s/R 0

dimensionless boundary coordinates Sl/Ro, Sr/R0

dimensionless length of line surrounding flow control area (length/Ro)

transverse coordinate, s = r for a face seal and s = z for a cylinddcal seal

transverse coordinate at start of groove

left boundary coordinate, st = R!for face seal and st = -L/2 for cylinddcal seal

dght boundary coordinate, sr = Ro for face seal and sr = L/2 for cylindrical seal

torque
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T

T,

t

1

u1

;=

%,%
w,
%
{w}

{W}ojd

x,y

Z

z

ee

_opt

B

/Jopt

J

r

Ap

Ap,,

A ;j
As;j
As

A8

AO o

_opt

dimensionless torque, T/(P0R02C)

T obtained with course grid in Romberg extrapolation example

T obtained with fine grid in Romberg extrapolation example

T obtained by Romberg extrapoietion

time

dimensionless time, e t/(2A)

unit vector tangential to groove

velocity of grooved surface

velocity of smooth surface

applied loads in x,y direction (cyflnddcai seal)

dimensionless loads (W x,Wy) / (P0R02)

applied load in z direction (face seal)

dimensio.e,load,W /(P0R02)
column vector containing dimensionless loads and moments {Wx,Wy,Mx, My } for cylindrical seal.

{Wz,Mx,My } for face seal

{W} at previous iteration in eccentricity homing process

coordinate variables, see Fig. 1

dimensionless axial coordinate for cylindrical seal, z/R 0

axial coordinate, measured from axial center for cyl. seal or from reference film, C, for face seal

groove to pitch ratio, Ig/(Ig + It)

value of = for maximum stagnation pressure gradient In concentric cyllnddcal seal

spiral groove angle, angle between grooves and surface velocity

value of/I for maximum stagnation pressure gradient in concentric cylindrical seal

numerical damping factor used In eccentdcity homing process

film thickness ratio, ho/h r

dimensionless flow control area about single grid point, shaded area in Rg. 3

portion of & _ in quadrant containing point i, see Fig. 3

global pressure difference, see Fig. 2

pressure difference across groove, see Flg. 2

pressure difference across ridge, see Fig. 2

line or arc length associated with Q _j

line or arc length associated with Qil

transverse length of groove-ridge pair

circumferential extent of groove-ridge pair, see Fig. 2; (also used generally for change in 6)

circumferential extent of groove, see Fig. 2

circumferential extent of ridge, see Fig. 2

dimensionless groove depth, (h0-hr)/C

value of _ for maximum stagnation pressure gradient in concentric cylindrical seal
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=x,Cy

(r z

Gk

[,1

t,}

1'}o d
Ks

t)

'6

(}

A

Aa

#

Q

T

ft

0

tJ

fl

_.(&l

_2

eccentricity ratio, (ex,ey)/C (cylindrical seal)

axial displacement ratio ez/C, (face seal)

kth component of eccentricity matrix

row matrix of eccentricity components, [Cz_,t] (face seal) and [=x_y_,9] (cylindrical seal)

column vector, transpose of [=]

{= } at previous Iteration in homing process

eccentricity disturbance function (scaler)

small Increment used in perturbations and in evaluating derivatives

angular coordinate, see Fig. 1

angular coordinate at start of groove

compressibility number, 6== R02/(p0 c2)

groove compressibility number, ._,. (l_=)sim

viscosity

squeeze number, 2,_

global shear stress

dimensionless shear stress, IrRo/(PoC )

local shear stress

rotation about x axis

reduced rotation, eRo/C

rotation about y axis

reduced rotation T Ro/C

angular velocity of disturbance

dimensionless disturbance frequency, n/e

total angular velocity, e 1 + ¢_2

dimensionless angular velocity ratio, (e 2-¢,>1)/e

angular velocity of grooved surface

angular velocity of smooth surface

gradient operator, (1/r)_)/'d6)_ + _/Ss)'j, on dimensional quantities and (1/R)_/'d6)i

(_/SS)J, on dimensionless quantities

+
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4.0 Industrial Code ICYL-Incompressible, Cylindrical Seals

Incompressible cylindrical seals are used to reduce leakage from higher pressures.

The pressures generated in plain cylindrical seals with incompressible fluids

typically result in forces which are normal to the displacement and therefore tend

to destabilize the rotating shaft. Surface roughness, geometry alterations, and

external pressurization are ways in which the direct stiffness and damping

coefficients can be improved and the cross-coupled stiffness decreased in order

to improve stability.

The computer code ICYL was developed to evaluate the performance of cylindrical

seals operating with incompressible fluids. The pressure and velocity distributions

within the seal clearance are first evaluated from the governing equations. From

these, design quantities such as seal leakage flows, power loss and resulting

forces and moments are calculated. Minimum film thicknesses and maximum

pressures as well as critical rotor-dynamics coefficients such as stiffness, damping

and critical mass are evaluated.

Program capabilities:

o

2.

3.

4.

.

So

.

2-D incompressible isoviscous flow in cylindrical geometry.

Rotation of both rotor and housing.

Roughness of both rotor and housing.

Arbitrary film thickness distribution, including features such as steps,

pockets, tapers and preloaded arcs

Rotor position described by four degrees of freedom (translational and

rotational)

Up to 32 dynamic coefficients as well as the critical mass may be calculated

for use in rotor-dynamic design, including system response and stability

calculations.

External forces and moments may be prescribed independently to find rotor



°

9.

10.

11.

position.

Pocket pressures or orifice size are prescribed.

Laminar or turbulent flow.

Cavitation.

Inertia pressure drop at inlets to fluid film (from ends of seal and from

pressurized pockets).

Assumptions

1

.

o

.

The film thickness is assumed to be small compared with seal lengths and

diameters but large compared with surface roughness.

Pockets supplied from an external pressure source through an orifice

restriction are assumed to be sufficiently deep that the pressure is constant

within them.

Wall roughness is assumed to be isotropic and represented by an

"equivalent sand roughness" height.

Fluid inertia effects in the film are negligible.
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4.1 THEORETICAL DESCRIPTION AND NUMERICAL METHODS

Figures 4-1 through 4-3 illustrate the geometry of a cylindrical seal as well as the

coordinate system used here to describe it. Figure 4-1 shows the seal housing of

length L separated from the rotor by the film thickness H. The coordinate system

is placed at the mid-length of the seal with the circumferential coordinate 6

measured from the x-axis. Figure 4-2 illustrates the displaced, misaligned rotor,

while figure 4-3 shows an axial cross-section of the film thickness.

The film thickness and time rate-of-change thereof are written:

H- Ho - (ex+ZB)oose - (ex-ZA)sine

r-..z-I=.,"_ " _ at at)

(4-1)

where Ho, an arbitrary function of film coordinates (6,Z), represents the film

thickness distribution for a rotor that is aligned and centered with the housing, ex

and ey represent the components of rotor eccentricity at the seal mid-length, while

A and B represent the angles of rotor rotation about the x and y axes, respectively.

The former are referred to as the radial or lateral displacements and the latter as

the angular displacements.

Governing equations

The equations governing the flow of incompressible fluids in thin films are obtained

[10,11,15] by integrating the Navier-Stokes momentum and continuity equations
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Figure 4-3 Axial Cross-Sectlon of Seal with Eccentric Rotor
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across the film1:

H' 8P (Re/flU� + RebfL,Ub)(f/Re/+ fbReb) U= +
2 pR a8 2

H 2 aP(fiRe/+ fbReb) V= -----
2 p az

(4-2)

1 a -aZ aHi_ai(uH) + (v_ . _ . o • (4-3)

where fj and f= are the friction factors relative to the housing and journal surfaces,

respectively, and are functions of the Reynolds numbers relative to these surfaces

as well as of their roughness. They are given by:

A,,,.LHv(u-u,)"+v, (,,-4)

where i=j,b, and:

1_j 12 - 1000
fl" 12 (1 -3_'+2_ s) + fT(3['-2_s), 1000<Re,<3000

_" , Re,=3000 (u_u_nt)

(4-S)

P,el-1000
[-

2000

f/'" 0.001375 1 + +lOe
4Re,) J

(4.s)

The friction factor for turbulent flow through pipes, f', in equation (4-6) uses the

curve-fit obtained by Nelson [12] to Moody's data. The transition from laminar to

1 the word film or the term film thickness will be used to mean the gap of lubricant separating the
rotor and housing.
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turbulent flow is obtained using a cubic polynomial which matches values and

slopes at both ends, as reflected by equation (4-5). Figure 4-4 is a plot of the

friction factor versus Reynolds number and surface roughness, while Figure 4-5 is

an enlargement showing the detail of the transition region.

Under laminar flow with the friction factors equal to 12/Re, the velocities can be

solved explicitly in terms of the pressure gradients:

u- -12h =ap + AI + A b
80

V= -12h =0-_
az

(4-rt

Lubrication Background:

In the classical theory of lubrication, when the housing is stationary and the rotor

wall velocity is Ui =e R, the fluid velocity components are expressed explicitly in

terms of the pressure gradients:

u- H V- H=a.ap (4-8)
12pRae 2 ' 121= 8z

where GXand G= are turbulence coefficients[I] which become unity in the laminar

regime. Substituting these velocity components into the continuity equation,

results in the classical Reynold's equation:

t azt

Boundary condlUon$

Boundary conditions on the film pressure distribution consist on prescribing either

the pressure at the boundaries of the film, the flow normal to these boundaries, or

a relation between these two quantities.

/+-8
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Figure 4-4 Friction factor versus Reynolds number
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At the circumferential ends of the seal surface

prescribed: P( Z, e,)= 0 and

or periodic boundary conditions exists:

P( Z, e,)= P( Z, e.) and

Periodic boundary conditions are used,

e.=e=+_r.

model, either the pressures

P( Z, e.)= o,

u( z, e,)= u( z, e.).
for example, for a 360" seal,

are

where

At the left end of the seal surface model, the pressure/flow relationship is

prescribed:

P(-L/2,e)= P=- K= )tpVn 2.

At the right end either the same relationship is used:

P(L/2,e)= Pr" K= }iPVn2,

or the axial velocity is set to zero:

V(0,e)=0

when a symmetry boundary is present at the seal mid-length.

Finally, at pocket boundaries:

P(Z,e) = Pp - K= _ pVn2.

In all of the above relationships,

V_. I'iZ-/I,
I_-_>0

L O, F-h,O

I_ , U#z . V4_

(4-10)

is the flow velocity at the entrance to the film, normal to the pressurized boundary.

No pressure drop exists in the case of reverse flow (i.e., flow into the pressurized

boundary).
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External pressurization

The pressure drop across the orifice supplying the pocket is given by:

o,/'
P" - PP = sgn( Or) 2 _ AoC4 )

where Ao

obtained by satisfying continuity over the pocket volume:

(4-11)

is the orifice area, C d is the discharge coefficient and the flow Qr is

where Ap

to thislastequation may be positiveor negative.

is the pocket area, Sp is its perimeter. Note that the contribution of V* h

Dimensionless variables

Using the following transformation to dimensionless variables,

b= s (c3/12.R')
f= F/(PoR 2)

h= H/C
k= K (C/Po R2)

m= M/(Po R3)

P= P/Po

qr = Or (12/_/Po C3)

u= U (12 #R/C=Po)

v= V (12 #R/C=P=)

z = Z/R

1"= t (C=Po/12/=R 2)

Ab= 6 PUbR/(C=Po)

Aj= 6.UjRI(C2Po)

= e/C

<x= A (R/C)

= S (R/C)

Re'= ph_p/#2

Reo'= p C3Po/(R. 2)

At= pCePo/(288 Ao2C,=/_ =)

= (Reo'/288)(C3R/Ao2Cd2)

A,= K, (Reo'C/288 R),
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equations (4-1), (4-2), (4-3) and (4-4) become:

h = h,- (¢x+z_)oose - (.y-za)sine

(4-13)

(f/Re/*fbRea)
2 u= -12h=_B + (Re/flAj.ReafbA _)

(fiRs�+ fbRet) V- -12h 'Sp
2 az

._e(uh) _z(v_ ah4" ÷_u 0

a_

(4-14)

(4-1s)

Re1= Re_._hj (u_2^i)= + v=, i= j,b (4-1s)
12 "

Equations (4-5) and (4-6) remained unaltered, as they were already dimensionless.

The dimensionless form of the boundary conditions now become:

At the circumferential ends, either:

p( z, e=)= 0 and p( z, 0.)= 0

or:

p(z,e,)= p(z, eo) and u(z,e=)= u(z,e=).

when periodic boundary conditions are present.

At the left end:

p(-L/D,e) = p_-A.v, =,

and at the right end either:

p( L/D,e)= p,- h.v. =

or:

v(o,e)=o.

4-13



At pocket boundaries:

where:

p(z,e)= pp - heVn2

= Ilt-/l, V-t1>O
v,, t O, f-Jt<O

v. ÷v6,

(4-17)

Equations (4-11) and (4-12) goveming the extemal pressurization become:

p,- p, - q,)̂ ,q,= (4-18)

qr" h v'tl ds + --_ dedz
s,

(4-19)

Solution of film pressures

Discretization of the seal surface is done by using a rectangular grid, with M lines

in the axial direction and N lines in the circumferential direction. The grid lines are

separated by variable increments. The pressure distribution is represented by

discrete values at the grid points located at the intersections of the grid lines.

There must be grid lines coincident with the boundaries of the seal surface

(Z = ± L/2, e =e,, e =8.) and with the pocket boundaries. Using the cell method [3],

a control area or cell is centered at each grid point and extending half way to the

neighboring grid lines, as shown by the shaded area in Figure 4-6. The grid points

are noted by the solid circles and have grid coordinates i,j. The film thickness is

evaluated at the corners of the cell (denoted by the shaded circles marked h1, h=,

h3, and h4) located at the geometric centers of the rectangles formed by the grid

lines. This staggered configuration allows a discontinuous film thickness to be

treated, as occurs, for example in a seal with a Rayleigh-step. Circumferential and

axial components of velocity are also associated with each of the four cell corners.

Using the divergence theorem, the continuity equation may be integrated over the
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cell to give:

f. /. ah- v.ddS. _c/A (4.20)

where A= and S= are the cell area and perimeters, respectively. The left hand side

of the above equation is the sum of the flows out of the cell while the right hand

side is the rate of change of the cell volume. The finite-difference form of this

equation is:

Fv - --E(u,h,-u,h,), T(u=h= -u_) •

+_--_(Vlh,-v,h,)* !% (v,h,-v,_)-
2 2

4 a¢ (Az_+A&"XABj*AB/") = 0

(4-21)

where Fu is the error in satisfying continuity of flow in the cell centered at i,j.

Although the time rate of change of film thickness has been evaluated at the center

of the cell, it could have alternatively been evaluated at each of the four cell

corners.

When the grid point falls on a pressurized boundary, such as a pocket or seal end,

the film pressure error is:

Fq = Pa - Pq-A.max(0,v.) = " 0

v= Zu
(4-22)

where p= is the dimensionless boundary pressure =, v. is the mean velocity of the

flow that crosses the portion of the boundary perimeter that intersects the cell, and

_u represents the sum of the appropriate terms in equation (4-21) contributing to

the cell flow. Figure 4-7 shows an example of the cell i,j located at the right bottom

PI/Po, Pr/Po or Pp/Po"
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corner of a pocket.

Equations (4-21) and (4-22) represent the finite-difference form of the continuity

equation that must be solved for the pressures. The eight components of velocity

used in these equations are functions of the nine pressures at or neighboring gdd

point i,j, and are evaluated as described in section 2.3. Following the procedure

described in reference 1, these highly nonlinear equations can be solved using the

Newton-Raphson iteration method [14]. The procedure is started with an initially

guessed or previously calculated pressure distribution, Pij. The error function Fl

is then linearized about this guess in order to obtain a better approximation to the

pressures pijm,:

F,. P.)"o
k-1-1,1+10_kl

(4.24)

I-I-1J*l

where a forward difference or a central difference may optionally be used to

numerically evaluate the partial derivatives. Pressures without the superscript new

relate to the previous or "old" approximation. If we introduce the column vector

{pi 'w} as the M new pressures at the Jth column of grid points, Equation (4-24)

may be written:

[C J]{pl n_} + [E I](pl.n_v ) + [D J]lp)."_') = {R l} , (4-25)

where [cl], [Ej] and [D j] are tri-diagonal matrices whose interior elements are:

C_.k . __L. F_.J,,. 8FI DJ,_ = _L--- k=-1,0,1 ; I -2,...,M-1 .
_,q ' _._., ' _._., '

The interior elements of the column vector {R i} are:
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4-18



1

RII _ I• ÷ F..l_l_.i-1
k--1

÷ F,j

The set of linear equations (4-26) that result for the next guess of pressure

distribution is in a form suitable for solution by the column method which is

described in detail in References 3 and 4. This method makes use of the banded

nature of the equations in order to minimize computer time.

Solution of flow velocity

The momentum equations (4-14) are used in order to evaluate the velocity

components from the pressure gradients. These equations may be rewritten in the

generic form:

Gu[aa-_e'u'v] " flRel+f=Reb2 u + 12h=aa--_e-(Fle/flA/+RebfbAb) -O,(4.2s)

G ,u, = 2 v+12h = =0,

where the Reynolds numbers used to evaluate the friction factors are based on the

magnitude of the local fluid velocity relative to each surface:

Re/= ReOh
12 _/(u-2A/)' + v =,

Roo-Ro:hj(u- 2A )= . v=,

(4-27)

The dependence of the friction factors on velocity components orthogonal to each

momentum direction couples the two momentum equations. Figure 4-8 is a

schematic of the rectangular region between axial grid lines i and i+1 and

circumferential grid lines j and j + 1. In order to preserve continuity, it is essential

that the same equation be used to evaluate the velocity components for adjacent
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cells. That is, the velocity u 1 out of the shaded cell centered at i,j must have the

same value as the velocity u 4 into the cell centered at i,j+ 1. This value is

designated as u" in the figure. Similarly, the velocity v I out of the cell i,j must be

the same as v2 into the cell at i+ 1,j, and is designated as v'. This is achieved by

using the average of the two corresponding orthogonal components. Thus, the

component u" is determined by the u-momentum equation:

= 0 (4-28)

while the component v" is determined by the v-momentum equation:

[ P_+_j-Pq u. u" ]Gv /t z i ' 2 , v-

Similarly, u ÷ and v ÷ are determined by:

= 0 (4-29)

Pi.1,/.1-Pi_1,/ v- +v"G,, Aej ,u', 2

Gvl Pi÷I_I÷I-Pq÷IAZ/ ' U'*U"'V*]2

=0

=0

(_3o)

Equations (4-28), (4-29) and (4-30) are four coupled equations that determine the

velocity components from the four pressures at the corners of the rectangle

between grid lines and must be solved simultaneously. This is done using an inner

Newton-Raphson iteration loop. By performing the differentiation of the error

functions (Gu, Gv, ...) with respect to the four unknown velocities, analytically

instead of numerically, significant computer time is saved. If the velocities have not

been previously calculated initial guesses may be obtained from equations (4-7)

assuming laminar flow. Once the iterations for the velocities have converged, their

values are saved to provide a good starting guess for the next time they must be

calculated.

One simplification is possible by assuming that the friction factors are constant
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within the rectangular region and the Reynolds numbers are based on the

averaged flow velocity components, _ (u'+ u*) and _ (v'+v*). Although this does

not uncouple the four equations, it requires less number of evaluations of the

square root in equation (4-16). Since this assumption saves some computer time

without introducing significant errors, it was chosen as the default program option

(IFRIC = 3). However, occasionally when the grid is not very fine and the pressure

gradients vary rapidly, the iterations will diverge and the more rigorous formulation,

which uses distinct friction factors for each of the four momentum equations,

should be used with the IFRIC=4 option.

If the surfaces are smooth and the housing is stationary so that the continuity

equation takes the form of equation (4-9), the simpler formulation described in

detail in Reference 1 may be used by selecting the option IFRIC= 0, resulting in

significant reduction in computer time.

Fluid film load, moment and torque

The forces and moments on the rotor generated by the fluid film pressure

distribution are obtained by integration of the pressure distribution over the

II / ['=:]• / Pl_zslnel Rdedz

-Lo. [zcosej

cylindrical seal surface:

The dimensionless form this equation is written:

II', /=''l. e. sin0
f- ___ P i_z_e/dedz

- tzcosej

(4-31)

(4-32)

The differential of torque transmitted from the housing to the rotor is given by the

cross product of the position vector T and the shear traction vector acting on the
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housing It:

For laminar regime, fjRej = fbReb = 12, and the equation simplifies to:

r-- T,, =ffr x r dA
At

•, R ff_r x (',o8,) dA (4-33)
At

PoR e _/ f,R(u-2A ) - fbR_(u-2Ab)T- _ _h_ - i _ J72_ ) OadZ

PoR e _[ A-A_T= 2Co {h a-_ - _dZ_} (4-34)

The power loss due to the difference in velocities across the two surfaces is

obtained by doting this torque with the relative velocity:

P = T(_ b - (Ol)

" _P°Re £f(hS-_ - flRI(u-2AI) 72h-fbR_(u-2Ae) l(,',r,',_,)_,_
(4-35)

Stiffness and damping coefficients

Defining W to be a generalized vector of forces and moments generated by the

fluid film pressure and 1' to be a generalized vector of lateral and angular
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displacements:

X

8

the matrices of stiffness and damping coefficients can be written:

aw_ aw_
*"-N _"-N

where the subscripts i and j range over x, y, a and _.

evaluated by numerical differentiation of W, using a forward difference.

example:

(4-36)

(4-37)

These coefficients are

For

K,.= Fv(" " =+8,p_-FV(..,,,, =, P) (4-38)

Solution of rotor position and pocket pressures

If the rotor position is specified, equation (4-36) is used to solve for the fluid film

forces and moments in terms of the calculated pressure field. Similarly, if the

pocket pressures are specified, equation (4-11) is used to solve for the orifice size

in terms of the supply pressure and calculated pocket flow.

On the other hand, if externally applied loads and moments on the rotor (fro, f_=,

m== and my=) are specified they must be balanced by the fluid film forces to

maintain static equilibrium. Similarly, once the orifice size is specified, equation

(4-11) must be satisfied by the pressure in each pocket. The global set of

equations that must be satisfied by the rotor displacements and pocket pressures
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are:

f,_,_. -f,,

mx(t_ - -mm

p, - p,,. _no(q,)._(q,,)_, forpoc*et1.
|

(4-39)

The vector 1' can now be redefined to include the pocket pressures and a

generalized vector of errors in forces, moments and pocket pressures W e can be

defined:

rm

I¢x

Cy
0¢

P
p,,
P_

W_ l=

r,÷r_
r,.r,,

mx + mxo

my+my 0

:). - pp, - sgn(q.) Are(q.)"

_. - p_ - sgn(q_)^_(q_)_

(4.4o)

Solution of the global equations is performed by Newton-Raphson iterations, as

follows:

ra Iv.l (_),v..[ -jlr---,I .o
where, as before, the superscript new indicates the newer values of the vector r.
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4.2 SAMPLE PROBLEMS

A number of sample problems have been prepared to demonstrate the behavior

and various features of the computer program. They are intended primarily for

illustration and do not necessarily represent recommended seal designs. Table 4-1

summarizes the mesh size, approximate execution times (on a 20Mz 386 PC) as

well as a list of what variables where specified and iterated for in the outer loop for

the sample problems.

Samples EX1, EX2 and EX3 were selected with a coarse (5x11) mesh covering a

90" sector in order to demonstrate the use of pressurized pockets and iterations

for rotor position within a reasonable execution time. A pocket with a supply

pressure of 100 psi was centered on the seal sector modeled.

Sample EX1 contained two cases. In the first case, the pocket pressure

was specified as 50 psi, resulting in an orifice diameter of 0.0137 inches

calculated by the program. Both components of the resulting fluid film force

are equal and the moments are zero, as would be expected at the

concentric position. In the second case, the rotor was moved with to

eccentricity ratio of _x = 0.1 and given a misalignment ratio of/3 =0.1 about

the y-axis. With the value of orifice diameter already assigned from the first

case, the pocket pressure and forces rise slightly, generating non-zero

moments.

In sample EX2, external forces and moments equal to the negative of those

resulting in EX1 were specified, in order to have the program iterate for the

rotor radial and angular positions. Five unknowns, the four displacement

components (_ x ,_ y, _', and/_) as well as the pocket pressure, are iterated

for simultaneously. Although it wasn't needed, IREADP= 1 and READP=

'ICYLEX1.888' where specified in order to illustrate the use of reading the
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Table 4-1 Summary of sample cases

Case Mesh
Size

ISYM Variable App.exec Features
Found" Specified time"

EXI

EX2

EX3

F3

F4

F9

II

IZ

13

14

15

16

015

Sx11 0 dorif,P,,_ P,_,E,,dorif 4.6 men l-pocket

Sxll 0 (,,_,e,_,P,,_ F,,F,,M,,My,dorif 11.6 men l-pocket

5x11 0 a,_,Pp,_ M,,M,,dorif 6.2 men Tapered pocket

9x61 I - all Z9 men Raleigh-step

7x61 0 - all 7.8 men Axial taper

5x73 I K,B all (3 preloads) 1.6 hrs 3-1obe

Sx61 I dorif P,,_ 7 men 4-pocket

5x61 I P,_,K (,,dorif 1.8 hrs 4-pocket

5x61 I (,,(,,P,,_ F,,F,,dorif 1.9 hrs 4-pocket

gx61 0 K,B,P,,, (=,s,dorlf 7.7 hrs 4-pocket

11x61 0 dortf PN= 5.2 mtn 8-pocket

11x61 0 P,._ dorif,(,,I 3.1 hrs B-pocket

Sx31 0 K,B all I hr 45 sac Roughness

K,B indicate whether stiffness, damping coefficients were requested.
on an IBM PS/2 model 70 (386 20-Mhz) computer.

pressure distribution from a previous run. Since the iteration was begun at

the concentric position where the orifice was sized, the pocket flow error

was zero and increased when the rotor was moved in the first iteration,

causing the run to abort. When the limit on diverging iterations (MAXDIT)

was increased to 2, the iterations converged in only 3 iterations to within a

small error of the values expected (ex = 0.1,/_ = 0.1).

In sample EX3, an axial taper of +30% of the clearance from end to end

was superimposed. This calculation might be desirable to see the effect of

machining tolerances or imperfection on seal components. This was

accomplished by decreasing the clearance by 0.0003 inches

(DELTA(I,1)=-0.003) as well as using DELTA(2,1)=0.006. In this sample,
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the program was asked to find the angular rotor position such that no

external moments where required, while the rotor eccentricity was varied,

using Ex = 0.1, 0.3 and 0.5 for the 1st, 2nd and 3rd cases, respectively.

The results show that as the eccentricity is increased in the x-direction, the

rotor twists about the y-axis in order for the moments generated by the film

to be zero, resulting in/_=0.050 and 0.17 at Ex = 0.1 and 0.3, respectively.

The case of _x=0.5 resulted in a negative film thickness with the appropriate

error message and recommended user action:

o REDUCE THE SPECIFIEDAPPLIED FORCES/MOMENTS

o REDUCE THE SPECIFIED ECCENTRICITY/MISALIGNMENT

The resulting film thickness is shown in Figure 4-9 and the pressure

distributions are shown in Figure 4-10.

Sample F3 shows a 120" sector with a Raleigh step of linearly varying

depth. The resulting film thickness and pressure distributions are shown in

Figures 4-11 and 4-12, respectively.

Sample F4 shows a 120" sector with an axial taper in the right half (4 < i < 7)

of 0.001 inches. Since two less intervals were used in the axial direction

than in the previous cases, and since half as many iterations were required

for the pressure distributions, the execution time was reduced from about

29 to 8 minutes. The film thickness and pressure distributions are shown

in Figures 4-13 and 4-14, respectively.

Sample F9 is that of a full 360" seal with three 60" lobes. The dynamic

coefficients was requested as the preload was increased from 0.1 to 0.3 in

the middle case, to 0.8 at the last case. The film thickness and pressure

distributions are shown in Figures 4-15 and 4-16, respectively.
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Samples I1 through 14are more realistic models since they represent the full

circumference. In sample I1, the program takes about 7 minutes to

calculate the orifice diameter for given pocket pressures. The resulting

pressure distribution is shown in Figures 4-17. Sample 12 is the same as

I1 except that the eccentricity and orifice diameter were prescribed,

requiring the program to solve for the four pocket pressures. The resulting

film thickness and pressure distributions are shown in Figures 4-18 and

4-19, respectively. In sample 13, the orifice diameter as well as the radial

force were prescribed, requiring the program to solve for the radial position

as well as the pocket pressures.

Sample 14 shows the dramatic increase in execution time with the number

of axial grid lines, M. Sample I1 is a model of only half of the seal

(ISYM = 1) at the concentric position with the pocket pressures specified.

This run executes in less than 7 minutes in spite of the 5x61 mesh.

Samples 14 is a model of the full axial length (ISYM =0), with an 11x61

mesh, in which non-zero _x, (z and orifice size are specified and all 32

dynamic coefficients are requested. This run took 7.7 hours to execute.

Calculations for each of these coefficients require convergence of the outer

iteration loop with four unknown pocket pressures.

Sample 15 and 16 are models representing the full circumference and length

with two rows of 4 pockets. The orifice size is calculated in the concentric

aligned position in 15 while 16 calculates what happens when the rotor is

displaced to the _ x=0.4 position and rotated about the x-axis by a =0.4. For

15, the resulting pressure distribution is shown in Figure 4-20. For 16, the film

thickness and pressure distributions are shown in Figures 4-21 and 4-22,

respectively.
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Sample O15 is a case of a plain cylindrical seal with increasing housing wall

roughness. The wall roughness (ROUGHB) was varied from lx10 6 to

lx10 a inches in a logarithmic scale using IPAR=14 and NPAR=-4. This

input was used to generate the top curve of critical mass versus roughness

shown in Figure 4-23. The stabilizing effect of housing roughness is more

pronounced at the higher pressures due to the increased effect of inlet

inertia. The last lines in the input file show how one would run additional

values of pressure within the same run. These were not run because they

were placed after the line with ISTOP= 1 in order to reduce the size of the

output file.

1500

,._ 100.0

"_ 50.0

0.0

2627
(_}

,,,/

t .......................................................... ......
a

4_ 87.6I I

!
........ ! ........ ! ........ ! ........ 0.0

_-4 io-3 _-2 _-w _o

Figure 4-23 Critical mass versus housing roughness
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4.3 VERIFICATION

ICYL has been compared with the results of two other MTI computer codes as well

as currently published data. The first comparison was against a generic bearing

program with many similar capabilities (GBEAR) based on the turbulent lubrication

theory of Ng and Pan. A second comparison against a laminar bearing program

(GASBEAR) was used to verify the calculations of moments and angular

coefficients. Finally, comparison were made against calculations published by San

AndrOs in Reference [16].

Comparison against MTI other codes

The first of the MTI computer codes is GBEAR which is fully described in

Reference 1. This program is based on the turbulent lubrication theory of Ng and

Pan[13], and does not include surface roughness, housing rotation or calculation

of misalignment coefficients. It includes inertia pressure drop at exit from pockets

but not from the seal ends.

F

k _.

Calculations were made with a 90" seal sector at an eccentricity ratio of 0.5 and

with a pocket at its center with a prescribed pressure ratio of 0.5. Table 4-2 shows

a comparison of pocket flow, orifices size, force, and stiffness and damping

coefficients. As expected, comparisons of GBEAR against ICYL with the same

friction model (IFRIC=0) yielded nearly identical results. With the new friction

model that includes surface roughness effects, ICYL calculates lower torque(-32%),

lower pocket flow (-13%) and orifice size (-7%), and force components(-6%). Very

good agreement in the stiffness coefficients (-4%), and slightly higher damping

coefficients(+ 13%) are obtained.

Other comparisons against GBEAR in the laminar regime and without pockets

yielded identical results.
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Table 4-2 Comparison against GBEAR,

GBEAR ICYL ICYL ICYL

IFRIC=0 IFRIC=3 IFRIC=4

25.21 20.931 22.316Recess flow (in3/s)

Orifice diam. (in)

Torque (1b-in)

Power (Lb-in/s)

Fx

25.75

0.0833

14.38

45_171

(,h) 3,694

0.0820

14.32

44_971

3r358

0.0752 0.0776

8.791 9.771

27,617 30,696

3f352 3_477

(Lb)

Kxx (10 6 Lb/in)

Kxy (10 6 Lb/in)

Kyx (10 6 Lb/in)

Kyy (106 Lb/in)

Sxx (Z.,b/in)

Bxy (Lb/in)

nyx (Lb/in)

nyy (z,b/J-)

-3,488

2.352

-1.461

-1.998

1.573

232.08

-175.53

-3,122

2.267

1.481

234.79

-175.87

-174.78 -174.10

173.87 173.79

-3r083

2.329

-3,346

2.344

-1.280 -1.397

-1.871 -1.961

1.406

269.01

-194.38

-192.40

187.57

1.564

274.46

-199.65

-200.56

196.53

A second MTI computer code with the fluid compressibility turned off (GASBEAR)

was used to verify the calculation of the 24 stiffness and damping coefficients

which involve rotor misalignment. GASBEAR was written for use in conjunction

with plane journal bearings and cylindrical seals and does not treat turbulence or

pressurized pockets. The comparison, in the laminar regime and with the same

finite difference mesh, yielded identical coefficients.

Comparison against published data

A detailed comparison was made of the 5-pad hydrostatic bearing discussed by

San Andr#s in Reference [16]. This high speed hybrid journal bearing operates

at relatively high levels of pressurization and relatively low viscosity lubricants, in

which the effects of pressure-induced turbulence become important. Fluid inertia

may also be important. Figure 4-24 is a plot of the pressure distribution at the
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concentric position, while Figure 4-25 and Figure 4-26 plot it for 40% eccentricity

ratio of the journal between pockets and over a pocket center, respectively.

Reproductions of the corresponding pressure distributions published by San

Andres are included in the figures for comparison. It is noticed that the size of the

pressure drops at the pocket exits (i.e., entrance to the film) as well as the general

pressure distribution are comparable for both analyses.

At the concentric position, bearing flow requirements calculated by ICYL is 42

versus about 44 I/min reported by San Andres. Figure 4-27 and Figure 4-28 are

plots comparing the direct and cross coupled stiffness coefficients while,

Figure 4-29 and Figure 4-30 compare the direct and cross coupled damping

coefficients, respectively, versus eccentricity ratio. In general, ICYL predicts about

35% higher direct stiffness, 10% lower cross coupled stiffness coefficients, and

15% lower direct damping at the concentric position. With increasing eccentricity

ratio, the coefficients are observed to behave similarly and some of the

discrepancies decrease. The cross-coupled damping coefficients with ICYL are

equal in magnitude, opposite in sign and zero at the concentric position, as is

expected with an incompressible fluid. San Andres' non-zero concentric value (60

kN-s/m) is due to the fluid compressibility in the pocket. Figure 4-31 shows the

critical mass versus eccentricity. The concentric value of 119 Kg shows better

stability than predicted by San Andre's, which predicts an unstable bearing with a

30 Kg mass.

The analysis of San Andre's includes the effect of fluid inertia in the film as well as

some special effects inside the pocket, such as fluid compressibility and a one-

dimensional circumferential pressure rise downstream of the orifice. There is also

a slight difference in friction law used: MTI's analysis follows the formula derived

by Nelson[12] for Moody diagram, in which the term containing the Reynolds

number is raised to the 1/3 power while San Andres uses the same formula with

the power changed to 1/2.65 for a more restricted range of Reynolds numbers.
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The above comparisons should provide reasonable verification, as the only

discrepancies between the results can be explained by the different friction models

and features between the codes.
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4.5 NOMENCLATURE

A,B

bij = Bij (C3/12_R 4)

C

e b, ej

e x, ey

e

f = F/(Po R2)

H

Ho

h = H/C

K,

Kwj,Bij

kij = t_.j (C/Po R2)

L

Mx, My

m = i/(Po R3)

misalignment of rotor about the x and y axes,
respectively. [radians]

dimensionless damping coefficient matrix, where

i,j= x, y, a,/3.

nominal clearance. [L]

roughness of the housing and journal surfaces.

[El

components of rotor eccentricity at Z=O. [L]

rotor eccentricity at Z=O. [L]

components of fluid film force about x and y
axes. [F]

dimensionless fluid film force.

local film thickness. [L]

local film thickness for the concentric aligned

rotor (i.e.,e x = e = A= B = 0). [L]
Y

dimensionless local film thickness.

coefficient of pressure drop at inlet to film.

Stiffness and damping coefficient matrices,
where i,j= x, y, c=,_.

dimensionless stiffness coefficient matrix, where
i,j= x, y, c=,_e.

seal length. [L]

components of fluid film force about x and y
axes. [F-L]

dimensionless fluid film moment.
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h

P

P = P/Po

PI, Pr

Pp, Ps

Po

r

qr = Q, (12#/PoC 3)

R

Re* = ph3_Tp/p 2

Reo" = p C3Po/(R#. 2)

t

u = U (12#R/C2Po)

v = V (12pR/CiPo)

U,V

Ub, Ui

X,Y,Z

z = Z/R

(z = A (2L/C)

unit vector normal to fluid film boundary.

local pressure. [F/L 2]

dimensionless local pressure.

Left and right boundary pressures. [F/L 2]

Pocket and supply pressures. [F/L 2]

Reference pressure, used for scaling the

pressure field, which is normally set equal to P=,

Pp, Pi or Pr" IF/L2]

flOW from pocket or recess. [L3/T]

dimensionless flow from pocket or recess.

seal radius. [L]

local Reynolds number based on pressure-
driven flow.

refernce Reynolds number based on pressure-
driven flow.

time. [T]

dimensionless circumferential component of fluid

velocity.

dimensionless axial component of fluid velocity.

circumferential and axial fluid velocity

components, averaged across the film. [L/T]

linear velocity of housing and journal surfaces

(equal to P_ b, Roj, respectively). [L/T]

cartesian coordinates. [L]

dimensionless axial coordiante.

misalignment ratio about the x-axis.
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/3 = B (2L/C)

Ex_ Ey

= e/C

6

A b = 6_ UbR/(C2Po)

A i = 6#UIR/(C2Po)

-&r= p CSPo/(288 Ao2Cd_ 2)

A e = Ke (Reo*C/288 R)

P

(JOb' G)j

r = t, . _,(C2Po/12LLR2_

misalignment ratio about the y-axis.

components of rotor eccentricity ratio.

rotor eccentricity ratio.

circumferential coordinate. [radians]

dimensionless velocity of housing surface.

dimensionless velocity of rotor surface.

coefficient of orifice restriction.

coefficient of pressure drop at inlet to film.

fluid dynamic viscosity. [F-S/L 2]

fluid density. [F-'I'2L 4]

angular velocity of housing and journal surfaces.

[rad/T]

dimensionless time.
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5.0 INDUSTRIAL COMPRESSIBLE CYLINDRICAL CODE, GCYL

The program GCYL (acronym for gas lubricated cylindrical) is used for analyzing

a variety of seals that can be defined in a cylindrical coordinate reference

frame. Figure 5-1 shows solid ring configurations and Figure 5-2 shows typical

sectored ring configurations that the program analyzes. The capabilities of the

program include the followingz

• Varying geometries, as indicated on Figures 5-1 and 5-2.

• Variable or constant grid representation. Maxlmumgrid size is 30

grid points in the axial direction and 74 grid points in the

circumferential direction. Figure 5-3 shows a typical grid network.

The circumferential parameter is 8, and the axial parameter is Z.

The grid points are identified in the axial direction as I and in

the circumferential direction as J. The extent of I is I_M, and the

extent of J is I_N.

• Specified boundary pressures or periodic boundary conditions in

the circumferential direction.

• Axial symmetry option

• Four degrees of freedom, x and y tranmlationm of rotor origin and

angular displacements about the x and y axes through the rotor

origin

• Determining load as a function of shaft position or determining

shaft position to satisfy a given load.

• External Pressurization (Hydrostatic} of inherently compensated

orifices, spot recesses or full recesses.

• Choice of English or $I units

The output of the program includisx

• Clearance distribution

• Pressure distribution

• Leakage along specified flow paths
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• Load and Load angle

• Righting Moments

• Viscous dissipation

• Cross-coupled, frequency-dependent,

coefficients

stiffness and damping

• Plotting routines for the pressure and clearance distribution

The program has been written for a PC environment using OS/2 as an operating

system. Relatively large dimensions have been utilized which would exceed the

memory limitations of a DOS environment. The FORTRAN code however, would be

amenable to other systems that employ FORTRAN 77 as long as memory is sufficient.

5-5



5.1 THEORETICAL DESCRIPTION AND NUMERICAL METHODS

General Theory

Reynolds'

follows:

equation for compressible flow for a cylindrical geometry* is as

+ 12.
3t

(5-I)

The equation is made dimensionless with the following definitions.

variables are dimensionless).

Z = z/R, H = h/C o , T = t/t o , P = P/Po'

6u_ R2

h " po-'_o ' to" PoCoL

(Upper case

Substituting the dimensionless variables into Reynolds' equation produces a

dimensionless Reynolds' equation.

az _e _T

For steady-state solutions, the time dependent term on the right hand side is

eliminated except for the computation of spring and damping coefficients.

In the solution methods subsequently described, the Reynolds' equation is not

applied directly. The Reynolds' equation represents the divergence of the mass

flow at any grid point. The more convenient cell method is to conduct a mass

balance directly, and not the divergence of the mass flow at each point.

Formation of Equations for Determining Pressure Distribution

*Nomenclature is included in Section 5-5
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The general method of solving for the pressure distribution is the cell

method Ill** , whereby a flow balance through a cell volume is accomplished. The

perimeter of the cell extends halfway between the grid point and its four neigh-

boring points. A typical cell is shown by the dashed lines on Figure 5-4. The

principal grid point is at Row i (length direction) and Column j (circumferen-

tial direction). For convenience of programming the grid points are numbered

for each cell sequentially from 1 to 9 with grid point 5 being the principal

point. The corners of the cell boundaries are also numbered from i to 4.

Figure 5-5 shows the flow balance through the cell. There are eight flows

across the cell boundaries, and there can also be a source (or sink) flow into or

out of the cell control volume. The reason eight flows are used in lieu of four

is that it permits discontinuous clearance boundaries at grid lines (such as

Rayleigh steps) without taking derivatives across a discontinuous boundary.

The net flow through a cell can be expressed as:

AZ i AZi_I + _ ÷
Q12+ T ÷ Q1; 2 ÷ Q14 2 Q14- 2 (5-3)

-Q3_ Azl bZi i

QI2 + means the mass flow per unit length across the plus side of cell boundary

1-2, etc.

The Q's are dimensionless mass flows per unit length, except for Oin which is a

dimensionless source inlet flow.

In the 0 direction

Q- _fu 3 A__Z + A (5-4)

In the length or Z direction

_P _0

Q--FH 3 _Z 2

**References are identified in Section 5-4

(5-5)
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where Q is defined as

12_GcT a q
Q =

23
Po

(5-6)

(Primed values of P are absolute pressures; unprimed values are gage pres-

sures).

An optional flow can enter the cell from an external source, which can be treat-

ed as an inherently compensated orifice, or a conventional orifice restriction.

Inherent compensation presumes the orifice area is the surface area of a cylin-

der circumvented by the hole size and length equal to the clearance under the

inlet hole. The conventional orifice area is the area of the hole. The conven-

tional orifice generally discharges into a recess that allows the flow velocity

to dissipate into a region of constant pressure. Two types of recesses are

permitted; a spot recess which is treated as a source at one grid point, or a

recess of finite length in the axial and circumferential directions, which is

fed by an inlet orifice.

Pressures are taken as the average pressure across the boundary. For example:

Pi'J + Pi,J+l

P12 = 2 and (5-7)

etc.

Pi,j+1 - P±,J

_112 " _ej

(5-8)
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By substituting the pressures and pressure derivatives (equations 5-7 and 5-8)

into the mass flow balance equations (equation 5-3 and 5-4), an equation is

derived that is a function of the five pressures, P2, P4, P5, P6 and P8, and the

clearances taken at the cell corner points H I -- H 4. Each cell corner point film

thickness is computed in'the clearance routine by appropriate values of Z and 0

and is designated as as HCi, i = I, 4. For example, HC 1 is the clearance at the

cell corner point I.

An optional flow can enter the cell from an external source, which is treated as

an inherently compensated orifice or the usual hole size orifice restriction.

Point sources pose numerical instability problems, which are circumvented by

applying fine grids surrounding the source points. Flow through the orifice is

given as:

Qin OFCx AOx PS "PR 2/y ) --i III/2" ' - PR 7 (5-9)

where, 12_C d 2>GcTa

OFC - poC-_T° 7-i '

A
O

dOH5 for Inherent Compensation
for orifice compensation(spot recess or full recess)

(')PR

then _S " PC&

wherePcR [

(5-1o)

(5-n)

(5-12)

(5-13)

(5-14)
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This condition implies backflow through the orifice.

p, = PR+I)The primed values indicate absolute pressures (i.e., R

Thus, a system of numerical equations can be derived as a function of five pres-

sures. There is an equation for every grid point.

(Pl' P2' .... es) i,j = 0 (5-15)

The system is non-linear since it is dependent upon multiples of P and its

derivatives.

The solution process starts by assuming a pressure distribution, and using

Newton-Raphson iteration until the functions f converge to zero within a

prespecified truncation error. In equation form, the iteration process is:

5

_i,j ._!_ p_,,e,,) - 0 (5-16)

_PK

where the partial derivatives are explicitly determined, e.g.

f(Pl' P2' "'" PZ + ¢/2 ""P5 i,j )
= (5-17)

- _ (PI'P2' ....eZ-¢12'"'"P_)",, 'J

The actual convergence is not on f, but on PK (new) - PK (°Id): for when the

difference vanishes, the condition that f=0 is satisfied.
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The Column Method Solution of Newton-Raphson Equations

The column method [2] is used to solve the new pressures in the set of mxn

equations defined by equation 5-16. The advantage of the column matrix method

is that its inversions are M x M rather than M x N so that its use saves computa-

tional time.

The linearlzed N-R equations may be written in the form:

Cj Pj + Ej Pj-I + Dj Pj+l = Rj (,5-18)

For each value of j, Pj is a vector containing the jth column of new pressures,

Rj is the right hand side column vector and Cj, Ej and Dj are in general

tri-diagonal matrices.

Case 1 - Pressure Prescribed at Start and End of Pads

Equations of form 5-18 are written at all points in the grid corresponding to i =

i, 2, _M and j = 2, 3, _N-I with boundary column vectors P1 and PN prescribed.

Look for a solution in the form:

Pj-I = Aj Pj + Bj (5-19)

Where Aj is an M x M matrix and Bj is a vector. Use equation 5-19 to eliminate

Pj-I appearing in equation 5-18.

(Cj + Ej Aj) Pj + Zj Bj + Dj Pj+I = Rj
(5-20)

Solve equation 5-20 for Pj to obtain:

Pj = -Ij Dj Pj+l + Ij(Rj - Ej Bj) (5-21)
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Wherelj = (Cj + Ej Aj) -I (M x M matrix)

Set j = j+l in equation 5-19 to obtain

Pj = Aj+I Pj+I + Bj+I (5-22)

Compare coefficients in equation 5-21 and 5-22.

Aj+ I = -lj Pj, Bj+ 1 = lj (Rj - Ej Bj) (5-23)

Set A 2 =0, B 2 = PI

Use equation 5-23 to compute A3, A4, --, AN and B3, B4 -- BN.

Since PN is given and all Aj and Bj are computed, we may use equation 5-19 to

compute PN-I, PN-2, PN-3, .... , P2.

Review of General Procedure for Non-Periodic Boundaries

1) Set A2 = 0

B2 = P1

2) Compute Aj+I, Bj+ 1

Aj+ 1 = -lj Dj

Bj+I = Ij (Rj - Ej Bj)

where Ij = (Cj + Ej Aj) -1

j _ 2, N-I

3) Compute Pj

Pj-I = Aj Pj + Bj j=N, 2

Case 2 - Column Method for Periodic Boundaries

Pj, Bj, Rj, Zj are vectors. N' = N-I
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For periodic boundaries, the condition is that PI = PN.

the general equation is:

C1 P1 + E1 PN' + DI P2 --R1

At the boundary, j=l,

(5-24)

At column N', the equation becomes

CN' PN' + EN' PN'-I + DN' P1 = RN' (5-25)

To satisfy the boundary conditions, a solution is assumed of the form:

Pj-I = Aj Pj + Bj + Fj PN'
(5-26)

A 1 = 0, B 1 = 0, F 1 = _ (Kronocker delta matrix) (5-27)

Returning to the general equation:

Cj Pj + Zj Pj-I + Dj Pj+I =Rj
(5-28)

Substituting for Pj-I from equation 5-26, the following results:

(Cj + Zj Aj) Pj + Ej Bj + Ej Fj PN' + Dj Pj+I = Rj

lj = (Cj + Ej Aj) -I

(5-29)

(5-3o)

Then,

Pj = -lj Dj Pj+I + lj (Rj - Ej Bj) - lj Ej Fj PN'
(5-31)

From equation 5-26:

Pj = Aj+I ej+l + Bj+I + Fj÷l PN'
(5-32)

Comparing equations 5-31 and 5-32:

Aj+ I = -lj Dj, Bj+ 1 = lj (Rj -Ej Bj), Fj+ I = -lj Ej Fj j=l, 2, --, N-I
(5-33)

For PN = PI, we obtain from equation 5-26:
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PN' = AN'+1 P1 + BN'+I + FN'+I PN' (5-34)

After rearranging:

PN' = (6 - FN,+I) -I (AN'+ 1 P1 + BN'+I)
(5-35)

or PN' = YN' P1 + ZN' (5-36)

where

YN' = (6 - FN,+I)-I AN'+I, ZN' = (6 - FN,+I) -I BN'+I (5-37)

Substituting equation 5-36 into 5-26 we obtain:

PN'-I = AN' (YN' P1 + ZN') + BN' + FN' (YN' P1 + ZN')

= (AN' YN' + FN' YN') P! + AN' ZN' ÷ BN' + FN' ZN'
(.5-38)

= YN'-I P1 + ZN'-I

where

YN'-I = AN' YN' + FN' YN', ZN'-I = AN' ZN' + BN' + FN' ZN' (5-39)

Similarly,

PN'-2 = AN'-1 (YN'-I P1 + ZN'-I) + BN'-I + FN'-I (YN' P1 + ZN') (5-40)

= (AN'-I YN'-I + FN'-I YN') P1 + AN'-1ZN'-I + BN'-I + FN'-I ZN'

= YN'-2 P1 ÷ ZN'-2 (5-41)

Yj-I = Aj Yj + Fj YN'

Zj_ 1 = Aj Zj + Bj + Fj ZN'
(5-42)
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Therefore, in general:

Pj-I = Yj-I P1 + Zj-I or Pj = Yj PI + Zj

P1 = (6 - YI) -I Z 1

(5-43)

(5-44)

Review of General Procedure for Joined or Periodic Boundaries

i) Compute Aj+I, Bj+I, Fj+ I

Aj+ I = -Ij Dj

Bj+ I = Ij (Rj -Ej Bj)

Fj+ 1 = -lj Ej Fj

A I =0

B 1 =0

F 1 =6

j=l, N-1

lj = (Cj + Ej Aj) -1

2) Compute YN', ZN'

YN' = (6-FN)-IAN

ZS, = (6-FS)-ZBN

3) Compute

Yj-I = Aj Yj + Fj YN'

Zj- 1 = Aj Zj + Sj + Fj ZN'

4) Compute Pl = (6 - Y1) -1Z 1

j =N' ÷2

5) Compute Pj = Yj PI + Zj j=2÷N '
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The coefficient matrices Cj, Ej and Dj, and the right hand side vector Rj, are

easily formulated. Cj contains all the coefficients multiplied by Pj. By exam-

ining equation 5-16, it is seen that for any row i and column j that values of C

are:

_f5

ci, i-l, j = _p--_

_f5

ci, i, j = ar--_

_f5

ci, i+l, j =

(5-45)

Similarly the coefficient matrix Ej contains the elements:

and

El, i, j = _ (5-46)

_f5

Di, i, j ffi _ (5-47)

Rj contains all elements not multiplied by the pressure

Rj - -flj (°ld) +_ _ p_old) (5-48)

1 _PK

Separate subroutines are used depending upon the pressure boundary conditions.

The subroutine COLP implements the column method for prescribed boundary condi-

tions while COLJ does it for periodic or joined boundaries. The subroutine

COEFC forms the C matrix coefficients while COEFF forms the coefficient matrices

and right hand side vector D, E, R respectively.

Film Thickness Distribution (see Figure 5-6) Eccentricity and Misalignment

In vector format, the clearance due to eccentricity and misalignment at any

angle e and at distance z' from the mid-plane is:

A *t

(5-49)

h = C - • cose- • sine + az' sine - Bz'cos8
o x y

CO- (e x + Bz') cose - (ey- az') sine

(5-s0)
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Using dimensionless variables, equation (5-50) becomes:

( +_(Z - LI2)R} cos6H- i- ¢x " C "
O

- (y_ - _(Z-L/2)Rc ) sine
O

which is set equal to:

(5-51)

H = i- (e x + _B) cos 0 - (ey + _a) sin e (5-52)

where

cs

£

= s (Z-L/2)X
C
O

. a (Z - L/2)R
C
O

(5-53)

Preloaded Seals

Preloaded seals (see Figure 5-7) can be modeled by adding an additional eccen-

tricity in the x and y directions.

X

cpR " cpR cOSep

¢,Ry " ¢PR sin%

(5-54)

where

Raylei_lh Step

X

£PR =

¢pR y

Op -

x eccentztcity due to preload

y eccentricity due to preload

preload anSle

The grid network for the Rayleigh step is shown on Figure 5-8. The boundaries of

the step are defined by the lower left and upper right corners of the depressed

region. Interior grid points include the step height in the clearance distrib-

ution._
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Thetap =, _l:md
Dia/2

Thetas

Keyword

START

PADANGLE

PIVOT

PRELOAD

Variable

THET_

P_

_R

Description

Pad Start Angle

Pad Angle

Pivot Angle

Offset/Clearance

Figure 5-7 Preloaded Seal
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Axial Taper

An axial taper is indicated as Figure 5-9. If Z > Z t then

M = H + _(z-zt) (5-55)
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Slope

Figure 5-9 Axial Taper

5-23
8825?



Power Loss (Torque)

Power loss is obtained by integrating the viscous shear forces across the film.

From Figure 5-10, a force balance on an element produces:

3"r
_x _z '

(5-56)

but

_U (5-57)

Therefore,
(5-55)

Integrating,

_. ! __P_
_z _ _x

v .!_
tt _x

z + CI

z2
+ ClZ + C2

(5-59)

(5-60)

The boundary conditions are:

U - 0 z = 0 ,'. C2 " 0

U " U when z = h

(5-61)

Substituting:

u 1!p. h2"_ax _- +Clh
(5-62)
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p + arVax

M 1594

Figure 5-10 Viscous Power Loss
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Therefore,

and

c 1- U/h-1 _ h/2

!_-E I22 hzl +VU'u _x 2 _.z

(.5-63)

(5-6_)

(5-65)

_ " _'z" ax _'_

T (at z-h) - _-£ h + U
_x _

Ff- friction force - JSdA

-- H _- + _o R2d0dZ

.//[PoCR H _P + U "'R 3]2 _O _. dOdZ
@

(5-66)

(5-67)

(5-&8)

oCo_ W + _ R dedz (5 -69)

"ff_-_- _P + 6A---HI dOdZTF a-_" (5-70)
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Computation of Seal Flows

The program computes the flow across specified axial and circumferential grid

lines. A total of four grid lines can be prespecified. The subroutine FLOCIR

determines flow across a circumferential line and the subroutine FLOAXL computes

the flow across an axial grid line.

CircumferenUal Flow Line (see Figure 5-11)

There are three types of points to consider. A point on a grid boundary J =1 or

J =N, and an interior point. Also, a flow line on I =M requires special consid-

eration. For each point, a flow balance is accomplished through the cell

surrounding the point as depicted on Figure 5-11. Consider an interior grid

point on an interior grid line (I = M).

where

4- d- 4-
QC (I'J) " Q;4 ÷ Q14 4. Q12 - Q34

Qu"/i 1 Pu +^HIP12

P12 = (Pij 4. Pi,j4-1Y '2"°

(5-7z)

DZl/z (5-72)

(5-73)

(5-74)

The remaining flow components are similarly computed and QC(I,J) determined.

At J ffi 1, )e
34 +

The pressure P34
is computed by forward difference and is equal to _ 12 "
ffi P12 +.

The clearance H4 is not a regular grid point clearance and thus is not included

in the grid clearance array. H4 is computed as the average of Hij and Hi+l, j.

The grid line mass flows are accumulated to obtain the total flow across the

grid line.
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Figure 5-ii Flow Across Circumferential Line
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Similar procedures are employed for computing flows across axial lines (see

Figure 5-12).
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FREOUENCY DEPENDENT SPR_NG AND DAMPING COEFFICIENTS

Discretizatlon has been carried out with the use of the cell method [I], which

involves a flow balance about each grid point.

-   -nds- _of (x÷p> (S-75)

where _ - the mass flow vector per unit length.

The equality of the first two terms comes from the divergence theorem.

In numerical format the right hand side becomes

-_ ¢I+p_a)H_A_a] (s-v6)

where,

1
(s-w)

Generally, a small perturbation analysis is used for determining frequency

dependent spring and damping coefficients and solving the complete equation (5-

75). A small perturbation analysis, however, is generally limited to concentric

operation and produces complex expressions for the perturbation coefficients.

Identical results can be achieved by direct numerical perturbation of the

difference equations used in the column matrlx solution approach. This method,

which is described below, avoids algebraic error in determining the perturbation

coefficients and may be used in complex situations where analytical determination

of the perturbation coefficients is not feasible.

After desired convergence of the Newton-Raphson process has been achieved under

steady (unperturbed) conditions, the resulting steady state pressure vectors are

denoted as |P} and the coefficient matrices as [CJ], etc. and as before the

steady state equation becomes:

(5-78)

The eccentricity components can be perturbed individually by an amount _, and the

matrix [CJ] recalculated at the new film thickness (but old pressure
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distribution, P); then subtract [CJ] at the old film thickness and divide the

difference by _ to numerically obtain the partial derivative of [CJ] with respect

to the eccentricity perturbation. This partial derivative will be denoted by

[_j.k].Thus,

The matrices [_J.k], [/_.k] and IR J'k) are obtained in a similar manner. Equation

(5-78) may now formally be differentiated with respect to •k to obtain the

express ion:

=

(5-80)

where {_,kj) . 8{_j)/@E k is the zero frequency stiffness pressure• This expression

does not yet contain the tlme dependent terms found on the right hand side of

equation (5-75). It is assumed that a slnusoldal disturbance is applied to the

shaft, such that the clearance and pressure derivatives are affected as follows:

H = e i°E ; .@gk = p9,eiOE (s-el)

To complete the process the right hand side of equation (5-75) is differentiated

with respect to Ek and the results added to the right hand side of equation (5-

80) with a/aE replaced by Io. The terms to be added to the right hand side of

equation (5-80) in this manner are -IG[CJ]{Pj'k}-Io{R J'k} where [CJ]are diagonal

matrices whose components are

_ . HijAij (5-82)

Because a cell can have clearance discontinuities, such as a step, it is

advantageous to partition the cell into 4 components as indicated on Figure 5-2,

and then sum the components to obtain [_J]. Thus equation (5-82) becomes:

_Jii = _fCIAz + HC2_ +HC3A3 + HC4A4 (5-83)

where; HC z is the clearance at the corner point 1 of the cell and

5-32



(Ae:.X_Z_)
AZ= 4

A2 = { V __@:,AZI_I,; etc.
4

(s-84)

and (_J.k) are column vectors whose components are

(S-8S]

By combining terms, the final set of linear difference equations for the complex

stiffness pressure derivatives {p.kj) are obtained

9

where,

(5-8_)

' The system of equations given by equation (5-86) is solved by the column method

in a directly analogous manner to that used in solving the steady state equation.

The principal difference is that all the matrix operations are performed using

complex arithmetic. Integration of the real part of the pressure derivatives

yields the stiffness while the complex parts when integrated and divided by

yields the damping.
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5.2 SAMPLEPEOBLEMS

5.2.1 Ravlei_h-Steo Seal

The first sample problem is a four pad Rayleigh-step seal (refer to Figure 5-8).

The geometry and operating conditions are as follows:

• Number of pads - 4

• OPTION - i, which means the position of the seal will be pre-speclfled.

• Seal length - 3.852 in. and the symmetry option wlll be used.

• Variable grid will be used In the axial and clrcumferentlal directions.

Since symmetry has been applled in the axial direction, the variable grid

length equals half the actual length, and is equal to 1.926. in.

• The grid wlll be made finer at the step boundaries where sharp pressure

gradients are expected to occur.

• Seal diameter- 1.9685 in.

• The step height is 0.00165 in. deep and Is located at the leading edge

of the pad, 5 degrees from the x axis and the lower left corner of the

step is 0.655 In from the inside radius. The end of the step is 70.6

degrees from the x axis, and since symmetry has been invoked the axial end

of the step as represented on the grld Is 1.926 in from the inlet end, or

at the end of the grid.

• The specific heat ratio of the lubricant is 1.4.

• The gas constant is 250,000 in2/(s2-°R)

• The absolute temperature is 530°R

• The absolute viscosity is 3.0 x 10 "_ 1b-s/in 2

• The eccentricity ratio - 0.2

• The eccentricity angle is 270 °

• The shaft speed is 70,000 rpm
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• The reference pressure is 200 psig

• The boundary pressures are all 0 pslg, or 200 psla.

Results of the problem are indicated on Table 5-1.

Figures 5-13 and 5-14 show the clearance distribution and the pressure

distribution produced by the plotting programs. These plots clearly show the

highly loaded pad, which is pad number 3 (highest pressure level and lowest film

thickness level).
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TABLE5-1

Summary of Results

Sample Problem 1

"JOURNAL & LOAD POSITION
ECCENTRIC[TY " .40000
ECCENTRICITY ANGLE • "90.00 DEG
MINIMUM FILM a .0006015 IN
LOAD " 2T.54 LB
LOAD ANGLE • 61.44 DEG

PO_R LOSS - .4555 NP

LEAKAGEAT I • 1 - -.4_7'83E-03 L|/$
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GCYL FILM THICKNESS DISTRIBUTION

SRMPLE CASE I: RRYLEIGH STEP SERL

DIAMETER = !.969 IN SPEED = 70000.00 RPM
LENSTH = 3.852 IN

CLEARANCE = .OO!OOO IN

Figure 5-13 Rayleigh Step Seal - Clearance Distribution
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SCYL

SAMPLE CASE I: RAYLEIGH STEP SEAL

OlQMETER = 1.969 IN
LENSTH = 3-852 IN

CLEQRQNCE = -001000 IN

PRESSURE DI STR I BUT I ON

SPEED : 70000-00 RPM

Figure 5-14 Rayleigh Step Seal Pressure Distribution
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5.2.2 Sample Problem 2 - Non-grooved Lobe Seal

The non-grooved lobe seal is characterized by offset lobes that are Joined at

their apexes in a continuous fashion as opposed to a lobe seal where the lobes

are separated by axial grooves. Such a seal is depicted on Figure 5-15; it would

be manufactured by a broaching process. To analyze this type of seal with the

GCYL code the key word SECTOR must be invoked followed by the number of sectors,

the lobe preload and preload position within the lobe (see Figure 5-7 for

definition of preload). For this example, a lobe hydrodynamic geometry was

combined with a external pressurization through source points at the mldplane of

the seal. The geometry and operating conditions are as follows:

• Seal Diameter - 2.25 in.

• Seal Length- 1.625 in.

• Seal reference clearance - 0.0005 in. The reference clearance is the

clearance prior to preload.

• Number of pads - 1. A sectored seal is always considered as a continuous

seal although discontinuities exist in the clearance distribution. Thus,

the number of pads are always unity and the JOINED option is always

applied.

• The preload on each lobe is 0.5 which means at the pivot position the

lobe is eccentric toward the shaft one half of the reference clearance

(see Figure 5-7).

• The pivot angle of the first sector is 150 ° from the x axis, and since

the first lobe is 90 ° from the x axis the pivot position is located at the

mid angle of each lobe.

• The viscosity of the gas is 3 x 10 .9 ib-s/in z

a The gas constant is 2.5 x l0 S in2/(sL°R)

• The ambient temperature is 510°R

• The total number of orifices is 27, 9 in each sector, located at the

midplane of each sector. One orifice is located at each interior grid

point at the mid plane of the bearing.
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Figure 5-15 Sectored Lobe Seal, Sample Problem No. 2
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• The orifice diameter is 0.015 in.

• The coefficient of discharge of each orifice - 0.9

• The supply pressure to the source orifices is 120 psig

• The operating speed - 70,000 rpm

• The reference pressure is 14.7 pslg

• The pressure along the boundaries is 0 psig

Table 5-2 summarizes output data. Since the shaft is concentric within the seal,

total load capacity is zero. The most important information is the leakage flow.

The clearance and pressure distribution are shown on Figures 5-16 and 5-17

respectively. Notice the discontinuities in the clearance distribution because

of the lobed geometry. The proximity of the source points to each other makes the

pressure distribution appear as a llne source.
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TABLE5-2

Summary of Performance

Sample Problem 2

-JOURNAL & LOAD POSITION
ECCENTRICITY . .00000
ECCENTRICITY ANGLE - .00 DEG
MINIMUM FILM i .0002500 IN
LOAD I ,9904E'12 L8
LOAD ANGLE • "53.73 DEG

POWERLOSS m 1.2.33 NP

LEAKAGEAT I • 1 u -.14924E-03 LB/S

LEAiOItGEAT I • H • .14924E'03 L8/S

"RIGHTING MOMENT
ABOUT X-X MX "
A8OUT Y'Y MY •

".2814E'13 LB'IN
• 1Y84E'14 LB'IN
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GCYL

SAMPLE CQSE 2: SECTOREO SEAL

DIQMETER = 2.250 IN

LENGTH = 1.625 IN
CLEARANCE = .DO0500 IN

FILM THICKNESS DISTRIBUTION

SPEED = ?OOOO.O0 RPM

.375E-03

/.

2"/0
'LBO

•06gO _GUL_ DEGREES

Figure 5-16 Clearance Distribution, Sectored Lobe Seal
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_CYL

SAMPLE CASE 2: SECTORED SEAL

DIRMETER = 2.250 IN
LENGTH = 1.625 IN

CLERRRNCE = .000500 IN

PRE$SURE DISTRIBUTION

SPEEO = 70000.00 RPM

•120E+03

Figure 5-17 Pressure Distribution, Sectored-Lobe Seal
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5.2.3 Sample Proble_ _ - Three Lobe Seal

This problem deals with the hydrodynamic portion of a 3-Lobe seal where the lobes

are separated by axial grooves. Figure 5-7 shows the general geometry and key

parameters. The principal parameters are the preload and pivot angle. The

following are geometry and operating conditions:

• OPTION -2 which means the position of the seal to satisfy a given load

will be determined.

• International units apply; parameter ST invoked.

• Stiffness and damping are to be calculated in two degrees of freedom, x

and y, at an imposed frequency equal to running speed of 50,000 rpm.

• The number of pads -3

• The start of the first pad is at I00 °, and the pad extent is i00 °

• The pad preload is 50 g of the reference clearance, and the preload for

the first pad occurs 150 ° from the x- axis, which means the preload is in

the center of the pad.

• The shaft diameter is 0.0508 m.

• The hydrodynamic length is .0254 m

• The reference clearance is 1.27 x 10 -5 m.

• The lubricant viscosity is 2.07 x 10 -5 N-s/m s

• The absolute temperature is 283°K

• The ratio of specific heats of the gas is 1.4

• The gas constant is 290.32 mS/(sS-°R)

• Symmetry is applied in the axial direction

• The load to be supported is 200.16 N

• The angle at which the load is applied is 270 ° from the x-axls.
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• The initial eccentricity guess is 0.2, and the initial guess on the

displacement angle is 270 ° from the x-axis.

• The shaft speed is 50,000 rpm

• The reference pressure is 8.274 x 105 Pa.

• The boundary pressures are all 0 gage.

Table 5-3 indicates the steady-state performance and stiffness and damping

coefficients.

Graphical representations of clearance and pressure distributions are shown on

Figures 5-18 and 5-19 respectively.
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TABLE 5-3

Summary of Performance

Sample Problem 3

-JOURNAL & LOAD POStTIOS
ECCENTRICITY • .22103
ECCENTRICITY ANGLE • 129.38 DE6
HINIU FII.N • .0000037 H
LOAD • 200.2 H
LOAD ANGLE • "90.00 DE6

POUER LOSS • 186.1 51

LEAKAGEAT | • 1 • ".l?..875E'O& ICGJ$

"STIFFNESS COEFFICIENTS
PRINCIPAL X IO(X • .I_JOE+09 N/14
CROSS'COUPLED I(XY = ".2379E*04 N/IN
CROSS'COUPLED IO(A • .0000 NINAD
CROSS'CCXJPLED I(XB • .0000 N/RAN
CROSS'COUPLED ICY)( • ".3890E*08 N/M
PRINCIPAL Y [YY • .1002E_09 N/J4
CROSS'CGUPLED KYA • .0000 NIRAD
CROSS'COUPLED KYB • .0000 NIRAD
CNO$S'CQUPLED I(AX • .0000 N'N/N
CROSS'COUPLED KAY • .0000 N'N/M
PRINCIPAL A KAA • .0000 N'N/RAD
CROSS'CWPLED KAB • .0000 N"WIL_
CROSS'COJPLED KBX • .0000 N'WN
CROSS'CCUPLED KBY • .0000 N'M/N
CROSS'CQUPLED KBA • .0000 N'NIUD
PRINCIPAL m ICNll • .0000 N'WRAD

"DANPING COEFFICIENTS
PRINCIPAL X DXX • 9939. N'S/1N
CROSS'CCUPLED DXY • ".1089E*05 N'S/fl
CROSS'COUPLED DXA • .0000 N'S/N
CROSS'CtXIPLED DXN • .0000 N'$/NAD
CROSS'COUPLED DYX • 51&0. H'S/M
PRINCIPAL Y DYY • .13938+05 N'S/N
CROSS*COUPLED DYA • .0000 N'$/UD
CROSS'COUPLED DYII • .0000 N'S/NAD
CROSS'COUPLED DAX • .0000 N'N'S/N
CROSS'COUPLED DAY • .0000 N'H'S/1N
PRINCIPAL A DAA • .0000 N'N'S/ItAD
CROSS'COUPLED DAB • .0000 N'N'S/RAD
CROSS'COUPLED DBX • .0000 N'N'S/N
CROSS'COUPLED DBY • .0000 N'N'S/1N
CROSS'COUPLED DBA • .0000 N'M'S/NAD
PRINCIPAL II DNli • .0000 N'N'S/RAD
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CYL

SAMPLE CASE 3: 3-LOBE 8AS SEAL

DIAMETER = .051 M
LENGTH = .025 M

CLEARANCE = .000013 M

FILM THICKNESS DISTRIBUTION

SPEED = 50000.00 RPM

•I14E-04

'p._O
tB5

•<)$c_o _GULRI_DF...G_F-.E$

Figure 5-18 Clearance Distribution - Three-Lobe Seal
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GCYL

SAMPLE CFISE 3: 3-LOBE 81aS SEAL

DIAMETER = .OSl M
LENSTH : .025 M

CLEARANCE : .000013 M

PRESSURE DISTRIBUTION

SPEED = 500OO.O0 RPM

_GgLQ_ OEG_EES

Figure 5-19 Pressure Distribution - Three-Lobe Gas Seal
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5.2.4 Sample Proble_ 4 - T-Shaped Se¢_ed Sea_

This problem deals with an actual heliumbuffered seal analysis and design (for

SSME) that was accomplished for NASA. A design that incorporates a self

adjusting clearance that can accommodate thermal and centrifugal distortions and

shaft dynamic excursions avoids many of the problems associated with captured

clearance designs. The sectored ring seal provides the desired self adjusting

clearance features. The general configuration of the sectored seal is shown on

Figure 5-20. The sectors consist of T-shaped sections mated to each other at each

end with sealed Joints. The sectors can move relative to each other

circumferentlally and that is how the seal accommodates variations in the sleeve

dimensions due to thermal expansions and contractions and centrifugal growths.

The T-shaped sector was chosen because it is a symmetrical shape and the various

fluid and friction forces can be designed to avoid upsetting moments on the

individual sectors. An overlapping V Joint prevents a direct clearance path

between the hydrogen and oxygen ends of the seal. Each sector is supported by a

hydrostatic fluld-film on its inner circumference and along the side walls which

forms a friction free secondary seal to permit free radial motion of the sectors

in response to sleeve movements. The fluld-films are predominantly hydrostatic

to avoid any pitching tendencies introduced by the hydrodynamic effects. The

hydrostatic bearings are fed by the buffer pressure on the outside diameter of

the seal. Figure 5-21 shows the pressure distribution and force balance on the

individual sectors.

This sample problem describes one case conducted in the analysis of the

circumferential hydrostatic seal on one of the sectors. The geometry and

operating conditions are as follows:

• The number of pads to be analyzed is i.

• OPTION - 2, which means the position of the sector to satisfy a given

load will be determined.

• The load applied is 370 lbs.

• The load angle from the x -axis is 270 °

• The initial guess on the eccentricity of the seal is 0.5

• The initial guess on the eccentricity angle is 90 °

• Variable grids are used in both the axial and circumferential direction.

The grid is made very fine around the source points. The starting angle of
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the sector is 30 ° from the x-axls and its angular extent is 120 °. the axial

length of the seal is 1.627 in.

• The shaft diameter is 2.6798 in.

• The reference clearance is 0.001 in.

• The ratio of specific heats of the gas is 1.66

• The gas constant is 1,790,000 InZ/(sR-°R)

• The absolute temperature is 528_

• The gas viscosity is 2.9 x I0 "9 Ib-s/in 2

• The shaft speed is 0 rpm

• The reference pressure is 14.7 psig

• The boundary pressures surrounding the seal are 50 psig

• Cross-coupled stiffness and damping are to be computed at an excitation

frequency of 0 rpm

• There are 6 discrete inherently compensated source points in the sector

of diameter - 0.020 in. The location of these orifices was determined from

the design layout of the sector. The coefficient of discharge of each

orifice is unity.

• The buffer pressure is 200 psig

• Flow is to be determined along four paths that make up the periphery of

the seal.

e The FILE option was exercised. A previous pressure distribution was read

as the initial pressure distribution for this case. Convergence of the

pressure is often difficult when solving source problems, whether they be

inherently compensated sources or spot recesses. Convergence difficulties

occur because sources present spikes in the pressure distribution and

pressure gradients become very large. There are two methods for handling

these problems which can be applied independently or jointly. The first is

to use variable grid and fine grid spacing around the orifice holes. Each

grid llne around the hole should be at a distance of one to two orifice
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11 ILI_,L
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L

J

Pa

Pfr
- Fax

Secondary Seal
Pressure Distribution

Sector ID Pressure
Distribution

Fc=P=As +PaA=

Radial Force Balance

FR-Fc:P.Ff + Fr=0

Axial Force Balance

Fax - Fp - I_ 8a= 0

Figure 5-21 Pressure Distribution and Force Balance T-Sectored Seal
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diameters in both the axial and circumferential direction. The other

mechanism is to start the problem at low eccentricity and use the pressure

distribution as an initial guess to get to the next eccentricity. Continue

the process until the desired eccentricity is attained.

As indicated on Table 5-4, the eccentricity of the sector to support the load is

0.55609 and the eccentricity angle is 90". Figures 5-22 and 5-23 show the

clearance and pressure distributions. Note on the plots the dense grid work

surrounding the orifice locations.
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TABLE 5-4

Summary of Performance of T-Shaped Sectored Seal

Sample Problem 4

"JOURNAL & LOAD POSITION
ECCENTRICITY " .55609
ECCENTRICITY ANGLE • 90.00 DEG
MINIMUM FILM • .0004446 IN
LOAD • 369.5 LB
LOAD ANGLE • "90.00 DEG

POWERLOSS • .0000 NP

LEAKAGEAT ! • 1 • ".40231E'O& LS/S

LEAKAGEAT I • N • .&O231E'04 LD/S

"STIFFNESS COEFFICIENTS
PRINCIPAL X DO( • .A316E+OS L|/IN
CROSS-C(XJPLED KXY • .6956E-08 Li/IN
CROSS-COUPLED KXA • .1299E-M LB/RAD
CROSS-COUPLED KXS • .2104E-O?. LB/RAD
CROSS-COUPLED [YX • -126.8 LB/IN
PRINCIPAL Y KYY • .&982E+O5 LM/IN
CROSS-COUPLED KYA • -29S.4 LS/RAD
CROSS'COUPLED k'YB • "59.46 LS/RAD
CROSS'COUPLED KAX • .3522E'06 II'LBIIN
CROSS'COUPLED KAY • ".3701E'02 IN'LBIIN
PRINCIPAL A KAA • .&361E+OS IN'LB/RAD
CROSS'COUPLED KAB • ".3030E'06 IM'L|/RAD
CROSS'CGJPLED KBX • .I_GR'02 IM-LS/IN
CROSS-COUPLED [BY • -.9135E-10 IN-LS/IN
CROSS-COUPLED KBA • .23271E-08 IN-LI/RAD
PRINCIPAL l [B8 • 9965. IN'LI/RAD

"DAMPING COEFFICIENTS
PRINCIPAL X DXX • 10.82 LI'SIIN
CROSS'COUPLED DXY • ".7_'11LI'SIIM
CROSS'COUPLED DXA • ".2932E'12 LI'S/RAD
CROSS'COUPLED DXS • .332&E'06 LS'S/RAD
CROSS'CCX/PLED DYX • .1418E'01LS'S/IN
PRINCIPAL Y DYY • 80.23 LI'S/IN
CROSS'COUPLED DYA • .3588E-01LS-S/RAD
CROSS-COUPLED DYB • .6553E-02 LS-S/RAD
CROSS-CCXJPLED DAX • .6908E-10 IM-LS-S/IN
CROSS-COUPLED DAY • .8762E-06 IN-LS-S/IN
PRINCIPAL A DAA • 4.516 IN-LS-S/RAD
CROSS-COUPLED DAB • -.3370E-09 IN-LN-S/RAD
CROSS-COUPLED DBX • -.2920E-06 IN-LS-S/IN
CROSS-COUPLED DBY • .6752E-14 IN-LS-S/IN
CROSS-COUPLED DBA • .4698E-12 IN-LD-S/RAD
PRINCIPAL S DBB • .9017 IN-LS-S/RAD

-RIGHTING MOMENT
ABOUT X-X HX • .2753E-05 LB-IN
ABOUT Y-Y MY • ".6058E'14 LB'IN

-FLOW THRU SPECIFIED GRID LIME
FROM I 1 TO 27 1 FLOUa -.5908E-04 LI/S

-FLOW TMRUSPECIFIED GRID LINE
FROM 1 3.; TO 27 34 FLOUm .5908E-04 LI/S

-FLOW TNRU SPECIFIED GRID LINE
FRCN 1 1 TO 1 34 FLOUm -.40DE-04 LI/S

-FLOW THRU SPECIFIED GRID LINE
FROM 27 1 TO 27 34 FLOW,, .4023E-04 LI/S
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;CYL FILM THICKNESS DISTRIBUTION

NASA SECTORED SEAL INHERENT COMPENSATION.ORAWIN8 OIMEN

DIAMETER = 2.680 IN SPEED = .00 RPM
LENSTH = 1.627 IN

CLEARANCE = .001000 IN

90

50

Figure 5-22 Clearance Distribution- T-Sectored Seal
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GCYL PRESSURE DISTRIBUTION
NQSQ SECTSRED SEQL INHERENT COMPENSQTISN,DRQWIN8 DIMEN

DIQMETER = 2.880 IN SPEED = .DO RPM

LENSTH = 1-627 IN
CLEQRQNCE = .OO1000 IN

•19qE+03

/

gO
60

•0#0 B_GUL_R OF..G_EES

Figure 5-23 Pressure Distribution- T-Sectored Seal
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5.2.5 Sample Problem 5. Ravlei&b-steD. Floatin_-Rlng Seal

This example represents another buffer fluid seal that was designed for use in

the SSME. The principal of operation of a hydrodynamic, llft-pad, floatlng-rlng

seal is illustrated on Figure 5-24. The seal consists of two rings that are

mounted back-to-back. The buffer fluid enters between the rings and forces the

rings up against the stationary housing. The buffer fluid leaks in the clearance

annulus between the shaft and the seal and prevents ingress of exterior fluid on

either side of the floating-rlng assembly. The rings are held in equilibrium by

a number of forces as shown on Figure 5-24. Fc is a pressure force from the inlet

buffer fluid that forces the rings up against the housings. This pressure force

is partially balanced on the housing sides of the rings by undercutting and

exposing the housing sides of the rings to buffer pressure. This balance force

is identified as FB. F_ represents a hydrodynamic force that is generated by

rotation between the shaft and ring. The net hydrodynamic force is zero when the

shaft and rings are in the concentric position. However, when the ring becomes

eccentric with respect to the shaft, a hydrodynamic force is built up that

opposes the eccentricity. There is also a normal force, Fw, acting on the ring

at the contact area between the ring and the housing. In addition to the

equilibrium forces mentioned above, there is a friction force, Fz, between the

seal ring and housing.

Figure 5-25 shows the hydrodynamic geometry that is incorporated into the bore

of the seal rings. A portion of the length of the bore is segregated into

sectors, and these sectors are separated from one another by axial grooves. A

circumferential groove that goes completely around the bore is installed upstream

of the final seal dam region. At the interior of the sectors, Raylelgh-step

pockets are machined. The velocity direction of the shaft is such that it

produces hydrodynamic pressures due to pumping of the fluid over the Raylelgh-

step. The sealing occurs across the dam which is a narrow annulus of low

clearance exposed to high pressure at its interior circumferential groove and to

lower pressure at its outboard end. The shaded regions on Figure 5-25 indicate

depressions from grooves and Raylelgh-step pockets.

In this example one pad of the Kayleigh-step interface was examined from the high

pressure interior end to the low pressure exterior end. The high pressure end

is at the bottom end of the grid (I - 1). Geometric and operating parameters are

as follows:

• International units are to be employed

• NPAD -I, because we are examining the performance of one pad only which

is represented on the grid as a 90 ° arc from the center of one axial groove
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Circumferential

Groove

U

_ove Depth = 0.229 mm

A

2.21 mm
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A

Axial

Groove
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(Depth
10° =0.0254 mm)

Section A-A

= 12.93 mm =I

Figure 5-25 Developed View of 50-mm Rayleigh-Step Pad
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to the next. Thus the pad angle is 90° . The pad starts at 0°. Also, the

boundary conditions at the circumferential ends of the single pad must be

periodic, i.e. all pads will act identically, which will occur when the

shaft is in the concentric position. Periodicity is invoked by applying

the JOINED parameter.

• The shaft diameter is .05 m

• The total seal length is 0.0123 m

• The seal clearance is 1.27 x 10 .5 m

• The step height is 2.54 x 10 -5 m

• The gas viscosity is 2.19 x 10 .5 N-s/m z

• The absolute temperature is 338.6°K

• The ratio of specific heats is 1.66

• The gas constant is 1154.8364 m2/(sz-°K)

• The shaft speed is 70,000 rpm

• The reference pressure is 101,352.93 Pa

• The high pressure to be sealed is 1.37895 x 106Pa which would be

at the bottom of the grid. The remaining boundaries are at 0 psig

Table 5-5 shows performance of the sector examined. Since only one quarter of

the seal is being examined, the leakages at the axial inlet (I-1) and outlet

(I-M) would be multiplied by 4 to get total leakage. The leakage at the outlet

is greater than the leakage at the inlet end because of the added flow

contribution from the axial groove. The 3-D plots of the clearance and pressure

distributions are shown on Figures 5-26 and 5-27 respectively. Note on Figure

5-27 that the high ambient pressures in the grooves overshadows the increased

pressure from the Raylelgh-step.
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TABLE5-5

Performance Results

SampleProblem 5

-JOURNAL & LOAD POSITION
ECCENTRICITY " .00000
ECCENTRICITY ANGLE " .00 DEG
MINIMUH FILM - .0000127 N
LOAD " 571.0 N
LOAD ANGLE " "134.78 DEG

POWERLOSS - 21.79 bl

LEAKAGEAT ! " 1 = -.21681E-04 KG/S

LEAKAGE AT I " M " .40252E'03 KG/S

"RIGHTING MOMENT
ABOUT X'X HX " ".1596 N'M
ABOUT Y'Y MY " .1551 N-N
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GCYL

RIqYLEIGH - STEP $ERL PROBLEM
OIQMETER= .050 M
LENGTH = .012 M

CLEARANCE = .000013 M

FILM THICKNESS OISTRIBUTION

SPEED = 70000.00 RPM

.381E-04

0

67
90

Figure 5-26 Clearance Distribution- Rayleigh-Step Pad
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GCYL

RFtYLEIGH - STEP SEFIL PROBLEM

D1RMETER = .050 M

LENGTH = .012 M
CLERRI:INCE = .000013 M

PRESSURE DISTRIBUTION

SPEED = 70000.00 RPM

- 149E÷01

0

67
9O

Figure 5-27 Pressure Distribution-Rayleigh-Step Pad
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5.2.6 Sample Problem 6. Raylei_h-steD Seal with Eccentricity

This problem will be similar to problem 5 except the shaft is to be eccentric

with respect to the seal ring. In this case periodic boundary conditions cannot

be used, and to conserve grid space one hydrodynamic pad will be modeled and the

number of pads will be four. To model separate pads however requires that the

boundary conditions be known on all extremities of the pad. The seal dam region

is not a separate pad problem but is a single 3600 pad. Thus the problem resolves

into two problems; one that treats the separate Rayletgh pads and one that treats

the seal dam. For this particular example, only the Rayleigh-step hydrodynamic

region is considered. The following geometric and operating parameters have been

applied:

• International units are invoked

• OPTION -1, the shaft position relative to the seal ring is specified

• Stiffness is to be calculated in four degrees of freedom at an

excitation frequency of 70,000 rpm.

• The number of pads is 4 and each pad has an extent of 90°

• The shaft diameter is 0.05 m

• The shaft length is 0.0123 m

• The reference clearance is 1.27 x 10"Sm

• The gas viscosity is 2.19 x 10"SN-s/m 2

• The absolute temperature is 338.6°I(

• The ratio of Specific heats is 1.66

• The gas constant is 1154.84 m2/(sm-_)

• The shaft eccentricity ratio is 0.5

• The eccentricity angle is 270 °

• The shaft speed is 70,000 rpm

• The reference pressure is 1.01353 x 10SPa
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. The pad boundary pressures are 1.37895 x 106Pa

As shown on Table 5-6, at the specified position, the load capacity of the seal

is 52.96 N and the load angle is 71.63 ° from the x-axls. The minimum film

thickness is 6.4 x 10.6 m. The clearance and pressure distributions are shown

on Figures 5-28 and 5-29 respectively.
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TABLE 5-6

Summary of Results

Sample Problem 6

-JOURNAL & LOAD POSITION
ECCENTRICITY • .50000
ECCENTRICITY ANGLE • -90.00
MINIMUM FILM • .0000064
LOAD • 52.96
LOAD ANGLE • 71.63

POi_ERLOSS • 95.08

LEAKAGEAT i • 1 • ".88483E'04

LEAKAGEAT ! • N • ._E'04

mEG
N
N
OEG

V

KG/S

[G/$

"STIFFNESS COEFFICIENTS
PRINCIPAL X KXX • .1010E+08 N/H
CROSS-COUPLED IO(Y • .3371E+07 N/N
CROSS*COUPLED IO(A • 14.33 N/UD
CEOSS'COUPLED IO(B • -.3_4 N/RAD
CROSS'COUPLED KYX • ".6161E_6 N/M
PRINCIPAL Y KYY • ,11691[+08 N/N
CROSS'CCUPLED [YA • 37.51 N/IMD
CROSS'COUPLED ICY8 • 20.59 N/KAD
CROSS'COUPLED KAX • ".8526E'10 N*M/N
CROSS'COUPLED KAY • ".5781E'10 N'M/N
PRINCIPAL A KAA - 27.53 N'N/UD
CROSS'(:]OUPLED KAB • 1.657 N'N/RAD
CROSS*COUPLED KBX • .1284E'09 N'N/N
CROSS-CCX/PLED KBY • -.87871[-11 N-N/N
CROSS-COUPLED KBA • -10.32 N-M/RAD
PRINCIPAL 8 KBB • 14.46 N-N/IUU)

-DAMPING CCEFFICIENTS
PRINCIPAL X DXX 8 786.4 N-S/H
CROSS-COUPLED DXY • -216.6 N-S/M
CROSS-COUPLED DXA • -.409_-03 N-S/N
CROSS-COUPLED OX8 • .8221E-04 N-SIRAD
CROSS'COUPLED DYX • 192.7 N'SIM
PRINCIPAL Y DYY • 901.7 N-l/X
CROSS'COUPLED DYA " ".1011E'02 N'S/RAD
CROSS'COUPLED DYE • ".6955E'03 N'S/UD
CROSS'COUPLED DAX • ./A_2E'15 N'M'S/N
CROSS'COUPLED DAY • .51131['t5 N'N'S/M
PRINCIPAL A DAA • .3572E-02 N-N-S/RAD
CROSS'COUPLED DAB • ".1573E'03 N'N'SIRAD
CROSS'COUPLED DBX • *.9665E'15 N'N'S/N
CROSS'COUPLED DBY • .2712E'15 N*N*S/14
CROSS'COUPLED DEA • -.5069E'04 N'N'S/RAD
PRINCIPAL B DR • .2612E'02 N'N'S/RAD

-RIGHTING MOMENT
ABCUT X'X I_ • .76871E'15 N'N
ABOUT Y'Y MY • .&289E'15 N'N
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;CYL
RAYLEIGH - STEP SEAL PROBLEM

DIAMETER = .OSO M

LENSTH = .012 M

CLERRANCE = .000013 M

FILM THICKNESS DISTRIBUTION

SPEED = 70000.00 RPM

.##SE-O#

0

270
360

Figure 5-28 Clearance Distribution -Rayleigh-Step Seal with Eccentricity

5-68



GCYL

RQYLEIGH - STEP SEQL PROBLEM

DIQMETER = .050 M
LENSTH = .012 M

CLE_RRNCE = .0000!3 M

PRESSURE DI$TRIBUT]ON

SPEED = "70000.00 RPM

•17qE+01

Figure 5-29 Pressure Distribution-Rayleigh-Step Seal with Eccentricity
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5.3 Verification of GCYL

Several mechanisms were used to conduct verification of the code. For the most

part the results of the code were compared against information in the public

domain literature, and in some instances, comparisons were made against the

results of other codes and against manual computations.

The first case is the pressure distribution of an infinitely long slider. The

results are compared at several values of A as shown on Figure 5-30.

Further comparisons were made for a plain cylindrlcal seal with an L/D ratio of

1 with information from reference 3. Computations were made at two different

eccentricity ratios, g - 0.6 and 0.8. Non dimensional load capacltyand attitude

angles are shown on Figures 5-31 and 5-32 respectively. Excellent correlation is

demonstrated.

A significant feature of the GCYLcode is the computation of frequency dependent

stiffness and damping coefficients. The method was first implemented in the

compressible Spiral-Groove computer code SPIRALG. These stiffness and damping

coefficients are important because they are used to represent the fluid film

characteristics in dynamic analysis. Their computation embodies many features of

the code including steady state performance. Table 5-7 shows comparisons for

three codes for an excitation frequency of zero, and for a 360 ° cylindrical seal

in the concentric position. The first column represents the code GCYL as

previously modified with only the capability to compute zero excitation

frequencies. The second column represents the latest version of the code with the

frequency dependent stiffness and damping routines. The third column are the

results produced by the Spiral Groove code with zero groove depth, so that the

geometry of the three cases are equivalent.

Table 5-7

Comparison of Spring and Damping Coefficients

Coefficient Unit GCYL GCYL SPIRAI_

(Previous) (New)

K= Ibs/in 5,715 5,719 5,715

Kx7 Ibs/in 7,301 7,301 7,363

Ibs/In -7,107 -7,092 -7,140

lbs/tn 12,550 12,590 12,752

K== in-lbs/rad 384.2 384.2 395
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• CCYL
"-- Exact Solution*

A = 6p.UL/_ h_

h2

t

L

hi

t

11
O.

4.0 A = 200

3s ja = 4 = h=/h,

3.0 A = 100

2.5 /

2.0 f_ _ / A =iO

• A = 201.5 //i _- i i

1.0

A =4

\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x/L

Figure 5-30 Rayleigh-Step, Program Verification

*"Theory of Hydrodynamic Lubrication", 0. Plnkus, B. Sternlicht,

McGraw-Hlll, New York, 1961
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Table 5- 7

Comparison of Spring and Damping Coefficients

Coefficient Unit GCYL GCYL SPIRALG

(Previous) (New)

K_ in-lbs/rad 181.6 181.6 194

l_= in-lbs/rad -277.2 -277.2 -300

Kbb in-lbs/rad 122.6 122.6 124

Damping Constants

D= ib-s/In 1.402 1.387 1.403

D_ 1b-s/in -1.888 -1.870 -1.855

Dyx Ib-s/in 2.992 2.999 3.019

Dr 1b-s/in 1.957 1.897 1.901

Daa in-lb-s/rad 0.1088 0.1079 0.1148

D_ in-lb-s/rad -.0_47 -.0450 -.046

Dba in-lb-s/rad 0.0377 0.0377 0.0385

Dbb in-lb-s/rad 0.0662 0.0659 0.0695

L - 1 in., D - 1 in., C - .001 in., _ - 3xlO -9 ib-s/In 2, N - 48,000 rpm

• 7- 0.5, excitation frequency - 0

Kt_ is the stiffness in the i direction due to a J displacement

Dlj is the damping in the t direction due to a J velocity

x and y are translations and a and b are rotations.

Table 5-8 shows a comparison for a synchronous excitation (excitation frequency

that is equal to the shaft speed). For both situations, the correlation is very

good.
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Coe fflc lent Unl t GCYL

K= Ibs/in 7,498

Kx7 Ibs/in I, 122

K_ ibs/in -I, 122

K77 ibs/in -7,498

K.a in- Ibs/rad i00.1

K._ in- ibs/rad 127.7

Kba in- Ibs/rad -127.7

Kbb In- ibs/rad I00.1
[

I I

Table 5-8

Stiffness and Damping Comparison at Synchronous Frequency
7,, II • '

Damping Constants
I

D= ib-s/in 1.603

D_ ib-s/in -0.8657

Dyx ib-s/in 0.8657

D77 ib-s/in 1.603

Du In-lb-s/rad 0.0578

D_ in-lb-s/rad -0.01518

Db, in-lb-s/rad 0.01518

D_ in-lb-s/rad 0.0578
'n'

L- 1 in, D - 1 In, C - .001 in, # - 3 x 10"91b - s/in z,

c - 0.0, N- 48,000 rpm

III I II

SPIRALG

7,467

1,203

-1,203

-7,467

99

134

-134

99

I

1.603

-0.8613

0.8613

1.603

0. 0596

-0. 0146

0.0146

0.0596

II I

Table 5-9 shows the variations in stiffness and damping for a 360 ° cylindrical

seal with an excitation frequency equal to operating speed as compared to an

excitation frequency of zero.
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Table 5-9

Stiffness and Damping Coefficients at

Two Excitations

Operating Speed rpm 48,000 48,000

Excitation rpm 48,000 0

Frequency

Kzz ibs/in 9,648 5,885

K,_ ibs/in 1,942 7,267

Kx, Ib/rad 0.7303 -0.2391

K_ ib/rad 1.291 1.298

My. Ib/in 1,040 -7,116

K77 Ib/In 17,670 13,050

Ky, ib/rad 1.451 3.258

Kyb ib/rad 0.4477 1.877

Ka, In-lb/rad 639.4 420.6

K_ in-lb/rad 71.58 192

Kb, in-lb/rad -193.8 -293.8

ILob In-lb/rad 221.1 133.7

Dxx

D.

D.

Du

D,b

%b

Damping Coefficients

ib-s/in 1.658 1.406

Ib-s/in -0.7059 -1.859

ib-s/in 0.9180 3.012

1b-s/in 1.521 1.897

In-lb-s/rad 0.090 0.113

in-lb-s/rad -0.0311 -0.0473

in-lb-s/rad 0.0256 0.0393

In-lb-s/rad 0.0666 0.069
, • . ., .

360 ° Cylindrical Seal, L - 1 in, D - 1 in, C - .001 in,

- 3 x 10 -9 Ib-s/in 2, 0 gage pressure at both ends

|
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Substantial differences are noted, which demonstrates the significance of

applying proper frequencies when computing stiffness and damping.

An internal check of the code can be made by analyzing a recessed hydrostatic

bearing. With the flow path option, the net flow around the periphery of a

hydrostatic pad can be determined and compared against the inflow to the recess.

For flow continuity, the sum of the peripheral flows should equal the inlet flow.

The followlng geometry and operating parameters were considered.

• A single pad with grid dimensions of 15 x 37 (H x N).

• The pad diameter is 2 inches

• The pad length Is 2 inches

• The pad clearance is 0.001 in.

• The pad angle is 180 ° and the starting angle is at 180 °

• There is one recess located in the pad, and the grid corner points are

as follows: Left bottom corner, M - 3, N - 22

Right Top corner, M - 13, N - 27

• The specific heat of the gas is 1.4

• The gas constant is 250,000 in2/(s2-°R)

• The absolute temperature is 530 ° R

• The absolute viscosity is 3 x 10 -9 ib-s/in 2

• The inlet orifice diameter to the recess is 0.020 in and the coefficient

of discharge is 1.0. The orifice is located in the grid at M - 8, N - 24.

• The supply pressure to the orifice is 150 psig. The pressure surrounding

the pad is at 0 psig. The reference ambient pressure is 14.7 psla.

• Several eccentricities and speeds were examined and are defined in the

subsequent discussions.

The output from the code supplies the total flow from the peripheral flow path

and the pressure in the recess. A manual computation can then be made for

calculatlng the Inlet flow through the orifice using the followlng equation:

f0 = 3s6.4 _CDG_P _ I ' (5-88)

where,

_. 2yGI " Gcg(T -I)
(5-89)
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fo " inlet flow, Ib/s

A o - orifice area. in 2

CD - discharge coefficient

p, - supply pressure, psla

Pr " recess pressure, psla

¥ - ratio of specific heats

G© - gas constant, in2/(s2-°R)

% - absolute temperature, °R

Table 5-10 provides the results of several cases

'1

0.0

0.4

0.0

Table 5-10 Recessed Pad Flow Comparisons
i

. Qp p, Qo A

rpm ibs/s ps ig ibs/s %
II

O. 0 O. 001188 43.2* O. 001189 O. 08

O. 0 O. 001174 84.4 O. 001176 O. 17

70,000 0. 001188 36. I* 0. 001189 0.08

i

* Choked Flow

- Eccentrlclt T ratio

N - Shaft speed

Qp - Perlpheral flow

Pz" Recess pressure

Qo.Orlflce flow

A - percent variation

Note that the peripheral and orifice flow• differ by less than 0.2%.

When using the source points or spot recess options of the code, it is important

to surround the source point with a fine grid to obtain an accurate result and

a computation in which pressures will converge. Studie• were made of varying grid

sizes for a source problem. The variable grid option was applied and varied. A

single pad with a central row of orifices were analyzed (see sample problem

Number 4). The following information is pertinent:

• Number of pads - 1

• Pad angle - 120 °

• Start angle - 30 °

• Number of grid points in circumferential direction - 37

• Number of grid points in axial direction - 15
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• Diameter - 2.6798 in.

• Length- 1.627 in.

• Specific Heat Ratio - 1.66

• Gas constant- 1,790,000 In2/(sZ-°R)

• Absolute Temperature - 528°R

• Viscosity - 2.9 x 10 -9 lb -s/in 2

• Shaft Speed - 0 rpm

• Reference pressure - 14.7 psla

• Boundary pressures - 60 psig

• Supply pressure to inherently compensated orifices

• Preload- 20Z located at the center of the pad

• Stiffness is to be determined

• Six source points are located along a circumferential llne in the axial

center of the pad at circumferential grid locations 5, i0, 15, 20, 25, 30.

The hole diameter is 0.015, and the coefficient of discharge is 1.0.

Tables 5-11 and 5-12 indicate the effect of grid width around the source point

in both the axial and circumferential directions. Table 5-11 indicates the

source pressures as the grld width is changed. They are relatlvely unaffected

until the grld width is 8x the orlflce hole size. A slmllar concluslon can be

drawn for the other performance parameters of load, flow, stiffness and damping

as indicated by Table 5-12. The recommended grid width from the source point to

a neighboring grid line is twice the orifice diameter.
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Table 5-11

Comparative Studies - Discrete Orifices Vs. Grid Size

Orifice Size - 0.015 in.

Grid width around orifice in both circumferential and axial directions

Comparison of Source Pressures
i

A PI P2 P3 P* P5 P6

in psig psig psig pslg psig psig

0.015 129 144 151 151 145 129

0.030 12B 144 151 151 144 128

0.060 126 143 149 149 143 126

0.120 122 140 147 136 140 122

Table 5-12, Comparison of Performance

A W QI K. X. Dxx Dyy
in. Ibs ibs/s ibs/s Lbs/in ibs/in (ibs- (Ibs-

x I0 -6 x 10 .4 s)/in s)/in

0.015 314.9 0.11338 0.11338 0.0419 0.1320 2.945 16.43

0.030 315.4 0.11393 0.11393 0.424 0.1338 2.933 16.33

0.060 316.4 0.11496 0.11496 0.0432 0.1371 2.911 15.83

0.120 319.3 0.1186 0.1186 0.0446 0.1480 2.866 11.75

I

A - grid width

W - load capacity

QI" flow out of grid line M-I

0_- flow out of grid line M-M

_=and K77 - Stiffness in x and y directions, respectively

D= and Drs- Damping in x and y directions, respectively
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5.5 NOMENCLATURE

Cd =

CO =

d o =

e =

Ff =

FF =

GC =

h =

H =

1 =

L =

N

P

Po =

p =

PCR =

PR =

PS

q

R

r

Sc

t

to

T

Ta

Tf

TF

U

z

Z

8

inherently compensated orifice coefficient of discharge

reference clearance (concentric clearance)

orifice diameter

shaft displacement from concentric position

viscous friction force

dimensionless viscous friction force = Ff/(poCo R)

universal gas constant

local film thickness

dimensionless film thickness = h/C o

bearing length

dimensionless length = I/R

= number of orifices in a row

= pressure

reference pressure

dimensionless pressure = P/Po

critical pressure ratio

orifice downstream pressure

= supply pressure upstream of orifice

ffi mass flow

= journal radius

= orifice hole radius

ffi source correction factor

= time
.__2

= reference time =

PoCo 2

= dimensionless time ffi t/t o

ffi absolute temperature

= viscous friction torque

= dimensionless viscous friction torque = Tf/(PoCo R2)

= journal surface velocity

= axial direction coordinate

= dimensionless axial coordinate = z/R

= misalignment angle about x-x axis

= misalignment angle about y-y axis

= ratio of specific heats
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E
0

0
p

A

I.t

= eccentricity ratio = e/C o

= angular direction (direction of sliding)

= angular extent of pad 6_mR 2

= compressibility parameter = poCo 2

= absolute viscosity

ffi rotating speed
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6.0 Knowledge Base System Development

One of the significant aspects of the overall program is the generation of a Knowledge Based

System (KBS) having the following objectives:

1) To integrate the scientific and industrial codes into a package that will

provide access to important technical data and information to facilitate
generation of optimum seal configurations.

2) To provide a user friendly graphical user interface with context sensitive

help.

3) To provide Expert systems to help select the type of seal best suited for the

intended application, analyze user input and output of analysis codes to
guide the seal design optimization process.

This report describes the architecture of the KBS and the development of the user interface

elements during the first year of the program.

6.1 KBS COMPONENTS

A schematic of the KBS is shown in Figure 6-1. Functions of the various components are
described below.

6.1.1 Executive Program

The executive shell integrates all the components of the KBS and provides the user with a

single point of access for all the resources in the KBS. Features of the executive are:

Access to scientific and industrial codes.

Access to the expert systems for seal type selection and seal design

guidance.

Utilityfunctionsincludingbrowsing and printingoutput filescreatedby

theanalysisprograms, plottingroutinestodisplaythe resultsin a graphical

form,and procedures fortheuserstoadd theirown programs tothe KBS.

Network communications with the Cray X-MP computer used for running

the scientific codes. The communication procedures will be made as
transparent as possible.

6-1



t _1_

I

!
<
(n
<
Z

i V

"nO

m

6-2

ii
m

¢#)

li
m

m li,u

iw_m

, RI w

i mi •

I



Database services to access the databases used to store input and output

data sets for the analytical codes. The access will be controlled using
passwords to prevent unauthorized access.

6.1.2 Scientific Codes

Scientific seal analysis codes will provide steady-state and transient analysis capability based

on full three-dimensional Navier-Stokes equations. Other characteristics of these codes

include the following:

Cylindrical, polar, and non-orthogonal body-fitted coordinates

Stationary and rotating coordinate systems

Advanced turbulence models suitable for high-shear rotating flows

Incompressible and compressible flows

Cavitation or liquid film rupture

Energy conservation equation with viscous heating and phase changes

Provisions for additional field equations such as electromagnetic and
electrostatic forces

The seal analysis will encompass a number of generic seal categories inducting Cylindrical,

Labyrinth, Damper, Honeycomb, Face, Noncontinuous, Wave, Grooved, Tip, Contact, and

Brush seals. The models for these seals will be very extensive and detailed, requiring a Cray

X-MP class computer for execution in a reasonable time.

The KBS will be used to prepare the input data and the input files sent to the Cray using a

network. After execution, the output files will be downloaded from the Cray computer and

post-processed on the KBS. The users of the scientific codes are expected to be high-level

research personnel familiar with the fundamental theories used in the codes, the

mathematical underpinnings and the basic structure of the code, and the types of seals being

analyzed. The assistance provided to these users will focus on the mechanics of defining the

analytical model during input. An extens_le database of typical models will be provided as a

starting point for user input. The final user input will be checked using expert systems to

ensure that all the necessary input has been supplied and that there are no obvious errors in

grid specification, boundary conditions, material characteristics, etc. This function is essential

given the expense of running these codes on a Cray computer. Expert systems and

conventional data reduction software will be provided to assist the user in interpreting the

outputdata.
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6.1.3 Industrial Codes

The industrial codes are simpler two- and three-dimensional codes for several different types

of seals. Some of the codes included in the package are:

• Bushing and Ring Seals

¢ Uniform

@ AxialStep and Taper

@ Hydrodynamic Step and Taper

@ SelfEnergized Hydrostatic

,0, Segmented

• Face Seals

@ Contact Face Seals

@ RadialStep and Taper

,_ Hydrodynamic Step and Taper

,_ Hydrostatic

•_ SpiralGroove

,_ Multi-pad

• Labyrinth Seals

@ Straight

@ Stepped

@ Abradable

• Tip Seals

• Damping Seals

• Brush Seals

• Electro-fluidSeals

• Smart Seals

6-4



The anticipated users of the industrial codes include seal design and application engineers,

seal users such as rotating machinery designers, and analysts performing seal design audits

and failure analysis. These users may not be familiar with all of the seal analysis capability

incorporated into these codes or with all of the design and analysis options available for a

specific application. The assistance provided to these users will include extensive on-line,

context-sensitive help for each code, and error trapping to ensure that input values are within

admissible limits. A graphical user interface using windows and drop-down menus will be

provided for each code to ensure a uniform look and feel. The names of menu items and seal

variables will be standardized to reduce the learning curve. Expert systems will be provided

as needed to guide the user in setting up an optimum analytical model and to interpret the

output data.

Seal design optimization is an iterative process involving seal interracial analysis,

rotordynamic analysis, and thermo-elastic analysis. Expert systems will be provided to guide

the user through this process by helping the user to select the analyses to be performed and

to decide when to terminate the iterative process.

6.1.4 Databases

Databases will be included to store input and output data sets for example problems and for

problems used for analytical code validation. The databases will also enable users to develop

a library of analytical models tailored for their individual needs and to maintain a history of

analyses performed using the codes. The analytical codes will access their databases directly

to store and retrieve data. Users may also access the databases using database services

provided through the executive.

6.2 HARDWARE AND SOFTWARE SYSTEM SELECTION

6.2.1 Initial System Selection

The hardware and software system selection were driven by the need for a graphical user

interface and the computational requirements for the analysis codes. The choice was

complicated by having to antidpate the hardware and software availability six years down

the road, by a wide variation in the computing power available to the anticipated users, and

by the wide range of computational requirements for the individual analysis codes.

After a review of KBS requirements, an Intel 80386 and 80486 based IBM PC compatible

hardware platform running OS/2 with the Presentation Manager interface was selected.

FORTRAN 77 was selected for implementing the analytical codes and C as the primary

language for user interface development. Developing graphical user interfaces is a time

consuming process. The Toolbook authoring system was selected to explore alternatives to
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developing theuserinterfacesinC. NEXPERT Objectwas selectedas the expertsystem shell.

NEXPERT isavailableforseveraloperatingenvironments and provides portableknowledge

bases.Other optionsconsideredincluded UNIX on RISC workstationsand Windows 3.0.The

reasons for selecting OS/2 were as follows:

[]

[]

The ease-of-use features planned for the KBS provide the most benefit for
projected users of the industrial codes who may not be intimately familiar
with the content of the codes and may not be comfortable using computers.
These users are in orgartizations that typically use Intel based, IBM PC
compatible machines. Therefore, Intel 80386 or 80486 based machines were
selected to enable users to use existing hardware.

Windows environment was not acceptablebecause ofitsDOS based

limitationson memory, networking support,etc Most of theanalytical

codes requiremore resourcesthan provided by DOS. While itwas poss_le

toprovide a collectionofutilitiestoovercome theseshortcomings,thecost

ofmaintaining and developing a largesoftwarepackage likethe KBS with

such makeshift arrangements would be prohibitivein thelong rim.

UNIX is a complex mulE-user, multitasking operating system. It requires
considerable expertise to install and manage UNIX systems. The expected
users of the industrial codes are used to simple D(_ systems and usually

do not have the expertise or the support staff to manage UNIX systems. The
multi-user capabilities provided by UNIX do not add enough value to
offset the added complexity and cost of development.

OS/2 combines the best features of UNIX and Windows environments.

OS/2 is a single-user system. This reduces the complexity of the operating
environment and the time required to learn it. However, the system
security features such as log in control provided by UNIX and needed for a
mulE-user system are not available in OS/2.

Like UNIX, OS/2 is a robust multitasking system designed for use over

networks. In addition, it has features such as Multi-threading, Dynamic
Data Exchange (DDE0, Dynamic Link Libraries 0DLLs), and Installable File
System (IFS) which are not yet available in UNIX. These features implement

operating system concepts developed in recent years and provide a flexible,
extensible operating environment. Multi-threading is essential for support
of multi-processor hardware platforms. DDE allows for data links between

programs that are more flexible than traditional inter-process

communication method. DLLs allow development of code modules shared
by several programs and easy upgrade of software already in use.

The cost of third party software for OS/2 is comparable to DOS and

Windows environments, and is much cheaper than similar UNIX software.
The ability of OS/2 to run current EX)S software in the DOS compatibility
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mode and the useof the DOSfile system makes for an easy transition for

expected users of the industrial codes.

OS/2 Extended Edition is the most comprehensive software development

environment available today. The Application Programming Interfaces
(API) for the base operating system, the database manager, and the
communications manager provide a rich, robust, and well integrated
environment to develop applications with seamless access to databases and
networking capabilities. On any other platform these capabilities would
have to be duplicated with tools from several different vendors which do

not always work together cleanly. That is why OS/2 is becoming the
platform of choice for mission critical applications and for downsizing
mainframe or minicomputer applications using a client-server architecture.

OS/2 Version 2.0, due before the end of 1991, will be a 32-bit operating

system with an API that is portable to non-Intel hardware platforms.

Based on comments by the peer review panel after the first workshop at NASA Lewis

research Center, development of the KBS was interrupted to re-evaluate the harware and

software system selection. A segment of the attendees at the annual workshop and members

of the Peer Review Panel appointed by NASA favored the UNIX operating system. NASA

did not want to deny UNIX users access to the KBS by limiting the development to OS/2.

6.2.2 Hardware and Software System Re-evaluation

Issues of software portability, cost of a delivery system, availability of adequate software

development and maintenance tools, cost of software development, and expected evolution

in operating system environments are under evaluation.

6.2.2.1 Hardware Pla_orms

The hardware choices being evaluated are Intel 80386 or 80486 based IBM PC compatibles

and RISC workstations. The advantages of an Intel-based platform are wide availability and

low cost. Most of the anticipated industrial users are already using Intel-based machines. The

major advantage of RISC machines is better floating-point performance. There are, however,

several competing RISC platforms. This makes it necessary to commit to one hardware

vendor or bear the additional costs of supporting all the different platforms used by the

anticipated users of the analysis codes. It is anticipated that the performance of high-end PCs

and low-end workstations will converge over the next few years. Therefore, the hardware

platform should not be a decisive factor in the final system selection process.
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6.2.2.2 Operating Systems

The two operating systems being evaluated are a flavor of UNIX with OSF/MOTIF user

interface, and OS/2 with the Presentation Manager interface. Both these systems offer a

mulE-tasking environment which is a must for a system that has analytical codes that take a

long time to execute. The user must have access to other functions on the machine while

analysis proceeds in the background.

The advantages of UNIX are portability between Intel-based and RISC platforms running the

same version of UNIX. Major disadvantages of UNIX are the number of different versions

available from different vendors and the high cost of third-party software. UNIX vendors

seem to be converging on two versions: System V Release 4 from Unix International with the

Open Look Interface and OSF Unix with the Motif interface. Porting software between

versions is not a trivial task. Additional disadvantages of I/NIX on Intel-based machines are

slow speed, large memory and disc size requirements.

The advantages of OS/2 are a modern, integrated design that provides all the facilities

needed for developing applications with graphical user interfaces, ability to run thousands of

existing PC-DOS applications, lower cost third party software, and lower memory and disc

size requirements. Currently, the major disadvantage is lack of portability to non-Intel

hardware. However, a portable version of OS/2 that uses the same programming model as

OS/2 version 2.0 is expected to be available in the 1992-93 time frame.

Apple Computer and IBM recently signed a letter of intent to jointly develop a new

object-oriented, portable operating system. A new object-oriented operating system that will

run on Intel x86, Motorola 680x0, and IBM RS/6000 based computers and which will run

existing AIX, Macintosh, and OS/2 applications. The new platform will be developed by a

new company jointly owned by Apple and IBM. An industry standards group will be formed

to set standards for the emerging software architecture and act as a clearinghouse for

information about the project. The operafmg system will be ava//able in two to three years

and will be made available to other hardware platform vendors. The operating system will be

based on reusable software components easily portable to various systems. The object

oriented nature of the system will allow vendors to differentiate their version of the

enviroments by adding features such as portions of Macintosh and OS/2 operating systems

or other applications. The level of customization will be greater than that provided in the

current NextStep environment on NEXT machines, which is the only object-based operating

environment currently available. Object oriented technologies developed by the joint

company will be incorporated into OS/2 and the Macintosh operating systems as it becomes

available to facilitate their integration into the jointly developed operating system. Apple and

IBM will provide application programming interfaces (API) for the older operating systems

like OS/2 and Macintosh to allow them to run new object-oriented applications. For IBM,
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OS/2 will evolve to be a migration path to the new operating system in the late 1990's. An

encapsulation technology will be provided to allow older applications to run on the new

hardware/software platforms. This may include providing full binary compatibility so that

the older applications do not have to be recompiled.

6.2.2.3 Portability Issues

Software portability was considered at three different levels:

lo

.

.

The analysis codes are being developed using ANSI standard FORTRAN 77

for portability. The codes are currently being designed to read input from a
file and write output to a file. These codes need only to be recompiled for

use on any system.

Input and output post-processing programs with an easy-to-use graphical
user interface. These programs will create the input files needed by an

analysis code and read the output files for post-processing, viewing results,
etc. This portion of the code is usually operating system dependent.
Software tools that provide portable code for porting graphical user
interfaces between UNIX and OS/2 are now becoming available. These are

being considered.

Advanced, interactive two- and three-dimensional graphics capability. This

capability is envisioned for future versions of the analysis codes as
low-cost, portable software tools become available for developing
interactive graphics applications. The current graphical user interfaces are

being designed to enable future incorporation of these capabilities.

6.2.2.3 Software Development Tools

MTI experience with developing the user interface for the industrial codes showed that

conventional approaches to developing software are not cost effective when developing

software with graphical user interfaces. A number of tools are becoming available that

significantly reduce the cost of developing a graphical user interface and, in some cases,

provide means to port the interface between different operating environments such as OS/2

and UNIX with OSF/Motif interface. These packages usualy allow porting of user interface

elements such as windows, menus, dialog boxes, scroll bars, and buttons. The code for other

graphics elements drawn using graphics primitives such as lines, areas, curves, and special

features such as detectable, dynamic segments for interactive graphics is not ported. These

elements can be implemented using function Libraries that provide support for standards like

PHIGS and GKS. However, these libraries usually require a run-time license for each

workstation that runs code using the library. Some of the available tools for developing

graphical user interfaces are described below.
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Open Interface from Neuron Data. Open Interface is a software development environment

that allows the development of portable code for a graphical user interface for

DOS/Windows, OS/2 Presentation Manager, Unix with Motif and Open Look, Macintosh,

and VAX VMS DEC Windows environments. The interface code is developed using a

graphical screen layout tool which generates codes using generic C function calls designed

by Neuron Data. This code is then compiled and linked with libraries for the environment to

which the code is being ported. Cost of the development system is $9,000 for OS/2 and

$12,000 for Unix. Run-time systems are $,350 and $500 for OS/2 and Unix, respectively. The

Open Interface environment was used by Neuron Data to develop the NEXPERT Object

expert system shell that is availble for all of the above environments.
at

CaseWorks. CaseWorks is a software development environment for developing a graphical

user interface for Windows 3.0, OS/2 Presentation Manager and Unix Motif environments.

The development system generates C code for an interface defined using CaseWorks tools.

The Unix Motif product has been developed but is not shipping at this time because of a lack

of demand for it. The company claims it is ready to ship it if there is sufficient demand for it.

The cost of the OS/2 version is $2,000. There are no run-time fees.

Extensible Virtual Toolkit (XVT). XVT is a set of h'braries that support the Macintosh,

Windows, OS/2 Presentation Manager, Open Look, and Motif environments. The user

interface is developed using XVT function calls, and the resulting code is copiled and linked

using an XVT library for the environment in which the application is going to run. The cost
of XVT is $800 for DOS, Macintosh and OS/2 environments and $3,500 for UNIX

environments.

Information Engineering Facility fiEF) from Texas Instruments. IEF is a DOS and OS/2

based CASE tool. The current version supports software development for OS/2 Presentation

Manager and Windows graphical user interfaces. A new version due out at the end of the

year will let the developers distribute applications developed with IEF on HP 9000 and IBM

RS/6000 running UNIX with the MOTIF GUI. This facility is geared towards developing

business software that uses a mainframe database as a central source of data, with software

running on DOS and OS/2 workstations. Prices vary depending on the configuration but are

in the $6,000 to $10,000 range.

Gpf - GUI Programming Facility from Microformatic. Gpf is a software development

environment for developing a graphical user interface for the OS/2 Presentation Manager.

The development system generates C code for an interface defined using Gpf tools. Gpf is a

sophisticated tool that includes tools for reading data from the OS/2 Database Manager

databases. Gpf generates the code with the SQL commands and the C function calls required

to open and read data from the databases. The cost of Gpf is $3,500 with no run-time fees.
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Gpf is not available for any other platform at this time. It would be the tool to use if we stay

with OS/2 as the operating system.

Expert System Shells. The CLIPS library of C routines available from COSMIC is currently

limited to a forward-chaining reasoning capability. An object-oriented version is being

developed. However, CLIPS is best suited for embedded expert systems and may not be

convinient for this project if expert system capabilities are to be integrated with advanced 3-D

interactive graphics in future versions of the codes. We need an object oriented expert system

shell that is potable across several operating environments. NEXPERT Object seems to be the

best compromise based on capabilities, portability, and cost. Third party tools are available

for developing interactive graphics applications using NEXPERT. The selection of an expert

system shell cart be put off until early 1992.

Database Management Systems. The cost of OS/2 Extended Services (this includes the

Database Manager, the Communications Manager and the OS/2 LAN Requester) is about

$600. IBM has announced that the 0(3/2 Database Manager is being ported to AIX and will

be available in the second or third quarter of 1992. The price for the AIX version has not been

announced. Third party relational database management systems such as Oracle and

Informix are available for both OS/2 and UNIX. Cost of a single user version of Oracle is

$2,000 for UNIX and $1,500 for OS/2. A C language interface is included in the price. The

run-time version of Oracle for OS/2 costs $200; The price for a UNIX run-tdme version was

not available. The cost for the required tools for a development system (1-2 users) for

Informix is $3,800 for Unix and $995 for OS/2. Run-time prices are $1,540 for UNIX and $295

for OS/2. The costs for Informix include the 4GL compiler.

Object-Oriented Programming (OOP). Graphical user interface are composed of objects

such as windows, buttons, etc. and are, therefore, a natural application for OOP techniques.

Programming using objects allows the developer to work with objects such as windows

while hiding the details of how the object works. This saves development and maintenance

costs and facilitates portability between operating environments. The details of how an object

works are buried in the definition of an object, not in the application that uses the object.

Only the object library needs to be changed when porting between environments. The two

OOP languages suited for this project are Smalltalk and C++. SmaUtalk is a pure OOP

environment while C++ is a hybrid language consisting of OOP extensions to C. Smalltalk V

from Digitalk is available for Macintosh, Windows, and OS/2 environments. A UNIX

version is planned. While Smalltalk is the best choice based on technical reasons, C++ is

better for this project given the preference for C expressed by the peer review panel. The best

C++ environment that is available on both UNIX and OS/2 is Glockenspiel C++ with the

CommonView2 class library. The cost is $900 for OS/2 and $5,500 for IBM RS/6000 series
machines.
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Other Tools. There are several other tools available that generate executable files that require

runtime licences. These tools are not discussed given the preference for C expressed by the

peer review panel.

6.3 RECOMMENDATIONS

MTI recommends that we persue a two track development plan:

Develop the scientific codes on a UNIX platform used by a majority of the

large aerospace companies. IBM AIX can be used if eventual migration to
the new IBM-Apple operating system is desired.

Continue development of Industrial codes on an OS/2 platform with
eventual migration to the new IBM-Apple operating system.

Integrate the two systems using network communications. The integration
task will be quite simple once DCE protocols are available for UNIX and
OS/2.

Objectorientedtoolssuch asGlockenspielC++ and CommonView 2 classlibrarieswhich are

portablebetween OS/2 and UNIX should be used todevelop alltheuser interfacecode.This

approach willleaveopen theoption ofusing only one development platform and then

portingtootherplatformsby recompilingthecode on thoseplatforms.In thatcase,MTI

recommends thatOS/2 be the development platformgiven thereduced costofdevelopment

toolsand lower development costsbecause ofa simpleroperatingenvironment.

ANSI standard FORTRAN77 should be used todevelop the analyticalcodes.The codes

should be designed such thattheycan alsobe used without thegraphicaluser interfaces

developed fortheKBS. This willpermit theirdistn'butiontocustomers using hardware and

softwareplatformsnot supported by theKBS.

Use a portableshellsuch asNEXPERT todevelop thelargerexpertsystems.Smaller

embedded systems can be developed using CT2_ or otherC libraries.

6.4 IMPLEMENTATION OF THE SEAL ANALYSIS KBS

The work done during this period focused on the development of a graphical user interface

for some of the industrial seal codes and the executive program. OS/2 Presenta6on Manager

(PM) and other system facilities were used to provide an interface with windows, drop-down

menus, context sensitive help, dialog boxes for program input, and interactive graphics to
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reduce the amount of numeric input where it was feasible to do so. The user interface was

implemented for the following codes:

The executive program that is used to control access to all the analysis
codes and provide utility services such as printing and browsing text files.

Spiral Groove Gas Seals Analysis (SPIRALG)

Cylindrical Gas Seals Analysis (GCYL)

Incompressible Cylindrical Seals Analysis ('ICYL)

Huid Properties Calculations (FLUIDPROPS)

Spiral Groove Face Seals Optimization Program (SPIRALP)

6.4.1 Description of User Interface

The opening screen for the executive program is shown inFigure 6-2. Each program has its

own button displaying the icon for the program. The user only has to click on the program

button with a mouse to start a program. User options are selected from drop-down menus

accessed from the action bar using either a mouse or a keyboard. For example, the FILE menu

has options for printing and browsing text files such as output files created by the analysis

programs. Figure 6-3 shows the output file from an analysis program being viewed in the

browse window. Figure 6-4 shows the file selection screen for selecting input and output

files. Plotting capability is currently provided using existing PC-IXY3 programs. A fully

integrated OS/2 capability will be added in the future.

Multitasking features of OS/2 are used to allow the user to have several codes running at the

same time. The number of codes active at any time is limited only by memory available on

the computer. Figure 6-3 shows the executive program and a Cylindrical Gas Seals analysis

code (GCYL) active at the same time. The analysis code has been reduced to an icon (the

same icon that is used in the button) to reduce screen clutter. Within each program, input

and analysis are run as separate processes. This allows the user to start analyzing a data set

and then prepare the input for the next analysis while the current analysis is in progress.

Names of menu items are kept consistent between programs. For example, seal analysis

variables are categorized according to function such as defining the scope of the analysis,

specifying seal geometry, operating conditions and lubricant properties, etc. These functional

groups are the same for most types of seals but the variables in each group change

depending on the type of seal. The INPUT menu shown in Figure 6-5 lists the functional

groups applicable for GCYL. Selecting a group from the list opens up a dialog box for

entering values for variables in the group. All industrial codes have the same input menu list
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FIGURE6-2 Executive Program Main Window
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FIGURE 6-3 Browsing Output File
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FIGURE 6-4 File Selection Screen Input and Output
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FIGURE6-5 Standardized Input Menu Items
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but the contents of the dialog boxes change depending on the seal type being analyzed.

Examples of dialog boxes for the Analysis Options and Grid Definition menu items are

shown in Figures 6-6 and 6-7, respectively. This consistency allows the user to quickly locate

the variables to be input in any of the codes. Within each functional group, the names of

variables have been made consistent across programs. Variable and user interface

consistency should reduce learning time and make the codes easy to use by reducing the

volume of information the user has to learn to master the interface. The user is left free to

concentrate on the technical content of the codes.

User input for analysis programs is done using dialog boxes containing entry fields for

numeric data, radio buttons for selecting mutually exclusive options, and check boxes for

selecting other optional features. The choices are presented in simple language avoiding

computer jargon. Default values are provided for all variables. The user can move between

fields using the mouse or the keyboard. Figure 6-8 shows a data entry screen from a code to

calculate fluid properties. The input options are restricted to admissible values. For example,

when the user selects fluid property calculations for specified temperatures and density, only

the temperature and density entry field are displayed. The values entered in the fields are

checked against acceptable limits. The limits are dynamic, and may change depending on the

values of related variables. When the user switches the types of units used in the input, the

values displayed in the entry fields and the unit labels are changed to reflect the choice of the

user. The output is displayed using the same units as the input. The input values are saved

by clicking on the ACCEPT button. Clicking on the DISCARD button discards the changes.

Interactive graphics capability is provided where needed to reduce the amount of numeric

input and to make the input more intuitive. For example, seal pads in padded seals analyzed

by the GCYL code have several features on them such as recesses, Rayleigh steps, and fluid

sources. In the original program, the user had to input the grid coordinates for the location

and extent of all these features. An interactive capability is provided to enable the user to lay

out the features on the grid using the mouse. Figure 6-9 shows a seal pad with a Rayleigh

step and several constant pressure points. The user can add or delete the features shown in

the features palette by using the mouse. The user first selects a feature from the palette by

clicking on the appropriate radio button. The mouse pointer changes its shape to reflect user

selection. The pointer is then moved to the grid window and the feature is placed on the grid

by clicking the mouse at the appropriate grid location. Grid coordinates of the mouse pointer

are displayed in the lower left comer of the grid display window. If additional information

such as step height for a Rayleigh step is required for a given feature, entry fields are

displayed above the features palette. The user interface code handles the details of generating

the correct input statements for the GCYL code.

Help is available at any time through the HELP menu or by pressing the F1 function key. The

F1 key help is context sensitive. For example, if the user is entering data in an entry field and
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FIGURE 6-6 Analysis Options Screen for Spiral

Groove Gas Seals Program.
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FIGURE 6-7 Grid Definition Screen for Spiral

Groove Gas Seals Program.
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FIGURE 6-8 Data Input Methods
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FIGURE 6-9 Interactive Specification of Seal Features
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presses the F1 key, the help information for that field is displayed. Figure 6-10 shows the help

window that pops up when the F1 key is pressed while entering data in the "Groove Angle"

field in GCYL. Figures from manuals are included in the help system. Once the help window

is displayed, the user is free to browse through any portion of the help system for that code

and has access to all the help utiUties such as searching, printing, etc. provided by the

Information Presentation Facility 0PF) in OS/2. Hypertext links are used as needed to

provide explanations for technical terms used in the help information_ The help for each

program includesthe following information:

The purpose of the program

Its capabilities and limitations

References for additional information

Code validation.

Description of input and output parameters

Examples describing the problem and showing typical input and output
data sets

Description of procedures for the user interface

6.4.2 Current Status of KBS Components

This section descn'bes the status of the various components of the seal analysis KBS.

6.4.2.1 Executive Program

The structure of the executive program is shown in Figure 6-11. The main program is

designed to use separate threads for utility functions such as printing files and plotting data.

This allows the user to have access to other program functions while these functions are

being performed. When the user clicks on a program button, the analysis program is

launched as a separate process. The button is disabled to prevent the use of multiple

instances of the same program. The utility functions are available through the File menu.

Utilities to print and browse output files have been implemented. Plotting capability will be
added later.

Help is available from the Help menu or by using the FI function key. The help information

needs to be updated.
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FIGURE 6-11: STRUCTURE OF THE EXECUTIVE PROGRAM
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The name of the printer designated as the default printer during OS/2 setup is displayed in

the main window. If the printer setup is changed, the display can be updated using the

Printer Setup option in the Setup menu. Printer interface was designed for compatibility with

OS/2 version 1.2. It needs to be updated to version 1.3 to provide additional capabilities that

will make printing more flexible. The code to do so is already available but needs to be

incorporated into the program.

When the user selects the Print... option in the File menu, a file selection dialog box pops up

to select the name of the file to be printed. Clicking on the Cancel button in the dialog box

•will cancel the printing procedure. After a file has been selected, a dialog box listing all

available printer fonts is displayed to select the font to be used for printing.

When the user sele_ the Browse... option in the File menu, a file selection dialog box pops

up to select the name of the file to be browsed. Clicking on the Cancel button in the dialog

box will cancel the browsing procedure. After a file has been selected, it is displayed in a

separate window. The Fonts! menu item in the browse window lets the user select any of the

available screen fonts. The window is dosed using the system menu bar in the browse

window. Only one browse window is allowed.

The font support for browsing and printing needs to be improved. File opening and saving

dialog boxes also need improvement. This work was postponed until OS/2 version 2

becomes available because these dialog boxes have been standardized in that version. These

changes are quite simple and will be implemented for all the codes.

6.4.2.2 Spiral Groove Gas Seals Analysis (SPIRALG)

This code is complete. Enhancements made to the analysis codes after the user interface was

developed may require some changes to the code.

6.4.2.3 Cylindrical Gas Seals Analysis (GCYL)

The help information in the code needs to be expanded.

The user interface needs to support input for variable grids and to build in checks in the

interactive seal layout portion of the code to prevent the user from specifying invalid seal

configurations. The code was structured to support such checks but they need to be

implemented.
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6.4.2.4 Incompressible Cylindrical Gas Seals Analysis (ICYL)

ICYL user interface was implemented using Toolbook. It is an alternate way of designing

user interfaces for OS/2 applications. The menu options are displayed in the main window

as shown in Figure 6-12 and are selected using a mouse or typing the number assigned to the

item. Cascading menus shown in Figure 6-13 are used to display options available for each

of the main menu items in a manner similar to drop down menus used in the presentation

manager. An Input screen for menu item 5a is shown in Figure 6-14. Input dements such as

radio buttons and entry fields are the same as for presentation manager applications. The

user can go directly to any input screen using buttons in the upper right comer of the screen.

Our work revealed some important shortcomings in Toolbook when used for engineering

applications. The major difficulty was in the handling of large arrays. These can, however, be

overcome by developing C functions which Toolbook can calL

If NASA decides to stay with OS/2 for the CFD contract, the ICYL interface will be

implemented using the presentation manager format because several prospective users at the

last workshop at NASA wanted to stay with C.

6.4.2.5 Fluid Properties Calculations (FLUIDPROPS)

This code was obtained from NASA. The user interface is complete.

Help information needs to be added to the program.

The analytical portion of the program received from NASA is prone to crashes and was not

changed in any way. Error trapping needs to be improved to facilitate graceful recovery from
errors.

6.4.2.6 Spiral Groove Face Seals Optimization Program (SPIRALP)

The user interface is complete.

Help information needs to be added to the program.

The analytical portion of the program is prone to crashes and was not changed in any way.

Error trapping needs to be improved to facilitate graceful recovery from errors.
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FIGURE 6-12 User Interface for ICYL designed

using Toolbook.
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FIGURE6-13 Cascading Menus in the ICYL Interface
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FIGURE6-14 Input Screen in the ICYL Interface.
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6.5 FUTURE PLANS

Additional analysis codes are currently being developed. The development of the user

interface has been postponed pending final selection of an operating system. The decision is

expected in October 1991. The development of expert system components will begin when

the first scientific code is available in 1992.
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