13,228 research outputs found

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    Structure Theorems for Basic Algebras

    Full text link
    A basic finite dimensional algebra over an algebraically closed field kk is isomorphic to a quotient of a tensor algebra by an admissible ideal. The category of left modules over the algebra is isomorphic to the category of representations of a finite quiver with relations. In this article we will remove the assumption that kk is algebraically closed to look at both perfect and non-perfect fields. We will introduce the notion of species with relations to describe the category of left modules over such algebras. If the field is not perfect, then the algebra is isomorphic to a quotient of a tensor algebra by an ideal that is no longer admissible in general. This gives hereditary algebras isomorphic to a quotient of a tensor algebra by a non-zero ideal. We will show that these non-zero ideals correspond to cyclic subgraphs of the graph associated to the species of the algebra. This will lead to the ideal being zero in the case when the underlying graph of the algebra is a tree

    Decomposition spaces in combinatorics

    Get PDF
    A decomposition space (also called unital 2-Segal space) is a simplicial object satisfying an exactness condition weaker than the Segal condition: just as the Segal condition expresses (up to homotopy) composition, the new condition expresses decomposition. It is a general framework for incidence (co)algebras. In the present contribution, after establishing a formula for the section coefficients, we survey a large supply of examples, emphasising the notion's firm roots in classical combinatorics. The first batch of examples, similar to binomial posets, serves to illustrate two key points: (1) the incidence algebra in question is realised directly from a decomposition space, without a reduction step, and reductions are often given by CULF functors; (2) at the objective level, the convolution algebra is a monoidal structure of species. Specifically, we encounter the usual Cauchy product of species, the shuffle product of L-species, the Dirichlet product of arithmetic species, the Joyal-Street external product of q-species and the Morrison `Cauchy' product of q-species, and in each case a power series representation results from taking cardinality. The external product of q-species exemplifies the fact that Waldhausen's S-construction on an abelian category is a decomposition space, yielding Hall algebras. The next class of examples includes Schmitt's chromatic Hopf algebra, the Fa\`a di Bruno bialgebra, the Butcher-Connes-Kreimer Hopf algebra of trees and several variations from operad theory. Similar structures on posets and directed graphs exemplify a general construction of decomposition spaces from directed restriction species. We finish by computing the M\Preprin

    Boundary Hamiltonian theory for gapped topological phases on an open surface

    Full text link
    In this paper we propose a Hamiltonian approach to gapped topological phases on an open surface with boundary. Our setting is an extension of the Levin-Wen model to a 2d graph on the open surface, whose boundary is part of the graph. We systematically construct a series of boundary Hamiltonians such that each of them, when combined with the usual Levin-Wen bulk Hamiltonian, gives rise to a gapped energy spectrum which is topologically protected; and the corresponding wave functions are robust under changes of the underlying graph that maintain the spatial topology of the system. We derive explicit ground-state wavefunctions of the system and show that the boundary types are classified by Morita-equivalent Frobenius algebras. We also construct boundary quasiparticle creation, measuring and hopping operators. These operators allow us to characterize the boundary quasiparticles by bimodules of Frobenius algebras. Our approach also offers a concrete set of tools for computations. We illustrate our approach by a few examples.Comment: 21 pages;references correcte

    The Bisognano-Wichmann Theorem for Massive Theories

    Get PDF
    The geometric action of modular groups for wedge regions (Bisognano-Wichmann property) is derived from the principles of local quantum physics for a large class of Poincare covariant models in d=4. As a consequence, the CPT theorem holds for this class. The models must have a complete interpretation in terms of massive particles. The corresponding charges need not be localizable in compact regions: The most general case is admitted, namely localization in spacelike cones.Comment: 16 pages; improved and corrected formulation

    Matrix product and sum rule for Macdonald polynomials

    Get PDF
    We present a new, explicit sum formula for symmetric Macdonald polynomials PλP_\lambda and show that they can be written as a trace over a product of (infinite dimensional) matrices. These matrices satisfy the Zamolodchikov--Faddeev (ZF) algebra. We construct solutions of the ZF algebra from a rank-reduced version of the Yang--Baxter algebra. As a corollary, we find that the normalization of the stationary measure of the multi-species asymmetric exclusion process is a Macdonald polynomial with all variables set equal to one.Comment: 11 pages, extended abstract submission to FPSA

    A multi-species asymmetric simple exclusion process and its relation to traffic flow

    Full text link
    Using the matrix product formalism we formulate a natural p-species generalization of the asymmetric simple exclusion process. In this model particles hop with their own specific rate and fast particles can overtake slow ones with a rate equal to their relative speed. We obtain the algebraic structure and study the properties of the representations in detail. The uncorrelated steady state for the open system is obtained and in the (p→∞)p \to \infty) limit, the dependence of its characteristics on the distribution of velocities is determined. It is shown that when the total arrival rate of particles exceeds a certain value, the density of the slowest particles rises abroptly.Comment: some typos corrected, references adde
    • …
    corecore