research

Structure Theorems for Basic Algebras

Abstract

A basic finite dimensional algebra over an algebraically closed field kk is isomorphic to a quotient of a tensor algebra by an admissible ideal. The category of left modules over the algebra is isomorphic to the category of representations of a finite quiver with relations. In this article we will remove the assumption that kk is algebraically closed to look at both perfect and non-perfect fields. We will introduce the notion of species with relations to describe the category of left modules over such algebras. If the field is not perfect, then the algebra is isomorphic to a quotient of a tensor algebra by an ideal that is no longer admissible in general. This gives hereditary algebras isomorphic to a quotient of a tensor algebra by a non-zero ideal. We will show that these non-zero ideals correspond to cyclic subgraphs of the graph associated to the species of the algebra. This will lead to the ideal being zero in the case when the underlying graph of the algebra is a tree

    Similar works

    Full text

    thumbnail-image

    Available Versions