8,960 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Faster Algorithms for Weighted Recursive State Machines

    Full text link
    Pushdown systems (PDSs) and recursive state machines (RSMs), which are linearly equivalent, are standard models for interprocedural analysis. Yet RSMs are more convenient as they (a) explicitly model function calls and returns, and (b) specify many natural parameters for algorithmic analysis, e.g., the number of entries and exits. We consider a general framework where RSM transitions are labeled from a semiring and path properties are algebraic with semiring operations, which can model, e.g., interprocedural reachability and dataflow analysis problems. Our main contributions are new algorithms for several fundamental problems. As compared to a direct translation of RSMs to PDSs and the best-known existing bounds of PDSs, our analysis algorithm improves the complexity for finite-height semirings (that subsumes reachability and standard dataflow properties). We further consider the problem of extracting distance values from the representation structures computed by our algorithm, and give efficient algorithms that distinguish the complexity of a one-time preprocessing from the complexity of each individual query. Another advantage of our algorithm is that our improvements carry over to the concurrent setting, where we improve the best-known complexity for the context-bounded analysis of concurrent RSMs. Finally, we provide a prototype implementation that gives a significant speed-up on several benchmarks from the SLAM/SDV project

    The Fine-Grained Complexity of Multi-Dimensional Ordering Properties

    Get PDF
    We define a class of problems whose input is an n-sized set of d-dimensional vectors, and where the problem is first-order definable using comparisons between coordinates. This class captures a wide variety of tasks, such as complex types of orthogonal range search, model-checking first-order properties on geometric intersection graphs, and elementary questions on multidimensional data like verifying Pareto optimality of a choice of data points. Focusing on constant dimension d, we show that any k-quantifier, d-dimensional such problem is solvable in O(n^{k-1} log^{d-1} n) time. Furthermore, this algorithm is conditionally tight up to subpolynomial factors: we show that assuming the 3-uniform hyperclique hypothesis, there is a k-quantifier, (3k-3)-dimensional problem in this class that requires time ?(n^{k-1-o(1)}). Towards identifying a single representative problem for this class, we study the existence of complete problems for the 3-quantifier setting (since 2-quantifier problems can already be solved in near-linear time O(nlog^{d-1} n), and k-quantifier problems with k > 3 reduce to the 3-quantifier case). We define a problem Vector Concatenated Non-Domination VCND_d (Given three sets of vectors X,Y and Z of dimension d,d and 2d, respectively, is there an x ? X and a y ? Y so that their concatenation x?y is not dominated by any z ? Z, where vector u is dominated by vector v if u_i ? v_i for each coordinate 1 ? i ? d), and determine it as the "unique" candidate to be complete for this class (under fine-grained assumptions)

    Algorithmic linear dimension reduction in the l_1 norm for sparse vectors

    Get PDF
    This paper develops a new method for recovering m-sparse signals that is simultaneously uniform and quick. We present a reconstruction algorithm whose run time, O(m log^2(m) log^2(d)), is sublinear in the length d of the signal. The reconstruction error is within a logarithmic factor (in m) of the optimal m-term approximation error in l_1. In particular, the algorithm recovers m-sparse signals perfectly and noisy signals are recovered with polylogarithmic distortion. Our algorithm makes O(m log^2 (d)) measurements, which is within a logarithmic factor of optimal. We also present a small-space implementation of the algorithm. These sketching techniques and the corresponding reconstruction algorithms provide an algorithmic dimension reduction in the l_1 norm. In particular, vectors of support m in dimension d can be linearly embedded into O(m log^2 d) dimensions with polylogarithmic distortion. We can reconstruct a vector from its low-dimensional sketch in time O(m log^2(m) log^2(d)). Furthermore, this reconstruction is stable and robust under small perturbations

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Sparse multivariate polynomial interpolation in the basis of Schubert polynomials

    Full text link
    Schubert polynomials were discovered by A. Lascoux and M. Sch\"utzenberger in the study of cohomology rings of flag manifolds in 1980's. These polynomials generalize Schur polynomials, and form a linear basis of multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schubert polynomials, which generalize skew Schur polynomials, and expand in the Schubert basis with the generalized Littlewood-Richardson coefficients. In this paper we initiate the study of these two families of polynomials from the perspective of computational complexity theory. We first observe that skew Schubert polynomials, and therefore Schubert polynomials, are in \CountP (when evaluating on non-negative integral inputs) and \VNP. Our main result is a deterministic algorithm that computes the expansion of a polynomial ff of degree dd in Z[x1,…,xn]\Z[x_1, \dots, x_n] in the basis of Schubert polynomials, assuming an oracle computing Schubert polynomials. This algorithm runs in time polynomial in nn, dd, and the bit size of the expansion. This generalizes, and derandomizes, the sparse interpolation algorithm of symmetric polynomials in the Schur basis by Barvinok and Fomin (Advances in Applied Mathematics, 18(3):271--285). In fact, our interpolation algorithm is general enough to accommodate any linear basis satisfying certain natural properties. Applications of the above results include a new algorithm that computes the generalized Littlewood-Richardson coefficients.Comment: 20 pages; some typos correcte

    Conditionally Optimal Algorithms for Generalized B\"uchi Games

    Get PDF
    Games on graphs provide the appropriate framework to study several central problems in computer science, such as the verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or B\"uchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized B\"uchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized B\"uchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with nn vertices, mm edges, and generalized B\"uchi objectives with kk conjunctions. First, we present an algorithm with running time O(kâ‹…n2)O(k \cdot n^2), improving the previously known O(kâ‹…nâ‹…m)O(k \cdot n \cdot m) and O(k2â‹…n2)O(k^2 \cdot n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k1k_1 conjunctions in the antecedent and k2k_2 conjunctions in the consequent, and present an O(k1â‹…k2â‹…n2.5)O(k_1 \cdot k_2 \cdot n^{2.5})-time algorithm, improving the previously known O(k1â‹…k2â‹…nâ‹…m)O(k_1 \cdot k_2 \cdot n \cdot m)-time algorithm for m>n1.5m > n^{1.5}
    • …
    corecore