2,101 research outputs found

    Generalizations of tournaments: A survey

    Get PDF

    Arc Reversals in Tournaments.

    Get PDF

    A new framework for analysis of coevolutionary systems:Directed graph representation and random walks

    Get PDF
    Studying coevolutionary systems in the context of simplified models (i.e. games with pairwise interactions between coevolving solutions modelled as self plays) remains an open challenge since the rich underlying structures associated with pairwise comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problem that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modelled as a specific type of Markov chains ? random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provide the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled mannerauthorsversionPeer reviewe

    Quantum Hall Ground States, Binary Invariants, and Regular Graphs

    Full text link
    Extracting meaningful physical information out of a many-body wavefunction is often impractical. The polynomial nature of fractional quantum Hall (FQH) wavefunctions, however, provides a rare opportunity for a study by virtue of ground states alone. In this article, we investigate the general properties of FQH ground state polynomials. It turns out that the data carried by an FQH ground state can be essentially that of a (small) directed graph/matrix. We establish a correspondence between FQH ground states, binary invariants and regular graphs and briefly introduce all the necessary concepts. Utilizing methods from invariant theory and graph theory, we will then take a fresh look on physical properties of interest, e.g. squeezing properties, clustering properties, etc. Our methodology allows us to `unify' almost all of the previously constructed FQH ground states in the literature as special cases of a graph-based class of model FQH ground states, which we call \emph{accordion} model FQH states

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application
    • …
    corecore