17,094 research outputs found

    A PMT-Block test bench

    Get PDF
    The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a {\it 3-in-1} card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterisation are described in detail in this report. The results obtained in the test of about 10000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported.Comment: 23 pages, 10 figure

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Motor control of a hub motor for electric skateboard propulsion : a thesis presented in partial fulfilment of the requirements for the degree of Masters in Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Redacted for copyright reasons: Appendix A - Journal Article Published in IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2012). Rowe, A. & Sen Gupta, G. (2012). Instrumentation and control of a high power BLDC motor for small vehicle applications.An electric powered skateboard was designed and built for testing and development of an innovative hub motor propulsion system and motor controller. The electric skateboard prototype is able to reach speeds of over 50km/h and achieve a range of over 35km on a single battery charge. The prototype weighs 8.6kg and can easily be carried by the user. This mode of transport has potential uses in recreational use, motor sports (racing), short commutes, and most notably, in ‘the last mile’ of public transport – getting to and from a train station, bus stop, etc. to the user’s final destination. Typical electric powered skateboards use external motors(s) requiring a power transmission assembly to drive the wheels. The hub motor design places the motor(s) inside the skateboard wheels and drives the wheels directly. This removes the need for power transmission assemblies therefore reductions in size, weight, cost, audible noise, and maintenance are realised. The hub motor built for this prototype has proven to be a highly feasible option over typical drive systems and further improvements to the design are discussed in this report. Advances in the processor capability of low cost microcontrollers has allowed for advanced motor control techniques to be implemented on low cost consumer level motor controllers which, until recent times, have been using the basic ‘Six-Step Control’ technique to drive Permanent Magnet Synchronous Motors. The custom built motor controllers allow for firmware to be flashed to the microcontroller. Firmware was written for the basic motor control technique, Six-Step Control and for the advanced motor control technique, ‘Field Oriented Control’ (FOC). This allowed for the two control techniques to be tested and compared using identical hardware for each. Six-Step Control drives a three phase motor by controlling the inverter output to six discrete states. The states are stepped through sequentially. This results in a square wave AC waveform. Theory shows that this is not optimal as the magnetic flux produced in the stator is not always perpendicular to the magnet poles but rather aligned to the nearest 60°. FOC addresses this by controlling the magnetic flux to always be perpendicular to the magnet poles in order to maximise torque. The inverter is essentially controlled to produce a continuously variable voltage vector output in terms of both magnitude and direction (vector control). Bench testing of the control techniques was performed using two motors coupled together with one motor driving and the other motor running as a generator. The generator motor was shown to provide a highly consistent and repeatable load on the driving motor under test and therefore comparisons could be made between the performance of the motor while controlled under Six-Step Control and FOC. This test indicated that FOC was able to drive the motor more efficiently than Six-Step Control, however the FOC implementation requires further development to achieve greater efficiency under high load demands. Furthermore, on-road testing was performed using the motor controllers in the electric skateboard prototype to compare the performance of the two control techniques in a real world application. The results from this test were inconclusive due to large variation in the results between repeated tests

    Design and Performance Analysis of a Non-Standard EPICS Fast Controller

    Full text link
    The large scientific projects present new technological challenges, such as the distributed control over a communication network. In particular, the middleware EPICS is the most extended communication standard in particle accelerators. The integration of modern control architectures in these EPICS networks is becoming common, as for example for the PXI/PXIe and xTCA hardware alternatives. In this work, a different integration procedure for PXIe real time controllers from National Instruments is proposed, using LabVIEW as the design tool. This methodology is considered and its performance is analyzed by means of a set of laboratory experiments. This control architecture is proposed for achieving the implementation requirements of the fast controllers, which need an important amount of computational power and signal processing capability, with a tight real-time demand. The present work studies the advantages and drawbacks of this methodology and presents its comprehensive evaluation by means of a laboratory test bench, designed for the application of systematic tests. These tests compare the proposed fast controller performance with a similar system implemented using an standard EPICS IOC provided by the CODAC system.Comment: This is the extended version of the Conference Record presented in the IEEE Real-Time Conference 2014, Nara, Japan. This paper has been submitted to the IEEE Transactions on Nuclear Scienc

    Qualification needs for advanced integrated aircraft

    Get PDF
    In an effort to achieve maximum aircraft performance, designers are integrating aircraft systems. The characteristics of aerodynamics, vehicle structure, and propulsion systems are being integrated and controlled through embedded, often flight critical, electronic systems. The qualification needs for such highly integrated aircraft systems are addressed. Based on flight experience with research aircraft, a set of test capabilities is described which allows for complete and efficient qualification of advanced integrated aircraft

    Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    Get PDF
    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates

    Design and construction of a configurable full-field range imaging system for mobile robotic applications

    Get PDF
    Mobile robotic devices rely critically on extrospection sensors to determine the range to objects in the robot’s operating environment. This provides the robot with the ability both to navigate safely around obstacles and to map its environment and hence facilitate path planning and navigation. There is a requirement for a full-field range imaging system that can determine the range to any obstacle in a camera lens’ field of view accurately and in real-time. This paper details the development of a portable full-field ranging system whose bench-top version has demonstrated sub-millimetre precision. However, this precision required non-real-time acquisition rates and expensive hardware. By iterative replacement of components, a portable, modular and inexpensive version of this full-field ranger has been constructed, capable of real-time operation with some (user-defined) trade-off with precision

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US
    • 

    corecore