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Abstract

An electric powered skateboard was designed and built for testing and development of an
innovative hub motor propulsion system and motor controller. The electric skateboard prototype is
able to reach speeds of over 50km/h and achieve a range of over 35km on a single battery charge.
The prototype weighs 8.6kg and can easily be carried by the user. This mode of transport has
potential uses in recreational use, motor sports (racing), short commutes, and most notably, in ‘the
last mile’ of public transport — getting to and from a train station, bus stop, etc. to the user’s final
destination.

Typical electric powered skateboards use external motors(s) requiring a power transmission
assembly to drive the wheels. The hub motor design places the motor(s) inside the skateboard
wheels and drives the wheels directly. This removes the need for power transmission assemblies
therefore reductions in size, weight, cost, audible noise, and maintenance are realised. The hub
motor built for this prototype has proven to be a highly feasible option over typical drive systems
and further improvements to the design are discussed in this report.

Advances in the processor capability of low cost microcontrollers has allowed for advanced motor
control techniques to be implemented on low cost consumer level motor controllers which, until
recent times, have been using the basic ‘Six-Step Control’ technique to drive Permanent Magnet
Synchronous Motors. The custom built motor controllers allow for firmware to be flashed to the
microcontroller. Firmware was written for the basic motor control technique, Six-Step Control and
for the advanced motor control technique, ‘Field Oriented Control’ (FOC). This allowed for the two
control techniques to be tested and compared using identical hardware for each.

Six-Step Control drives a three phase motor by controlling the inverter output to six discrete states.
The states are stepped through sequentially. This results in a square wave AC waveform. Theory
shows that this is not optimal as the magnetic flux produced in the stator is not always perpendicular
to the magnet poles but rather aligned to the nearest 60°. FOC addresses this by controlling the
magnetic flux to always be perpendicular to the magnet poles in order to maximise torque. The
inverter is essentially controlled to produce a continuously variable voltage vector output in terms of
both magnitude and direction (vector control).

Bench testing of the control techniques was performed using two motors coupled together with one
motor driving and the other motor running as a generator. The generator motor was shown to
provide a highly consistent and repeatable load on the driving motor under test and therefore
comparisons could be made between the performance of the motor while controlled under Six-Step
Control and FOC. This test indicated that FOC was able to drive the motor more efficiently than Six-
Step Control, however the FOC implementation requires further development to achieve greater
efficiency under high load demands. Furthermore, on-road testing was performed using the motor
controllers in the electric skateboard prototype to compare the performance of the two control
techniques in a real world application. The results from this test were inconclusive due to large
variation in the results between repeated tests.
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Glossary

Term

Definition

Back EMF
Commutation
Copper Loss
Delta (A)

Eddy current

Electrical angle
H-bridge
Integrated

Development
Environment

Iron Loss

Mains supply

PID Controller
Rotor

Rotor angle
Remanence
Stator

Windage loss

Wye (Y)

The voltage that is generated across a motor’s windings as the rotor turns.

Switching the electrical current path through a motor’s windings in order to achieve
continuous rotation.

Power loss in an electric motor associated with the motor’s windings.

Refers to three phase loads where the three phases are terminated in a triangle
formation.

Circulating currents within a conductor due to an induced electromotive force.
The angle of the rotor magnet poles relative to the stator.
A transistor arrangement that allows an output to be connected to the positive DC bus

or the negative DC bus.

Refers to a computer programme suite that provides all the necessary tools and
resources for programming and developing software.
Power loss in an electric motor associated with the iron core of the electromagnets.

A power source from the power supply network. In New Zealand this is 230V, 50Hz
single phase AC or 415V, 50Hz three phase AC.

An algorithm which aims to regulate an output based on the difference between a set-
point and the measured value of the output (error), the sum of previous errors, and the
predicted future error.

The rotating component of an electric motor.
The angle of the rotor relative to the stator.

The remaining magnetisation of a ferromagnetic material after an external magnet field
has been removed.

The stationary component of an electric motor.

A term used to represent the energy loss due to the movement of air by a rotating
machine.

Refers to three phase loads where the three phases are terminated in a wye formation.
Also commonly referred to as ‘star’ terminated loads.
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Acronyms

Term Definition

AC Alternating Current

ADC Analogue to Digital Converter

BLDC Brushless Direct Current

BMS Battery Management System

CAD Computer Aided Design

CNC Computer Numerical Control

DAC Digital to Analogue Converter

DC Direct Current

EMF Electromotive Force

I/O Input / Output

12C Inter-Integrated Circuit

IC Integrated Circuit

IDE Integrated Development Environment
LEV Light Electric Vehicle

LCD Liquid Crystal Display

MMF Magnetomotive force

PCB Printed Circuit Board

PID Proportional, Integral, Derivative

PM Permanent Magnet

PMSM Permanent Magnet Synchronous Motor
PWM Pulse Width Modulation

RC Radio Controlled

RPM Revolutions per minute

S| Scientific International

SVM Space Vector Modulation

SWD Serial Wire Debug

USART Universal Synchronous Asynchronous Receiver Transmitter
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Nomenclature

Symbol Definition Units short  Units long

A Area m? Meters squared

B Magnetic field T Tesla

b Friction constant Nm.s/rad Newton meter seconds per radian
C Capacity Ah Amp hours

Cd Coefficient of drag - -

Cr Coefficient of rolling resistance - -

D Wheel diameter m meters

E Electric field N/C Newtons per coulomb

F Force N Newtons

f Frequency Hz Hertz

H Magnetic field Strength A/m

h Time H Hours

I Current A Amperes

J Moment of inertia kg.m? Kilogram meters squared
km Per phase motor constant Nm/A Newton meters per ampere
Km Total motor constant Nm/A Newton meters per ampere
Ky Motor speed constant V/(rad.s?) Volts per radians per second
Ke Motor eddy current coefficient - -

Kn Motor core hysteresis coefficient - -

| Length m Meters

M Multiplier for number of active poles - -

m Mass kg Kilograms

N Number of active turns of wire - -

P Power Watts

Pe Electrical power w Watts

XV



Pm

Qu

Nd

Nm

Om

Pr

(O

Mechanical power
Hysteresis energy loss
Charge

Resistance
Reluctance

Radius

Time

Voltage

Velocity

Wheel Speed
Electromotive force
Efficiency

Drive efficiency
Motor efficiency
Angle of incline
Magnet angle
Density

Resistivity

Torque

Angular velocity

Magnetic flux

J/m3

m/s

km/h

rad
rad
kg/m?3
Qm
Nm
rad/s

Wb

Watts

Joules per cubic meter
Coulombs

Ohms

Inverse henry

Meters

Seconds

Volts

Meters per second
Kilometres per hour

Volts

Radians

radians

Kilograms per meter cubed

Ohm meters
Newton meters
Radians per second

Weber
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