620 research outputs found

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    ON SIMPLE BUT HARD RANDOM INSTANCES OF PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

    Get PDF
    In the last decade, Answer Set Programming (ASP) and Satisfiability (SAT) have been used to solve combinatorial search problems and practical applications in which they arise. In each of these formalisms, a tool called a solver is used to solve problems. A solver takes as input a specification of the problem – a logic program in the case of ASP, and a CNF theory for SAT – and produces as output a solution to the problem. Designing fast solvers is important for the success of this general-purpose approach to solving search problems. Classes of instances that pose challenges to solvers can help in this task. In this dissertation we create challenging yet simple benchmarks for existing solvers in ASP and SAT.We do so by providing models of simple logic programs as well as models of simple CNF theories. We then randomly generate logic programs as well as CNF theories from these models. Our experimental results show that computing answer sets of random logic programs as well as models of random CNF theories with carefully chosen parameters is hard for existing solvers. We generate random logic programs with 2-literals, and our experiments show that it is hard for ASP solvers to obtain answer sets of purely negative and constraint-free programs, indicating the importance of these programs in the development of ASP solvers. An easy-hard-easy pattern emerges as we compute the average number of choice points generated by ASP solvers on randomly generated 2-literal programs with an increasing number of rules. We provide an explanation for the emergence of this pattern in these programs. We also theoretically study the probability of existence of an answer set for sparse and dense 2-literal programs. We consider simple classes of mixed Horn formulas with purely positive 2- literal clauses and purely negated Horn clauses. First we consider a class of mixed Horn formulas wherein each formula has m 2-literal clauses and k-literal negated Horn clauses. We show that formulas that are generated from the phase transition region of this class are hard for complete SAT solvers. The second class of Mixed Horn Formulas we consider are obtained from completion of a certain class of random logic programs. We show the appearance of an easy-hard-easy pattern as we generate formulas from this class with increasing numbers of clauses, and that the formulas generated in the hard region can be used as benchmarks for testing incomplete SAT solvers

    A Linear Logic Programming Language for Concurrent Programming over Graph Structures

    Full text link
    We have designed a new logic programming language called LM (Linear Meld) for programming graph-based algorithms in a declarative fashion. Our language is based on linear logic, an expressive logical system where logical facts can be consumed. Because LM integrates both classical and linear logic, LM tends to be more expressive than other logic programming languages. LM programs are naturally concurrent because facts are partitioned by nodes of a graph data structure. Computation is performed at the node level while communication happens between connected nodes. In this paper, we present the syntax and operational semantics of our language and illustrate its use through a number of examples.Comment: ICLP 2014, TPLP 201

    Towards 40 years of constraint reasoning

    Get PDF
    Research on constraints started in the early 1970s. We are approaching 40 years since the beginning of this successful field, and it is an opportunity to revise what has been reached. This paper is a personal view of the accomplishments in this field. We summarize the main achievements along three dimensions: constraint solving, modelling and programming. We devote special attention to constraint solving, covering popular topics such as search, inference (especially arc consistency), combination of search and inference, symmetry exploitation, global constraints and extensions to the classical model. For space reasons, several topics have been deliberately omitted.Partially supported by the Spanish project TIN2009-13591-C02-02 and Generalitat de Catalunya grant 2009-SGR-1434.Peer Reviewe
    • …
    corecore