
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Doctoral Dissertations Graduate School

2011

ON SIMPLE BUT HARD RANDOM INSTANCES OF ON SIMPLE BUT HARD RANDOM INSTANCES OF

PROPOSITIONAL THEORIES AND LOGIC PROGRAMS PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

Gayathri Namasivayam
University of Kentucky, gayatrina@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Namasivayam, Gayathri, "ON SIMPLE BUT HARD RANDOM INSTANCES OF PROPOSITIONAL THEORIES
AND LOGIC PROGRAMS" (2011). University of Kentucky Doctoral Dissertations. 132.
https://uknowledge.uky.edu/gradschool_diss/132

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF DISSERTATION

Gayathri Namasivayam

The Graduate School

University of Kentucky

2011

ON SIMPLE BUT HARD RANDOM INSTANCES OF
PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Engineering at the University of Kentucky

By

Gayathri Namasivayam

Lexington, Kentucky

Director: Dr. Mirosław Truszczyński, Department of Computer Science

Lexington, Kentucky

2011

Copyright c© Gayathri Namasivayam 2011

ABSTRACT OF DISSERTATION

ON SIMPLE BUT HARD RANDOM INSTANCES OF
PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

In the last decade, Answer Set Programming (ASP) and Satisfiability (SAT) have been used
to solve combinatorial search problems and practical applications in which they arise. In
each of these formalisms, a tool called a solver is used to solve problems. A solver takes
as input a specification of the problem – a logic program in the case of ASP, and a CNF
theory for SAT – and produces as output a solution to the problem. Designing fast solvers
is important for the success of this general-purpose approach to solving search problems.
Classes of instances that pose challenges to solvers can help in this task.

In this dissertation we create challenging yet simple benchmarks for existing solvers in
ASP and SAT. We do so by providing models of simple logic programs as well as models of
simple CNF theories. We then randomly generate logic programs as well as CNF theories
from these models. Our experimental results show that computing answer sets of random
logic programs as well as models of random CNF theories with carefully chosen parameters
is hard for existing solvers.

We generate random logic programs with 2-literals, and our experiments show that it is
hard for ASP solvers to obtain answer sets of purely negative and constraint-free programs,
indicating the importance of these programs in the development of ASP solvers. An easy-
hard-easy pattern emerges as we compute the average number of choice points generated
by ASP solvers on randomly generated 2-literal programs with an increasing number of
rules. We provide an explanation for the emergence of this pattern in these programs. We
also theoretically study the probability of existence of an answer set for sparse and dense
2-literal programs.

We consider simple classes of mixed Horn formulas with purely positive 2- literal
clauses and purely negated Horn clauses. First we consider a class of mixed Horn formulas
wherein each formula has m 2-literal clauses and k-literal negated Horn clauses. We show
that formulas that are generated from the phase transition region of this class are hard for
complete SAT solvers. The second class of Mixed Horn Formulas we consider are obtained
from completion of a certain class of random logic programs. We show the appearance of
an easy-hard-easy pattern as we generate formulas from this class with increasing numbers
of clauses, and that the formulas generated in the hard region can be used as benchmarks
for testing incomplete SAT solvers.

KEYWORDS: Knowledge representation, Answer-set programming, Proposi-
tional satisfiability, Mixed Horn formulas, Random SAT

Gayathri Namasivayam

Student’s signature
February 15, 2011

Date

ON SIMPLE BUT HARD RANDOM INSTANCES OF
PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

By

Gayathri Namasivayam

Dr. Mirosław Truszczyński
Director of Dissertation

Dr. Raphael Finkel
Director of Graduate Studies

February 15, 2011

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Master’s and Doctor’s degrees and deposited
in the University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may be noted,
but quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also the
consent of the Dean of the Graduate School of the University of Kentucky.

A library which borrows this dissertation for use by its patrons is expected to secure the
signature of each user.

Name Date

DISSERTATION

Gayathri Namasivayam

The Graduate School

University of Kentucky

2011

ON SIMPLE BUT HARD RANDOM INSTANCES OF
PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Engineering at the University of Kentucky

By

Gayathri Namasivayam

Lexington, Kentucky

Director: Dr. Mirosław Truszczyński, Department of Computer Science

Lexington, Kentucky

2011

Copyright c© Gayathri Namasivayam 2011

DEDICATION

To my parents

Sakuntala Shakher and Namasivayam Selvarajan

ACKNOWLEDGMENTS

I was fascinated by the ability to represent the knowledge about a real world situation

in a logical language, as well as the ability to use logic to reason from this knowledge. I

had the dream to learn more about this area, and I came to the University of Kentucky for

further studies unaware that I would be able to make this wish come true. I met my advisor,

Dr. Mirosław Truszczyński, in the computer science department and was extremely thrilled

that I could pursue further studies in this area of my dreams under his valued guidance. Dr.

Truszczyński provided me with ongoing knowledge, guidance, and support from the first

until this moment. My first memory is of Dr.Truszczyński teaching me the logical language

PS+ and helping me use it to represent several combinatorial problems. I am so thankful

and extremely grateful to Dr. Truszczyński for teaching me the preliminaries of logics and

completely guiding my research, as well as for giving me the opportunity to meet several

researchers in my field.

I am thankful to Dr. Victor Marek, Dr. Judy Goldsmith, and Dr. Jerzy Jaromczyk for

teaching and guiding me through several classes related to my area of study. They have

always motivated and guided me during my study at this department.

I thank Dr. Raphael Finkel and Dr. Grzegorz Wasilkowski for their prompt help and

guidance during my graduate study at the department.

I am thankful to Dr. Victor Marek, Dr. Judy Goldsmith, Dr. Kevin Donohue, and Dr.

Uwe Nagel for being on my committee and reading drafts of my dissertation.

I would like to thank Lengning Liu, Liangrong Yi, Krol Kevin Mathias, Peng Dai,

Nicholas Mattei, and Joshua Guerin for all the research related discussions and the good

times they shared with me at our AI lab.

I am so happy to have made wonderful friends Pete Wilson, Tanya Floyd, Thomas

Goodness, Karen Gerstandt, Ramakanth Kavuluru, Bev McChesney, and Jim McChesney

during my study at the University of Kentucky, and I thank them for all the affection they

showered upon me and for being there for me at all times.

iii

I thank my husband Sivamoorthy Shanmugam for being supportive of my stay and study

away from him.

I thank my parents for their love. They have continuously supported and motivated me

to pursue my doctorate degree. They have been the pillar of support for me at all times

during my study.

Lastly, I thank my sister Gangothri Namasivayam for visiting me, and my grandmother

Kalaimagal Shakher for traveling several times to Lexington to visit me and be with me

during my study.

iv

Table of Contents

Acknowledgments iii

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1
1.1 Motivation . 4
1.2 Main Contributions . 4
1.3 Thesis Organization . 5

Chapter 2 The two Formalisms 7
2.1 Satisfiability of Propositional Theories . 7

2.1.1 Syntax and Semantics . 7
2.1.2 Examples . 8
2.1.3 Special classes of SAT formulas 11
2.1.4 Complexity . 12
2.1.5 SAT solvers . 12

2.2 Answer Set Programming . 17
2.2.1 Syntax . 18
2.2.2 Stable-model semantics of a normal logic program 20
2.2.3 Supported models . 23
2.2.4 Completion of a logic program . 24
2.2.5 Tight logic programs . 26
2.2.6 Positive dependency graph . 27
2.2.7 Loop formulas . 27
2.2.8 Complexity . 31
2.2.9 Solvers for logic programs . 31

Chapter 3 Random Logic Programs 34
3.1 2-Regular Programs . 35
3.2 The Probability of a Program to Have an Answer Set 37
3.3 Hardness of Programs . 46

Chapter 4 Mixed Horn Formulas 53
4.1 Preliminaries . 54
4.2 Method for the generation of MHFs . 58
4.3 Phase transition . 63
4.4 Easy-hard-easy pattern I . 64
4.5 Easy-hard-easy pattern II . 66
4.6 Easy-hard-easy pattern III . 68
4.7 Hard Benchmarks for SAT Solvers . 69

v

Chapter 5 Related Work 70
5.1 Random Logic Programs . 70

5.1.1 Properties of Random Logic Programs 70
5.1.2 Fixed Body Length Model . 71
5.1.3 Mixed Body Length Model . 73

5.2 Random SAT . 73
5.2.1 Generation of Random SAT instances 74
5.2.2 Properties of RSATK(N, β) instances 74
5.2.3 Threshold for random SAT . 76

Chapter 6 Conclusions 77

Appendix A Experimental results on random logic programs from [mR−]n 81

Appendix B Experimental results on MHFs from MH n(k) 86

Bibliography 94

Vita 103

vi

List of Tables

3.1 Hard region, peak location, and the number of choice points at the peak
location for consistent and inconsistent programs. Results for clasp and
smodels. 48

4.1 The average choice points made by clasp at the critical region for the model
CMH n(k) . 66

vii

List of Figures

2.1 Algorithm DPLL . 15
2.2 Positive dependency graph G(P) . 28
2.3 Positive dependency graph G(P1) . 29

3.1 The probability that a graph from mR−150 (m = 150d) has an answer set, as
a function of d. 40

3.2 The probability that a graph from mR−150 (m = 150d) has an answer set, as
a function of d. 41

3.3 Average number of choice points for consistent programs with 150 atoms
smodels (scale on the right) and clasp (scale on the left). The x-axis rep-
resents the density. Sample sizes are 500 for consistent programs, and 100
for inconsistent programs. 47

3.4 Average number of choice points for inconsistent programs with 150 atoms
smodels (scale on the right) and clasp (scale on the left). The x-axis rep-
resents the density. Sample sizes are 500 for consistent programs, and 100
for inconsistent programs. 48

3.5 Average number of choice points for consistent programs with 150 atoms
for clasp. The x-axis represents the density. Sample size is 100 consistent
programs. 50

3.6 Average number of choice points for inconsistent programs with 150 atoms
for clasp. The x-axis represents the density. Sample size is 100 inconsistent
programs. 51

3.7 Average number of choice points for inconsistent programs with 150 atoms
for clasp. The x-axis represents the density. Sample size is 100 inconsistent
programs. 51

3.8 Average number of choice points for consistent programs with 150 atoms
and clasp. The x-axis represents the density. Sample size is 100 consistent
programs. 52

4.1 The phase transition for the model CMH n(5). The x-axis represents the
probability of existence of a model, and the y-axis represents the density of
2-literal rules. 64

4.2 The phase transition for the model CMH n(10). The x-axis represents the
probability of existence of a model, and the y-axis represents the density of
2-literal rules. 65

4.3 The location of the phase transition in the model MH n(k) as a function of
k. The x-axis represents k and the y-axis gives the approximate density of
2-literal rules near the phase transition. 66

4.4 The phase transition for the model CMH n(10) with n = 150 67
4.5 The easy-hard-easy pattern of instances generated from the critical region

for MH n(k) as a function of k. 67

viii

4.6 The easy-hard-easy pattern for the model CMH 1
n(k), and the probability

of satisfiability. The left x-axis represents the probability of existence of a
model, the right x-axis represents the average choice points made by clasp. 68

ix

Chapter 1

Introduction

The past few decades have seen the development of many approaches to solving search

problems. We consider here two of them: reducing the problem to Satisfiability (SAT), and

to Answer Set Programming (ASP).

Satisfiability, or SAT for short, is a problem arising in propositional logic. We define

it formally later. Here we simply mention that it consists of deciding whether a proposi-

tional formula (often subject to some syntactic restrictions) has a satisfying assignment (or

model). Many real-world problems can be reduced to SAT in a way that establishes a cor-

respondence between solutions to the problem and models of the corresponding formula.

To explain more precisely what we have in mind, let us consider a problem Π with the set

of instances I(Π). By the propositional logic formulation of Π we mean a function fΠ,

such that

1. to every instance I ∈ I(Π), fΠ assigns a propositional formula fΠ(I)

2. fΠ can be computed in polynomial time

3. for every instance I ∈ I(Π), Π has a solution for an instance I if and only if fΠ(I)

has a model

4. solutions to Π for I can be extracted in polynomial time from models of fΠ(I)

It is known that the class of problems that can be reduced in this way to SAT is the class

NP-search also known as the class NPMV [67]. It includes many hard problems arising in

practical applications.

Answer Set Programming (ASP) [53, 61] is a knowledge representation and reasoning

formalism that is used to model and solve computationally hard search problems. In ASP

an instance of the search problem is modeled as a logic program so that answer sets of

1

the logic program correspond to solutions of the problem. ASP provides a programming

environment for modeling the constraints and the domain information (an instance) of the

search problem as a high-level program using an ASP language [70, 72]. ASP uses a tool

called the grounder to convert the high-level program and domain information into a low-

level program called a propositional program. In more formal terms, let Π be a problem

with the set of instances I(Π). The ASP functions fΠ, similar to those in SAT, are deter-

mined by a fixed-length ASP program PΠ capturing the specification of the problem Π and

by the process called grounding denoted by grnd. More precisely, if the program PΠ en-

codes Π and I represents an instance to Π, then fΠ(I) = grnd(PΠ ∪ I). The programming

environment, along with the grounder, constitutes the front-end of ASP. The back-end of

ASP has a solver that takes the ground propositional program produced by the front-end

and computes its answer sets.

The primary difference between the two formalisms is that ASP comes with a high-

level programming front end that is not provided by SAT. A single high-level programming

front end can take different problems and their instances and produce corresponding propo-

sitional programs that are then solved by the solver. In the case of SAT, each problem and

its instance must be reduced to a propositional formula to be solved by a SAT solver using

specialized tools that differ from problem to problem. However, the solvers for the two

formalisms employ similar techniques for solving propositional programs and formulas.

The two formalisms have a wide range of applications [27, 48]. The current ASP lan-

guages are used to model instances of real-world problems such as preference reasoning

[14, 15], semantic web [40], product configuration [71], software configuration [75], and

combinatorial problems in the class NP and in the class ΣP
2 . The main applications of SAT

are in the areas of hardware verification [18], bounded model checking [17], software

verification [21], and planning [44].

Applications of SAT and ASP created the need for good solvers that can solve prob-

lems quickly. Hence many solvers have been developed in recent years for each of these

formalisms, and have been successful in solving search problems and problems of practical

importance. There are two broad classes of solvers: complete solvers are those that always

2

find a solution to a problem or determine that none exists; incomplete solvers are those that

do not guarantee to find a solution even if one exists. The solvers in each of these classes

can be further characterized based on the algorithms, data structures, and heuristics used

within them.

In order to compare the performance of these solvers, several benchmark problems were

proposed for both SAT and ASP at the SAT competitions [2], ASP competition [3, 5], and

at the online benchmarking environment for ASP [1]. Some of these benchmarks include:

1. Real-world problems: routing, job-shop scheduling, configuration problems, travel-

ing salesperson, grammar-based information extraction, formal verification of pro-

cessors, and bounded model checking.

2. Graph problems: weighted spanning tree, weighted bounded dominating set, Hamil-

ton cycle, Hamilton path, reachability, hierarchical clustering, connected dominating

set, graph partitioning, and graph coloring.

3. Puzzles/Games: 15-puzzle, sudoku, solitaire, towers of Hanoi, maze generation,

blocked N-queens, and sokoban.

4. Random: random tight and non-tight logic programs, and random k-SAT formulas.

Even though many challenging benchmark problems have been designed and generated

to compare the performance of SAT solvers, the generation of random SAT benchmarks in

Conjunctive Normal Form (CNF) has been of special interest to the researchers in the SAT

community. Researchers have proposed different models of random CNF theories. In

particular, a fixed clause length model [57] with a carefully selected set of parameters was

shown to generate hard CNF theories for SAT solvers. These benchmarks led to significant

advances in building efficient SAT solvers, both complete and incomplete.

The focus of this thesis is on generating random logic programs and random CNF the-

ories that can be shown to be hard for solvers based on a measure such as the time taken by

the solver to obtain a solution, or using choice points as a parameter that measures the size

of the search space traversed by the solver to obtain a solution.

3

Our work is related to the prior work done on generating random CNF formulas [57],

as well as to the work done by Zhao and Lin on generating random logic programs [80].

We provide a description of the previous work in Chapter 5. Our work, like the prior work

done on generating random logic programs and random CNF theories, focuses on creating

hard instances for solvers. The main difference between the prior work and ours is that we

focus on generating simple yet hard random programs and theories.

1.1 Motivation

Our study and generation of random theories has been motivated by two key considerations.

First, hard random theories can be used as benchmarks to evaluate the algorithms used

in existing solvers. Second, experimental analysis as well as theoretical studies of the

properties of these random theories can provide us with insights for improving the design

of the heuristics and algorithms in these solvers.

1.2 Main Contributions

1. We provide models of simple logic programs that consist of 2-literal rules. These

programs can contain constraints (i.e., rules of the form ← a, b; ← a, not(b) and

← not(a), not(b)), purely negated rules of the form a← not(b), and purely positive

rules of the form a ← b. We define different classes of logic programs that contain

combinations of these rules, such as logic programs that are purely negative (i.e.,

contain only negated rules) without constraints, or those that contain both positive as

well as purely negative rules.

We also provide models of simple SAT formulas, which are special types of Mixed

Horn Formulas (MHFs) that predominantly consist of purely positive 2-literal clauses

and purely negative Horn clauses. We also show that the SAT problem for this class

of CNF formulas is NP-complete.

2. We randomly generate 2-literal logic programs and SAT formulas from these models

and study their properties. In the case of randomly generated logic programs, we

4

experimentally and theoretically study the probability distribution for the existence

of an answer set for the 2-literal programs that we generate with an increasing density

of rules. We also experimentally study the difficulty for ASP solvers of the different

classes of randomly generated 2-literal logic programs and show that the programs

that have rules that are purely negative and constraint-free form the hardest class.

In addition, we observe the existence of an easy-hard-easy pattern as we compute

the average number of choice points generated by a solver on computing an answer

set for this class of logic programs, and we provide arguments that help explain the

occurrence of this pattern.

We experimentally study the probability of the existence of a satisfying truth assign-

ment for randomly generated MHFs. We observe a phase-transition for the probabil-

ity of the existence of a model and a corresponding easy-hard-easy pattern for SAT

solvers, as we test the satisfiability of MHFs, that we generate with an increasing

number of 2-literal clauses and a fixed number of Horn clauses.

3. We generate hard benchmarks for logic program solvers and SAT solvers. We show

that computing answer sets, for random 2-literal logic programs that have purely

negative constraint-free rules, are hard for ASP solvers.

We show that MHFs that are generated from the critical region where the probability

of the randomly generated formula being satisfiable is 0.5 are hard for SAT solvers.

We also generate hard random MHFs for incomplete solvers.

1.3 Thesis Organization

We provide in the subsequent chapter a brief introduction to the two formalisms Answer

Set Programming and Satisfiability. In Chapter 3 we provide a model for the generation

of simple-yet-hard random logic programs and study the properties of these programs. We

then consider models for the random generation of simple classes of mixed Horn formulas

in Chapter 4, and show that these formulas can be used as hard benchmark problems for

existing SAT solvers. We provide in Chapter 5 a brief discussion of related works. Finally,

5

we conclude in Chapter 6 and provide future research directions.

Copyright c© Gayathri Namasivayam 2011

6

Chapter 2

The two Formalisms

2.1 Satisfiability of Propositional Theories

This section explains the syntax and semantics of propositional logic needed to define the

satisfiability (SAT) problem. A description of a few subclasses of SAT such as Horn, Mixed

Horn Formulas (MHF), andK-CNF formulas is given here as well. We also provide a brief

introduction to SAT solvers.

2.1.1 Syntax and Semantics

In the area of SAT, a problem is usually represented as a special type of formula in propo-

sitional logic called a Conjunctive Normal Form (CNF) formula, which is formed from

boolean variables using boolean connectives ∧, ∨, ¬, and parentheses. We often write sim-

ply variables instead of boolean variables. The syntax and semantics of CNF formulas is

given below.

Let v denote a boolean variable. A literal is either a boolean variable v or its negation

¬v. A clause C is a disjunction l1 ∨ l2 ∨ . . . lm, where all li’s are literals. A CNF formula

is a conjunction of clauses.

We consider two truth values: t (true) or f (false). An assignment is a function that

maps boolean variables to truth values. Let F be a CNF formula and A an assignment that

maps every boolean variable in F to a truth value. The truth value of F based on A is then

computed inductively as follows. The truth value of a boolean variable that is mapped to

true in A is true, otherwise it is false. The negation of a variable is true if the variable is

assigned false in A, and false otherwise. A clause is evaluated as true in A (i.e., its truth

value is true in A) if at least one of its literals is true in A. A CNF formula is evaluated to

be true in A if all of its clauses are true in A.

A CNF formula is satisfiable (consistent) if there is at least one assignment that satisfies

it. Otherwise, the formula is unsatisfiable (inconsistent). Each assignment satisfying a

7

formula is called a satisfying assignment or a model. An empty clause has no satisfying

assignments, and the empty conjunction of clauses is satisfied by every assignment. With

these definitions we will now define the satisfiability problem in its search version.

Definition 1. By the satisfiability (SAT) problem we mean the problem in which inputs are

formulas in the CNF form and the objective is to find one or more satisfying assignments,

or determine that no such assignment exists.

The decision version of the SAT problem consists of deciding for an input CNF formula

F whether it has a model (without the requirement that if such a model exists then it has to

be returned).

2.1.2 Examples

Every problem in the class NP-search [67] can be reduced to SAT as described in the

introduction. We provide here the SAT representation for two problems: graph coloring

and blocked n-queens.

Graph coloring

In the graph coloring problem denoted by πcol, we are given a set of colors and a graph.

The goal of the problem is to color every vertex in the graph with a color so that no two

vertices that are connected by an edge have the same color. Every instance I of the graph

coloring problem is given by a set C of k colors and a graph G with a set V = {v1, . . . , vn}

of n vertices and set of edges E. We construct here the propositional formula (i.e., a set of

clauses) fcol(I) for an instance of the graph coloring problem in the following way.

Let bij be a boolean variable representing the statement that vertex vi ∈ V , 1 ≤ i ≤ n

is colored with color cj ∈ C, 1 ≤ j ≤ k. First, we include in fcol(I) the clauses

bi1 ∨ . . . ∨ bik,

for every i, 1 ≤ i ≤ n. This ensures that each vertex is associated with at least one color.

Next, we include in the set fcol(I) clauses of the form

¬bij ∨ ¬bij′

8

for every i, j and j′ where 1 ≤ i ≤ n, and 1 ≤ j, j′ ≤ k. This group of clauses ensures

that each vertex is associated with at most one color. Let {vi, v′i} ∈ E represent an edge

between a pair of vertices vi and v′i. To ensure that no two vertices of an edge are colored

using the same color, we include in fcol(I) clauses of the form

¬bij ∨ ¬bi′j,

where i < i′ and {vi, v′i} is an edge in the graph.

Theorem 1. Let I be an instance to the graph coloring problem. Then solutions to I are

in a one-to-one correspondence with models of the propositional formula fcol(I).

Proof. Let M be a model of fcol(I). Then we construct a solution SM for an instance I

of the graph coloring problem in the following way: for every boolean variable bij that is

assigned true in M , we color the vertex vi with color cj in SM .

First, we show here that if M is a model of the propositional theory fcol(I), then SM is

a solution of the coloring problem for I . Let us assume that M is a model of fcol(I). One

can check the following:

• In SM , each vertex vi is colored with at least one color cj (the first group of clauses).

• In SM , each vertex vi is be colored with at most one color cj (the second group of

clauses).

• In SM , any two vertices that are connected by an edge cannot be colored using the

same color (the third group of clauses).

Hence, it follows that in SM every vertex is colored with a single color and that any two

vertices that are connected by an edge cannot be colored using the same color. Hence SM

is a solution to the graph coloring instance I .

Conversely, we show that if S is a solution to an instance I , then we construct a model

MS from S in the following way: for every vertex vi that is colored with a color j, we

assign a boolean variable bij to be true in MS; otherwise, we set bij to false in MS . Let S

be a solution to a graph coloring problem. Since in S every vertex vi in the graph is colored

9

with a single color cj , we know that all the clauses in the first two groups are true in MS .

Moreover, since no edges have both their vertices assigned the same color, every clause in

the third group is true in MS , too. Thus, MS is a model of fcol(I).

Blocked n-queens

The blocked n-queens problem is a variant of the n-queens problem. In the blocked n-

queens problem, we have an n×n board and n queens. Each square on the board is formed

by the intersection of a particular row and column. A square can hold at most one queen.

Some squares are blocked. The goal of the problem is to place n queens on the unblocked

squares of the board so that no two queens are placed on the same row, column, or diagonal.

Let us use i, where 1 ≤ i ≤ n, to denote the ith row on the board and j, where 1 ≤ j ≤ n,

to denote the jth column.

We construct here the propositional formula for an instance of the blocked n-queens

problem in the following way. We will define a set of clauses fbq(I) representing this

instance of the blocked n-queens problem. Let qij be a boolean variable representing the

statement that there is a queen in the square formed by the ith row and jth column. Some

squares on the board are blocked and cannot hold any queen. For every blocked square

(i, j) include in the set of clauses fbq(I),

¬qij. (2.1)

At least one queen must be placed on every column. This constraint is represented by

clauses of the form

q1j ∨ q2j ∨ . . . ∨ qnj, j = 1, 2, . . . , n. (2.2)

A conflict arises when any two queens are assigned to the same column, row, or diagonal.

These constraints are represented by clauses of the forms

¬qij ∨ ¬qi′j, (2.3)

where i 6= i′,

¬qij ∨ ¬qij′ , (2.4)

10

where j 6= j′, and

¬qij ∨ ¬qi′j′ (2.5)

where the absolute value of i− i′ is equal to the absolute value of j− j′, i 6= i′, and j 6= j′.

Theorem 2. Let I be an instance of the blocked n-queens problem. Then, solutions to the

problem for I are in a one-to-one correspondence with models of the propositional theory

fbq(I).

Proof. Let M be a model of fbq(I). Then we construct a solution SM of I in the following

way: for every boolean variable qij that is assigned to true in M , we place a queen in the

square (i, j). One can then check that in SM no queen is placed in a blocked square (since

M satisfies clauses of type (2.1)). Moreover, there is a queen in every column (clauses of

type (2.2)). Next, in SM no two queens are contained in a column (clauses of type (2.3)).

In particular, it follows that exactly n queens are placed on the board. Next, no two queens

are contained in the same row (clauses of type (2.4)) and no two queens are placed on the

same diagonal (clauses of type (2.5)). Thus, SM is a solution for I .

Conversely, let S be a solution of an instance I of the n-queens problem. We construct

from S a model MS in the following way: for every queen that is placed in square (i, j),

we assign the boolean variable qij to true in MS . One can check that MS satisfies all of the

clauses in fbq(I). Hence, MS is a model of fbq(I). For instance, since in S no two queens

appear in the same column, all clauses of type (2.3) are true in MS .

2.1.3 Special classes of SAT formulas

In addition to a general class of CNF formulas, we consider in the thesis other special

subclasses of CNF formulas with a restricted syntax. A CNF formula in which every clause

has exactly k literals is called a k-CNF formula. A Horn clause is a clause with at most one

occurrence of a non-negated atom. A 2-literal clause is a clause with exactly 2-literals in

it. We define Horn to be the class of CNF formulas in which every clause is a Horn clause.

11

Mixed Horn Formulas (MHFs) are a subclass of CNF formulas in which every clause in

the formula is either a 2-literal clause or a Horn clause.

The general interest within the SAT community for consideration of each of these dif-

ferent restricted classes of formulas is due to some of the following reasons: simplicity in

the structure of the formulas as in the case of 2-CNF, Horn, and mixed Horn formulas; the

ability to represent several real-world applications within the restricted class of MHFs; and

a computational advantage allowing 2-CNF and Horn formulas to be solved in polynomial

time.

2.1.4 Complexity

The problem of deciding if a CNF formula is satisfiable is NP-complete, and is the first

problem shown to be NP-complete [19]. The satisfiability of 2-CNF, as well as Horn

formulas, can be solved in polynomial time [9, 56], and the satisfiability of k-CNF formulas

with k ≥ 3 is NP-complete [19]. However, the satisfiability of mixed Horn formulas,

interestingly enough, is also NP-complete [64].

Schaefer’s dichotomy theorem distinguishes classes of instances of the boolean con-

straint satisfaction problem for which a solution can be found in polynomial time [66]. The

classes of instances for which a polynomial time algorithm exists are: 2-SAT, Horn, dual-

Horn, trivially satisfiable formulas (i.e, a class of CNF formulas in which every clause has

at least a single non-negated variable or a class of CNF formulas in which every clause has

at least a single negated variable), and affine formulas. Schaefer also showed that all other

classes of the boolean constraint satisfaction problem defined in terms of constraint types

are NP-complete.

2.1.5 SAT solvers

A SAT solver is a program that takes a SAT instance as input and produces as output a

model, or all models, or decides that there are no models for it (i.e., it is unsatisfiable). SAT

solvers can be broadly classified into two categories: complete and incomplete solvers.

Complete solvers are those that are guaranteed to always find a solution for a SAT instance

12

if one exists, or to determine that the instance is unsatisfiable by searching through the

space of truth assignments. Incomplete solvers are those solvers that are not guaranteed to

find a solution of a SAT instance, even if one exists (but they often do, and do so fast), and

do not determine that the instance is unsatisfiable.

Many complete SAT solvers have been developed, and the more recent ones that were

the winners at the SAT competition in 2009 are glucose [10], satzilla [77], and march hi

[39]. The earliest procedure used in complete SAT solvers is the Davis-Putnam-Logemann-

Loveland (DPLL) procedure. The procedure shown in Figure 2.1 is based on the DPLL

algorithm given in [12]. The DPLL procedure takes as input a CNF formula and either

produces as output a satisfying truth assignment or determines that the formula is unsatisfi-

able [22]. This procedure systematically searches through all possible boolean assignments

until it finds a model or shows that the given formula is unsatisfiable. It does so by a search

process that creates a binary tree whose nodes represent variables in the tree, and the two

downward edges from a node in the tree correspond to the two possible variable assign-

ments made to the variable at the node. Once a variable v in the formula F is assigned

a value V al (i.e., V al ∈ {true, false}), then the DPLL procedure eliminates from F the

variable v and obtains a reduced formula F |(v = V al) in the following way: if there is

a clause with a literal (either v or ¬v) that evaluates to false, then it eliminates that literal

from the clause; and if there is a clause that contains a literal (either v or ¬v) that evalu-

ates to true, then that clause is satisfied by the current partial truth assignment made to the

variable and it is removed.

Example 3. Consider a CNF formula F with variables {v1, v2, v3, v4}, and

F = {v1 ∨ ¬v2,

v3 ∨ ¬v4,

¬v1 ∨ v2}.

Then if v2 is assigned false. The reduced formula determined by the DPLL procedure is

F |(v2 = false) := {v3 ∨ ¬v4,

13

¬v1}.

4

The following are the steps performed by a DPLL search algorithm as described in

Figure 2.1.

1. The procedure initially performs a step called unit propagation as seen in Line 1.

The unit propagation algorithm takes as input a CNF formula I and assigns it to

F . It then determines clauses called unit clauses that has a single unassigned literal.

The algorithm on detection of a unit clause immediately assigns the variable v in

the single unassigned literal in the unit clause to a boolean value V al that forces

the unassigned literal now to evaluate to true. The unit propagation procedure then

eliminates the variable v from the formula F (as described above) and obtains a

reduced formula F |(v = V al), which it calls F . The unit propagation procedure

continues to look for other unit clauses and eliminates them. During unit propagation,

more and more unit clauses can appear as more and more variables are assigned with

values. The formulas gets reduced each time a unit clause is obtained. This unit

propagation step terminates when either it can no longer detect any new unit literal

clauses, or when a clause has been falsified (i.e., one of the clauses is an empty clause

{}). The algorithm outputs a partial assignment A, and a reduced CNF formula F .

2. The procedure then checks to determine if all the variables are assigned; if so then the

formula is satisfiable and the procedure terminates with a satisfying assignment (see

Lines 2–4). The procedure reports the formula to be unsatisfiable if unit propagation

discovered a conflict (i.e., the reduced formula returned by unit propagation has an

empty clause {}, see Line 5–6).

If there are unassigned variables then it starts by choosing one variable v among

them, assigning it to be either true or false and performing unit propagation (see

Line 8). The DPLL procedure provided above is a recursive procedure; hence the call

to the unit propagation algorithm is made by calling the DPLL procedure with the

14

INPUT: I: a CNF instance of SAT
OUTPUT: A: a satisfying assignment for I output

SOL: indicates if the instance is satisfiable or unsatisfiable
BEGIN
1. (A,F) = Unit-Propagation(I)
2. If all variables in F are assigned then
3. SOL = Satisfiable;
4. return A;
5. Else If a clause in F is falsified then
6. SOL = Unsatisfiable;
7. return false;
8. Else choose a variable v in F
9. If (V = (DPLL(F |v = true)) == false then
10. If (V = (DPLL(F |v = false)) == false then
11. SOL = Unsatisfiable;
12. return false;
13. Else
14. return (V ∪ A ∪ {v = false})
15. Else
16. return (V ∪ A ∪ {v = true})
END

Figure 2.1: Algorithm DPLL

15

reduced formula F |(v = true) or F |(v = false). Each time a variable is chosen, a

node is added in the search tree and this node is called a choice point. The assignment

of a value to a variable (i.e., v = true or v = false) is represented by a branch in

the tree from the corresponding node.

3. Based on the current partial assignment made to the variables in the formula (i.e.,

after unit propagation), DPLL checks to see if any clause in the formula has been

falsified. If none of the clauses have been falsified, the algorithm repeats steps 2–4;

otherwise if a clause is falsified, then it does one of the following steps.

• The procedure backtracks to a choice point in the search tree that has most

recently been assigned exactly one of the two boolean values and then reassigns

it to the opposite value, performs unit propagation, and checks again to see if a

clause is not satisfied (see Line 10).

• If there is no earlier choice point for the algorithm to backtrack to in the previ-

ous step, the procedure determines that the formula is unsatisfiable.

The algorithms used in more recent complete SAT solvers are variants and modification

of the DPLL procedure. Some of the additional successful procedures that were integrated

with the DPLL framework include lookahead [30], backjumping [11], and conflict-driven

clause learning [73].

Incomplete solvers, otherwise called stochastic local search (SLS) solvers, have been

successful in obtaining models of satisfiable formulas with a large number of variables in

a shorter time than complete solvers, especially for the class of hard randomly generated

formulas. They are predominantly run with a fixed time limit within which they try to find

a model of the formula. These solvers do not necessarily guarantee finding a model within

the time given to them. The recent high-performing SLS solvers are TNM [4], gNovelty+

[4], and hybridGM [4].

The earliest SLS algorithm is GSAT [69]. It performs a randomized local search by

initially generating a random complete assignment. The algorithm then reassigns (i.e.,

flips) a single variable to the opposite value in the assignment. The variable that is chosen

16

to be flipped is the one that minimizes the number of unsatisfied clauses in the formula.

The solver greedily flips variables until it finds a satisfying assignment or until a predeter-

mined number of maximum flips is reached. Once the maximum number of flips has been

reached, the SLS repeats the entire process by generating, once again, a random complete

assignment. The SLS repeats the entire process until the time limit is reached.

GSAT has the possibility of getting stuck for a long time in a local minima which is

where all the neighboring truth assignments (those that can be reached by a flip) do not

result in decreasing the number of unsatisfied clauses. GSAT could spend considerable

time in such a local minima. Hence, in order to improve on such a situation, random walk

was introduced within local search solvers. The random walk strategy occasionally allows a

random selection of a variable to flip as opposed to the greedy flip strategy described earlier.

The random walk is incorporated within the walksat solver [68], in addition to the greedy

flip strategy that was used in GSAT. Walksat chooses a falsified clause and performs the

following: If there exists a variable in the chosen falsified clause that on flipping does not

make any satisfied clause falsified, it flips the variable; otherwise, it does a random walk by

randomly choosing a variable to flip from the chosen falsified clause with probability p and

by greedily choosing a variable to flip also from within a falsified clause with probability

1 − p. The random walk strategy has proven to be successful on larger random 3-SAT

instances when compared to the greedy strategy used in GSAT [69].

2.2 Answer Set Programming

Answer Set Programming (ASP for short) evolved from logic programming as the result of

the research on the meaning of negation in the syntax of logic programming. The semantics

that gained overwhelming acceptance, the stable-model semantics, could not be reconciled

with the single-intended model paradigm of logic programming. As examples that we give

later show, it is quite common for a program to have multiple stable models. Thus, in order

to exploit the stable-model semantics for logic programming a shift in the paradigm was

needed. Such a shift was proposed in the late 1990s [53, 61]. Under the new paradigm,

stable models represent objects to compute, and by intention, each represents a solution

17

to the problem modeled by the program. Stable models are otherwise called as answer

sets and hence the name Answer Set Programming. Since then ASP has become one of

the most vibrant areas of research in logic programming. One of the important factors

behind the phenomenon of ASP is its strong connection to knowledge representation and

non-monotonic logics, in particular to default logic by Reiter [65]. More specifically, logic

programs with the stable-model semantics can be viewed (in a quite direct way) as special

default theories.

We provide here the syntax and the semantics of ASP. We also discuss other concepts

that are relevant to the thesis, such as: completion semantics, positive dependency graph,

supported model, and loop formulas. A brief overview of the complexity analysis of normal

logic programs is given. We end the chapter with a discussion of the different kinds of ASP

solvers.

2.2.1 Syntax

Let A be a nonempty set of symbols. Each symbol a, where a ∈ A, is called an atom. A

normal rule is an expression of the form

a← b1, . . . , bn, not(c1), . . . , not(cm),

and a constraint is a an expression of the form

← b1, . . . , bn, not(c1), . . . , not(cm),

where a, bi’s and cj’s are atoms and not is the negation as failure connective. By head(r)

we represent the atom a, also called the head of the normal rule r. We use the term rule to

represent either a normal rule or a constraint. We denote the set of negated atoms cj’s (the

set of non-negated atoms bi’s) in a rule r as negbody(r) (posbody(r)). A normal rule r with

the empty posbody(r) as well the empty negbody(r) is a fact, and it is usually represented

with an omitted rule connective as

a.

A normal logic program P is composed of rules. By At(P) we denote the set of all atoms

in the program P .

18

Example 4. Example of a normal logic program P with At(P) = {a, b, c, d} is shown

here.

{a← not(b).

b← c, not(d).

c.}

4

Let M be a set of atoms where M ⊆ At(P). We define the satisfaction relation |= as

follows.

• M |= a if a ∈M .

• M |= not(a) if a 6∈M .

• For a constraint r, M |= r if there exist an atom a, such that.

a ∈ posbody(r) and M 6|= a, or

a ∈ negbody(r) and M 6|= not(a).

• For a rule r that is not a constraint, M |= r if head(r) ∈M whenever

for every atom a ∈ posbody(r), M |= a, and

for every atom a ∈ negbody(r), M |= not(a).

• M is a model of a normal logic program P , denoted by M |= P , if for every rule

r ∈ P , M |= r.

A normal logic program whose rules have no negated literals in their bodies as well as

no constraints is called a Horn logic program. A Horn logic program always has a unique

least model [26]. We use lm(P) to denote the least model of a Horn logic program P . We

provide here an example of a Horn logic program.

Example 5. Let P be a Horn logic program.

P = {a← b.

19

b← c, d.

b.}

Its unique least model is {a, b}. 4

Normal logic programs that are not Horn may or may not have a least model. An

example of such a normal logic program that does not have a least model is shown in

Example 6.

Example 6. Let P be a normal logic program:

{a← not(b).

b← not(a).}

Then P has three models {a}, {b}, and {a, b}. Thus, P does not have a least model. It has

two minimal models {a} and {b}. 4

2.2.2 Stable-model semantics of a normal logic program

The semantics of a normal logic program is based on the intuition that if positive atoms in

the body of the rule are true and the negated atoms in the body can not be proved then the

atom in the head of the rule must be true.

In this subsection, we present the stable-model semantics of a propositional normal

logic program [34]. Let M be a model of P . We define here the reduct PM of a normal

logic program P . The reduct PM of a normal logic program P with respect to a modelM is

computed as follows. For each rule r ∈ P , where r = a← b1, . . . , bn, not(c1), . . . , not(cm),

1. if M ∩ {c1, . . . , cm} 6= ∅, delete r, and

2. if r has not been deleted, remove all negated atoms (not(c1), . . . , not(cm)) from r.

The logic program PM does not contain any occurrences of not connectives. Therefore,

it is a Horn logic program. A set of atoms M ⊆ At(P) is an answer set if M is the least

model of PM (i.e., M = lm(PM)).

20

We provide an example of a normal logic program that has answer sets in Example 7,

and also an example of one that does not have an answer set in Example 8. We also note

that if M is an answer set of P then M is a model of P [34]. Hence, in these examples we

will compute answer sets of P by considering only subsets of atoms of P that are models

of P .

Example 7. Consider a normal logic program P with rules

{a← not(b).

b← c, not(a).

c.}

The program P has three models M1 = {a, c}, M2 = {b, c} and M3 = {a, b, c}. The

reduct of P w.r.t. the model M3, PM3 is given by

PM3 = {c}.

The unique least model of PM3 is {c} which is different from M3. Thus, M3 is not an

answer set. We can show that M1 and M2 are answer sets in the following way. The reduct

of P w.r.t. the model M1, PM1 is

PM1 = {a, c}

Clearly, lm(PM1) = {a, c}. Since, lm(PM1) = M1, M1 is an answer set of P . The

reduct of P w.r.t. the model M2, PM2 is

PM2 = {b← c.

c}.

Again, lm(PM2) = {b, c}. Since, lm(PM2) = M2, M2 is an answer set of P . 4

Example 8. Consider a normal logic program P with rules

a← not(b).

21

b← not(c).

c← not(a).

The program P has no answer sets. To show this, we note that P has the following models:

M1 = {a, b, c}, M2 = {a, b}, M3 = {a, c}, and M4 = {b, c}. We compute here the reducts

of P w.r.t. each of these models:

PM1 = ∅ 6= M1

PM2 = {b.}

PM3 = {a.}

PM4 = {c.}

Clearly, in each case lm(PMi) 6= Mi. 4

Example 9. Consider a Horn logic program P with rules

{a← b, c.

b← c.

b← d.

c.}

This program P has a unique answer set M = {a, b, c} which is lm(PM). 4

Definition 2. A set of atoms M is an answer set of a logic program with constraints P if

M is an answer set of the program P without constraints, and M models every constraint

in P .

Theorem 10. Every Horn logic program P has a unique answer set and it is the least

model lm(P).

22

Proof. Let P be a Horn logic program. Then we know by the definition of a Horn logic

program that P is negation free. Since P is negation free, the reduct of P w.r.t to any model

M of P results in P (i.e., PM = P). We also know that since P is Horn it has a unique

least model M ′. Hence, for any model M of P where M 6= M ′, we clearly observe that

M is not an answer set of P , since lm(PM) = lm(P) = M ′. However, M ′ is an answer

set since it is a model of P and lm(PM ′
) = lm(P) = M ′. Thus P has a unique answer set

which is its least model M ′.

2.2.3 Supported models

Definition 3. Let P be a logic program. For any set of atoms M ⊆ At(P):

• An atom a is supported by P and M , if there exists a rule r ∈ P , where head(r) = a,

posbody(r) ⊆M and negbody(r) ∩M = ∅ (i.e., M satisfies body(r)).

• M is supported under P , if for every atom a ∈M , a is supported by P and M .

• M is a supported model of P , if M is a model of P and M is supported under P .

Proposition 1. [54] Let M be an answer set of a normal logic program P , then M is a

supported model of P .

We show here that the answer sets M1 and M2 of the program in Example 7 are sup-

ported models. The atom a ∈ M1 is supported by the rule a ← not(b), since b 6∈ M1.

The atom c ∈ M1 is supported by the rule c. Hence, since both the atoms in model M1

are supported by the program in Example 7, M1 is a supported under P . Since M1 is a

model of P and M1 is supported under P , M1 is a supported model of P . Similarly, one

can observe that M2 is also a supported model. This is consistent with Proposition 1. We

also note that the program P = {a ← a} has two supported models: ∅ and {a}. Only the

first of them is an answer set of P . Thus, the converse to Proposition 1 does not hold.

In the program in Example 8 the model M1 contains all atoms in the program. Since

none of the atoms in M1 can be supported by any rule in the program w.r.t. M1 and P , M1

is not a supported model. The other models M2, M3 and M4 of the program in Example 8

23

are also not supported models, since, we observe that in each model exactly one of the two

atoms is not supported by any rule w.r.t. to the model and the program.

We next consider the notion of a completion of a logic program. The completion of a

logic program results in a boolean formula in propositional logic whose satisfying boolean

assignments (i.e., models) are in one-to-one correspondence with supported models.

The completion is based on the intuition that a logic program rule can be viewed as a

definition of an atom appearing in the head of its rules. Hence, the completion enforces this

definition by defining an equivalence relation between every atom a and the disjunction of

the bodies of the rules with the atom a in its head.

2.2.4 Completion of a logic program

Let P be a logic program and let At be the set of atoms in P . For each atom a ∈ At, let

Ra = {r ∈ P |head(r) = a}. Let us use bd(r) to denote the conjunction of the literals

b1, . . . , bn,¬c1, . . . ,¬cm in a rule of the form ai ← b1, . . . , bn, not(c1), . . . , not(cm).

Then, we define

Ca =

∨
r∈Ra

bd(r).

If an atom a is not present in the head of any rule, then Ca is an empty disjunction and

so, it is a contradiction denoted by ⊥. The Clark’s completion [28] of a logic program P

denoted by PComp is obtained as follows,

PComp = {a↔ Ca : a ∈ At}.

Example 11. Let us consider a logic program P with rules

{a← not(b).

b← c, not(a), not(d).

a← c.}

Then its completion PComp is

{a↔ ¬b ∨ c.

24

b↔ c ∧ ¬a ∧ ¬d.

d↔⊥ .

c↔⊥ .}

4

Theorem 12. [28] If P is a normal logic program and M is an answer set of P , then M is

a model of Pcomp.

However, the converse of the above theorem does not hold as can be seen from the

example show here.

Example 13. Let P be a logic program:

P = {a← not(b), c

c← not(b), a}.

Then

Pcomp = {a↔ ¬b ∧ c.

c↔ ¬b ∧ a.

b↔⊥ .}

We can observe that Pcomp has a model M = {c, a}. The reduct

PM = {a← c.

c← a.},

and lm(PM) = ∅ 6= M . Hence, M is not an answer set of P .

4

Theorem 14. [54] Let P be a logic program. Then, M is a supported model P iff M is a

model of its completion PComp.

We introduce here a class of logic programs for which the converse of the theorem

holds.

25

2.2.5 Tight logic programs

Let P be a normal logic program with a set At(P). Then P is tight if there is a mapping Φ

Φ : At→ {1, . . .}

such that for each rule r ∈ P of the form

a← b1, . . . , bk, not(c1), . . . , not(cm),

we have

Φ(a) > max{Φ(b1), . . . ,Φ(bk)}.

A program P is non-tight if such a mapping Φ does not exist.

Theorem 15. [28] Let P be a tight logic program and M ⊆ At(P), then M is an answer

set of P iff M is a model of its completion PC .

However, if P is non-tight then the assertion may fail as can be seen in the example

shown here.

Example 16. Let P be a logic program:

{a← b.

b← a.}

Then, its completion Pcomp is

{a↔ b.

b↔ a.}

There are two models of the completion M1 = ∅, and M2 = {a, b}. Here, lm(PM1) =

∅, and lm(PM2) = ∅. Clearly, M1 is an answer set of P , and M2 is not.

4

Lin and Zhao restore the above theorem for non-tight programs by strengthening the

concept of the completion. They introduce a specially structured class of propositional

26

formulas called loop formulas [49]. They show that the addition of loop formulas to the

completion of logic programs results in a theory whose models correspond to answer sets

of the logic program. We need to introduce first the concept of positive dependency graph

before we explain the notion of loop formulas.

2.2.6 Positive dependency graph

A positive dependency graph of a logic program P denoted by G(P) is a directed graph

that is defined in the following way.

• The set At(P) of atoms in the logic program P is the set of nodes in the graph.

• For every rule r ∈ P of the form

a← b1, . . . , bn, not(c1), . . . , not(cm),

there is a directed edge from a to bi, i = 1, 2, . . . , n.

2.2.7 Loop formulas

We introduce here the concept of loop formulas [49] for logic programs.

Definition 4. A set of atoms L ⊆ At(P) is called a loop of a logic program P if the

subgraph of the positive dependency graphG(P) that is induced byL is strongly connected.

A singleton atom is a loop if there is an edge from the atom to itself in G(P).

Example 17. The dependency graph G(P) of a program P =

{a← b, not(c).

b← a, not(c).}

is shown in Figure 2.2. The subgraph induced by {a, b} is strongly connected. Thus, {a, b}

is a loop. We note that {a, b} is a model of the completion, which consists of formulas

{a↔ b ∧ ¬c, b↔ a ∧ ¬c, c↔⊥} (equivalently, {a, b} is a supported model of P). 4

27

a b

c

Figure 2.2: Positive dependency graph G(P)

We note that for the case of the program from Example 17, none of the atoms in the loop

{a, b} has a rule that could support it without depending positively on an atom in the loop.

In other words, all possible ways of deriving atoms in the loop depend positively on other

atoms in the loop. Lin and Zhao [49] observe that, if M is a model of the completion of P

(equivalently, a supported model of P), and M is not an answer set of P , then M contains

such a self-justifying loop. In Example 17, a model {a, b} of the completion contains a

loop {a, b} that is self-justified. We will now provide a more complex illustration of this

observation.

Example 18. Let P1 =

{a← b, not(c).

b← a, not(c).

b← not(c).

c← d.

d← c.}

The completion of the example, P1comp is

{a↔ b ∧ ¬c.

b↔ a ∧ ¬c ∨ ¬c.

c↔ d.

d↔ c.}.

28

a b

c d

Figure 2.3: Positive dependency graph G(P1)

The dependency graph G(P1) is shown in Figure 2.3. We note that there are two loops:

{a, b} and {c, d}. The latter is self-justifying. But the former is not. There is a rule that

potentially could support b (and so also other elements in the loop) that does not depend

positively on other atoms in the loop. Namely, the rule b← not(c) has these properties.

We note that both {a, b} and {c, d} are supported models of P1 but only {a, b} is an

answer set.

4

The authors model these loops as formulas so that models of the union of the program

completion and the formulas of all loops are in one-to-one correspondence with the answer

sets of the logic program as shown here. Given a loop L of a program P , Lin and Zhao

defined a loop formula FL so as to capture the idea of “external” support. Namely, let L be

a loop of a program P , and a subset of rules RL of P be given by

RL =
{
r = a← b1, . . . , bn, not(c1), . . . , not(cm) | r ∈ P, a ∈ L,

∨n
i=1 bi 6∈ L

}
.

Let us use bd(r) to denote the conjunction of the atoms b1, . . . , bn, and the negated

atoms ¬c1, . . .¬cm that appear in body(r).

.

Definition 5. Let L be a loop and let RL = {r1
L, . . . , r

n
L}. A loop formula FL is an impli-

cation:
∨
a∈L

a⇒
∨
r∈RL

bd(r) if RL 6= ∅∨
a∈L

a⇒⊥ if RL = ∅

29

Example 19. In Example 18 we have two loops L1 = {a, b} and L2 = {c, d}, and the

corresponding set of rules

RL1 = {b← not(c)},

and

RL2 = ∅.

The corresponding loop formula for L1 is,

FL1 = a ∨ b⇒ ¬c

≡ (¬a ∧ ¬b) ∨ ¬c

≡ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c),

and for L2 is

FL2 = c ∨ d⇒⊥

≡ ¬c ∧ ¬d.

We can observe that Pcomp ∪ FL1 ∪ FL2 has only one model M1 = {a, b} which is the only

answer set of the program from Example 18.

4

Lin and Zhao showed that if the completion of the program P is expanded with all loop

formulas for P, then models of the resulting theory are precisely answer sets of the program

— those supported models that are self-supported are eliminated. Lin and Zhao proved the

following theorem.

Theorem 20. [49] Let P be a logic program, M is an answer set of a logic program iff M

is a model of the union of the completion of the program P and loop formulas of all loops

in P .

The theorem is important as it provides us a way to directly translate between logic pro-

grams and propositional SAT theories, thus allowing ASP solvers to exploit in their design

the techniques used in the implementation of SAT solvers. It also provides a theoretical

foundation for several search prunings used by current ASP solvers.

30

2.2.8 Complexity

First, the decision problem of checking if a set of atoms M is an answer set of a normal

logic program is in P and the problem of deciding if a normal logic program P has an

answer set is NP-complete ([55]).

Next we consider special subclasses of logic programs. The problem of deciding if a

class of normal logic programs which has rules with a fixed number of literals K where

K ≥ 2 is NP-complete. The problem of checking if a logic program of simple two literal

rules wherein each rule consists of a single atom in the head and a single negated atom in

its body of the form a← not(b) is NP-complete [55].

Finally, the problem of deciding if a Horn logic program has an answer set is in P

follows from the result we have earlier in Page 22.

2.2.9 Solvers for logic programs

A program that computes answer sets of a logic program is called a solver or an ASP solver.

There are many state-of-the-art solvers for computing answer sets of a logic program. Some

of the solvers that are being used are clasp [32], smodels [62], cmodels [35, 47], DLV

[25], ASSAT [49], and pbmodels [50]. These solvers can be categorized into two classes.

The first class consists of solvers that are native to the area of answer set programming.

Smodels, DLV, and clasp are examples of solvers in the first class. The second class consists

of solvers that translate logic programs into a CNF formula or pseudo-boolean (PB) theory1

and use existing solvers for these formalisms. The solvers ASSAT, cmodels, and pbmodels

belong to the second class of solvers.

Smodels like all other native solvers computes answer sets of a logic program by per-

forming a backtracking search algorithm. Smodels uses the computation of a well-founded

model as a heuristic to guide the search. Smodels takes as input a ground normal logic pro-

gram. The ground logic program provided to smodels can be obtained by using a grounder

called Lparse [74]. Lparse produces the ground logic program in the format accepted by

smodels.
1It is a system of linear inequalities with boolean variables and integer coefficients.

31

The DLV system is another native ASP system that computes the answer sets of a

disjunctive logic program (i.e., logic programs whose rules have an extended syntax). The

DLV system computes the answer sets of the logic program in two steps. The DLV system

uses a program called the model generator to guess a candidate for the answer set of the

logic program, and then it uses a program called a model checker to check if it is an answer

set.

Clasp is a new ASP solver that computes answer sets of extended normal logic pro-

grams. Clasp incorporates recent advances in boolean constraint propagation techniques

from the area of CSP and SAT. Some of these techniques include conflict-driven clause

learning [73], nogood recording and deletion [73], restarts [37], and watched literals [58].

Clasp accepts logic programs that are in the format obtained after grounding a logic pro-

gram with variables using grounders lparse and GrinGo [33].

ASSAT computes an answer set of a logic program by using a SAT solver as a back-end

engine. The solver first computes the completion of the program and feeds it to a SAT

solver which generates a model, if one exists. Each model generated by the SAT solver is

checked to see if it is an answer set. If so ASSAT stops, else ASSAT appends an appropriate

loop formula to the completion theory and re-runs the SAT formula on the new theory.

The loop formulas prevent the re-generation of models of the completion theory that are

not answer sets. However, ASSAT has a possibility of adding an exponential number of

such loop formulas. ASSAT takes as input a ground normal logic program in the format

produced by lparse, and a complete SAT solver that is to be used as the back-end engine

for model generation.

The solver cmodels also computes the answer set of a logic program using a procedure

similar to the one described above for ASSAT. However, in cmodels the generation of an

answer set is integrated within the SAT solver. The completion of the program is provided

to the SAT solver, which generates models of the completion. Each model is tested to see

if it is an answer set of the program. If so, then cmodels outputs it, otherwise it computes

loop formulas. Cmodels uses this formula to backtrack to a node in the search tree of the

SAT solver and continues to generate other models. Cmodels also differs from ASSAT in

32

that it can compute answer sets of logic programs with extended rules.

The solver pbmodels translates logic programs extended with weight rules to a PB-

theory and uses PB solvers2 to compute answer sets [50]. This solver was based on the

completion of the logic program extended with weight rules into a propositional logic the-

ory extended with weight atoms. The authors also extended the concept of loop formulas

to propositional theories with weight atoms so that answer sets of the logic program cor-

respond to models of the propositional theory with weight atoms [51]. Pbmodels takes

as input a normal logic program extended with choice, cardinality, and weight rules in

the format produced by lparse, performs its completion into the language of propositional

logic extended with weight atoms, and finally translates the propositional logic theory into

PB-theories that can be accepted by various PB solvers.

Copyright c© Gayathri Namasivayam 2011

2They are programs designed to find solutions to a PB-theory.

33

Chapter 3

Random Logic Programs

In this chapter we provide models of random logic programs and study their properties.

We consider random programs with rules of the same length, and in particular 2-literal

rules. These 2-literal programs despite their simplicity, are of considerable interest due to

the following. First, as we have noted earlier in Chapter 2, these 2-literal programs are

NP-complete. Second, many problems of interest have a simple encoding in terms of such

programs [41].

We study in this chapter experimental and analytical properties of random logic pro-

grams with two-literal rules. We begin by defining five different classes of programs each

of which can be distinguished based on the types of 2-literal rules. We also consider pro-

grams from classes that are formed by a union of some or all of these five classes. Next, we

provide a method for randomly generating a program from any of these classes. Finally,

we analyze the properties of these different classes of randomly generated programs.

The first property we study is the probability of existence of an answer set for randomly

generated logic programs from these classes. Then, we experimentally study the hardness

of random programs for ASP solvers, by determining the average time taken and the av-

erage number of choice points generated by solvers to compute the existence of answer

sets. We show that for logic programs that are constraint-free and purely negative an easy-

hard-easy pattern emerges as we plot the average number of choice points generated by

ASP solvers for randomly generated programs with increasing density of rules. We give

arguments to explain that pattern, and show that the hardness of programs from the hard

region grows quickly with the number of atoms. Our results point to the importance of

constraint-free purely negative programs for the development of ASP solvers, as they can

serve as useful benchmarks when developing good search heuristics.

The organization of the sections of this chapter is as follows. Section 3.1 provides an

introduction to the different classes of 2-literal programs. The experimental and theoretical

34

analysis of the probability of existence of an answer set for random programs from these

classes is provided in Section 3.2. Finally, Section 3.3 gives the experimental results on the

difficulty of these programs for ASP solvers, as well as the theoretical results supporting

our explanation for the existence of an easy-hard-easy phenomenon.

Our work presented in this chapter appears in Proceedings of LPNMR-09 [59].

3.1 2-Regular Programs

We assume a fixed set of atoms At = {a1, a2, . . .}. There are five types of 2-regular rules:

a← not(b);

a← b;

← not(a), not(b);

← a, not(b);

← a, b.

Accordingly, we define five classes of programs, mR−n , mR+
n , mC−n , mC±n , and mC+

n ,

with atoms from Atn = {a1, . . . , an} and consisting of m rules of each of these types,

respectively. Without the reference to m, the notation refers to all programs with n atoms

of the corresponding type (for instance, R+
n stands for the class of all programs over Atn

consisting of proper rules of the form a← b).

The maximum value of m for which mR−n , mR+
n and mC±n are not empty is n(n− 1).

The maximum value of m for which mC−n and mC+
n are not empty is n(n − 1)/2. Let

0 ≤ m1,m2, c2 ≤ n(n−1) and 0 ≤ c1, c3 ≤ n(n−1)/2 be integers. By [m1R
−+m2R

+ +

c1C
− + c2C

± + c3C
+]n we denote the class of programs P that are unions of programs

from the corresponding classes. We refer to these programs as components of P . If any of

the integers mi and ci is 0, we omit the corresponding term from the notation. We provide

here a few examples.

35

Example 21. The following program P belongs to the class [2R−+ 2R+ + 2C−+ 1C±+

1C+]10.

P = {a6 ← not(a2).

a3 ← not(a5).

a4 ← a1.

a3 ← a7.

← not(a1), not(a9).

← not(a3), not(a8).

← a2, not(a10).

← a9, a5.}

4

Example 22. Here we present a program P from the class [1R− + 2C− + 1C± + 1C+]10

P = {a1 ← not(a3).

← not(a1), not(a9).

← not(a3), not(a8).

← a2, not(a10).

← a9, a5.}

4

When we do not specify the numbers of rules, we allow any programs from the corre-

sponding classes. For instance, [R− + R+ + C− + C± + C+]n stands for the class of all

proper programs with atoms from Atn.

Given integers n and m, it is easy to generate uniformly at random programs from each

class mR−n , mR+
n , mC−n , mC±n , and mC+

n . For instance, a random program from mR−n

can be viewed as the result of a process in which we start with the empty program on

36

the set of atoms Atn, and then in each step we add a randomly generated proper rule of

the form a ← not(b), with repeating rules discarded, until m rules are generated. In the

case when m is close to its maximum value for its class, denoted by mmax, we generate

a random program by starting with a program that has all possible rules in its class. We

then randomly choose a rule from the program to discard, and remove the rule from the

program. We repeatedly choose mmax −m rules from the program and discard them. This

approach generalizes easily to programs from other classes we consider, in particular, to

programs from [m1R
−+m2R

+ + c1C
−+ c2C

±+ c3C
+]n. Our goal is to study properties

of such random programs.

Proposition 2. Let P ∈ [m2R
+ + c1C

− + c2C
± + c3C

+]n (m1 = 0). If c1 = 0 then P has

a unique stable ∅. If c1 > 0 then P has no answer set.

Proof. We note here that the program P is a union of a Horn program H ∈ [m2R
+]n and

set of constraints C ∈ [c1C
−+ c2C

±+ c3C
+]n. Since H is a Horn program, it has a unique

answer set M , which happens to coincide with the least model of H . Since every rule in H

has the form a← b, it is clear that M = ∅ is the least model of H and so, a unique answer

set of H .

Now, let us assume that c1 = 0, and consider any constraint c ∈ C. Then, c =←

a, not(b) or c =← a, b. Since, c has at least one non-negated occurrence of an atom in the

body of c and M = ∅, M |= c. Thus M |= P and M is a unique answer set of P .

Finally, let us assume that c1 > 0. Then C contains a constraint of the form ←

not(a), not(b). Since {a, b} 6∈ M , M 6|= c. Consequently, M is not an answer set of

P and so, P has no answer sets.

Thus, in order to obtain interesting classes of programs, we must have m1 > 0. In other

words, programs from R−n (proper purely negative and constraint-free) play a key role.

3.2 The Probability of a Program to Have an Answer Set

We study first the probability that a random program in the class [m1R
−+m2R

+ +c1C
−+

c2C
± + c3C

+]n has an answer set. In several places we use results from random graph

37

theory [13, 42]. To this end, we exploit graphs associated with programs. Namely, with a

program P ∈ [R−+R++C±]n we associate a directed graphD(P) with the vertex set Atn,

in which a is connected to bwith a directed edge (a, b) if b← not(a), b← a or ← b, not(a)

is a rule of P . For P ∈ [R− + R+]n, the graph D(P) is known as the dependency graph

of a program. Similarly, with a program P ∈ [R− +R+ + C− + C± + C+]n we associate

an undirected graph G(P) with the vertex set Atn, in which a is connected to b with an

undirected edge {a, b} if a and b appear together in a rule of P . If P ∈ [R− +R+ +C±]n,

then D(P) may have fewer edges than P has rules (the rules a ← not(b), a ← b and

← b, not(a) determine the same edge). A similar observation holds for G(P).

These graphs contain much information about the underlying programs. For instance, it

is well known that if P ∈ [R−+R+]n and D(P) has no cycles then P has a unique answer

set. We illustrate this property here.

Example 23. Let P =

{d← not(c).

a← c.

b← d.

b← not(c).}.

Then, the dependency graph D(P) shown here has no cycles, and M = {b} is the unique

answer set of P .

a b

c
d

4

38

Next, let us assume an answer set M of a program P from the class [m1R
− +m2R

+ +

c1C
−+ c2C

±+ c3C
+]n. Then we can show that elements in its complement set M form an

independent set in the graph G(P1). We show this property in the proposition given below.

Proposition 3. Let P ∈ [m1R
− +m2R

+ + c1C
− + c2C

± + c3C
+]n and M be an answer

set of P . Then M is an independent set in the graph G(P1), where P1 is the component of

P from m1R
−
n .

Proof. Let At(P) be the set of atoms in P . We know that M is an answer set of P . Let us

assume that M = At(P) \M is not an independent set in the graph G(P1). Then, there

must exist a pair of vertices a and b such that {a, b} ⊆ M and a and b are connected by an

undirected edge (a, b) in G(P1). Since (a, b) is an edge in G(P1) it implies that at least one

of the rules a ← not(b) or b ← not(a) is in P1. First, let us assume that r = a ← not(b)

is in P1. Then since M is an answer set of P , M is a model of a ← not(b). But, b 6∈ M ,

and a 6∈ M , which implies that M 6|= r, a contradiction. Secondly, let us assume that

r = b ← not(a) is in P1. Then since M is an answer set of P , M must be a model of

b ← not(a). But, a 6∈ M , and b 6∈ M , which implies that M 6|= r, is a contradiction.

Hence, M is an independent set in the graph G(P1).

We observe that if P ∈ [R− + R+ + C±]n, then D(P) may have fewer edges than

P has rules (the rules a ← not(b), a ← b and ← b, not(a) determine the same edge).

The same holds for the graph G(P). However, if P is a program drawn uniformly at

random from [m1R
− + m2R

+ + c2C
±]n, then D(P) can be regarded as a subgraph of a

random directed graph with n vertices and m = m1 + m2 + c2 edges (loops disallowed).

Indeed, we can view D(P) as the result of a process in which we insert randomly selected

edges into the graph we construct, with repeating edges discarded (it is because, P can be

constructed by a similar process). Upon constructing D(P), if D(P) has fewer edges than

m, we simply continue the process until m edges are generated. The result is a random

graph D′ with n atoms and m edges that is a supergraph for D(P). Similarly, if P ∈

[m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n, then G(P) can be viewed as a subgraph of a

random graph with n vertices and m edges.

39

We denote by AS+ the class of all programs over At that have answer sets. We write

Prob(P ∈ AS+) for the probability that a random graph P from one of the classes defined

above has an answer set. That probability depends on n (technically, it also depends on

the numbers of rules of particular types, but whenever it is so, the relevant numbers are

themselves expressed as functions of n). We are interested in understanding the behavior

of Prob(P ∈ AS+) for random programs P from the class [R−+R+ +C−+C±+C+]n

(or one of its subclasses). More specifically, we will investigate Prob(P ∈ AS+) as n

grows to infinity. If Prob(P ∈ AS+) → 1 as n → ∞, we say that P asymptotically

almost surely, or a.a.s for short, has answer sets. If Prob(P ∈ AS+) → 0 as n → ∞, we

say that P a.a.s. has no answer sets.

To provide intuitions for our results, we first consider the probability that a program

from mR−150 has an answer set as a function of the density d = m/150 (or equivalently, the

number of edges m). The graphs, shown in Figure 3.2 and 3.1, were obtained experimen-

tally. For each value of d, we generated 1000 graphs from the set mR−150, where m = 150d.

The graph in Figure3.2 shows the behavior of the probability across the entire range of d.

The graph in Figure 3.1 shows in more detail the behavior for small densities.

Figure 3.1: The probability that a graph from mR−150 (m = 150d) has an answer set, as a
function of d.

We start with programs of low density and assume first that they do not have constraints.

In this case, the results do not depend on whether or not we allow positive rules.

40

Figure 3.2: The probability that a graph from mR−150 (m = 150d) has an answer set, as a
function of d.

Theorem 24. If m1 + m2 = o(n) and P ∈ [m1R
− + m2R

+]n, then P a.a.s has a unique

answer set.

Proof. Let P be a random program from [m1R
− + m2R

+]n, and m = m1 + m2. The

directed graph D(P) can be viewed as a subgraph of a random directed graph with n

vertices, and m′ = o(n) edges (m′ ≤ m, as different rules in P may map onto the same

edge). Thus, D(P) a.a.s. has no directed cycles (the claim follows from the property of

random undirected graphs: a random undirected graph with n vertices and o(n) edges a.a.s.

has no cycles [42]). Thus P a.a.s. has a unique answer set.

If there are constraints in the program, the situation changes. Even a single constraint

of the form ← not(a), not(b) renders a sparse random program inconsistent.

Corollary 25. If c1 ≥ 1, m1 + m2 = o(n), and P is a random program from [m1R
− +

m2R
+ + c1C

−]n, then P a.a.s. has no answer sets.

Proof. Let P be a random program from [m1R
− +m2R

+ + c1C
−]n. Then, P = P1 ∪ P2,

where P1 is a random program from [m1R
− + m2R

+]n and P2 is a random program from

c1C
−
n . By Theorem 24, P1 a.a.s. has a unique answer set, say M . Since P1 has o(n) non-

constraint rules, |M | = o(n). The probability that a randomly selected constraint of the

form ← not(a), not(b) is violated by M is given by the probability that {a, b} ∩M = ∅.

41

Since, there are o(n) possible atoms that can appear in the head of any rule as well as in M ,

we have n−o(n) atoms that do not appear in the head of a rule. These n−o(n) atoms cannot

appear in any answer set M as they will not be supported by any rule in P . Thus, there are

at least
(
n−o(n)

2

)
constraints of the form← not(a), not(b) such that {a, b} ∩M = ∅. Thus

the probability that a randomly selected constraint of this type is violated by M is at least(
n−o(n)

2

)(
n
2

)
which is expanded as,

(n− o(n))(n− o(n)− 1)

n(n− 1)
.

On dividing the top and bottom of the fraction by n2, the probability is

(1− o(n)
n

)(1− o(n)
n
− 1

n
)

(1− 1
n
)

.

Since for any function f(n) ∈ o(n), we know from the definition of o(n) that f(n)/n→ 0

as n → ∞, and it follows that the probability computed above converges to 1 as n → ∞.

Thus, the assertion follows.

If we exclude such constraints then there is again a small initial interval of densities,

for which random programs are consistent with high probability.

Corollary 26. If c1 = 0, c2 + c3 ≥ 1, (m1 +m2)c2 = o(n), (m1 +m2)2c3 = o(n2), and P

is a random program from [m1R
−+m2R

+ + c2C
±+ c3C

+]n, then P a.a.s. has an answer

set.

Proof. Let P be a random program from [m1R
− + m2R

+ + c2C
± + c3C

+]n. Thus, P =

P1 ∪ P2 ∪ P3, where P1, P2 and P3 are random programs from [m1R
− + m2R

+]n, c2C
±
n

and c3C
+
n , respectively. Since c2 > 0 or c3 > 0, m1 + m2 = o(n). By Theorem 24, P1

a.a.s. has a unique answer set, say M . Moreover, the size of M is at most m1 + m2. First,

the probability that a randomly selected constraint of the form← a, b is violated by M , is

given by the probability that both a ∈M and b ∈M . This probability is

(|M |
2

)(
n
2

) .
42

The probability that at least one such rule in P is violated by M is

≤ c3
|M |(|M | − 1)

n(n− 1)
,

which is

≤ c3
(m1 +m2)2

n(n− 1)
.

Since c3(m1+m2)2

n2 → 0 as n→∞, this probability converges to 0. Second, the probabil-

ity that a randomly selected constraint of the form← a, not(b) is violated by M , is given

by the probability that both a ∈M and b 6∈M . This probability is

|M |(n− |M |)
n(n− 1)

.

The probability that at least one such rule in P is violated by M is

≤ c2
|M |(n− |M |)(

n
2

) ,

which is

≤ c2
(m1 +m2)(n− (m1 +m2))

n(n− 1)
.

Since c2(m1+m2)
n

→ 0 as n→∞, this probability converges to 0.

Thus, a.a.s. programs P2 and P3 are satisfied by M . Consequently, P a.a.s. has M as

its unique answer set of P .

We move on to programs of high density. The first result concerns programs from R−n

(proper, purely negative, and constraint-free programs with n atoms).

Theorem 27. [Truszczyński,[59]] Let 0 < c < 1 be a constant. For every fixed x, a random

program from mR−n , where m = bcN + x
√
c(c− 1)Nc and N = n(n− 1), a.a.s. has an

answer set.

Theorem 27 concerns only a narrow class of dense programs, its applicability being

limited by the specific number of rules programs are to have (m = bcN + x
√
c(c− 1)Nc,

43

where N = n(n − 1)). It also does not apply to “very” dense graphs with m = n2 −

o(n2) rules. However, based on that theorem and on experimental results (Figure 3.2), we

conjecture that for every c > 0, a program from mR−n , where m ≥ cn2, a.a.s. has an

answer set.

We will now consider the effect of adding positive rules (rules of the form a ← b) and

constraints. In fact, as soon as we have just slightly more than n log n positive rules in a

random program that program a.a.s. has no answer sets.

Theorem 28. For every ε > 0, ifm1 ≥ 1, m2 ≥ (1+ε)n log n, and P is a random program

from [m1R
− +m2R

+ + c1C
− + c2C

± + c3C
+]n, then P a.a.s. has no answer sets.

Proof. Let P ∈ [m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n, where m1 ≥ 1. Also, let P2

be the component of P from m2R
+. If D(P2) contains a Hamiltonian cycle, then P has

no answer sets. Indeed, ∅ is not an answer set due to the rule of the form a ← not(b) that

is present in P . Thus, if P has an answer set, say M , then M 6= ∅. Clearly, PM contains

P2. By the assumption on D(P2), every vertex can be reached from any vertex through

the edges in the hamiltonian. Similarly, corresponding to each directed edge (a, b) in the

hamiltonian cycle there is a rule of the form r = b ← a. If a ∈ M in any model of P

where r ∈ P , then it implies that b ∈ M . Hence, since every vertex can be reached by

an edge starting from a single vertex in the hamiltonian cycle, every atom in the program

must be true in M if even a single atom is true in M . Hence, the least model of PM

contains all atoms in Atn. Thus, M = Atn. But then, PM contains no atoms (all its rules

are either from P2 or are constraints of the form ← a, b) and so, the least model of PM

is ∅, a contradiction. Clearly, there is a precise correspondence between programs from

m2R
+ and random directed graphs with n nodes and m edges (no loops). The assertion

follows now from the result that states that a random directed graph with n nodes and at

least (1 + ε)n log n edges a.a.s. has a Hamiltonian cycle [13].

The presence of sufficiently many constraints of the form ← a, b or ← a, not(b) also

eliminates answer sets. To see that, we first get the following result that provides a lower

bound on the size of an answer set in a dense random logic program.

44

Theorem 29. For every real c > 0, there is a real d > 0 such that a.a.s. the complement of

every answer set of a random program P = P1 ∪P2, where P1 ∈ mR−n , P2 ∈ [R+ +C−+

C± + C+]n and m ≥ cn2, has size at most d log n.

Proof. We recall that if M is an answer set of a program P = P1∪P2, where P1 ∈ R−n and

P2 ∈ [R+ +C− +C± +C+]n, then M is the complement of an independent set in G(P1).

The following property is useful here. For every real c > 0 there is a real d > 0 such that

a.a.s. a graph with n vertices and m ≥ cn2 edges has no independent set with more than

d log n elements [13]. Thus, the assertion follows.

We now consider the effect of constraints of the form ← a, b on the existence of answer

sets in programs with many purely negative rules. Intuitively, even a small number of such

constraints should suffice to “kill” all answer sets. Indeed, according to Theorem 29, these

answer sets are large and contain “almost all” atoms.

Theorem 30. [Truszczyński,[59]] For every c > 0 there is d > 0 such that if m1 ≥ cn2,

c3 ≥ d log n+1, and P is a random program from [m1R
−+m2R

++c1C
−+c2C

±+c3C
+]n,

then P a.a.s. has no answer sets.

We see here the effect of constraints of the form ← a, not(b) do not have such a dra-

matic effect. However, a still relatively small number of such constraints a.a.s. eliminates

all answer sets.

Theorem 31. [Truszczyński, [59]]For every c > 0, and for every ε > 0, if m1 ≥ cn2,

c2 ≥ n1+ε, and P is a random program form [m1R
− + m2R

+ + c1C
− + c2C

± + c3C
+]n,

then a.a.s. P has no answer sets.

The case of constraints ← not(a), not(b) is less interesting. Large answer sets (having

at least n−d log n atoms) that arise for programs with dense components fromR−n typically

satisfy them and to “kill” all answer sets of such programs with high probability almost all

constraints ← not(a), not(b) must be present.

45

3.3 Hardness of Programs

We will now study the hardness of programs from [m1R
−+m2R

++c1C
−+c2C

±+c3C
+]n

for ASP solvers. The bulk of our experimental results concern programs in the class R−n . It

turns out these programs (for appropriately chosen density) are especially challenging.

Unless stated otherwise, our experiments separate programs that have answer sets (are

consistent) from those that do not (are inconsistent). For each experiment we generate a

sample of instances of programs of each of these two types. In the previous section we pro-

vided evidence that programs in mR−n , where m ≥ cn2 (cf. Figure 3.2 and Theorem 27),

a.a.s. have an answer set. Therefore, when experimenting with inconsistent programs, we

restrict the number of rules in a program to values for which inconsistent programs appear

with probability sufficiently larger than 0 (about 0.05) to allow for building samples of in-

consistent programs of sizes large enough to justify drawing conclusions from experiments

(typically 100 programs per sample).

In experiments, we used smodels (with lookahead) and clasp. We took the average

number of choice points as reported by these systems as the measure of the hardness of a

family of programs.

Our first observation is that as we increasem, programs frommR−n show the easy-hard-

easy pattern. That is, low-density programs are easy for the two solvers. When m grows,

programs get harder. Then, at some point, they start getting easier again. We illustrate that

behavior in Figure 3.3 and Figure 3.4 below. The two graphs show separately the results for

consistent and inconsistent programs from the classes mR−100. Each figure shows together

the results (average number of choice points) for smodels (the scale on the right) and clasp

(the scale on the left). The x-axis shows the density, that is, the ratio of the number of rules

to the number of atoms in a program. We stress that the scales differ. Thus, the figures are

not meant to compare the performance of smodels and clasp. But they do show that for

each solver a similar easy-hard-easy pattern emerges, and that the features of the pattern

are remarkably similar for the two solvers.

We obtained the same type of pattern in our experiments with programs with 125, 175,

46

Figure 3.3: Average number of choice points for consistent programs with 150 atoms smod-
els (scale on the right) and clasp (scale on the left). The x-axis represents the density.
Sample sizes are 500 for consistent programs, and 100 for inconsistent programs.

and 200 atoms. However, we observed some minor deviations from that pattern for smodels

(but not for clasp) for programs with 100 atoms. Given our results for n ≥ 125, it seems

plausible that the irregular behavior arises only for some smaller numbers of atoms. We

observe a similar easy-hard-easy pattern as we plot the time taken by both the solvers for

programs from [mR−]n with n = 200 and with increasing density d = m/n. We provide

these results in Appendix A.

We used the term hard region above somewhat informally. To make that concept more

precise, we define it here.

Definition 6. The hard region is the maximum interval [u, v] such that for every density

d ∈ [u, v] the average number of choice points is at least 90% of the maximum (peak)

average number of choice points.

Table 3.1 shows the hard regions, the density for which the number of choice points

reaches the maximum, and the number of choice points at the peak location for consistent

and inconsistent instances with n = 125, 150, 175, and 200 atoms. The key observations

are:

1. the location of the hard region does not seem to depend much on the solver; it is

centered around the density of 19 for consistent programs, and 22 for inconsistent

47

Figure 3.4: Average number of choice points for inconsistent programs with 150 atoms
smodels (scale on the right) and clasp (scale on the left). The x-axis represents the density.
Sample sizes are 500 for consistent programs, and 100 for inconsistent programs.

Table 3.1: Hard region, peak location, and the number of choice points at the peak location
for consistent and inconsistent programs. Results for clasp and smodels.

Inconsistent programs
clasp smodels

n hard region peak choice points hard region peak choice points
at peak at peak

125 [17.5− 27] 22 5261 [17.5− 24] 21 388
150 [18− 27] 23 18639 [19− 31] 24.5 1184
175 [18.5− 27.5] 22 59704 [17.5− 23.5] 20.5 3582
200 [18− 28] 22 189576 [18− 26] 22.5 14407

Consistent programs
125 [15.5− 21.5] 17.5 1231 [16− 25] 20 130
150 [16− 23] 17.5 4033 [16− 29.5] 20 308
175 [18.5− 21.5] 20 14230 [17.5− 21.5] 20 1110
200 [17.5− 23] 19.5 43345 [18.5− 24.5] 19.5 4232

ones,

2. inconsistent programs are significantly harder than consistent ones,

3. the peak of hardness is not sharp, or, in other words, the hard region extends over a

sizable range of densities, and

4. the hardness of programs in the hard region grows very quickly.

We conclude with arguments to explain the presence of the easy-hard-easy pattern we

observed for programs in the class R−n . First, we note that programs in mR−, where m =

o(n), a.a.s. are stratified (Theorem 24). Computing answer sets for such programs is easy.

48

As the density (the number of rules) grows, cycles in the graph D(P) start appearing (that

happens roughly when a program has as many rules as atoms). Initially, there are few cycles

and the increase in hardness is slow. At some point, however, there are enough cycles in

D(P) to make computing answer sets of P hard. To explain why the task gets easier again,

we note the following property of binary trees.

Proposition 4. Let T be a binary tree with m leaves, the height n, and with the number of

left edges on any path from the root to a leaf bounded by k. Then m ≤ 2k
(
n
k

)
.

Proof. Let S(n, k) be the maximum number of leaves in such a tree. Then S(n, k) is given

by the recursive formula S(n, k) = S(n−1, k)+S(n−1, k−1), for n ≥ k+1 and k ≥ 1,

with the initial conditions S(n, 0) = 1 and S(n, n) = 2n, for n ≥ 0. The assertion can now

be proved by an easy induction.

We denote by S the class of complete solvers with the following three properties: (1)

they compute answer sets (or determine that no answer set exists) by generating a sequence

of partial assignments so that if an answer set exists then it occurs among the generated

assignments; (2) they use boolean constraint propagation to force truth assignments on

unassigned atoms and trigger backtracking if contradictions are found; and (3) the gener-

ated assignments can be represented by a binary tree, whose nodes are atoms, and where

the left (right) edge leaving an atom corresponds to assigning that atom false (true). This

class of solvers includes in particular solvers that use chronological backtracking, as well as

those that perform backjumping (we note that in the latter case, some nodes corresponding

to decision atoms may have only one child).

Proposition 5. Let P ∈ R−n be such that the maximum size of an independent set in G(P)

equals β. Then, the number of assignments generated by any solver in the class S is

O((2n)β+1).

Proof. The tree representing the space of assignments generated by a solver from S for P

has height at most n and at most β + 1 left edges on every path. Indeed, if there are ever

β + 1 left edges on a path in the tree, then β + 1 atoms are set to false. Atoms in that set

49

do not form an independent set in G(P), and so for some two of them, say a and b, the

rule a ← not b is in P . Boolean propagation forces a or b to be true, while both of these

atoms are false. Thus, a backtrack will occur (the current path will not be extended). The

assertion follows now by Proposition 4, as
(
n
k

)
≤ nk.

We noted earlier that when m ≥ cn2, β = O(log n). Thus, when m ≥ cn2, the size of

the search space is bounded by nO(1)2O(log2 n), which is asymptotically much smaller than

O(2n). Furthermore, with m getting closer to n(n − 1), β gets even smaller, and so the

search space gets smaller, too.

Figure 3.5: Average number of choice points for consistent programs with 150 atoms for
clasp. The x-axis represents the density. Sample size is 100 consistent programs.

Finally, we note that adding even a small number of positive rules or constraints to

programs from mR−n generally makes the resulting programs easier. For instance, adding

10 random positive rules to programs from mR−n , where n = 150 results in about 31%

drop in the average number of choice points for clasp at the peak location for unsatisfiable

instances as shown here in Figure 3.6, and about 32% drop in the average choice points for

clasp at the peak region for satisfiable instances as shown in Figure 3.5.

On the contrary, adding 100 constraint rules of the form← not(a), not(b) to programs

from mR−n results in a smaller drop of 15% in the average number of choice points for

unsatisfiable instances in the peak region as shown here in Figure 3.7, and an increase of

18% in the number of choice points on satisfiable instances in the peak region as shown here

50

Figure 3.6: Average number of choice points for inconsistent programs with 150 atoms for
clasp. The x-axis represents the density. Sample size is 100 inconsistent programs.

Figure 3.7: Average number of choice points for inconsistent programs with 150 atoms for
clasp. The x-axis represents the density. Sample size is 100 inconsistent programs.

in Figure 3.8. We found that adding 100 constraint rules of the form ← a, b to programs

from mR−n with n = 150 results in only trivially unsatisfiable instances for clasp. We

also noted on adding 100 constraint rules of the form← not(a), b to programs from mR−n

results in mostly unsatisfiable instances and a very significant drop of more than 80% in

the average number of choice points on all instances for clasp.

These results suggest that from the perspective of benchmarking and insights into

search heuristics, proper purely negative constraint-free programs are especially important.

We have shown in this chapter that relatively small programs from the hard region are

51

Figure 3.8: Average number of choice points for consistent programs with 150 atoms and
clasp. The x-axis represents the density. Sample size is 100 consistent programs.

very hard for the current generation of ASP solvers. Interestingly, this observation has

implications for the design of SAT solvers, since the completion of constraint-free and

purely negative 2-literal programs is (essentially) a CNF theory which is also a mixed Horn

formula. We consider in our next Chapter 4 such MHFs with additional restriction on their

structure.

Copyright c© Gayathri Namasivayam 2011

52

Chapter 4

Mixed Horn Formulas

In the recent past there has been significant progress in the study of mixed Horn formulas

(MHFs), such as: showing that the satisfiability of these formulas is NP-complete [63],

demonstrating that several NP-complete problems have simple representations as MHFs

[63], and also developing satisfiability algorithms for MHFs with good worst-case behavior

upper bounds [46, 64].

In this chapter we define a few restricted classes of MHFs. Our motivation to consider

these special classes of MHFs comes from our work on random logic programs which we

discussed in Chapter 3. We had shown in Chapter 3 that purely negative constraint-free

2-literal logic programs from the class mR− are hard for ASP solvers. The completion of

a program from this class results in a CNF formula which is a MHF that consist of purely

positive (i.e., containing only non-negated variables) 2-literal clauses and purely negative

Horn clauses (i.e., containing only negated variables). We define in this chapter classes of

such specially structured MHFs with several constraints imposed on them. We show that

the problem of deciding the satisfiability of a formula from the classes of MHFs considered

by us remains NP-complete. We also provide a method for randomly generating a formula

from any of these MHF classes. Despite the simplicity in the structure of these special

classes of MHFs, we show that we can randomly generate very hard formulas for existing

SAT solvers from them.

In Section 4.1 of this chapter we define four classes of MHFs. In Section 4.2 we pro-

vide a method for randomly generating a MHF from any of these classes. In Section 4.3

we provide our experimental results, which show a phase-transition for the probability of

existence of an answer set as we randomly generate formulas from one particular class of

MHFs. Section 4.4, Section 4.5, and Section 4.6 demonstrate the hardness of these formu-

las for SAT solvers based on the average number choice points generated by a solver on

53

computing the satisfiability of these MHFs. Finally, in Section 4.7 we show that these ran-

dom MHFs can be used as hard benchmark problems for testing the performance of SAT

solvers.

Our work in this chapter appears in Proceedings of SAT-2010 [60].

4.1 Preliminaries

Let V = {v1, v2, . . .} be a fixed set of propositional variables. We define the class MH n(k,m),

where k ≥ 1 and m ≥ 0 are integers, to consist of a MHF F such that

1. the set of atoms occurring in F is {v1, . . . , vn},

2. F contains m positive 2-clauses,

3. for every v ∈ V , F contains a negative clause Cv = ¬v ∨ ¬w1 ∨ . . . ∨ ¬wk, where

w1, . . . wk ∈ V (note: clauses Cv and Cw, v 6= w, need not be distinct), and

4. there are no other clauses in F .

We also define MH n(k) =
⋃
mMH n(k,m) (here m ranges from 0 to

(
n
2

)
), and MH (k) =⋃∞

n=0 MH n(k).

Example 32. We provide here a formula F from the class MHn(k,m) where k = 2,

m = 4, and n = 5.

F = {v1 ∨ v2,

v3 ∨ v4,

v2 ∨ v3,

v1 ∨ v5,

¬v1 ∨ ¬v3 ∨ ¬v4,

¬v2 ∨ ¬v5 ∨ ¬v4,

¬v3 ∨ ¬v1 ∨ ¬v5,

¬v4 ∨ ¬v2 ∨ ¬v3,

54

¬v5 ∨ ¬v1 ∨ ¬v2}.

4

We consider also a more general class of MHFs than MH n(k,m). We denote it by

CMH n(k,m). The parameters n and m in CMH n(k,m) are the same as in MH n(k,m),

while k is a real number. The class CMH n(k,m) allows for more gradual changes in

the structure of formulas as k grows compared to the class MHn(k,m) with only integer

values. The n purely negative Horn clauses are either of length bkc+1 or of length bkc+2.

The fractional part of k is used to determine the number cbkc+2 of purely negative Horn

clauses that have bkc+ 2 literals, which is,

cbkc+2 = bk ∗ nc − (n ∗ bkc).

The remaining Horn clauses have bkc+ 1 literals. The number of those clauses is given by

cbkc+1 = n− cbkc+2

We would like to note that if F is a formula in CMH n(k,m), where k is an integer,

then each of the n Horn clauses has exactly k + 1 negated literals (i.e., cbkc+2 = 0, and

cbkc+1 = n).

We formally define the class CMH n(k,m), where k > 1 and m ≥ 0, to consist of a

MHF F such that

1. the set of atoms occurring in F is {v1, . . . , vn},

2. F contains m positive 2-clauses,

3. for every v ∈ V , F contains either a negative clause Cv = ¬v∨¬w1∨ . . .∨¬wbkc of

length bkc+1, or a negative clause of the formCv = ¬v∨¬w1∨. . .∨¬wbkc∨¬wbkc+1

of length bkc+ 2 where w1, . . . wbkc, wbkc+1 ∈ V ,

4. F has exactly cbkc+2 negative clauses of length bkc + 2, and cbkc+1 negative clauses

of length bkc+ 1, and

55

5. there are no other clauses in F (note: we can have two clauses Cv and Cw that are

the same)

We also define CMH n(k) =
⋃
mCMH n(k,m) (herem ranges from 0 to

(
n
2

)
), and CMH (k) =⋃∞

n=0 CMH n(k). Here is an example of a formula from the class CMH n(k,m).

Example 33. We provide here a formula F from the class CMHn(k,m) where k = 1.5,

m = 4, and n = 6. Then we have,

cb1.5c+2 = b1.5 ∗ 6c − 6 ∗ b1.5c => c3 = 9− 6 = 3, and

cb1.5c+1 = 6− cb1.5c+2 => c2 = 6− 3 = 3.

F = {v2 ∨ v4,

v3 ∨ v5,

v6 ∨ v1,

v4 ∨ v5,

¬v1 ∨ ¬v2,

¬v2 ∨ ¬v4,

¬v3 ∨ ¬v5,

¬v4 ∨ ¬v1 ∨ ¬v3,

¬v5 ∨ ¬v2 ∨ ¬v6,

¬v6 ∨ ¬v1 ∨ ¬v3}.

4

We consider yet another class MH 1
n(k), which we define as follows: an MHF F ∈

MH n(k) belongs to MH 1
n(k) if its set of positive 2-clauses is given by

{v ∨ w | w ∈ V ar(Cv), where Cv ∈ F}.

In the case of MHFs from the class MH 1
n(k), there is a strong connection between the sets

of positive and negative clauses: if F ∈ MH 1
n(k), then F is entirely determined by its

56

negative part. We note that the number of 2-clauses in formulas in MH 1
n(k) is not fixed.

Each formula from the class MH 1
n(k) can have kn such clauses by definition. However,

since each of the 2-literal clause can appear twice in any formula (i.e., if v1 ∨ v2 is such

a clause then there is a possibility of having v2 ∈ V ar(Cv1) and v1 ∈ V ar(Cv2)), each

formula can actually have only kn/2 such 2-clauses. An example of a formula from the

class MH 1
n(k) is provided here.

Example 34. We provide here a formula F from the class MH1
n(k) where k = 2, and

n = 5.

F = {v1 ∨ v4,

v1 ∨ v5,

v2 ∨ v3,

v2 ∨ v4,

v3 ∨ v2,

v3 ∨ v1,

v4 ∨ v5,

v4 ∨ v3,

v5 ∨ v4,

v5 ∨ v2,

¬v1 ∨ ¬v4 ∨ ¬v5,

¬v2 ∨ ¬v3 ∨ ¬v4,

¬v3 ∨ ¬v2 ∨ ¬v1,

¬v4 ∨ ¬v5 ∨ ¬v3,

¬v5 ∨ ¬v4 ∨ ¬v2}.

4

57

Similarly, we define the class CMH 1
n(k) as follows: an MHF F ∈ CMH n(k) belongs

to CMH 1
n(k) if and only if its set of positive 2-clauses is given by

{v ∨ w | w ∈ V ar(Cv), where Cv ∈ F}.

Here k being real allows us to generate programs from the class CMH 1
n(k) with a gradu-

ally increasing k which implies that we can generate formulas with a gradually increasing

number of 2-literal clauses.

We write CMH 1(k) for
⋃∞
n=0 CMH 1

n(k), and CMH 1
n for

⋃
k=1 CMH 1

n(k). Despite

constraints on the form of MHFs that form the classes CMH (k) and CMH 1(k), for each

of them the satisfiability remains NP-complete.

4.2 Method for the generation of MHFs

We provide here the method we use for the generation of formulas from the classes CMH n(k,m)

and CMH 1
n(k). Since the class CMH n(k,m) is a more general class of formulas than

MH n(k,m), we discuss here only the method used to generate formulas from CMH n(k,m).

Similarly, since the class CMH 1
n(k) is a more general class of formulas than MH 1

n(k), we

discuss here only the method used to generate formulas from CMH 1
n(k).

We generate a formula from the class CMH n(k,m) in the following way:

1. For each variable vi ∈ V , where 1 ≤ i ≤ cbkc+1, we initially generate a set VS of bkc

variables by choosing them uniformly at random from V \ {vi}. We then construct a

clause that contains ¬vi and the negation of each variable in the set VS .

2. For each variable vj ∈ V , where (cbkc+1 + 1) ≤ j ≤ cbkc+2, we generate a set VS of

bkc+1 variables by choosing them uniformly at random from V \{vi}. We construct

a clause that contains ¬vj and the negation of each variable VS in the set.

3. Each of the positive 2-clauses is obtained by uniformly and randomly choosing m

clauses from the set of all possible
(
n
2

)
such clauses without replacement.

The negative clauses for a formula from the class CMH 1
n(k) are generated in the same

manner as in the case of a formula from the class CMH n(k). However, positive 2-clauses

58

for a formula from the class CMH 1
n(k) are directly constructed from the negative clauses

just as provided in its class definition.

Proposition 6. For each of the classes CMH (k), CMH 1(k), MH 1(k), and MH (k) with

k ≥ 2, the satisfiability problem restricted to that class of formulas is NP-complete.

Proof. In each case the problem is in NP. To prove NP-hardness, we note that the classes

CMH (k), CMH 1(k), MH (k) represent a more general class of formulas than MH 1(k).

Hence it is sufficient to show the NP-hardness for MH 1(k), which we show here by pro-

viding a polynomial time reduction from a simple class of logic programs [55] consisting

of rules of the form a ← not(b) to the class of MH 1(k). We will consider only the case

k = 2.

Let P be a program whose every rule is of the form a← not(b). Let us assume that P

contains rules a← not(b), a← not(c), and a← not(d), for some three different atoms b,

c, and d. Let Q be the program obtained by replacing two of the three rules: a ← not(c)

and a← not(d) in P with the rules

a← not(a′)

a′ ← not(a′′)

a′′ ← not(c)

a′′ ← not(d)

where a′ and a′′ are two new atoms. Proceeding in this way we construct program Q such

that every atom is in the head of at most two rules.

We will now show that P has an answer set if and only if Q has an answer set. Since

both P and Q are tight, it is enough to show that P has a supported model if and only if Q

has a supported model.

Let M be a supported model of P . We define M ′ as follows:

1. If a ∈M , c 6∈M or d 6∈M , then we let M ′ = M ∪ {a′′},

2. If a ∈M , c ∈M and d ∈M , then we let M ′ = M ∪ {a′};

3. If a 6∈M then M ′ = M ∪ {a′}.

59

We will show that M ′ is a model of Q and that every atom in M ′ is supported w.r.t. Q

and M . Since M is a model of P , M ′ is a model of every rule in Q that also belongs to P .

Thus, let r be a rule in Q \ P . Then, r is one of the four rules given above. In each case,

we can check that M ′ is a model of r. For instance, let r = a← not(a′). If a′ 6∈ M ′ then,

by the definition of M ′, a ∈M and so a ∈M ′. Thus, M ′ is a model of r.

Next, let x ∈ M ′. We will show that x is supported w.r.t. Q and M ′. If x ∈ At(P) and

x 6= a, then since M is a supported model of P, there is a rule r in P that gives support to

x, say r = x ← not(y), where y 6∈ M . Clearly, r ∈ Q and, by the construction of M ′,

y /∈ M ′. Thus, x has support w.r.t. Q and M ′. If x ∈ At(P) and x = a, then a ∈ M and

since M is a supported model of P , there exists a rule r ∈ P such that r = a← not(z), for

some z ∈ At(P), and z 6∈M . If r ∈ Q, then it must be the case that z 6∈M ′ (as z ∈ At(P)

and z ∈ M). Thus x is supported w.r.t Q and M ′. If r 6∈ Q then r = a ← not(c) and

r = a ← not(d). They have been replaced in Q with the four rules as described above. If

r = a← not(c), then c 6∈M , and by definition of M ′, a′ 6∈M ′, and so a is supported by a

rule a← not(a′) inQ. Hence, x has support w.r.t. Q andM ′. Similarly, if r = a← not(d),

then by definition of M ′ if d 6∈M , a′ 6∈M ′ and so a is supported by a rule a← not(a′) in

Q. Hence, X has support w.r.t. Q and M ′.

If x 6∈ At(P) then x ∈ {a′, a′′}. Let us assume that x = a′. Then, there is exactly a

single rule r = a′ ← not(a′′) where head(r) = a′ in Q, and by definition of M ′ if a′ ∈M ′

then, a′′ 6∈ M ′. Hence, x is supported w.r.t. Q and M ′. If x = a′′, then there are two rules

r = a′′ ← not(c) and r = a′′ ← not(d) in Q with head(r) = a′′, and by definition of M ′,

if a′′ ∈M ′, then either c 6∈M ′ or d 6∈M ′. Hence, x is supported w.r.t. Q and M ′.

Next, we prove the converse implication. Let M ′ be a supported model of Q. Let us

define M = M ′ ∩ At(P). We will show that M is a supported model of P . We will show

that M is a model of P and that every atom in M is supported w.r.t. P and M . Since M ′

is a model of Q, M is a model of every rule in P that belongs to Q. Thus, let r be a rule

in P \ Q. Then, r is either a ← not(c) or a ← not(d), and these have been replaced in Q

with the four other rules a ← not(a′), a′ ← not(a′′), a′′ ← not(c), and a′′ ← not(d) in

Q. In each case we can check that M is a model of r. For instance, let r = a ← not(c).

60

If c 6∈ M , then c 6∈ M ′. Since M ′ is a supported model of the four other rules, a′′ ∈ M ′,

a′ 6∈M ′, and a ∈M ′. If a ∈M ′, then a ∈M . Thus, M is a model r.

Next, let x ∈ M . We will show that x is supported w.r.t. P and M . Since x ∈ M ,

x ∈ M ′. Then, x is supported by a rule r in Q. Let us assume that r ∈ Q ∩ P . If

r = x ← not(y), then y 6∈ M ′. If y 6∈ M ′, y 6∈ M . Hence, x has support w.r.t. P and M .

Let us then assume that r ∈ Q \ P . Then x = a and r must be the rule a← not(a′), since

a has support w.r.t. Q and M ′. Thus, a′ 6∈ M ′. Then a′′ ∈ M ′. If a′′ ∈ M ′ then c 6∈ M ′ or

d 6∈ M ′. Let us assume that c 6∈ M ′. Then c 6∈ M . Thus x has support w.r.t. P and M by

means of the rule a ← not(c). Similarly, if we assume d 6∈ M ′, d 6∈ M . Then x must be

supported w.r.t. P and M by the rule a← not(d).

Clearly, repeating the replacement process as long as needed, we will construct a pro-

gram Q that has exactly the same answer sets as P and in which no atom shows up as the

head of more than two rules.

Next, let us assume that in this Q there is a program in which an atom a is the head of

one rule a← not(b) only. Let us append it with the rules

a← not(x0)

x0 ← not(x1)

x0 ← not(x2)

x1 ← not(x2)

x2 ← not(x3)

x3 ← not(x4)

x4 ← not(x1)

x2 ← not(x1)

x3 ← not(x2)

x4 ← not(x3)

x1 ← not(x4)

where x0, . . . , x4 are new atoms. Let us call the resulting program R. We will show that Q

has an answer set if and only if R has an answer set. We will proceed as before and show

the equivalence for supported models as the programs are tight.

61

Let M be a supported model of Q. We define M ′ = M ∪ {x0, x1, x3}. We will show

that M ′ is a model of R, and is supported w.r.t R and M ′. Since, M is a model of Q, M ′ is

a model of every rule in R that belongs to Q. Thus, let r be a rule in R \Q. Then, r is one

of the eleven rules given above. In each case we can check that M ′ is a model of r. Thus,

M ′ is a model of R.

Next, let x ∈ M ′. We show that x is supported w.r.t. R and M ′. If x ∈ At(P), and

x 6= a, then since M is a supported model of Q, there is a rule r in Q that gives support to

x, say r = x ← not(y), where y 6∈ M . Clearly, r ∈ R, and, by the construction of M ′,

y 6∈ M ′. Thus x has support w.r.t. R and M ′. If x ∈ At(P), and x = a, then since M is

a supported model of Q, there is a single rule r = a ← not(b) where b 6∈ M , that gives

support to x. Clearly, r ∈ R, and, by the construction of M ′, b 6∈ M ′. Thus x has support

w.r.t. R and M ′. If x 6∈ At(P), then x ∈ {x0, x1, x3}. In each case we can check that

x is supported w.r.t. R and M ′. For instance, if x = x0, then it is supported by the rule

x0 ← not(x2). Hence, x is supported w.r.t. R and M ′.

Next, we prove the converse implication. Let M ′ be a supported model of R. Let us

define M = M ′ ∩ At(Q). We will show that M is a supported model of Q.

We will show that M is a model of Q, and is supported w.r.t Q and M . Since, M ′ is a

model of R, M is a model of every rule in Q that belongs to R. Thus M is a model of Q

(since Q ⊆ R).

Next, let x ∈ M . We will show that x is supported w.r.t. Q and M . Let x 6= a. Since

M ′ is a supported model of R and x ∈ M ′, there is a rule r in R that gives support to x,

say x ← not(y), where y 6∈ M ′. Clearly, r in Q, by the construction of M , and y 6∈ M .

Thus, x has support w.r.t. Q and M . If x = a, then there are two rules r ∈ R that can

provide support to a. They are a ← not(b), and a ← not(x0). However, one can check

that since M ′ is a supported model of R, x0 ∈M ′. So x must be supported only by the rule

r = a ← not(b). Then b 6∈ M ′. Clearly, r ∈ Q, and, by the construction of M , b 6∈ M .

Thus x has support w.r.t. Q and M .

Clearly, repeating the replacement process as long as needed, we will construct a pro-

gram R that has exactly the same answer sets as Q and in which every atom is in the head

62

of exactly two rules.

We have thus shown here that the resulting program R has the same answer sets as that

of P . It follows that P has answer sets if and only if its completion Rcomp has answer sets.

Moreover, every atom is in the head of exactly two rules. Hence, Rcomp ∈ MH1(2). Thus

the NP-hardness of the SAT problem for MH1(2) follows.

4.3 Phase transition

We randomly generate formulas from the class CMHn(k) for a fixed k and n, but with an

increasing number of 2-literal positive clauses m. We experimentally compute the proba-

bility of existence of a model for formulas randomly generated from this class, and observe

a phase transition for the probability of existence of a model for formulas generated from

this class with increasing density (i.e., ratio of m to n) of 2-literal rules. The probability

of existence of a model is initially 1 (i.e., satisfiable) for small m, and then shows a sharp

transition to 0 (i.e., unsatisfiable) with increasing m.

We show here in Figure 4.1 and Figure 4.2 the phase transition phenomenon for k =

5, k = 10 with n = 50, 100, 150, 200, and n = 250. The threshold gets sharper with

increasing n and approximately coincides at the same critical region denoted by ck (i.e.,

the value for m where the probability of existence of the model is 0.5). The value of m at

ck for k = 5 and k = 10 is approximately 4.3n and 9.4n.

Here, the phase transition phenomenon is not surprising due to the following reasons:

every formula that we generate from the class CMH n(k) has always the same fixed number

of negative Horn clauses; initially we generate formulas that have very few positive 2-literal

clauses m and are under-constrained; and as we generate formulas with increasing m these

formulas gradually become more and more constrained.

The approximate location of the phase-transition region expressed in terms of the den-

sity m/n, for which the phase transition occurs, grows with k as we randomly generate

formulas from the class MHn(k) with increasing density of 2-literal rules. Our experimen-

tal results for n = 200 and k = 3, . . . , 25 (200 instances) show that the location of the

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

 0

 0.2

 0.4

 0.6

 0.8

 1

m/n

N=50

N=100

N=150

N=200

N=250

Figure 4.1: The phase transition for the model CMH n(5). The x-axis represents the prob-
ability of existence of a model, and the y-axis represents the density of 2-literal rules.

phase transition grows slightly slower than k as seen in Figure 4.3.

4.4 Easy-hard-easy pattern I

The number of choice points generated by a solver, to find a model of a formula, provides

an estimate of the size of search space traversed by it. Hence, we use the number of

choice points as a parameter in addition to the time taken by the solver, to measure the

difficulty of a randomly generated formula. We compute the average choice points as well

as the average time taken by the solver clasp on computing the satisfiability of randomly

generated formulas from the class CMHn(k) for a fixed k and n. We compute the average

time taken and the average choice points over all satisfiable and unsatisfiable formulas. We

observe that formulas that are generated with smaller m, much before the critical region

ck, are initially easier for clasp requiring less time and fewer choice points. The formulas

continue to get harder for clasp with increasing m until the density of the 2-literal clauses

reaches a peak value mk (corresponding to the density ck at the critical region). Then the

formulas start to get easier for clasp as we increase the density of 2-literal clauses past the

critical region.

Hence, we observe an easy-hard-easy pattern as we compute the average time and the

64

Figure 4.2: The phase transition for the model CMH n(10). The x-axis represents the
probability of existence of a model, and the y-axis represents the density of 2-literal rules.

average choice points made by the solver clasp on testing the satisfiability of formulas

generated from the class CMHn(k) for a fixed k and n, and an increasing m. The easy-

hard-easy pattern is associated with the phase transition, and the peak hardness for the

solver clasp coincides with the critical region. We observe this pattern in the graph shown in

Figure 4.4, for instances generated from the class CMH n(10) with n = 150, corresponding

to the phase-transition. We also observed a similar easy-hard-easy pattern for formulas

generated from the class with CMH n(10) and n = 200, as well as for formulas generated

from the class CMH n(5) with n = 150, and n = 200.

We also computed the average choice points made by clasp on 500 randomly generated

instances provided in Table 4.1 from each of the classes: CMH n(k) where k = {5, 10},

and n = {50, 100, 150, 200, 250}.

We observe that for a fixed k, the hardness (i.e., the average number of choice points

generated by clasp) grows at ck as we increase n, as shown in Table 4.1. The unsatisfiable

formulas generated in the critical region are much harder than the satisfiable ones similar

to the random 3-SAT formulas that are generated from the critical region.

We provide in Appendix B further experimental results using the SAT solver Minisat

(MiniSat v1.14) [24] on instances obtained from the class MH n(k). We observe a similar

65

Figure 4.3: The location of the phase transition in the model MH n(k) as a function of k.
The x-axis represents k and the y-axis gives the approximate density of 2-literal rules near
the phase transition.

Table 4.1: The average choice points made by clasp at the critical region for the model
CMH n(k)

Average choice points (clasp)
n c5 c10

50 33.55 70.61
100 254.48 1272.15
150 1688.98 17032.85
200 10016.07 179770.60
250 55966.71 1882953.466

phase-transition and a corresponding easy-hard-easy pattern as we plot the average number

of choice points generated by Minisat on randomly generated instances from the class

MH n(k), where n = 200, k = 10, 20, 30, 40, and as m grows.

4.5 Easy-hard-easy pattern II

However, the framework of the classes CMH n(k) we consider reveals yet another interest-

ing phenomenon. We fix n, and plot the average number of choice points generated by a

SAT solver on instances generated from the model CMH n(k) at the approximate location

of the critical region ck, for increasing values of k. Being parameterized with k, it allows us

to compare the hardness of instances generated from the critical region for different values

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

m/n

Figure 4.4: The phase transition for the model CMH n(10) with n = 150

of k. Somewhat surprisingly, it turns out that as we increase k, the easy-hard-easy pattern

emerges again. Initially, as k grows, the phase-transition instances are getting harder at

an increasing rate. The hardness peaks when k ≈ 15, 16, and from that point on the in-

stances become increasingly easier. Figure 4.5 illustrates that pattern observed for clasp

for n = 200, and k ranging from 3 to 34.

Figure 4.5: The easy-hard-easy pattern of instances generated from the critical region for
MH n(k) as a function of k.

We observe that the hardness of instances from the critical region in the model CMH n(k)

67

initially grows with k; it may seem surprising that at some point it peaks and then starts to

decrease.

4.6 Easy-hard-easy pattern III

We also observe an easy-hard-easy pattern as we generate random instances from the class

CMH 1
n(k) with a fixed n, and as k grows. However, we do not observe a phase transition

corresponding to the easy-hard-easy pattern, unlike the one observed as we generated for-

mulas from the class CMH n(k) asm grows. In fact, the probability of existence of a model

for formulas generated from the class CMH 1
n(k) is initially 1 for k = 0 and rapidly drops

close to 0.2 and then gradually rises and reaches closer to 1 again. We generate random

instances from the class CMH 1
n(k) with n = 200 and increasing k. We observe again an

easy-hard-easy pattern for clasp as shown here in Figure 4.6, with peak hardness around

k = 15. The probability of existence of a model for randomly generated formulas from the

class CMH 1
n(k) with increasing k is also shown in Figure 4.6.

Figure 4.6: The easy-hard-easy pattern for the model CMH 1
n(k), and the probability of

satisfiability. The left x-axis represents the probability of existence of a model, the right
x-axis represents the average choice points made by clasp.

68

4.7 Hard Benchmarks for SAT Solvers

Our results suggest that MHFs randomly generated from the phase transition region for the

class MH n(k) for k = 15 or 16 (located when m ≈ (k − 0.5)n, where m stands for the

number of 2-clauses) can provide challenging instances for SAT solvers. It is indeed so. We

randomly generated 50 instances from MH n(k,m), with n = 350, k = 15 and m = 14.5n.

Given the timeout limit of 1800 seconds, clasp and march hi solved fewer than 20% of the

instances all of which were satisfiable and did not solve any of the unsatisfiable ones.

We stress that the instances in MH n(15, 14.5n) are small (350 atoms and 5425 clauses),

and more important, that most of their clauses (5025) are 2-clauses. Since they pose a chal-

lenge for the state-of-the-art complete solvers, we believe that the class MH n(15, 14.5n) is

important for the design and testing of solver performance.

The classes MH 1
n(k) offer even harder instances. While they can also serve as bench-

marks for complete solvers, even for relatively small values of n, satisfiable instances from

MH 1
n(15) become very hard also for local-search solvers! The selection of k = 15 is not

accidental. Our experiments showed that when we vary k, we observe the easy-hard-easy

pattern, with the peak for k ≈ 15. We also found that in the maximum hardness area, the

percentage of instances that are satisfiable exceeds 90% for different N values, as shown

in Figure 4.6.

We generated 100 random CNF formulas from each of the sets MH 1
n(15), where n =

450 and 550. Given our experiments, the expected number of satisfiable instances in these

two sets of formulas is at least 90. We ran TNM [4] on these formulas. TNM is currently one

of the best local-search solvers. It won in the random category (satisfiable instances only)

at the SAT 2009 competition. The solver does not require any parameters, as it adaptively

selects them. We observed that for n = 450, TNM could still solve 86% of the instances in

less than 1800 seconds (yet, likely missing some satisfiable instances). The larger value of

n, n = 550, resulted in many hard instances. Indeed, for n = 550, TNM solved only 53 of

the 100 instances within 1800 seconds, while we expect about 90 instances to be satisfiable

in this sample.

69

Chapter 5

Related Work

5.1 Random Logic Programs

Random logic programs were initially introduced and studied by Zhao and Lin. Their work

on generating random logic programs was motivated by the prior works done on generating

hard random SAT instances. In their work [80], they consider logic programs of two kinds,

those with a fixed number of literals in the body of the rule (fixed body length model) and

those with a varying number of literals in the body (variable body length model). Each

rule has an atom in its head. Each logic program has 3 parameters: number of atoms (N),

rule density α, which specifies that the number of rules (L) in the program is α times N

(i.e.,α = L/N), and either a fixed number of literals (K) in the body of the rule or a

probability distribution (λ) that specifies the probability of occurrence of a rule with a fixed

number of literals in its body.

5.1.1 Properties of Random Logic Programs

The authors [80] use SAT solvers to determine the existence of an answer set on randomly

generated logic programs with increasing α and show a transition from satisfiable instances

to unsatisfiable instances. The SAT solvers demonstrate an easy-hard-easy pattern on these

randomly generated logic programs by taking longer time to determine the existence of an

answer set for logic programs that are generated with a certain density αh and being able

to quickly compute the existence of an answer set for all other instances that are generated

with α << αh and α >> αh. Thus showing that a hard region exists for SAT solvers at a

particular value of α, for instance α = αh, and there exist easy regions for α << αh and

α >> αh.

70

5.1.2 Fixed Body Length Model

Here, we will recall Zhao and Lin’s fixed body length model. Let FLK(N,α) denote a

class of random logic programs with N atoms and L = α × N rules, where each rule has

a fixed length of K (2 ≤ K ≤ N) literals such that K \ 1 literals appear in the body of

the rule and a single atom occurs in the head of the rule. Let At denote the set of N atoms.

The probability space

Ω = {a← b1, . . . , bn, not(c1), . . . , not(cm)

| a ∈ At, {b1, . . . , bn, c1, . . . , cm} ⊆ At, n+m = K − 1},

consists of the set of all the possible rules with K − 1 literals in its body. The procedure

below is used to generate a program by allowing each rule in it to be selected from this set

with equal probability.

Generation of Random Logic Programs (FLK(N,α))

The authors [80] generate a random logic program from the class FLK(N,α) in the fol-

lowing way. Let us use AtN = {a1, . . . , aN} to denote the set of N atoms. Each of the L

distinct rules is generated by

• randomly choosing an atom ai for the head of the rule,

• randomly choosing K \ 1 different atoms from At for the body and negating each

with probability 0.5, and

• discarding the rule if it has been previously generated.

Experiments on FLK(N,α)

The rules that are generated in each random logic program in the class FLK(N,α) using

the method described above are distinct. Hence, each logic program that is generated from

the class FLK(N,α) can have at most Lmax (i.e., α × N ≤ Lmax) number of rules in it.

This number is given by,

Lmax = N ∗ 2K−1 ∗ CN
K−1[80].

71

Let us use αmax to denote the rule density of the logic program with Lmax rules. The

authors [80] prove the following:

• There does not exist an answer set for a logic program in the class FLK(N,αmax)

(with all possible rules).

• There exists a unique answer set for a logic program in the class FLK(N, 0) (with

no rules) which is the empty set.

In the experiments conducted by the authors [80], they generate random logic pro-

grams using the method described above. They generate a class of random logic programs

FLK(N,α) with parameters N = 150, K = 3, and α in the range from 0.5 to 12 in

increments of 0.5.

The time taken by the different solvers (smodels, ASSAT, DLV) on these programs

as well as the probability (i.e., experimental probability) of existence of an answer set is

plotted in their graph [80]. The probability of existence of an answer set with N = 150

drops from 1 to 0 as α increases from 0 to 12. The initial drop in probability for α < 2

is steep. Each of the solvers show an easy-hard-easy region when α is in the range from

3 to 8 and with maximum hardness occurring when α is close to 5. In the hard region,

the probability of existence of an answer set is in the range from 0.1 to 0.2. This is in

contrast to the hard region for randomly generated SAT instances [57] which occurs when

the probability of existence of a model is 0.5. The authors do not provide a reason for the

appearance of an easy-hard-easy region for the class of random logic programs generated

by them. However, they relate the hard region to the low probability area, due to the fact

that logic programs are non-monotonic and the appearance of a local contradiction does

not indicate that the problem is unsatisfiable. Whereas in SAT the appearance of a local

contradiction indicates that the problem is unsatisfiable. All three solvers take on average

more time to solve an unsatisfiable instance when compared to the time taken to solve a

satisfiable instance in the hard region. The average time taken by DLV on all the instances

in the hard region is higher when compared to the time taken by smodels and ASSAT, and

the average time taken by smodels is greater than the time taken by ASSAT in the same

72

region.

5.1.3 Mixed Body Length Model

In the mixed body length model the rules in the program have varying numbers of literals

in their body. A probability distribution Σn>0λ(n) = 1 provides the probability λ(n) that

a rule with n − 1 literals in its body and a single literal in the head occurs in a randomly

generated logic program. We use MLλ(N,α) to denote the class of logic programs in

the mixed body length model that have N atoms, rule density α, and have the probability

distribution λ.

The authors [80] generate random logic programs from the class MLλ(N,α) with the

following parameters: N = 100, 0.5 ≤ α ≤ 12, λ(3) = 0.5, and λ(4) = 0.5. A phase tran-

sition for the probability of existence of an answer set occurred with increasing α, similar

to the one observed in the fixed body length model. The authors also observe an easy-

hard-easy pattern as they plot the average time taken by the SAT solvers to determine the

existence of an answer set for randomly generated programs from this class with increasing

rule density, similar to that observed in the first class of instances. The hard region occurs

for this class of instances around α = 6.

5.2 Random SAT

We provide here an introduction to the generation of random satisfiability (SAT) instances

and their properties, since it has motivated the generation of random logic programs. The

main motivation for the generation of random SAT instances is to find hard instances to

help with testing and improving the performance of solvers. The initial generation of hard

random SAT instances had motivated researchers to understand the properties of these in-

stances and the reasons for their hardness.

There has been research in generating random K-SAT instances in particular random

3-SAT instances and understanding their properties. This is because every SAT instance

can be represented as a 3-SAT instance. In the following subsection we discuss a method

for generating random K-SAT instances. We also discuss the experimental results obtained

73

by using the DPLL algorithm (used in the majority of SAT solvers) on these SAT instances

as seen in [57].

5.2.1 Generation of Random SAT instances

There are many methods [57] for generating random SAT instances. We discuss one of

the methods used for generating random K-SAT instances with a fixed number of literals

(K) in each clause. We describe in this section one of the earliest works on generating and

observing properties such as the phase transition and the easy-hard-easy region for random

SAT instances, which was done by David Mitchell et al. [57].

Let us use RSATK(N, β) to denote the class of random SAT instances where each

instance has a set of atoms N , clause density β, β×N clauses, and every clause has a fixed

number of K distinct atoms in it. The set of K atoms in a clause is chosen randomly from

the set of atoms N , and each atom is negated with probability 0.5. The maximum number

of clauses that a random instance in the class RSATK(N, β) can have is 2K
(
N
K

)
. In this

method, each of the β×N clauses is randomly and uniformly chosen without replacement

from the set of all 2K
(
N
K

)
clauses.

5.2.2 Properties ofRSATK(N,β) instances

There are four key properties observed in randomly generated RSATK(N, β) SAT in-

stances using the method described above. They are as follows.

• There is a phase transition from satisfiable instances to unsatisfiable instances (i.e.,

the probability that the randomly generated instance is satisfiable drops from 1 to

0) as we randomly generate SAT instances from the class RKSATK(N, β), with

increasing clause density β. The region where the transition in the probability takes

place (i.e., the probability that the randomly generated instance is satisfiable is strictly

less than 1 or is strictly greater than 0) is narrow when compared to the region where

the probability that the randomly generated instance is satisfiable is exactly 1 or 0.

• There is a region (specified by β) called the critical region where the average num-

ber of calls made by the DPLL algorithm on all instances (both satisfiable and un-

74

satisfiable) is much larger than elsewhere. This region is directly correlated to the

cross-over point which is the point at which the probability of generating a satisfi-

able instance is 0.5.

• The cross-over point for a fixed clause length K appears at approximately the same

clause density d as N is varied, for instance when K = 3 the cross-over point is

approximately 4.258 [20].

• There are easy regions on either side of the critical region. Hence, there is an easy-

hard-easy pattern observed for RKSATK(N, β) instances that are generated with

increasing β.

Experimental results onRSATK(N,β)

In their work [57] the authors generate RSAT 3(50, β) instances for increasing values

of β. They observe a phase transition for the probability of existence of a model for

RSAT 3(50, β) instances that they generate with increasing β. The probability that the

randomly generated instance is satisfiable is closer to 1 when β ≤ 3, and this probability

converges to 0 when β ≥ 6.

The authors plot the average number of recursive calls to the DPLL algorithm which

corresponds to the number of choice points made by the DPLL algorithm on satisfiable,

unsatisfiable, and all (both satisfiable and unsatisfiable) RSAT 3(50, β) instances [57]. The

authors notice that the average number of choice points made by all instances is maxi-

mum in the critical region (β = 4.258). However, on either side of the critical region the

average number of choices made by all the instances is much smaller. Hence, an easy-

hard-easy pattern was observed for RSAT 3(50, β) instances. A similar phase transition

and easy-hard-easy pattern for RSAT 3(N, β) instances with N = 20, 40 was observed by

the authors [57]. However, the average number of choice points increases as N increases

for RSAT 3(N, β) instances that have the same β.

The instances that are generated on the left-hand side of the critical region are under-

constrained due to the low clause density, and the DPLL algorithm requires less time to

75

find a model of the instance. So as the clause density decreases, the probability that the

instance being generated is satisfiable increases and reaches 1. On the right-hand side of

the critical region the instances have a high clause density and are over-constrained. In the

over-constrained region the DPLL algorithm is able to quickly determine that the instance

is unsatisfiable. Hence, as the clause density increases, the probability that an instance

being generated is satisfiable decreases and reaches 0.

The phase transition and easy-hard-easy pattern was also observed for instances gener-

ated in the class RSATK(25, β) with K ∈ {2, 3, 4, 5} [20].

There has also been work on trying to understand the exact reasons for the occurrence

of the hard region in random SAT instances. The recent works include identifying features

such as backbones [79], backdoors [45], satisfiable cores [78], and unsatisfiable cores

[52] and relating them to the occurrence of the hard region. However, no satisfactory

explanations have yet emerged.

5.2.3 Threshold for random SAT

In the early 90’s a satisfiability threshold conjecture [16] was proposed. It states that there

is a constant βK called the satisfiability threshold that is dependent on the fixed clause

length K such that

lim
N→∞

Pr[RSATK(N, β) is satisfiable] =

{
1 if β < βK
0 if β > βK

The value of β2 is proven to be 1 [16]. Since the early 90’s and for more than a decade

much of the research in determining the satisfiability threshold [23, 43] was focussed on

trying to determine the lower bound and upper bound for β3 and for the general case βK ,

K ≥ 3 [8, 6, 29, 31, 76]. The best-known lower bound for β3 is 3.52 [38] and the best-

known upper bound is 4.506 [23]. Moreover, in 2006 the threshold value for βK forK ≥ 3

was asymptotically approximated as Θ(2K) [7].

Copyright c© Gayathri Namasivayam 2011

76

Chapter 6

Conclusions

The goal of this thesis is to develop techniques to generate hard random theories and pro-

grams that can be challenging for existing solvers, as well as to study the properties of these

theories. These hard benchmarks can be used to evaluate the performance of the existing

solvers. In the past, the generation of hard random SAT formulas has had a substantial pos-

itive effect on the design and performance of SAT solvers. It has also motivated research

for more than a decade that focussed on understanding the experimental and theoretical

properties of these randomly generated formulas, as well as on improving the efficiency of

satisfiability testing algorithms.

Our work described in this thesis, like the work done earlier in the area of random SAT

and random logic programs, is aimed at generating hard instances for both ASP and SAT

solvers. However, we differ by considering theories and programs with especially simple

structure for existing ASP and SAT solvers. Our initial motivation to generate hard random

logic programs comes from the work done in [80] and the research done in the area of

random SAT [6, 8, 20, 29, 31, 45, 52, 57, 76, 78, 79]. A direct linear-space translation

that exists for tight logic programs to CNF theories [28], especially a translation from tight

2-literal purely negative constraint-free logic programs to MHFs, further motivated our

interest in generating hard and simple MHFs for SAT solvers.

In this thesis we have considered a model of random logic programs in which every

rule has exactly two literals. Our model allows for different combinations of normal rules

and constraints of particular types. We showed experimentally that 2-literal programs that

are purely negative and constraint-free are harder than programs of any other type that

our model can generate. We observed an easy-hard-easy pattern as we plotted the average

number of choice points made by randomly generated programs that are purely negative

and constraint free ([mR−]n) with increasing density. Random programs from the hard

region that are purely negative and constraint free with 600 atoms are currently beyond the

77

reach of ASP solvers. Understanding the source of difficulty of these hard logic programs

may help design better solvers.

We computed experimentally the probability of existence of an answer set for randomly

generated programs with a fixed number of atoms and as a function of the density. We were

able to approximate theoretically the probability of existence of an answer set for programs

with very few rules as well as for dense programs with a large number of rules.

We further noticed that the purely negative constraint-free logic programs are tight logic

programs, thus answer sets of these programs are exactly models of their completions.

Formulas of the completion of a program from [mR−]n are of the form (1) a ∨ b, where

a ← not(b) ∈ P , and (2) ¬a ∨ ¬b1 ∨ . . . ∨ ¬bk, where a ← not(bi), 1 ≤ i ≤ k, are all

rules in P with a as the head. Thus, the completions of such programs are simple formulas

with most of their clauses consisting of two literals and all other clauses being disjunctions

of atoms. These formulas are special mixed Horn formulas (MHFs).

We then defined models of these simple classes of MHFs with further restrictions on

their syntactic structure. We would like to note that finding the right model is non-trivial

(c.f. early model proposed in SAT [36]). We defined the following classes of MHFs:

CMH (k), CMH 1(k), MH 1(k) and MH (k). The key finding is that despite their simple

form, randomly generated formulas from these classes (for the appropriate selections of

parameters) are challenging benchmarks for the current generation of state-of-the-art SAT

solvers. Thus, formulas in these classes are relevant for the design of fast SAT solvers and

deserve attention. We studied these classes experimentally, focusing on identifying phase

transitions and hardness patterns, in order to facilitate generation of hard formulas. We

observed a rapid phase transition for formulas generated from the class CMH n(k) with a

fixed k and n, but with an increasing density of 2-literal rules, similar to the phase transition

observed in random 3-SAT. We further showed the existence of an easy-hard-easy pattern

as we plotted the average number of choice points generated at the critical region by the

SAT solver clasp on programs from CMHN(k), with increasing values of k. We observed

that the peak in the hard region occurred for programs generated in the phase transition

region of CMH n(15) when the number of 2-clauses was about 14.5n. We showed that

78

these programs pose a major challenge for the current generation of SAT solvers. Similarly,

the instances from CMH 1
n(k) show an easy-hard-easy behavior (as the length k of purely

negative clauses grows), with the peak hardness when k = 15. The instances generated

from CMH 1
n(15) are predominantly satisfiable (probability of a random formula generated

from that class being satisfiable is at least 0.9). We show that these satisfiable instances

are very hard for local-search SAT solvers. We note that the class MH 1
n is closely related

to the class [mR−]n of logic programs that we have studied, and identified as containing

programs that are especially hard for the current generation of the answer set solvers.

We thus have generated hard instances for SAT and ASP solvers, and have analyzed

the experimental and theoretical properties of these hard instances. Our research suggests

several interesting directions for future investigations. Theoretical problems of interest

include:

1. Studying the threshold value for MHFs generated from the model. Specifically, prov-

ing the existence of a threshold value and estimating its location.

2. Developing stronger conditions on the density over which programs in [mR−]n a.a.s.

have an answer set.

3. Providing a more precise explanation of the easy-hard-easy pattern that emerges for

programs in [mR−]n (and several other classes of programs and theories we consid-

ered)

Among problems of more practical importance are:

1. Developing local search solvers that can successfully terminate on theories from the

class CMH 1
n(k). Current solvers are well tuned for handling randomly generated sat-

isfiable 3-CNF theories but fail on MHFs that we generate from the model CMH 1
n(k).

2. Studying heuristics and conflict clause learning methods that would work well for

programs and theories that can be generated from the hard regions for the models

[mR−]n and CMH n(k). Some of these techniques may prove also for programs and

theories of other types.

79

Copyright c© Gayathri Namasivayam 2011

80

Appendix A Experimental results on random logic programs from
[mR−]n

We provide here the experimental results for programs from the class [mR−]n using ASP

solvers clasp and smodels. These experiments were performed using an AMD Athlon(tm)

64 X2 Dual Core Processor 5000+ with 512 KB of cache memory. The graphs in Figure

A.1, Figure A.3, and Figure A.5, shows the easy-hard-easy pattern as we plot the average

number of choice points generated by the solvers clasp and smodels on computing answer

sets of satisfiable instances from [mR−]n with increasing rule density d = m/n. Similarly,

the graphs in Figure A.2, Figure A.4, and Figure A.6, show the easy-hard-easy pattern as

we plot the average number of choice points generated by the solvers clasp and smodels

for unsatisfiable instances from [mR−]n with increasing rule density d = m/n.

In Figure A.7 and Figure A.8, we observe an easy-hard-easy pattern as we plot the av-

erage time taken by the solvers smodels and clasp for satisfiable and unsatisfiable instances

from the class [mR−]n, with n = 200 and increasing rule density d.

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 10 15 20 25 30 35 40
 0

 20

 40

 60

 80

 100

 120

 140

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o
in

ts
 (

sm
o
d
el

s)

d

Clasp
Smodels

Figure A.1: The easy-hard-easy pattern for 500 consistent programs from the class [mR−]n
with n = 125.

81

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 10 15 20 25 30 35 40
 50

 100

 150

 200

 250

 300

 350

 400

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o
in

ts
 (

sm
o
d
el

s)

d

Clasp
Smodels

Figure A.2: The easy-hard-easy pattern for 100 inconsistent programs from the class
[mR−]n with n = 125.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 15 20 25 30 35 40
 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o

in
ts

 (
sm

o
d
el

s)

d

Clasp
Smodels

Figure A.3: The easy-hard-easy pattern for 500 consistent instances from the class [mR−]n
with n = 175.

82

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 10 15 20 25 30 35 40
 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o
in

ts
 (

sm
o
d
el

s)

d

Clasp
Smodels

Figure A.4: The easy-hard-easy pattern for 100 inconsistent instances from the class
[mR−]n with n = 175.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5 10 15 20 25 30 35 40
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o

in
ts

 (
sm

o
d
el

s)

d

Clasp
Smodels

Figure A.5: The easy-hard-easy pattern for 500 consistent instances from the class [mR−]n
with n = 200.

83

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 5 10 15 20 25 30 35 40 45 50
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

C
h
o
ic

e
p
o
in

ts
 (

sm
o
d
el

s)

d

Clasp
Smodels

Figure A.6: The easy-hard-easy pattern for 100 inconsistent instances from the class
[mR−]n with n = 200.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

T
im

e
in

 s
ec

s
(s

m
o
d
el

s)

T
im

e
in

 s
ec

s
(c

la
sp

)

d

Smodels
Clasp

Figure A.7: The easy-hard-easy pattern for 100 consistent instances from the class [mR−]n
with n = 200.

84

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45 50
 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
in

 s
ec

s
(s

m
o
d
el

s)

T
im

e
in

 s
ec

s
(c

la
sp

)

d

Smodels
Clasp

Figure A.8: The easy-hard-easy pattern for 100 inconsistent instances from the class
[mR−]n with n = 200.

85

Appendix B Experimental results on MHFs from MH n(k)

We provide in Figures B.1-B.9, the experimental results obtained using the solver clasp on

instances from the class MH n(k) with k = 5, 10, and n = 50, 100, 150, 200, 250. Figures

B.10-B.13 gives the experimental results obtained using the solver minisat on instances

from the class MH n(k) with k = 10, 20, . . . , 40, and n = 200. These results show the exis-

tence of a phase-transition for the probability of existence of a model, and a corresponding

easy-hard-easy pattern (as we plot the average number of choice points generated by the

solver) for instances with increasing rule density d.

We also show the easy-hard-easy pattern obtained by plotting the average time taken

by the solver glucose on instances from the class MH 1
n(k) with n = 200 in Figure B.14, as

well as by the solver march hi on instances from the class MH 1
n(k) with n = 200 in Figure

B.15.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6
 10

 15

 20

 25

 30

 35

 40

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.1: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(5) with n = 50.

These results shown here were obtained using an AMD Athlon(tm) 64 X2 Dual Core

Processor 5000+ with 512 KB of cache memory.

86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
 10

 20

 30

 40

 50

 60

 70

 80

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.2: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(10) with n = 50.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
 0

 50

 100

 150

 200

 250

 300

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.3: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(5) with n = 100.

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
 0

 200

 400

 600

 800

 1000

 1200

 1400

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.4: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(10) with n = 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.5: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(5) with n = 150.

88

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
 0

 2000

 4000

 6000

 8000

 10000

 12000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.6: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(5) with n = 200.

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.7: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(10) with n = 200.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
 0

 10000

 20000

 30000

 40000

 50000

 60000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.8: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(5) with n = 250.

 0

 0.2

 0.4

 0.6

 0.8

 1

 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts
 (

cl
as

p
)

d

Probability
Choice points

Figure B.9: The phase-transition and easy-hard-easy pattern for clasp on 500 instances
from the class MH n(10) with n = 250.

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts

d

Probability
Choice points

Figure B.10: The easy-hard-easy pattern for Minisat on 100 instances from the class
MH n(10) with n = 200.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55
 0

 50000

 100000

 150000

 200000

 250000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts

d

Probability
Choice points

Figure B.11: The easy-hard-easy pattern for Minisat on 100 instances from the class
MH n(20) with n = 200.

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts

d

Probability
Choice points

Figure B.12: The easy-hard-easy pattern for Minisat on 100 instances from the class
MH n(30) with n = 200.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50 55
 0

 10000

 20000

 30000

 40000

 50000

 60000

P
ro

b
ab

il
it

y

C
h
o
ic

e
p
o
in

ts

d

Probability
Choice points

Figure B.13: The easy-hard-easy pattern for Minisat on 100 instances from the class
MH n(40) with n = 200.

92

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50 55
 0

 10

 20

 30

 40

 50

 60

T
im

e
in

 s
ec

s

m/n

glucose

Figure B.14: The easy-hard-easy pattern for glucose on 100 instances from the class
MH 1

n(k) with n = 200.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

 0

 10

 20

 30

 40

 50

 60

T
im

e
 i

n
 s

e
c
s

m/n

march_hi

Figure B.15: The easy-hard-easy pattern for march hi on 50 instances from the class
MH 1

n(k) with n = 250.

93

Bibliography

[1] Asparagus. http://asparagus.cs.uni-potsdam.de/.

[2] The SAT competitions. http://www.satcompetition.org/.

[3] The First ASP System Competition, 2007. http://asparagus.cs.

uni-potsdam.de/contest/.

[4] The SAT 2009 competition, 2009. http://www.satcompetition.org/.

[5] The Second ASP System Competition, 2009. http://dtai.cs.kuleuven.be/

events/ASP-competition/index.shtml.

[6] D. ACHLIOPTAS AND C. MOORE, The asymptotic order of the random k-SAT thresh-

old, in FOCS ’02: Proceedings of the 43rd Symposium on Foundations of Computer

Science, Washington, DC, USA, 2002, IEEE Computer Society, pp. 779–788.

[7] D. ACHLIOPTAS AND C. MOORE, Random k-SAT: Two moments suffice to cross a

sharp threshold, SIAM J. Comput., 36 (2006), pp. 740–762.

[8] D. ACHLIOPTAS AND Y. PERES, The threshold for random k-SAT is 2k (ln 2 - O(k)),

in STOC ’03: Proceedings of the 35th Annual ACM Symposium on Theory of Com-

puting, 2003, pp. 223–231.

[9] B. ASPVALL, M. F. PLASS, AND R. E. TARJAN, A Linear-Time algorithm for testing

the truth of certain quantified boolean formulas, Inf. Process. Lett., 8 (1979), pp. 121–

123.

[10] G. AUDEMARD AND L. SIMON, Predicting learnt clauses quality in modern SAT

solvers, in IJCAI’09: Proceedings of the 21st International Joint Conference on Ar-

tificial Intelligence, San Francisco, CA, USA, 2009, Morgan Kaufmann Publishers

Inc., pp. 399–404.

94

http://asparagus.cs.uni-potsdam.de/
http://www.satcompetition.org/
http://asparagus.cs.uni-potsdam.de/contest/
http://asparagus.cs.uni-potsdam.de/contest/
http://www.satcompetition.org/
http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml
http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

[11] R. J. BAYARDO, JR. AND R. C. SCHRAG, Using CSP look-back techniques to solve

real-world SAT instances, in Proceedings of the 14th National Conference on Arti-

ficial Intelligence and 9th Conference on Innovative applications of Artificial Intelli-

gence, AAAI’97/IAAI’97, AAAI Press, 1997, pp. 203–208.

[12] A. BIERE, M. HEULE, H. VAN MAAREN, AND T. WALSH, eds., Handbook of Sat-

isfiability, vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS Press,

2009.

[13] B. BOLLOBS, Random Graphs, Academic Press, London, 1985.

[14] G. BREWKA, Logic programming with ordered disjunction, in Proceedings of the

18th National Conference on Artificial Intelligence, Menlo Park, CA, USA, 2002,

American Association for Artificial Intelligence, pp. 100–105.

[15] G. BREWKA, I. NIEMELÄ, AND M. TRUSZCZYŃSKI, Answer set optimization, in

Proceedings of the 18th International Joint Conference on Artificial Intelligence, Mor-

gan Kaufmann Publishers, August 2003, pp. 867–872.

[16] V. CHVÁTAL AND B. REED, Mick gets some (the odds are on his side), in FOCS,

1992, pp. 620–627.

[17] E. CLARKE, A. BIERE, R. RAIMI, AND Y. ZHU, Bounded model checking using

satisfiability solving, Form. Methods Syst. Des., 19 (2001), pp. 7–34.

[18] E. CLARKE, M. TALUPUR, H. VEITH, AND D. WANG, SAT based predicate ab-

straction for hardware verification, in In Sixth International Conference on Theory

and Applications of Satisfiability Testing, 2003.

[19] S. A. COOK, The complexity of theorem-proving procedures, in STOC ’71: Proceed-

ings of the 3rd Annual ACM Symposium on Theory of computing, New York, NY,

USA, 1971, ACM, pp. 151–158.

[20] J. M. CRAWFORD AND L. D. AUTON, Experimental results on the crossover point

in random 3-SAT, Artif. Intell., 81 (1996), pp. 31–57.

95

[21] D. W. CURRIE, A. J. HU, AND S. RAJAN, Automatic formal verification of DSP soft-

ware, in DAC ’00: Proceedings of the 37th Annual Design Automation Conference,

New York, NY, USA, 2000, ACM, pp. 130–135.

[22] M. DAVIS, G. LOGEMANN, AND D. LOVELAND, A machine program for theorem-

proving, Commun. ACM, 5 (1962), pp. 394–397.

[23] O. DUBOIS, Y. BOUFKHAD, AND J. MANDLER, Typical random 3-SAT formulae

and the satisfiability threshold, in SODA ’00: Proceedings of the 11th Annual ACM-

SIAM Symposium on Discrete algorithms, Philadelphia, PA, USA, 2000, Society for

Industrial and Applied Mathematics, pp. 126–127.

[24] N. EÉN AND N. SÖRENSSON, An extensible SAT-solver, in SAT, 2003, pp. 502–518.

[25] T. EITER, N. LEONE, C. MATEIS, G. PFEIFER, AND F. SCARCELLO, A deductive

system for non-monotonic reasoning, in LPNMR, 1997, pp. 364–375.

[26] M. H. V. EMDEN AND R. A. KOWALSKI, The semantics of predicate logic as a

programming language, Journal of the ACM, 23 (1976), pp. 569–574.

[27] E. ERDEM, Theory and applications of answer set programming, PhD thesis, 2002.

Supervisor-Lifschitz, Vladimir.

[28] F. FAGES, Consistency of Clark’s completion and existence of stable models, Journal

of Methods of Logic in Computer Science, 1 (1994), pp. 51–60.

[29] J. FRANCO, J. M. PLOTKIN, AND J. W. ROSENTHAL, Correction to probabilistic

analysis of the Davis Putnam procedure for solving the satisfiability problem, Discrete

Appl. Math., 17 (1987), pp. 295–299.

[30] J. W. FREEMAN, Improvements to propositional satisfiability search algorithms, PhD

thesis, Philadelphia, PA, USA, 1995.

[31] A. FRIEZE AND S. SUEN, Analysis of two simple heuristics on a random instance of

k-SAT, J. Algorithms, 20 (1996), pp. 312–355.

96

[32] M. GEBSER, B. KAUFMANN, A. NEUMANN, AND T. SCHAUB, clasp : A conflict-

driven answer set solver, in LPNMR, 2007, pp. 260–265.

[33] M. GEBSER, T. SCHAUB, AND S. THIELE, Gringo: a new grounder for answer

set programming, in Proceedings of the 9th International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning, LPNMR’07, Berlin, Heidelberg, 2007,

Springer-Verlag, pp. 266–271.

[34] M. GELFOND AND V. LIFSCHITZ, The stable model semantics for logic program-

ming, in Proceedings of the Fifth International Conference on Logic Programming,

R. A. Kowalski and K. Bowen, eds., Cambridge, Massachusetts, 1988, The MIT

Press, pp. 1070–1080.

[35] E. GIUNCHIGLIA, Y. LIERLER, AND M. MARATEA, SAT-Based answer set pro-

gramming, in Proceedings of Nineteenth National Conference on Artificial intelli-

gence, Menlo Park, CA, USA, 2003, American Association for Artificial Intelligence.

[36] A. GOLDBERG, On the complexity of the satisfiability problem, in Fourth Workshop

on Automated Deduction, 1979, pp. 1–6.

[37] C. P. GOMES, B. SELMAN, AND H. KAUTZ, Boosting combinatorial search through

randomization, AAAI Press, 1998, pp. 431–437.

[38] M. HAJIAGHAYI AND G. B. SORKIN, The satisfiability threshold for random 3-SAT

is at least 3.52, tech. report, IBM Research, 2003.

[39] M. HEULE AND H. VAN MAAREN, march hi, 2009. http://www.cril.

univ-artois.fr/SAT09/solvers/booklet.pdf.

[40] S. HEYMANS, D. V. NIEUWENBORGH, AND D. VERMEIR, Nonmonotonic ontolog-

ical and rule-based reasoning with extended conceptual logic programs, in ESWC,

2005, pp. 392–407.

[41] G.-S. HUANG, X. JIA, C.-J. LIAU, AND J.-H. YOU, Two-literal logic programs and

satisfiability representation of stable models: A comparison, in AI ’02: Proceedings

97

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

of the 15th Conference of the Canadian Society for Computational Studies of Intel-

ligence on Advances in Artificial Intelligence, London, UK, 2002, Springer-Verlag,

pp. 119–131.

[42] S. JANSON, T. LUCZAK, AND A. RUCIŃSKI, Random Graphs, Wiley-Interscience,

2000.

[43] A. KAMATH, R.MOTWANI, K. PALEM, AND P. SPIRAKIS, Tail bounds for occu-

pancy and the satisfiability threshold conjecture, Foundations of Computer Science,

Annual IEEE Symposium on, 0 (1994), pp. 592–603.

[44] H. KAUTZ AND B. SELMAN, Planning as satisfiability, in ECAI ’92: Proceedings of

the 10th European Conference on Artificial Intelligence, New York, NY, USA, 1992,

John Wiley & Sons, Inc., pp. 359–363.

[45] P. KILBY, J. K. SLANEY, S. THIÉBAUX, AND T. WALSH, Backbones and backdoors

in satisfiability, in AAAI, 2005, pp. 1368–1373.

[46] S. KOTTLER, M. KAUFMANN, AND C. SINZ, A new bound for an NP-Hard subclass

of 3-SAT using backdoors, in SAT, vol. 4996 of Lecture Notes in Computer Science,

Springer, 2008, pp. 161–167.

[47] Y. LIERLER AND M. MARATEA, Cmodels-2: SAT-based answer set solver enhanced

to non-tight programs, in LPNMR, 2004, pp. 346–350.

[48] V. LIFSCHITZ, What is answer set programming?, Menlo Park, CA, USA, 2008,

American Association for Artificial Intelligence, pp. 1594–1597.

[49] F. LIN AND Y. ZHAO, ASSAT: computing answer sets of a logic program by SAT

solvers, in Eighteenth National Conference on Artificial intelligence, Menlo Park,

CA, USA, 2002, American Association for Artificial Intelligence, pp. 112–117.

[50] L. LIU AND M. TRUSZCZYŃSKI, Pbmodels - software to compute stable models by

pseudoboolean solvers, in LPNMR, 2005, pp. 410–415.

98

[51] L. LIU AND M. TRUSZCZYNSKI, Properties of programs with monotone and convex

constraints, in Proceedings of the 20th National Conference on Artificial Intelligence,

vol. 2, AAAI Press, 2005, pp. 701–706.

[52] I. LYNCE AND J. MARQUES-SILVA, Hidden structure in unsatisfiable random 3-

SAT: an empirical study, in ICTAI ’04: Proceedings of the 16th IEEE International

Conference on Tools with Artificial Intelligence, Washington, DC, USA, 2004, IEEE

Computer Society, pp. 246–251.

[53] V. W. MAREK AND M. TRUSZCZYNSKI, Stable models and an alternative logic

programming paradigm, CoRR, cs.LO/9809032 (1998).

[54] W. MAREK AND V. S. SUBRAHMANIAN, The relationship between stable, sup-

ported, default and autoepistemic semantics for general logic programs, Theor. Com-

put. Sci., 103 (1992), pp. 365–386.

[55] W. MAREK AND M. TRUSZCZYŃSKI, Autoepistemic logic, J. ACM, 38 (1991),

pp. 587–618.

[56] M. MINOUX, LTUR: a simplified linear-time unit resolution algorithm for horn for-

mulae and computer implementation, Inf. Process. Lett., 29 (1988), pp. 1–12.

[57] D. G. MITCHELL, B. SELMAN, AND H. J. LEVESQUE, Hard and easy distributions

for SAT problems, in Proceedings of the Tenth National Conference on Artificial In-

telligence, P. Rosenbloom and P. Szolovits, eds., Menlo Park, California, 1992, AAAI

Press, pp. 459–465.

[58] M. W. MOSKEWICZ, C. F. MADIGAN, Y. ZHAO, L. ZHANG, AND S. MALIK,

Chaff: engineering an efficient SAT solver, in Proceedings of the 38th Annual Design

Automation Conference, DAC ’01, New York, NY, USA, 2001, ACM, pp. 530–535.

[59] G. NAMASIVAYAM AND M. TRUSZCZYŃSKI, Simple random logic programs, in Pro-

ceedings of the 10th International Conference on Logic Programming and Nonmono-

99

tonic Reasoning, LPNMR ’09, Berlin, Heidelberg, 2009, Springer-Verlag, pp. 223–

235.

[60] G. NAMASIVAYAM AND M. TRUSZCZYŃSKI, Simple but hard mixed horn formulas,

in SAT, 2010, pp. 382–387.

[61] I. NIEMELÄ, Logic programs with stable model semantics as a constraint program-

ming paradigm, in Proceedings of the Workshop on Computational Aspects of Non-

monotonic Reasoning, I. Niemelä and T. Schaub, eds., 1998, pp. 72–79.

[62] I. NIEMELÄ AND P. SIMONS, Smodels – an implementation of the stable model

and well-founded semantics for normal logic programs, in Proceedings of LPNMR,

Springer-Verlag, 1997, pp. 420–429.

[63] S. PORSCHEN, T. SCHMIDT, AND E. SPECKENMEYER, On some aspects of mixed

horn formulas, in SAT ’09: Proceedings of the 12th International Conference on The-

ory and Applications of Satisfiability Testing, Berlin, Heidelberg, 2009, Springer-

Verlag, pp. 86–100.

[64] S. PORSCHEN AND E. SPECKENMEYER, Worst case bounds for some NP-Complete

modified Horn-SAT problems, in SAT (Selected Papers), vol. 3542 of Lecture Notes

in Computer Science, Springer, 2005, pp. 251–262.

[65] R. REITER, A logic for default reasoning, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1987, pp. 68–93.

[66] T. J. SCHAEFER, The complexity of satisfiability problems, in Proceedings of the 10th

Annual ACM Symposium on Theory of Computing, STOC ’78, New York, NY, USA,

1978, ACM, pp. 216–226.

[67] A. L. SELMAN, A taxonomy of complexity classes of functions, Journal of Computer

and System Sciences, 48 (1992), pp. 357–381.

100

[68] B. SELMAN, H. KAUTZ, AND B. COHEN, Local search strategies for satisfiability

testing, in DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence, 1995, pp. 521–532.

[69] B. SELMAN, H. LEVESQUE, AND D. MITCHELL, A new method for solving hard

satisfiability problems, in AAAI, 1992, pp. 440–446.

[70] P. SIMONS, Extending the stable model semantics with more expressive rules, in

Logic Programming and Non-monotonic Reasoning, 1999, pp. 305–316.

[71] T. SOININEN AND I. NIEMELÄ, Developing a declarative rule language for ap-

plications in product configuration, in PADL ’99: Proceedings of the First Interna-

tional Workshop on Practical Aspects of Declarative Languages, London, UK, 1998,

Springer-Verlag, pp. 305–319.

[72] T. SOININEN AND I. NIEMELÄ, Developing a declarative rule language for applica-

tions in product configuration, in PADL’99, vol. 1551 of Lecture Notes in Computer

Science, 1999, pp. 305–319.

[73] R. M. STALLMAN AND G. J. SUSSMAN, Forward reasoning and dependency-

directed backtracking in a system for computer-aided circuit analysis, Artif. Intell., 9

(1977), pp. 135–196.

[74] T. SYRJÄNEN, lparse, a procedure for grounding domain restricted logic programs.

http://www.tcs.hut.fi/Software/smodels/lparse/, 1999.

[75] T. SYRJÄNEN, Including diagnostic information in configuration models, in CL ’00:

Proceedings of the First International Conference on Computational Logic, London,

UK, 2000, Springer-Verlag, pp. 837–851.

[76] M. TE CHAO AND J. FRANCO, Probabilistic analysis of a generalization of the unit-

clause literal selection heuristics for the k-SAT problem, Information Science, 51

(1990), pp. 289–314.

101

http://www.tcs.hut.fi/Software/smodels/lparse/

[77] L. XU, F. HUTTER, H. H. HOOS, AND K. LEYTON-BROWN, SATzilla: portfolio-

based algorithm selection for SAT, J. Artif. Int. Res., 32 (2008), pp. 565–606.

[78] H. ZENG AND S. MCILRAITH, Experimental results on the satisfiable core in random

3SAT, in Ninth International Symposium on Artificial Intelligence and Mathematics,

Fort Lauderdale, Florida, USA, 2006.

[79] W. ZHANG, Phase transitions and backbones of 3-SAT and maximum 3-SAT, in Prin-

ciples and Practice of Constraint Programming, 2001, pp. 153–167.

[80] Y. ZHAO AND F. LIN, Answer set programming phase transition: A study on ran-

domly generated programs, in ICLP, 2003, pp. 239–253.

102

Vita

Gayathri Namasivayam
Date of birth April 1st, 1981

Place of birth Chennai, India

EDUCATION

• Master of Science, Computer Science

University of Kentucky, Lexington, KY, May 2010

• Bachelor of Engineering, Computer Science

University of Madras, Chennai, India, May 2002

TEACHING EXPERIENCE

• Instructor Summer 2008, 2009

Department of Computer Science, University of Kentucky

– Introduction to computers: Designed syllabus, taught basics of computers (hard-

ware, software, operating systems, introduction to databases, introduction to

networks, viruses, etc.), taught laboratory classes on Microsoft Office tools

(Word, Excel, Access, Powerpoint), prepared both in-class exams and lab ex-

ams for students, and graded their work.

• Teaching Assistant Fall 2006 – Fall 2009

Department of Computer Science, University of Kentucky

Taught the laboratory classes for each of these courses and graded all lab assignments

and exams.

103

– Introduction to computer programming: Topics ranged from introductory con-

cepts (data types, functions, headers, pointers, classes) to programming using

C++.

– Introduction to engineering computing: C++ programming oriented towards

solving practical engineering problems; topics included all introductory con-

cepts (data types, functions, headers, pointers, classes), and concepts of GUI

programming.

– Introduction to program design, abstraction, and problem solving: Introduces

the concepts of object-oriented programming; topics covered in the course in-

cluded data structures, dynamic data and pointers, and recursion. In addition,

the course introduces sorting and searching and adresses the complexity of al-

gorithms.

– Discrete mathematics: Introduces the fundamental principles of computer sci-

ence which include set theory, induction, functions, Boolean algebra, permuta-

tions, combinations, recurrences, and introductory graph theory.

RESEARCH EXPERIENCE

Research Assistant Summer 2003 – Spring 2010

Department of Computer Science,

University of Kentucky, KY.

• Pseudo-Boolean solvers: Developing solvers that solve a system of linear inequalities

by translating a system of linear equations into a logic program and using existing

logic programming solvers to solve the equations.

• Knowledge representation and preference handling: Building a model of the wel-

fare to work domain, specifying constraints and preferences in the welfare to work

domain using a logical language, and developing logic based language for handling

user preferences.

104

• Lookahead techniques in answer set programming (ASP) solvers: Improving existing

algorithms and design of new algorithms for lookahead in ASP solvers.

• Random logic programs: Studying methods to generate random logic programs that

are hard to solve by existing state-of-the-art logic programming solvers, and under-

standing the properties of these hard random programs.

• Random SAT: Studying methods to generate hard random mixed Horn formulas for

both complete and incomplete solvers, and analyzing the properties of these hard

formulas.

PUBLICATIONS

• Gayathri Namasivayam, Miroslaw Truszczynski: A Smodels System with Limited

Lookahead Computation. LPNMR 2007: 278-283.

• Martin Gebser, Lengning Liu, Gayathri Namasivayam, Andre Neumann, Torsten

Schaub, Miroslaw Truszczynski: The First Answer Set Programming System Com-

petition. LPNMR 2007: 3-17.

• Gayathri Namasivayam: PB-smodels a Pseudo-Boolean Solver. AAAI 2006.

• Gayathri Namasivayam: Study of Random Logic Programs. ICLP 2009: 555-556.

• Gayathri Namasivayam, Miroslaw Truszczynski: Simple Random Logic Programs.

LPNMR 2009: 223-235.

• Gayathri Namasivayam, Miroslaw Truszczynski: Simple but Hard Mixed Horn For-

mulas. SAT 2010: 382-387.

COMPETITIONS

Submitted benchmark problems and solvers to pseudo-boolean evaluations held as a

part of SAT 2006 and SAT 2007, and to the second answer set programming competition

held as a part of LPNMR 2009.

105

AWARDS

• Federal Logic Conference scholarship in 2010.

• International Conference in Logic Programming - Doctoral Consortium (ICLP-DC)

Scholarship in 2009.

• Google scholarship for women engineers in 2008.

• Kentucky Graduate Scholarship from Fall 2002 to present.

• Logic Programming and Non-monotonic Reasoning (LPNMR) scholarship, in 2007.

• American Association of Artificial Intelligence (AAAI 2006) scholarship, in 2006.

• Ranked 2nd in the Computer Science department, R.M.K. Engineering college, for

the academic year 2000-2001.

PROFESSIONAL ACTIVITIES

• Organized as a team member the first ASP competition, which was held as a part of

the International Conference on Logic Programming and Non-monotonic Reasoning

2007; drafted the competition rules, and built software that can verify the correctness

of the solutions provided by the competing ASP solvers on problems modeled as

logic programs.

• Participated at the engineering day celebrations in 2006 and 2008, held at the Univer-

sity of Kentucky; presented to high school students the use of artificial intelligence

techniques to build and solve sudoku puzzles; motivated them to pursue a career in

computer science engineering.

• Organized a national conference on information technology BROUTER 2001, that

was held at the R.M.K. Engineering College, University of Madras; organized dif-

ferent events such as paper presentations and quizes; developed and maintained a

web site that allows members to register online and provides information about the

conference, and oversaw the entire event.

106

• Presented papers and posters at AAAI 2006, LPNMR 2007, the International Con-

ference on Artificial Intelligence (ICAI) 2007, ICLP 2009, and SAT 2010.

107

	ON SIMPLE BUT HARD RANDOM INSTANCES OF PROPOSITIONAL THEORIES AND LOGIC PROGRAMS
	Recommended Citation

	Abstract
	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Main Contributions
	1.3 Thesis Organization

	Chapter 2 The two Formalisms
	2.1 Satisfiability of Propositional Theories
	2.1.1 Syntax and Semantics
	2.1.2 Examples
	2.1.3 Special classes of SAT formulas
	2.1.4 Complexity
	2.1.5 SAT solvers

	2.2 Answer Set Programming
	2.2.1 Syntax
	2.2.2 Stable-model semantics of a normal logic program
	2.2.3 Supported models
	2.2.4 Completion of a logic program
	2.2.5 Tight logic programs
	2.2.6 Positive dependency graph
	2.2.7 Loop formulas
	2.2.8 Complexity
	2.2.9 Solvers for logic programs

	Chapter 3 Random Logic Programs
	3.1 2-Regular Programs
	3.2 The Probability of a Program to Have an Answer Set
	3.3 Hardness of Programs

	Chapter 4 Mixed Horn Formulas
	4.1 Preliminaries
	4.2 Method for the generation of MHFs
	4.3 Phase transition
	4.4 Easy-hard-easy pattern I
	4.5 Easy-hard-easy pattern II
	4.6 Easy-hard-easy pattern III
	4.7 Hard Benchmarks for SAT Solvers

	Chapter 5 Related Work
	5.1 Random Logic Programs
	5.1.1 Properties of Random Logic Programs
	5.1.2 Fixed Body Length Model
	5.1.3 Mixed Body Length Model

	5.2 Random SAT
	5.2.1 Generation of Random SAT instances
	5.2.2 Properties of RSATK(N,) instances
	5.2.3 Threshold for random SAT

	Chapter 6 Conclusions
	Appendix A Experimental results on random logic programs from [mR-]n
	Appendix B Experimental results on MHFs from MHn(k)
	Bibliography
	Vita

