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Abstract. Research on constraints started in early 70’s. We are approaching 40
years since the beginning of this successful field, and it is an opportunity to revise
what has been reached. This paper is a personal view of the accomplishments in
this field. We summarize the main achievements along three dimensions: con-
straint solving, modelling and programming. We devote special attention to con-
straint solving, covering popular topics such as search, inference (especially arc
consistency), combination of search and inference, symmetry exploitation, global
constraints and extensions to the classical model. For space reasons, several top-
ics have been deliberately omitted.

1 Introduction

In 1970, Richard Fikes published a paper –partially based on his recently presented
PhD thesis– on how to solve some problems using constraint satisfaction [35]. A bit
later, David Waltz, a MIT PhD student working in vision introduced some processing
based on constraints to understand the sense of edges in 3D images [95]. In 1974 Ugo
Montanari published a paper [71], setting the basic concepts of constraint processing.
In 1977, Alan Mackworth presented several algorithms to achieve basic forms of local
consistency [62], some of which are still in use. These publications can be seen as the
seminal works setting the basis of Constraint Reasoning, a new field at that time which
has been very flourishing and successful until today. After the initial years, where these
topics where mainly in academic workshops, this new field matured producing many
publications in major AI conferences, having its own conferences and setting its own
journals. In parallel, constraints were introduced in the field of logic programming, pro-
ducing a new approach named constraint logic programming. Some companies started
selling software based on constraints. The term constraint programming was coined,
independently of the underlying programming style. Continuous improvements in con-
straints solving algorithms have caused substantial improvements in performance, while
different extensions to the basic constraint model have significatively enlarged its ex-
pressivity. Now, we are closer to 40 years of this starting point, and it is meaningful
to revise what has been done in this field. This is the purpose of this paper, which is
necessarily short and leaves many topics untouched. The interested reader may consult
some of the books existing on this topic [50, 89, 63, 28, 1, 78] for a more detailed his-
torical perspective, as well as for a much broader and deeper description of its different
aspects.
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This new field took constraints as its central element; a constraint on a set of vari-
ables permits some value combinations while forbids others (assuming a finite number
of possible assignments for variables). The task of interest was (and remains) finding an
assignment of values to variables satisfying all constraints. Many problems of combina-
torial nature can be formulated in terms of a finite number of variables and constraints,
abstracting details that are application-dependent. This caused a lot of interest, because
many real-world problems could benefit from this new technology (for instance, plan-
ning and scheduling, time-tabling, vehicle routing, configuration, and different applica-
tions in networking and bioinformatics, to name a few).

In this paper, we report the main accomplishments in Constraint Reasoning along
three dimensions: constraint solving, constraint modelling and constraint programming.
We devote substantially more space to constraint solving because it is the topic on which
more work has been done by the research community working on constraints. We de-
scribe popular topics such as search (and in particular the well-known backtracking al-
gorithm), inference (complete and incomplete, in this last class falls the arc-consistency
idea), combinations of search and incomplete inference (forward checking and MAC
algorithms), symmetry exploitation, global constraints and extensions to the classical
constraint network model.

A personal view in these almost 40 years of history considers three consecutive
periods, which do not have sharp boundaries but they are recognizable considering the
dominant research topics in the community. They are:

• Initially, researchers were mainly interested in search procedures (including heuris-
tics to improve search performance) in the context of binary constraints. Another
main topic of interest was local consistency, mainly considered as preprocessing
before search.

• Interests evolved towards more sophisticated search procedures, many of them
maintaining some form of local consistency during search. Constraints were no
longer assumed to be binary, and global constraints appeared. The role of inference
methods was properly understood. Constraint modelling started to attract attention.
Initial constraint programming environments were available.

• In the last decade, we have seen considerable performance improvements on sym-
metry exploitation, new global constraints and decompositions. Some extensions
to the classical model have been proposed: continuous domains, soft constraints,
distributed environments, etc. Connections with related fields, such as Operations
Research or SAT, have been clarified. Constraint modelling and programming have
reached some maturity.

The rest of this paper is organized as follows. First, we define the problem in Sec-
tion 2, providing some classical examples. Second, we summarize the main solving
approaches, grouped in the three main families of search, inference and hybrids (com-
bining search and inference) in Section 3. Algorithmic improvements and extensions
to the classical model are also described in Section 3. Third, we consider the issue of
constraint modelling, that is, given a real-world problem producing a constraint model
for it in Section 4. Fourth, we describe different approaches to implement the constraint
model into a constraint programming environment in Section 5. Finally, we conclude



the paper in Section 6, mentioning those topics which have been deliberately omitted.
Because space limitations, descriptions are necessarily short.

2 The Problem

A constraint network is defined by a triplet 〈X ,D, C〉, where X = {x1, x2, ..., xn} is
a set of n variables taking values in a collection of finite and discrete domains D =
{D1, D2, ..., Dn}, such that x1 takes value in D1, x2 takes value in D2 and so on,
under a set of constraints C = {C1, C2, ..., Ce}. Given a constraint C ∈ C, var(C) is
the sequence of variables involved in the constraint (also called its scope, or in some
cases schema), while rel(C) is the set of value tuples on var(C) which are permitted
by the constraint, rel(C) ⊂

∏
xi∈var(C)Di. Often, rel(C) is not given in extension,

but providing a function that determines whether a tuple is permitted or not by C. The
number of variables involved in C, |var(C)|, is the arity of C. If the arity of C is 1, 2,
... we say that C is a unary, binary, ... constraint. A constraint network is binary if all its
constraints are unary or binary.

Often it is implicitly assumed that only may exist a single constraint among a partic-
ular set of variables. Constraint networks with this property are said to be normalized.
In the following, we always assume normalized constraint networks. A unary constraint
on xi is written as Ci, and a binary constraint between xi and xj is written as Cij .

Several operations can be done on a constraint network. One of these possible tasks
is to assign a value to each variable from its domain such that all constraints are sat-
isfied. This task is called solving the network, which is also referred as the constraint
satisfaction problem (CSP). Most of algorithms presented here consider the task of
solving a constraint network; their complexities are given in terms of n –the number
of variables, d –the maximum domain size– and e –the number of constraints–. This
classical CSP definition assumes hard constraints: they are mandatory and any solution
must satisfy all of them (in contrast with the soft constraint concept, see Section 3.5).

A particular case of CSP is the SAT problem, defined as finding a consistent as-
signment for a propositional formula expressed in clausal form satisfying the formula.
A SAT instance can be seen as a CSP as follows: SAT variables correspond to CSP
variables with domains {true, false}, and each clause corresponds to a constraint re-
quiring that at least one literal (affirmed or negated variable) of the clause has to be
assigned to true.

A constraint network 〈X ,D, C〉 can be visualized using a graph representation.
There are three popular representations:

• Primal graph: each node represents a different variable, and there is an edge be-
tween two nodes if the corresponding variables appear together in the scope of
some constraint.
• Dual graph: each node represents a different constraint, and there is an edge be-

tween two nodes if the corresponding constraints share a common variable in their
scopes.
• Hypergraph: each node represents a different variable and each hyperedge repre-

sents a different constraint. The hyperedge corresponding to constraint c connects
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Fig. 1. Left: the map formed by Norway, Sweden and Finland as instance of the map coloring
problem. Right: primal graph, dual graph and hypergraph of: (up) this instance formalized with
binary constraints; (down) this instance formalized with a single all-different constraint.

all variables in var(c). When the constraint network contains unary and binary
constraints only, the hypergraph coincides with the primal graph.

If, in addition to the constraint network 〈X ,D, C〉, there is an objective function
on a subset of the variables, a popular task is to optimize that function subject to the
constraints. This task is usually called the constraint optimization problem (also known
by the acronym COP). About complexity, it is well-known that these problems are in-
tractable in general: classical CSP is NP-complete (it is enough to realize that 3-SAT, a
famous NP-complete problem, can be seen as a CSP), while COP is NP-hard (specifi-
cally, ∆2-complete).

As examples, we mention two classical ones: the map coloring problem and the n-
queens problem. The map coloring problem consists of assigning colors from a given set
to regions in a map, such that two adjacent regions have different colors. This problem
can be easily expressed as a constraint network: variables are regions, values are colors,
all variables have the same domain, constraints are 6= between variables corresponding
to adjacent regions. The map of Norway, Sweden and Finland is a nice example of map
coloring. It appears in Figure 1, with its corresponding graphs.

The n-queens problem consists of locating n queens in a n × n chessboard such
that no queens are attacking each other. This problem admits several formalizations
in terms of constraints. One of them considers variables representing queens: there is
one variable per row (obviously, two queens cannot be located at the same row), the
values are the available columns (initially, from 1 to n), under the constraints that two
variables cannot be in the same column and in the same diagonal of the chessboard.
This formalization appears in Figure 2.
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Fig. 2. The 4-queens problem as CSP: variables represent rows and values are the available
columns of the chessboard. The constraint graph is a clique of binary constraints.

3 Constraint Solving

Given a constraint network 〈X ,D, C〉, the task of interest finding an assignment of
values to variables such that all constraints are satisfied (= solving the network). This
task is known as the constraint satisfaction problem (CSP). This can be done by several
methods; we describe next those which we consider more relevant.

In this Section, several algorithms assume binary constraints. This is done for the
easiness of presentation, nowadays constraint solving approaches have been generalized
to handle constraints of any arity.

3.1 Search

Conceptually, the simplest way to solve a CSP is by searching the state space of the
problem. This is done by guessing values for the problem variables. There are two main
families of search methods: systematic search and local search. Both are described next.

Systematic Search. Since the number of variables is finite, and the number of values
in their domains is also finite, the state space –although it may be very large– is finite,
so it can be traversed systematically until exhaustion. This is the rationale of systematic
search for solving constraint networks. The search space is represented as a tree, where
each variable xi is associated with a level in the tree, and each node at this tree level
has di successors at the next level, one for each possible value of xi (di = |Di|). Each
tree node corresponds to one assignment of variables (the one specified by the unique
path from this node to the root); interior nodes correspond to partial assignments, while
leaf nodes represent complete assignments. The search tree for the 4-queens problem
appears in Figure 3.

The simplest algorithm one could think of follows a generate-and-test schema. It
generates all search tree leaves (or equivalently, all complete assignments involving
all variables), testing the constraints on each of them. Any assignment satisfying all
constraints is a solution. This algorithm is simple but extremely inefficient because it
may test a exponential number of assignments which are inconsistent due to the same
reason. For instance, consider the 4-queens problem. We know that any assignment with
x1 = 1, x2 = 1 is inconsistent, because the queens in the first two rows are in the same
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Fig. 3. Search tree of the 4-queens problem, following formalization of Figure 2.

column. However, this algorithm will generate all combinations of values for queens in
the third and fourth rows, to finally conclude that there is no solution below.

The backtracking (BT) algorithm [48, 15] solves some of the issues of generate-
and-test. It performs a depth-first search traversal of the search tree, checking at each
node whether all constraints among assigned variables are satisfied or not. If the answer
is yes, BT continues its depth-first traversal. If the answer is no, BT prunes the subtree
below the current node and continues depth-first in the rest of the tree. The justification
for pruning the subtree rooted at the current node is simple: if at that node there is
a constraint among assigned variables which is violated, it will remain violated in all
the nodes of the subtree below the current node. There will not be any solution below
the current node, so there is no point searching such subtree. The spatial and temporal
complexities of BT are those of depth-first search: exponential in time but linear in
space.

BT is a chronological backtracker, that is, when it finds a dead-end it changes the last
decision taken. Sometimes, this strategy is not effective because the last decision taken
may not be the culprit for the dead-end. As an example, consider the instance of the 8-
queens problem depicted in Figure 4. The last decision taken –the value assigned to x5–
is not the culprit for not having a consistent value for variable x6. Dependency-directed
backtracking [88] and the most general intelligent backtracking [17] solve this issue,
but requiring exponential memory in its most general form. Keeping linear memory,
several restricted forms of intelligent backtracking for constraint search have been de-
veloped under the names of backjumping [42], graph-based-backjumping [25], conflict-
directed-backjumping [74] (CBJ). The idea of CBJ in the context of binary constraint
networks is as follows: each variable keeps a conflict set, where for each value it records
the first assigned variable which is incompatible with that value. When the search algo-
rithm finds a dead-end, it backtracks to the closest variable in its conflict set (instead of
backtracking to the closest variable, as BT will do). Upon backtracking, the conflict set
of the new current variable is enlarged with the conflict set of the old current variable,
minus the new current variable. Intermediate variables between the jumping variable
and the arrival variable are desassigned.
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Fig. 4. A state of the 8-queens problem. There is no consistent value for x6 but backtracking to
x5 does not release any consistent value for x6. Intelligent backtracking jumps directly to x4.

A further step in this line is the dynamic backtracking (DB) algorithm [45]. It is an
intelligent backtracking algorithm which requires linear memory, while keeping some
elaborated information about the culprits for constraint violations. When facing a dead-
end, DB backtracks to the closest variable responsible for the conflict, keeping the val-
ues of the variables between the jumping variable and the arrival variable. This more
sophisticated backtracking may have also some caveats regarding efficiency [4].

A last word for variable and value ordering heuristics. Associating statically one
variable with each tree level, so this variable always appears at the same position when
BT traverses one branch down, is more than needed to assure BT completeness. What
is required is that each variable has to be considered in each branch, but the order in
which the same variable appears may differ from branch to branch. This observation
gives rise to dynamic variable ordering (also called DVO) heuristics, trying to select
dynamically the variable which shortens most the remaining search time. Solving a
constraint network, most of the time is spent traversing branches which do not lead to
any solution; in such case, a good strategy is to detect as soon as possible when there
is no solution below the current node to perform pruning and jump to another branch.
This is the basis of the first-fail principle: select the variable that is most likely to fail
[49]. A simple implementation of this principle is selecting as the next variable the one
with less consistent values with previous instantiations (called minimum remaining val-
ues [3] or simply min-domain heuristic [87]; often it is presented in connection with
constraint propagation). Assuming the task of finding one solution, a similar reasoning
can be done on value ordering as follows. When generating the successors of a node,
that is, the possible assignments for the variable associated with that node, any value
ordering is legal. BT will stop after finding one solution that necessarily will contain
all assigned variables. Since a value has to be chosen for the current variable, a reason-
able heuristic is to start with those values which are most likely to succeed. BT starts
searching successors from left, so values should be ordered left to right from most to
less likely to succeed.



Local Search. While systematic search procedures keep somehow memory of where
they are in the search space, in order to perform an exhaustive traversal, local search
procedures only keep information local to the current state. Standard local search pro-
cedures cannot guarantee that they will find a solution if there is one, or that a particular
state will not be visited more than once. While lacking these theoretical guarantees,
local search procedures usually scale up better than systematic ones; because of that,
local search is sometimes preferred when the size of the problem to solve is large, often
in the context of constraint optimization.

There are a wide set of search strategies: evolutionary algorithms [47], simulated
annealing1 [55], tabu search [46], just to name a few. Often they are named under the
umbrella term of metaheuristics [16]. All them consider three basic elements (here we
consider states2 s with all variables instantiated):

• Objective function F (s): it maps each state s to a cost given by F (s); the solution
is the global minimum of such function.
• Neighborhood N(s): set of states s′ where you can go from the current state s in

the next iteration. Typically, s′ differs from s in the values of i variables (typically
i is between 1 and 2).
• Selection criterion: given s, F (s), N(s), how to choose the next state s′.

A local search procedure considers the greedy minimization of function F (s) fol-
lowing an iterative approach. At each iteration, after moving to the current state s, it
computes the values of F (s) and N(s). It moves from state s to s′ if F (s) ≥ F (s′),
starting a new iteration. However, this procedure may get trapped in local minima,
where F (s′) ≥ F (s),∀s′ ∈ N(s). In some cases, this issue is tackled with restarts
or random moves (since in the next state F (s′) may be worse that F (s), these moves
are called worsening moves). This combination is named stochastic local search (SLS)
[52]. A SLS procedure ends when it finds a solution or when exhausting computa-
tional resources (such as a maximum number of iterations). There is a large number of
combinations of SLS methods for CSP solving. Next, we summarize some of the most
successful ideas in SLS:

• Min Conflicts Heuristic [68]: F (s) counts the number of not satisfied constraints
(conflicts) in s; the next state s′ tries to minimize the number of violated constraints,
while changing the value of one variable only.

• Penalty Methods [72, 24, 92]: each constraint has a weight and F (s) includes the
sum of weights of violated constraints; weights are not constant but they change
during search (for instance, in [72] when the system reaches a local minimum, the
weights of violated constraints are incremented).

• GSAT [83]: this is a procedure to solve SAT instances, a particular case of CSP.
Given a boolean formula in clausal form and a complete variable assignment (cho-
sen initially at random), at each step GSAT chooses a boolean variable and flips its

1 In some communities, simulated annealing is considered as a global search strategy. Here it is
included into the local search class as a non-systematic search method.

2 Following the concept of state space in Artificial Intelligence, a state is a particular configura-
tion of variables; in some cases, some variables might not be assigned (as in the interior nodes
of the search tree of Figure 3).



value (from true to false or vice versa) such that the number of unsatisfied clauses
is minimized. If a solution has not been found, GSAT restarts every maxSteps flips.
The whole process iterates a maximum of maxTries.

• Random Walk [84, 65]: instead of performing worsening moves only when the sys-
tem is stuck in a local minimum, a worsening move can also occur in non-local
minima with a small probability.

• Large Neigborhood Search [18]: when computing N(s) some parts of the current
state s (assumed feasible) are maintained while others are varied. Then, N(s) in-
cludes states that differ in more than one or two values from s. Using consistency
techniques, N(s) is pruned, keeping its size manageable.

Local search appears as a promising strategy for solving constraint-based problems
[51].

3.2 Inference

Processing a constraint network by inference means to perform some legal operations
on constraints, such that original constraints are modified and a new constraint network
naturally replaces the original one. The new network has exactly the same solutions as
the original one. The interesting point is that the new constraint network is more explicit
than the original one, and this allows traversing its search space more efficiently when
looking for a solution. In this sense, we say that new network is easier to solve than the
original.

Inference methods are divided in two large families: incomplete and complete in-
ference. The main difference between them is that complete inference methods produce
directly the solution after their execution, while this is not true for incomplete inference
methods. The most relevant methods of both families are described next.

Incomplete Inference. Incomplete inference is a umbrella term for a number of pro-
cedures working on constraints such that, when applied on any constraint network, al-
though reducing the search space of the original network they do not produce directly
the solution, which has to be found by subsequent search. Procedures manipulating
and simplifying constrains have been developed since the very beginning of Constraint
Reasoning,3 first as preprocessing and later combined with search.

Incomplete inference is also known as local consistency. An essential part of it is
constraint propagation, when changes in a part of the problem (such as assigning a
variable or removing values in a domain) are propagated to other parts of the problem
because the action of constraints (typically, by enforcing some necessary condition for
solutions). When the effect of local consistency is just removing values from domains,
it is also called domain filtering.

ARC CONSISTENCY. A form of incomplete inference is arc consistency. Basically, it
consists of analyzing each constraint in turn, to detect elementary values of variables
that are not permitted by the constraint. These values are removed from its domain

3 The early work of Waltz in vision [95] considers arc consistency on line edges.
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Fig. 5. Example of arc consistency processing. Left: clique of three variables, connected by binary
constraints; permitted value pairs are connected by a link (microstructure). Right: crossed values
are eliminated from their corresponding domains because they are arc inconsistent; the problem
solution is the assignment of value c to each variable.

(because they will not be in any solution), and their removal is propagated through other
constraints. This process continues until finding that no further changes are induced in
the network. Then, we say that we have reached a fix point.

Let us consider a binary constraint network, where constraints correspond to arcs
in the primal constraint graph (Cij connects xi and xj). Instead of considering the
whole constraint network, we consider each subnetwork of 2 variables connected by a
constraint. Analyzing such constraint it is possible to detect if some values will not
be in a solution. Then, these values are removed and the effect of their removal is
propagated to other domains by the rest of constraints. If a variable becomes without
values (empty domain), the network has no solution; in this case, the ”no-solution”
condition has been found inspecting subnetworks of size 2 only. Otherwise, if some
values have been removed, the search space of the instance becomes smaller and search
can be done more efficiently.

More formally, constraint Cij is directionally arc-consistent (from xi to xj) iff for
any value a ∈ Di there exists a value b ∈ Dj such that (a, b) ∈ rel(Cij). Cij is arc-
consistent iff it is directionally arc-consistent in both directions. A constraint network
is arc-consistent iff all its constraints are arc-consistent [28].

If for a particular a′ ∈ Di there is no value in Dj consistent with it, a′ can be
removed from Di because it will not be in any solution (the assignment xi = a′ will
violate at least one constraint, Cij). The removal of a′ is propagated by all other con-
straints involving xi. Let us consider Cik. If it was previously made arc-consistent, a′

removal may cause Cik to become directionally arc-inconsistent, from xk to xi, while
in the other direction it remains arc-consistent. So Cik has to be rechecked from xk to
xi. An example of arc-consistency processing appears in Figure 5.

A number of algorithms have been proposed for enforcing arc consistency on a
binary constraint network. Among them, we mention AC-3 [62], the optimal AC-4 [70]
and AC-2001 [13]. Arc-consistency can be achieved in a polynomial number of steps
(optimal temporal complexity O(ed2), e is the number of binary constraints, d is the
largest domain size).



Originally, arc consistency was developed for binary constraint networks, when the
hypergraph coincides with the primal graph. When considering constraints of any arity,
the same concept is called generalized arc consistency (GAC). A constraint C is GAC
iff for any xp ∈ var(C), a value a ∈ Dp appears in some permitted value tuple t ∈
rel(C) as value for xp. A constraint network is GAC if all its constraints are GAC [28].

Less demanding than arc consistency is bound consistency (BC), applicable to to-
tally ordered domains. Only the lower/upper bounds of each domain are checked in each
constraint using a weaker form of consistency that assumes the domains of other vari-
ables compact and without holes, perfectly defined by their lower/upper bounds (there
are some variants on the definition of bound consistency, see [9]).

Arc consistency is one of the topics on which more work has been done in the
context of constraint processing. For a comprehensive study, see [9].

PATH-CONSISTENCY. Assuming again binary constraint networks, let us consider sub-
networks of three variables, say xi, xj , xk. If a pair of consistent values between xi and
xj cannot be consistently extended including xk, the initial pair is considered inconsis-
tent and recorded in a modified Cij . If at some point a constraint becomes empty (= no
pair of values is permitted), the network has no solution.

Formally, a pair of variables (xi, xj) is path-consistent iff for any pair of consistent
values (a, b) ∈ rel(Cij) and any third variable xk, there exists c ∈ Dk such that
(a, c) ∈ rel(Cik) and (b, c) ∈ rel(Cjk). A constraint network is path consistent iff any
pair of variables is path-consistent [28].

As in the arc consistency case, if constraints are given in extension path consistency
can be achieved in polynomial time (the optimal complexity is O(n3d3) [70]). How-
ever, the complexity is substantially higher than in the arc-consistency case, so usu-
ally it does not pay-off when compared with the simpler but cheaper arc-consistency
property (especially when local consistencies are enforced at each node visited by a
search procedure, as described in Section 3.3). In addition, path-consistency modifies
the constraints, which is more difficult to handle than the easier task of modifying the
domains, the only effect of arc consistency. Because of all these, path consistency re-
mains unattractive in practice, and it is usually not available in most existing constraint
solvers.

K-CONSISTENCY. K-consistency is a generalization of the above concepts. A binary
constraint network is k-consistent iff given a subset of k − 1 variables consistently as-
signed, for any kth variable it is possible to find a value consistent with the values of the
k − 1 variables previously assigned [36]. Then, arc consistency is 2-consistency, path-
consistency is 3-consistency, etc. Optimal k-consistency can be achieved in time expo-
nential in k [22]. A constraint network is k-strong consistent, when it is p-consistent
for 1 ≤ p ≤ k. An interesting result is the following: given a constraint network where
variables are ordered such that the width of the order (= the maximum number of edges
that go back from a node in the primal constraint graph) is lower than k, a constraint
network that is strong k-consistent is backtrack-free, that is, BT will find a solution
without performing backtracking [37].

This result tempts us to compute the width of a graph (and its associated ordering),
processing the network afterwards to achieve the required level of strong consistency.
However, the procedure for strong consistency adds edges to the primal graph, so the



width of the selected ordering may change after executing this procedure (except when
the constraint graph is a tree, then it can be solved backtrack-free after processing it by
directional arc-consistency).

Interestingly, the adaptive consistency approach [29] was a step forward along this
line. First, it was able to adjust the level of consistency required for each variable of the
ordered primal graph to assure a backtrack-free search. And second, it introduced the
concept of induced width, as the width of the ordered graph after adaptive consistency
processing. But all this is better explained as bucket elimination in the next paragraphs.

Complete Inference. Complete inference procedures, when applied to any constraint
network, produce directly a solution so no subsequent backtrack search is needed. Let
us assume that all constraints are given in extension. A tuple t with scope S is an
ordered set of values assigned to each variable in S ⊆ X . The projection t[T ] of a tuple
t on T ⊂ S is a new tuple which only includes the values assigned to the variables
in T . We define the join ./ of two constraints C and C ′, written C ./ C ′ as a new
constraint with scope var(C) ∪ var(C ′) such that t ∈ rel(C ./ C ′) if and only if
t[var(C)] ∈ rel(C))∧ t[var(C ′)] ∈ rel(C ′). The join of constraints is associative and
commutative.

By definition, we observe that the tuples satisfying constraints C and C ′ satisfy
C ./ C ′, and vice versa. Then, a direct way to compute all solutions of a constraint
network is computing the join of all its original constraints, ./C∈C c. Tuples satisfying
./C∈C C are the solutions of the original network, and there are no other solutions.

Since solving a constraint network is NP-complete, it causes no surprise that com-
plete inference has temporal complexity exponential in the induced width, w∗, a param-
eter of the primal constraint graph that basically measures its cyclicity.

BUCKET ELIMINATION. As mentioned before, the join of all the original constraints
will produce a single constraint whose permitted tuples will be the solutions of the
problem. However, this is more than needed to solve the problem by inference. If we
do the joins of constraints following some particular order, we can save space and time.
To properly describe the bucket elimination algorithm, we still need to define a new
operation: given a constraint C, projecting a variable x ∈ var(C) out of C, written
C[−x], is a new constraint with scope var(C)−{x} whose allowed tuples are those of
C eliminating the values of x and removing duplicates.

Before describing the bucket elimination algorithm [27], we introduce some con-
cepts from [37]. A ordered graph (G, o) is simply a graph G with a total order o of its
nodes. Given (G, o), the width of a node x is the number of arcs that connect x with
other nodes prior x in the order o; the width of an order o is the maximum width of its
nodes; the width of a graph is the minimum width of all its possible orderings. Given
(G, o), where G is a primal constraint graph, we define the induced graph G′ along the
ordering o [29] as G enlarged with some extra arcs computed as follows: nodes are pro-
cessed from last to first along o; let x a node, all its parents (nodes connected with x and
before x in o) are connected by a clique of arcs. Given the induced graph G′, previous
definitions of width associated to node, order or graph also apply here. In particular, the
parameter called induced width w∗ is the width of the induced graph G′. Computing
the minimum induced width of a graph is NP-complete [28].



The bucket elimination algorithm works as follows: given an ordered graph (G, o)
of a constraint network, the bucket of each variable is the set of constraints which men-
tion that variable as the last variable in their scope following o. Buckets are processed
following o from last to first. If x is the current variable, all constraints in bucket Bx

are combined together into a single constraint Cx which summarizes the effect of Bx.
Then, since variable x is not further required, it is eliminated from Cx, obtaining the
constraint Rx which replaces Bx in the set of constraints C. This new constraint Rx

–which does not mention x– is properly located in the bucket of the last variable of its
scope, and it will be processed in the future.

Once all buckets have been processed, one knows if the original problem has solu-
tions. To recover solutions, variables are processed along o –from first to last– assigning
variable x a value of a tuple allowed by cx and consistent with all previous variables in
o. It is easy to see that such value always exists, and the process is backtrack-free. The
spatial and temporal complexities of bucket elimination are exponential in the induced
width of the constraint graph [27].

MINI-BUCKETS. It may happen that the system has not enough memory to compute
Ci ←./C∈Bi

C (or you want to be faster than computing this exponential-time step).
To alleviate these exponential bounds, the mini-bucket approximation comes into play.
The idea is to partition bucket Bi in subsets such that the join of all constraints in each
subset produces a new constraint whose arity is upper bounded by r, a parameter that
establishes the maximum memory available to keep the new constraint (at most dr tu-
ples) [26]. Mini-bucket elimination is an approximation of the exact bucket elimination
algorithm, it is not guaranteed to find a true solution (although the final assignment will
be closer to a solution). The spatial and temporal complexities of mini-bucket elimi-
nation are exponential in r. Mini-buckets can also be used to generate heuristics for
optimization tasks [54].

It is possible to use search as an alternative to the mini-buckets approximation.
Given an ordering o of variables to be processed by bucket elimination, and r an upper
bound on the arity of the new constraints, this approach works as follows: if processing
the bucket of a variable along o produces a new constraint of arity≤ r, then the standard
bucket elimination algorithm is used; otherwise, a search algorithm is used, branching
on the possible values for this variable [59].

3.3 Hybrid Algorithms

Incomplete inference (also called local consistency) procedures can be used either (i)
as preprocessing, before search starts, to simplify the original instance, or (ii) inside the
search process, typically at each visited node. In the second case, we talk about hybrid
algorithms because they combine search (typically systematic search, in its simplest
form the BT algorithm) with some form of incomplete inference. This combination
often offers significant savings if compared with pure search, and it has become a kind
of standard when solving constraint networks. The benefits of this combination are
due to the reduction that local consistency causes in the search space of subproblems
found by search, causing to visit less nodes. On the other hand, some extra work is
done when enforcing the local consistency at each visited node (because of that, local
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Fig. 6. FC search tree (left) and MAC search tree (right) on the 4-queens problem. Observe the
more powerful MAC inference in the left part of the search tree. Light cells are forbidden, dark
cells are free.

consistencies of low complexity are preferred). It has been observed experimentally that
the best trade-off between benefits and extra work occurs for arc consistency (or lower
local consistencies). Because of that, we will concentrate our presentation on hybrid
algorithms to the combination of BT with some forms of arc consistency.

Although hybrid algorithms often offer better performance, their worst case tempo-
ral complexity does not improve over the BT one, which is exponential. An interesting
work compares the relative performance of some hybrid algorithms [57].

Forward Checking. Originally proposed for solving binary constraint networks, the
forward checking (FC) algorithm [49], follows a BT schema with the following addi-
tion: when a variable is assigned, constraints connecting this variable with unassigned
ones are made arc-consistent. This may cause deletions in the domains of these vari-
ables; if one of these domains becomes empty, there is no solution below the current
node so the subtree below it can be pruned, saving search effort. Upon backtracking,
when the value assigned to a variable changes, the deletions caused by enforcing arc
consistency with the old value for that variable have to be undone. The search tree
developed by FC in the 4-queens problem appears in Figure 6.

In FC, it is worth noting that when a variable is assigned a value, no checking for
consistency is done on already assigned variables because all values remaining in the
domains of unassigned variables are already consistent (because of FC behavior). The
FC algorithm has been extended to deal with non-binary constraints in [12].

Maintaining Arc Consistency. The Maintaining Arc Consistency (MAC) algorithm
[79] represents an step further in the application of arc consistency inside a systematic
search schema. The main idea of this MAC is that arc consistency must be maintained at
all times in the current subproblem considering all its constraints (not only constraints
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connecting the current variable with unassigned ones, as FC). In addition, the subprob-
lem where the current variable is still unassigned must be arc consistent. This is done
as follows. Let x be the current variable to be assigned. When this variable takes value
a, arc consistency is enforced in the remaining subproblem. If some domain becomes
empty there is no solution below the current node (observe that this step is stronger than
the corresponding step in FC, because arc consistency is enforced on more constraints),
so the subtree below it can be pruned causing search savings. Otherwise, a recursive
call is done indicating which is the next variable. If no solution can be found under the
assignment x ← a, then a is removed from Dx and arc consistency is enforced on the
new subproblem. This step is new with respect to FC. As in the previous algorithm,
upon backtracking when the value assigned to a variable changes, the deletions caused
by enforcing arc consistency with the old value for that variable have to be undone. The
search tree developed by MAC in the 4-queens problem appears in Figure 6.

An original view of the MAC algorithm is that of traversing a binary tree where left
branches correspond to assignments of variables (x = a) and right branches correspond
to rebuttal of the same values (adding the constraint x 6= a). An example of such binary
tree on the 4-queens problem appears in Figure 7.

3.4 Algorithmic Enhancements

Symmetry Exploitation In many constraint networks there are symmetries: transfor-
mations involving variables and values that leave the problem invariant. For instance,
in the 4-queens problem following Figure 2 formulation, if we exchange x1 with x4

and x2 with x3, we obtain exactly the same problem (this is called variable symmetry).
Alternatively, if we exchange columns 1 and 4, and columns 2 and 3, again the problem
remains the same (this is called value symmetry). The importance of symmetry comes
from this simple observation: if a state is solution, all its symmetric states are also so-
lutions (and the same occurs with non-solutions). Therefore, it is enough to visit one
state of all states related by a symmetry (ignoring the symmetry these states look dif-
ferent, but considering the symmetry these states belong to the same equivalence class



–equivalence relation induced by the symmetry– and it is enough to visit one represen-
tative of such class). In some cases, this causes enormous reductions in the size of the
space to explore, producing very substantial gains in search efficiency. Because of that,
symmetries have received some attention in constraint solving.

Variable and value symmetries have been known for long, but a general definition
of symmetry in Constraint Reasoning was provided not so long. In [21], authors pro-
pose (1) solution symmetry: a permutation of variables and values that leaves the set
of solutions invariant, (2) constraint symmetry: a permutation of variables and values
that leaves the set of constraints invariant (so basically the problem does not change).
Both types of symmetry allow variable/value symmetries as special cases. Interestingly,
constraint symmetry is included in solution symmetry; in fact, there are many more so-
lution symmetries than constraint symmetries. Programmers detect usually constraint
symmetries only because without the set of solutions it is difficult to identify solution
symmetries that are not constraint symmetries [21].

Perhaps the simplest way to deal with symmetries is by model reformulation, look-
ing for a model with a lower number of symmetries. Unfortunately, this technique is
really case-dependent, and requires a deep knowledge of the problem at hand (see [43]
for some examples). When the problem presents a number of indistinguishable vari-
ables, typically we numbered them, introducing artificially symmetries that do not exist
in the original problem. A way to solve this is to use set variables (whose value is a set
instead of a single value). Set variables break some variable symmetries and represent
more naturally set solutions.

An approach to deal with symmetries is to add some constraints before search starts
to break symmetries. For instance, imagine that your problem has ten variables which
are fully symmetric, x1, x2, ...x10 (for any pair of variables, you can freely exchange
them). A way to deal with this symmetry is to add constraints requiring a lexicograph-
ical order among them: x1 ≤ x2 ≤ x3 ≤ ... ≤ x10. This approach is called lex-leader
[23]. This strategy requires a static variable ordering compatible with the lex-leader or-
dering. In some cases, a matrix of variables appears in constraint programming; if rows
are interchangeable and columns are interchangeable, lex-leader constraints can be im-
posed in rows and columns, producing what is called double-lex approach [56]. Also
lexicographic ordering over multisets has been investigated.

Alternatively, one can break symmetries by adding some constraints dynamically
during search. One approach following this line is SBDS (Symmetry Breaking During
Search) [44]. The basic idea is, upon backtracking, to add constraints that prevent to
visit states that are symmetrical to those already visited. Another approach –somehow
related– is called SBDD (Symmetry Breaking by Dominance Detection) [33]. The basic
idea is, when going to visit a new node of the search tree, check if this node is symmet-
rically equivalent to an already visited one. To do so, it is not needed to store all visited
nodes; it is enough to store the roots of fully explored subtrees. Unlike adding symmetry
breaking constraints before search, both SBDS and SBDD can be used with dynamic
variable ordering heuristics and they can deal with symmetries involving values.

In some cases, the number of symmetries could be large (even exponential). Adding
static or dynamically new constraints to break these symmetries could be counterpro-
ductive at some point. Checking extra constraints causes some overhead, to be com-



Fig. 8. The Sudoku completion problem: assign a digit from 1,...,9 to each empty cell such that
the assignment of the whole grid forms a legal Sudoku (as explained in the text).

pared with the benefits of symmetry breaking. In practice, it is commonly assumed the
best efficiency is achieved breaking a only part of the symmetries present in the prob-
lem. For a more in-depth presentation, see [43].

Global Constraints. MOTIVATING EXAMPLE. A good way to introduce global con-
straints is with an example. Let us consider the Sudoku puzzle: it is a grid of 9×9 cells,
which contains 9 non-intersecting subgrids of size 3 × 3. The goal is to assign to each
cell a digit from 1 to 9, such that the following constraints are satisfied:

• there is no repeated digit in each row of the 9× 9 grid,
• there is no repeated digit in each column of the 9× 9 grid,
• there is no repeated digit in each 3× 3 subgrid.

While finding a legal assignment for an empty Sudoku is trivial, the problem usually
considered is the Sudoku completion: when some cells have already a digit assigned
and the task is to find an assignment of digits to the other cells such that the whole
assignment forms a legal Sudoku. An example of Sudoku completion appears in Figure
8.

A natural way to model this problem as a CSP is to consider each cell as a variable.
Empty cells have a domain {1, 2, 3, 4, 5, 6, 7, 8, 9}, while cells with a digit assigned
have a domain formed by that digit, under the above mentioned constraints. It is not
difficult to see that Sudoku constraints can be expressed as cliques of binary inequality
constraints among the variables involved. Thus, there are 36 binary inequalities per row,
36 binary inequalities per column and 36 binary inequalities per 3× 3 subgrid.

Alternatively, we can consider the all-different constraint on a set of variables SetVar,
requiring all variables of SetVar to be assigned a different value. Using this constraint,
we can model the Sudoku completion problem with one all-different constraint per row,
one per column and one per 3× 3 subgrid.

It is clear that, when a variable x is assigned a value v, that value has to be removed
from the domains of the other variables constrained with x. In addition, the number of
different available values (cardinality of the union of the domains) for the 9 constrained
variables (corresponding to the same row, column or 3× 3 subgrid) should be 9; other-
wise, there is no way to satisfy the corresponding Sudoku constraint. The first reasoning



is achieved when enforcing GAC in both formalizations, clique of binary inequalities
and all-different constraints. The second reasoning is only achieved when enforcing
GAC on all-different constraints; a binary inequality does not include all the variables
involved in a Sudoku constraint, so enforcing GAC on it cannot account for the number
of their different available values.

Why all-different has more pruning power than the clique of binary constraints?
The reason is based on the set of variables viewed by each constraint. The all-different
constraint considers 9 variables simultaneously, so it is able to make better deductions
than when considering pairs of variables in isolation. Having a more global view of
the problem allows for better deductions, which cannot be achieved with a more local
view (which in occasions could be myopic). An example of this appears in Figure 9:
a map coloring instance with 3 variables constrained to have different values but only
two available values.

It is worth noting that both formalizations for the Sudoku completion problem are
correct and obtain true solutions. However, assuming a solving strategy based on search,
one is more efficient than the other because it is able to detect (and therefore prune)
sooner than the other branches not leading to any solution.
GLOBAL CONSTRAINTS. A global constraint captures the relation among a non-
fixed number of variables with specific semantics [90]. C is a class of constraints de-
fined by a Boolean function fC whose arity is not fixed. Constraints C(xi1 , . . . , xik

),
C(xj1 , . . . , xjq ) with different arities can be defined by the same Boolean function.
For instance, alldifferent(x1, x2, x3) and alldifferent (x4, x5, x6, x7) are two instances
of the alldifferent global constraint, where falldifferent(T ) returns true iff xi 6= xj ,
∀xi, xj ∈ T .

Examples of global constraints are:

• alldifferent: different values have to be assigned to a set of variables;
• atmost/atleast: an upper/lower bound on the number of times a value may appear

assigned in a set of variables;
• cardinality (also written gcc): it establishes lower and upper bounds to the number

of times that several values may appear assigned in a set of variables;
• sum: the addition of the numerical values of a set of variables should be equal to

some parameter;
• circuit: it is satisfied when a set of variables are assigned nodes of a directed graph

such that they form a Hamiltonian circuit;
• lexicographic: considering two vectors of variables, it is satisfied when the two

vectors are lexicographically ordered after assignment.

A global constraint is defined by a boolean function, no matter the arity of the con-
straint. This permits to develop GAC enforcing programs for this particular global con-
straint in which the number of variables involved in the constraint is an input parameter.
Exploiting the semantic of this global constraint, those GAC enforcing programs can
be made specific for it, with lower complexity than the corresponding to a generic GAC
propagator. As an example, consider the alldifferent constraint on k variables; a generic
GAC propagator requires to pass through all the tuples so it has a complexity O(dk),
while the specialized GAC propagator [77] can do it in O(k2d2). The exploitation of
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Fig. 9. Map coloring instance, with three variables but only two available colors formulated with
an alldifferent constraint (left) and its binary decomposition into a clique of binary inequalities
(right). While GAC on the binary decomposition deduces nothing, GAC on alldifferent detects
that there is no solution.

this fact has been crucial for the success of the constraint technology in practice (see
Section 5).

Some global constraints are semantically decomposable in a polynomial number
of simpler constraints of fixed arity, in the sense that the set of solutions of the global
constraint is exactly equal to the set of solutions of a polynomial number of simpler
constraints on the same set of variables [10]. An example of this is the alldifferent
constraint: alldifferent(x1, x2, x3) is semantically equivalent to x1 6= x2, x1 6= x3

and x2 6= x3. However, there are constraints that cannot be decomposed into simpler
constraints without adding a polynomial number of extra variables. An example of this
is the atleast constraint. Allowing extra variables, any constraint is decomposable in
smaller constraints.

A global constraint is operationally decomposable into smaller constraints of fixed
arity, if enforcing GAC on the global constraint removes the same values as enforcing
GAC on the set of smaller constraints. A global constraint may be semantically decom-
posable into a set of smaller constraints but not operationally decomposable in such set,
in the sense that GAC on the global constraint is more powerful (removes more values)
than GAC on the decomposition. For example, alldifferent is decomposable in a clique
of binary inequalities; however, GAC on alldifferent prunes more than binary AC on
the set of inequalities (see Figure 9). So it is interesting to find decompositions which
are as powerful in GAC propagation as the initial global constraint. Some constraints
can do that on the same set of variables as the original constraint (for example the lex
constraint). Others require a polynomial number of constraints on extra variables (for
instance, the atleast constraint). And others cannot achieve the same propagation in any
polynomial number of simpler constraints of fixed arity (for example, the alldifferent
constraint) [11].

Regarding GAC propagation, there are several classes of global constraints:

• those for which GAC propagation is NP-hard (the sum constraint),
• those for which GAC propagation is polynomial and

- there is no equivalent decomposition, even allowing a polynomial number of
extra variables (the alldifferent constraint),



- there is an equivalent decomposition (the lex constraint on the same variables,
the atleast constraint adding a polynomial number of extra variables).

The interest in decomposing global constraints comes from the fact that currently
there are hundreds of reported global constraints (the current version of the global con-
straints catalog collects more than 350 global constraints, with a description of more
than 2,800 pages [6]). In such situation, it is of great interest finding if there is a short
set of basic constraints such that any global constraint could be seen as a combination
of such basic constraints (this would facilitate enormously the implementation of CP
solvers). Although some successful work in this direction has been done, some global
constraints escape the intended decomposition on basic constraints.

3.5 Extensions

Continuous Constraints. The defined model of constraint network is extended to con-
tinuous domains when variable domains are intervals over the real numbers, and con-
straints are equations on these variables. Again, a solution is an assignment of values to
variables satisfying the constraints.

This topic falls in the numerical analysis field. A common approach is to replace
numerical analysis by interval analysis, where floating-point numbers are replaced by
intervals. As in the discrete case, it is of great interest to discard parts of the search
space that will not contain any solution. The concept of arc consistency from discrete
domains has been successfully extended to the continuous case [34]. Given the compu-
tational difficulties to compute arc consistent intervals, a simpler form of local consis-
tency called hull consistency (the version of bound consistency for continuous domains)
is pursued. In fact, an approximation called box consistency, is achieved in practice [7].

Solving algorithms usually follow a branch-and-reduce schema. The idea is to ob-
tain a set of interval boxes (Cartesian products of variable intervals) covering all solu-
tions of the problem. The algorithm chooses (often using heuristics) a box and splits it,
following a branching procedure. Resulting boxes are reduced by enforcing some kind
of local consistency. The process iterates until boxes are small enough [8].

In general, solutions are found applying numerical methods (Newton method, etc.).
The role of constraints is more focused to remove parts of the space without solutions,
so numerical methods could be applied more efficiently. Hybrid approaches have been
proposed, trying to combine different strategies. For a comprehensive description see
[8].

Soft Constraints. A constraint is soft if an assignment violating it can still be con-
sidered a possible solution. Classical constraints are hard: they must necessarily be
satisfied by any solution. Typically, hard constraints represent physical properties that
must necessarily be satisfied, while soft constraints represent priorities or preferences,
which might be violated without invalidating a solution.

There are different frameworks for dealing with soft constraints. To unify their rep-
resentation, two generic frameworks have been proposed: valued CSP [80] and semiring-
based CSP [14], the latter being more general than the former (essentially, they differ



in the required ordering for the intermediate satisfaction values: total order for valued
CSP, partial order for semiring-based CSP).

Assuming the weighted CSP model where constraints are replaced by cost functions
(they return a cost that one has to pay if the instantiating tuple is in the solution), the
goal is to find the assignment that minimizes the addition of costs. Solving a weighted
CSP becomes an optimization problem, typically solved by branch-and-bound methods.
Different lower bounds have been proposed for branch-and-bound pruning [67].

Several soft local consistencies have been proposed. Interestingly, the arc consis-
tency in the classical hard case splits in several levels in the soft case [60]. Maintain-
ing soft local consistency during branch-and-bound search allows to compute a lower
bound. Some soft versions of global hard constraints have also been successfully used
for solving soft CSP instances [91]. Inference methods in CSP solving (such us bucket
elimination, or cluster-tree elimination) can also be successfully used for computing the
global optimum/assignment of a weighted CSP [28].

Distributed Constraints. A CSP is distributed (DisCSP) if its parts (variables and
constraints) are distributed among different agents and cannot be grouped into a single
agent, often because of privacy reasons. In this setting, each agent knows a part of the
problem, but no agent knows the whole problem. The solution satisfying all constraints
is reached through message passing.

The first complete algorithm for DisCSP solving was Asynchronous Backtracking
ABT [97]. It is a distributed search algorithm, able to perform when the problem has
no solution; when a solution is found the network remains silent, which is detected
by external specialized algorithms. Initially designed with a static variable ordering,
ABT enhanced with dynamic variable ordering has been proposed [98]. Among other
approaches we mention the AAS and AFC algorithms [85, 66]. In the context of lo-
cal search (complete but with exponential memory), there is the Asynchronous Weak
Commitment algorithm [97].

Replacing constraints by cost functions (as in the weighted CSP model), the so
called Distributed Constraint Optimization Problem (DCOP) has received a lot of at-
tention lately. Now the solution minimizes the addition of costs. The first complete
algorithm for optimal DCOP solving was ADOPT [69], a distributed algorithm follow-
ing a best-first strategy. Replacing best-first by depth-first with branch-and-bound, we
obtain the BnB-ADOPT [96] which reaches better performance. These are distributed
search algorithms, exchanging short but many messages (in the worst case, exponen-
tially many). Alternatively, the DPOP algorithm [73] performs distributed inference,
requiring a linear number of messages but they can be exponentially large.

4 Constraint Modelling

Modelling is the process of passing from a real-world problem into a constraint network.
In principle, it is not very difficult to develop a model of a real-world problem. What
could be difficult is to produce a model that solves the problem in a reasonable time.
There is wide evidence that the modelling process has a dramatic effect in how easy
the problem can be solved in practice [39, 76]. Despite some high level languages for



constraint specification, modelling resists automatization and remains an art (sometimes
a black art) in which constraint programmers spend their time and energy looking for
efficient models of real-world problems.

Here practical experience is a grade. In a report on learned lessons on crosswords
[5], authors indicate how the model, the search algorithm and the heuristics interact, and
none of these decisions can be made totally independent of the others. Nevertheless, in
the following we will assume that the solution is found by a combination of search and
incomplete inference (interleaving search with constraint propagation is the standard
solving approach), ignoring particular algorithms and heuristics (otherwise it would be
very difficult to deal with all the possible combinations of these elements).

Perhaps a way to start in when assessing two constraint models is to answer two
questions (i) what is the size of the search space? and (ii) which model prunes more?
Let us consider the three different models of the n-queens problem:

1. One boolean variable per cell: n2 variables, equal domains {0, 1}, constraints: dif-
ferent rows, columns, diagonals;

2. One variable per row: n variables, equal domains {1, ..., n} , constraints: different
columns, diagonals,

3. One variable per row + alldifferent: n variables, equal domains {1, ..., n}, con-
straints: one alldifferent(x1, ..., xn), different diagonals.

The search space size is: (1) 2n2
(2) and (3) nn, which is far smaller than (1). Con-

sidering constraints, model (2) includes by construction the constraint ”no two queens
in the same row”, so it is preferred to model (1). Model (3) captures in a single global
constraint the constraint ”no two queens in the same column”, which prunes more than
the clique of binary inequalities when enforcing GAC, so (3) is preferred to (2). There-
fore, simple modelling criteria are preferring smaller search spaces and constraints with
higher pruning power. As a rule of thumb, we prefer models using as few constraints as
possible, as long as these constraints have efficient propagation algorithms.

Existing CP solvers maintain a different level of local consistency in each con-
straints, looking for a reasonable trade-off between the cost of enforcing such local
consistency and the search reduction it produces. Typically, AC is enforced on binary
constraints, GAC is enforced on global constraints and BC is enforced on arithmetic
constraints, although some variants exist. Complex constraints may have little propaga-
tion (details depend on the particular solver used).

The first election in a model is what is called a viewpoint [61], that basically is se-
lecting the set of variables and their domains. From this selection, constraints must as-
sure that model solutions correspond to problem solutions. We prefer those viewpoints
which allow for an easy and concise way to express the required constraints.

Given two constraints C1 and C2 to be satisfied simultaneously, a new constraint
can be made as the conjunction of these constraints C1 ∧ C2. It will be tighter than
any individual constraint of the conjunction. It may cause more pruning (however, this
would not necessarily speed up solving in current solvers). An example of this effect
appears in Figure 10, where value 3 for x5 would be deleted after AC if between any
two queens there is one constraint ”different columns and different diagonals” but it
will remain if between any two queens there are two constraints ”different columns”
and ”different diagonals”.



The use of global constraints has been shown very useful in practice. On one hand,
global constraints have a more global view of the problem, so typically they can filter
more (= remove more values) than their binary decompositions (when such decom-
position are possible) when GAC is enforced on them. On the other, exploiting their
semantics, global constraint propagators can achieve GAC more efficiently than using
generic propagators. Current CP solvers provide a library of global constraints, which
permit programmers to use them without implementing from scratch.

A constraint is reified when there is a 0/1 variable associated with that constraint
such that the variable takes the value 1 when the constraint is satisfied and value 0 oth-
erwise. Some CP solvers offer reified constraints, which can be used to model disjunc-
tions: if x1 and x2 are associated with constraintsC1 andC2, the expression x1+x2 ≥ 1
indicated that at least one constraint has to be satisfied.

Having the minimum set of constrains that allows for correct solutions is not al-
ways correlated with good performance. Redundant constraints, in the sense that they
are implied from the basic constraints defining the problem, are useful when they dis-
card some assignments that would be permitted by that minimum set of constraints.
Assignments discarded by redundant constraints would also be found unfeasible by the
basic constraints, but after some search that could be saved if redundant constraints are
used [30]. The interaction between redundant constraints and variable ordering heuris-
tics is relevant, to avoid that the above mentioned assignments were never found during
search. Again, a deep knowledge of the problem to solve is advisable.

Redundancy can also occur on variables. Auxiliary variables are variables which
are not strictly needed to model the problem, but their introduction allow constraints to
propagate better (or to express better the problem). Although they might be considered
not as important as original problem variables, they are variables in its own right and
can be used to guide search.

If the chosen viewpoint does not satisfy our expectations, one can look for another
viewpoint in a reformulation process. Classical examples of reformulation are the dual
and the hidden variable transformations [2], passing from non-binary formulations into
binary ones (useful in the early days). An interesting class is the so-called permutation
problems, which have as many variables as values and solutions are permutations of
such values (although not every permutation is a solution). The n-queens problem is
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X6

Fig. 10. A state of the 6-queens problem, from [86].



an example of this class. Permutation problems have two standard viewpoints, that ex-
change the roles of variables and values (in the n-queens problem, exchanging the roles
of rows –variables– by columns –values–). In some cases, constraints are more easily
expressed in one viewpoint than in the other. Finally, an extreme case of reformulation
is to use a SAT encoding of the considered problem, to be solved by a SAT solver [93].

A powerful mechanism in modelling is to connect several (generally two) views on
a problem (viewpoints), in such a way that the pruning done in one view is propagated
to another view by the so called channeling constraints. These constraints connect the
viewpoints, making available in a viewpoint what has been deduced in the other and
vice versa. Viewpoints are mutually redundant, in the sense that one would suffice to
achieve a correct solution, but combining them a solution can be found faster [20].
Interestingly, when two viewpoints are combined, some constraints of one (or both)
viewpoints can be dropped without affecting correctness and improving performance
[86]. This approach of combining viewpoints can be extended to more than two [31].

The presence of symmetry can also be detected and exploited in modelling. Some-
times symmetry is introduced in the modelling phase, differentiating among indistin-
guishable variables (i.e. in the n-queens problem, we may have a variable for the 1st
queen, another for the 2nd queen, ... which is not necessary because all what we know
is a set of n-queens). Reformulation and the use of set variables is a way to avoid
such traps. Nevertheless, there are problems with an inherent degree of symmetry, so to
avoid it some of the methods described in the Section 3.4 should be used. In particular,
if we add symmetry breaking constraints before search, we can use them to generate
redundant constraints [41].

In many cases, there is a function f to optimize (say minimize) under the con-
straints. If f returns integers, a naive approach is to solve a sequence of CSPs with a
constraint requiring f lower than or equal to a parameter which decreases in steps of
one (f ≤ k, f ≤ k − 1, f ≤ k − 2 and so on). Given the first instance of the sequence
without solution, the minimum of f and the solution are those of the previous instance
in the sequence. Alternatively, these problems can be solved by a branch-and-bound
algorithm, which each time a new solution is found with f = k, a new constraint is
added requiring f < k (so only solutions with lower values of f are considered).

Some work has been done on generating automatically several models from prob-
lem specifications, even linking them by channeling constraints [86]. The identification
of constraint patterns [94], as structures that repeatedly appear in constraint networks,
seems a promising modelling direction. Once these patterns are well understood, they
can be successfully reused through applications.

All these ideas have been successfully used in some applications, but no idea is
universally successful [40]. The number of variables, the number of constraints and
the quality of their propagation seem to have a crucial impact in the amount of search
needed to solve a problem. However, we should have in mind that reducing search
does not always reduce run-time (because of the different overheads of the solver).
A deep knowledge of the problem to solve seems to be the best advice, to be able
to generate different viewpoints, redundant constraints and auxiliary variables. Some
of these elements could be finally used in the problem model if they really enhance
efficiency [86].



5 Constraint Programming

Programming is the process of passing from a constraint network, modelling a real-
world problem, into its effective implementation in some of the existing CP environ-
ments. Obviously, you may start from scratch, programming everything from the very
beginning, but nowadays this is not needed. Existing CP environments offer a number
of facilities to declare variables, domains and constraints to represent your problem,
to specify how search should be done and the required level of propagation (often per
constraint). In addition, a library of constraints is available, many of them global offer-
ing specialized propagators already implemented. The existence of several CP environ-
ments has been crucial for the success of constraint technology. In the following, we
describe some aspects of existing CP environments for finite domains (that is, we do
not consider systems that work with numerical constraints and interval domains).

It is worth noting that constraint programming follows a declarative approach [38,
75]. Typically, you declare the model of your problem in terms of variables, domains
and constraints. Once everything is declared, you ask for solving, but the actual solving
process is not programmed by the user. Solving is done by the CP solver, which in most
cases is used as a black box, that returns a solution or failure. Often, a function to be
optimized can be added.

A CP environment provides facilities to define variables, domains and constraints.
Variables and domains are internally represented in a rather direct way: variables are as-
sociated with domains, which are represented as sets of integers. Regarding constraints,
by default they are not explicitly represented as collections of permitted tuples (to avoid
memory problems and to maintain the constraint semantics), but by a collection of prop-
agators (also known as filters or narrowing operators). A propagator is a function that
maps domains into domains and it must be contracting (only remove values from the
domain) and monotonic (if one domain is smaller than another one, this relation re-
mains after the action of the propagator). A collection of propagators implements a
constraint C iff they are correct (they do not remove assignments permitted by C) and
they are checking C (when all variables involved in C are instantiated, the propagator
must check if the tuple is permitted by C or not, reporting failure in this last case). The
iterated application of propagators of the constraint set computes a reduction of do-
mains which is the greatest mutual fixpoint of all propagators (this iterated application
includes the execution of propagators for which the domains of its variables have been
modified by the action of other propagators).

With this structure, the underlying search procedure (since propagators implement
incomplete inference, some search is needed to achieve a solution) can be seen as a two-
step procedure: (i) the application of a set of propagators until finding a fixpoint, and (ii)
if no empty domain is detected, a variable is chosen on which a number of excluding
alternatives are considered; each alternative is posted as a new constraint in turn, and
their corresponding set of propagators is executed, applying again point (i). Step (i) is
known as propagation, while step (ii) is branching (or search). The state where branch-
ing is performed is known as choice point. Instead of developing a search tree from
variable assignments, this approach develops the search tree by adding constraints on
variables (of which assigning a value is a particular case). In this sense, this approach
generalizes the classical search tree of Figure 3. After reaching a fixpoint, it is of crucial



importance to repeat the execution of a propagator only when the domains of the cor-
responding variables have changed. This is monitored by events, which signal changes
in the domains and trigger the corresponding propagator. A number of improvements
and simplifications have been suggested inside this strategy that combines search and
propagation. They are clearly described in [81].

In the execution of the propagation step, propagators are in a list to be executed.
Usually, this list is ordered putting low complexity propagators first (although the im-
portance of the events triggering propagators is also considered). Anyway, propagator
starvation (a propagator in the list waiting an unbounded amount of time to be executed)
should be avoided. Although propagators have been defined as functions, in practice
they have some internal, private state, that has to be stored between executions. This
state is used to achieve extra functionalities (for instance, incrementality) that improve
performance.

Among propagators, we mention indexicals (especially for historical reasons). An
indexical is a propagator for a simple constraint of the form variable is in range. Finite
domain arithmetic constraints are compiled in terms of a set of indexicals. For instance
x ≤ y is compiled into the indexicals x in −∞..min(y) and y in min(x)..∞.

The common problem of domain representation has two popular formats: range
sequences and bit vectors. A range sequence is a sequence of intervals such that the
domain is exactly the union of such intervals. A bit vector is formed by a set of conse-
cutive words in memory, such that the bit in position i is set to 1 iff the ith value is in
the domain. Large domains are usually represented by range sequences.

A function that CP environments repeat many times is restoration, specially applied
to domains. Different techniques has been tried, such as copy, trailing and recomputa-
tion. While copy is the simplest strategy, it has the problem of memory usage. Trailing
records the changes done, so they can be undone if needed. Recomputation considers
repeating the execution to achieve the desired state. Obviously, this last option requires
almost no extra memory, but it may last longer than the others. Nowadays, trailing is
the prevailing strategy in most CP environments.

Current CP environments are divided in two main classes:

• Autonomous systems: are environments for specific programming languages which
include the elements for finite domain constraint solving. Examples of such au-
tonomous systems are Sicstus Prolog [19] and COMET [32].
• Library systems: are libraries which provide users of existing programming lan-

guages, such as C++ or Java, with the facilities to declare and work with variables,
domains and constraints. Examples of library systems are Choco [58], Gecode [82]
and IBM ILOG CPLEX CP Optimization Studio [53].

We also mention MiniZinc [64], an autonomous high level CP environment. MiniZ-
inc programs are first compiled into another CP language called FlatZinc. From this
language, they can be interfaced with different CP backend solvers. Here we only men-
tion some CP environments, but there are many more. For a comprehensive list, see
[81].



6 Summary

Trying to summarize all the work done in Constraint Reasoning in the last 40 years
in a few pages is simply impossible. We have presented in an informal –but hopefully
precise– way the most relevant achievements in this field, according to the view and
formation of the author.

Most of the work described in this paper follows an algorithmic approach for solv-
ing constraint networks. We have presented search as the basic solving strategy. In
systematic search, the simple BT algorithm enhanced with some intelligent backtrack-
ing techniques, appears as the kernel element for constraint solving. Also the basic
blocks of local search have been described. Inference appears as an alternative way
to solve constraint networks. Incomplete inference (also known as constraint propa-
gation), specifically GAC or weaker forms of local consistency, have shown idoneous
to be hybridized with systematic search strategies to achieve what is today the stan-
dard way of solving constraint networks which could be summarized in the expression
search+ propagation.

The inclusion of global constraints have been a huge step forward in achieving so-
lutions to practical problems in reasonable time. Also symmetry exploitation has been
crucial to avoid useless work in many problems showing some kind of symmetry. Re-
laxing some of the assumptions of the initial constraint network model, it has been
extended in several dimensions generating extensions such as continuous constraints,
soft constraints and distributed constraints.

Modelling, as the task of translating a real-world problem into a constraint network
that could be solved in a reasonable time, appears as a difficult, hand-made task that
resists automatization. Currently, a number of good practices and rules of thumb are
known but a systematic way to attack modelling remains to be done. In the last part of
the paper, we have described some of the elements of CP environments. There is a wide
variety of them, indicating that the engineering dimension of Constraint Reasoning is
in good health.

However, there are a number of other topics in Constraint Reasoning that we have
not talked about, which deserve some mention. Restarts in search procedures have re-
ceived some attention, and different branching strategies to develop search trees have
been studied. Domain consistencies, a class of local consistencies removing values from
domains (wider than arc consistency) have been shown useful in a number of cases.
Complexity has been a recurrent topic, considering both the problem topology and the
internal form of constraints, looking for tractability islands. In many cases, there are
close connections with Operation Research (especially when optimization is involved).
A substantial amount of work has been devoted to constraint languages, from the early
days of logic programming to current CP environments. Another classical topic has
been the study of dynamic CSPs, when one has to solve a sequence of CSP instances,
each differing little from the previous one. Further extensions to the classical problem
such as unbounded domains (open CSPs) and variables with structure (for instance set
variables) have been analyzed. Lately, the introduction of universal quantifiers in the
definition of a solution of a constraint network has been studied.

Finally, we have not talked about applications. Constraints fit quite well in the field
of temporal reasoning. Planning and scheduling has been, since the very beginning, a



natural field for constraint applications. In addition, there are relevant constraint appli-
cations in vehicle routing, networking and bioinformatics.
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