7,420 research outputs found

    Discovering Blind Spots in Reinforcement Learning

    Full text link
    Agents trained in simulation may make errors in the real world due to mismatches between training and execution environments. These mistakes can be dangerous and difficult to discover because the agent cannot predict them a priori. We propose using oracle feedback to learn a predictive model of these blind spots to reduce costly errors in real-world applications. We focus on blind spots in reinforcement learning (RL) that occur due to incomplete state representation: The agent does not have the appropriate features to represent the true state of the world and thus cannot distinguish among numerous states. We formalize the problem of discovering blind spots in RL as a noisy supervised learning problem with class imbalance. We learn models to predict blind spots in unseen regions of the state space by combining techniques for label aggregation, calibration, and supervised learning. The models take into consideration noise emerging from different forms of oracle feedback, including demonstrations and corrections. We evaluate our approach on two domains and show that it achieves higher predictive performance than baseline methods, and that the learned model can be used to selectively query an oracle at execution time to prevent errors. We also empirically analyze the biases of various feedback types and how they influence the discovery of blind spots.Comment: To appear at AAMAS 201

    学習戦略に基づく学習分類子システムの設計

    Get PDF
    On Learning Classifier Systems dubbed LCSs a leaning strategy which defines how LCSs cover a state-action space in a problem can be one of the most fundamental options in designing LCSs. There lacks an intensive study of the learning strategy to understand whether and how the learning strategy affects the performance of LCSs. This lack has resulted in the current design methodology of LCS which does not carefully consider the types of learning strategy. The thesis clarifies a need of a design methodology of LCS based on the learning strategy. That is, the thesis shows the learning strategy can be an option that determines the potential performance of LCSs and then claims that LCSs should be designed on the basis of the learning strategy in order to improve the performance of LCSs. First, the thesis empirically claims that the current design methodology of LCS, without the consideration of learning strategy, can be limited to design a proper LCS to solve a problem. This supports the need of design methodology based on the learning strategy. Next, the thesis presents an example of how LCS can be designed on the basis of the learning strategy. The thesis empirically show an adequate learning strategy improving the performance of LCS can be decided depending on a type of problem difficulties such as missing attributes. Then, the thesis draws an inclusive guideline that explains which learning strategy should be used to address which types of problem difficulties. Finally, the thesis further shows, on an application of LCS for a human daily activity recognition problem, the adequate learning strategy according to the guideline effectively improves the performance of the application. The thesis concludes that the learning strategy is the option of the LCS design which determines the potential performance of LCSs. Thus, before designing any type of LCSs including their applications, the learning strategy should be adequately selected at first, because their performance degrades when they employ an inadequate learning strategy to a problem they want to solve. In other words, LCSs should be designed on the basis of the adequate learning strategy.電気通信大学201

    Learning Manipulation under Physics Constraints with Visual Perception

    Full text link
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure.Comment: arXiv admin note: substantial text overlap with arXiv:1609.04861, arXiv:1711.00267, arXiv:1604.0006

    Learning Manipulation under Physics Constraints with Visual Perception

    No full text
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems
    corecore