295 research outputs found

    Interactive Imitation Learning in Robotics: A Survey

    Full text link
    Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) where human feedback is provided intermittently during robot execution allowing an online improvement of the robot's behavior. In recent years, IIL has increasingly started to carve out its own space as a promising data-driven alternative for solving complex robotic tasks. The advantages of IIL are its data-efficient, as the human feedback guides the robot directly towards an improved behavior, and its robustness, as the distribution mismatch between the teacher and learner trajectories is minimized by providing feedback directly over the learner's trajectories. Nevertheless, despite the opportunities that IIL presents, its terminology, structure, and applicability are not clear nor unified in the literature, slowing down its development and, therefore, the research of innovative formulations and discoveries. In this article, we attempt to facilitate research in IIL and lower entry barriers for new practitioners by providing a survey of the field that unifies and structures it. In addition, we aim to raise awareness of its potential, what has been accomplished and what are still open research questions. We organize the most relevant works in IIL in terms of human-robot interaction (i.e., types of feedback), interfaces (i.e., means of providing feedback), learning (i.e., models learned from feedback and function approximators), user experience (i.e., human perception about the learning process), applications, and benchmarks. Furthermore, we analyze similarities and differences between IIL and RL, providing a discussion on how the concepts offline, online, off-policy and on-policy learning should be transferred to IIL from the RL literature. We particularly focus on robotic applications in the real world and discuss their implications, limitations, and promising future areas of research

    Trying to Grasp a Sketch of a Brain for Grasping

    Get PDF
    Ritter H, Haschke R, Steil JJ. Trying to Grasp a Sketch of a Brain for Grasping. In: Sendhoff B, ed. Creating Brain-Like Intelligence. Lecture Notes in Artificial Intelligence; 5436. Berlin, Heidelberg: Springer; 2009: 84-102

    Motion representation with spiking neural networks for grasping and manipulation

    Get PDF
    Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalische Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusammenarbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit der Forschung an humanoiden und biologisch inspirierten Robotern werden komplexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwickelt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassischen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen. Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Dennoch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzentrieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologischen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike- basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanismen des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kommunikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromorpher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen ermöglichen. In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss- teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funktionalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parametrische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematische Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeordnet. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschiedene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die Bewegung kann entweder als Funktion modelliert oder durch Imitation der menschlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssysteme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat und keine ungültigen Konfigurationen enthält. Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschiedene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kombiniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzeptionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun- gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kombiniert unter Verwendung eines Zielsignals. Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif- bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewegung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung. Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, parametrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Primitive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist, dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfangreichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für verschiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor- primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomotion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Framework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis- basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis- che Nachbildung eines biologischen Systems, das vollständig mit SNNs implementiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber liefern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und wie diese in der Robotik angewendet werden können. Modellfreie Bewegungssteuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und flexibler machen

    Lipschitzness Is All You Need To Tame Off-policy Generative Adversarial Imitation Learning

    Full text link
    Despite the recent success of reinforcement learning in various domains, these approaches remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled with essential engineering feats allowing their success. We consider the case of off-policy generative adversarial imitation learning, and perform an in-depth review, qualitative and quantitative, of the method. We show that forcing the learned reward function to be local Lipschitz-continuous is a sine qua non condition for the method to perform well. We then study the effects of this necessary condition and provide several theoretical results involving the local Lipschitzness of the state-value function. We complement these guarantees with empirical evidence attesting to the strong positive effect that the consistent satisfaction of the Lipschitzness constraint on the reward has on imitation performance. Finally, we tackle a generic pessimistic reward preconditioning add-on spawning a large class of reward shaping methods, which makes the base method it is plugged into provably more robust, as shown in several additional theoretical guarantees. We then discuss these through a fine-grained lens and share our insights. Crucially, the guarantees derived and reported in this work are valid for any reward satisfying the Lipschitzness condition, nothing is specific to imitation. As such, these may be of independent interest

    Control and Learning of Compliant Manipulation Skills

    Get PDF
    Humans demonstrate an impressive capability to manipulate fragile objects without damaging them, graciously controlling the force and position of hands or tools. Traditionally, robotics has favored position control over force control to produce fast, accurate and repeatable motion. For extending the applicability of robotic manipulators outside the strictly controlled environments of industrial work cells, position control is inadequate. Tasks that involve contact with objects whose positions are not known with perfect certainty require a controller that regulates the relationship between positional deviations and forces on the robot. This problem is formalized in the impedance control framework, which focuses the robot control problem on the interaction between the robot and its environment. By adjusting the impedance parameters, the behavior of the robot can be adapted to the need of the task. However, it is often difficult to specify formally how the impedance should vary for best performance. Furthermore, fast it can be shown that careless variation of the impedance can lead to unstable regulation or tracking even in free motion. In the first part of the thesis, the problem of how to define a varying impedance for a task is addressed. A haptic human-robot interface that allows a human supervisor to teach impedance variations by physically interacting with the robot during task execution is introduced. It is shown that the interface can be used to enhance the performance in several manipulation tasks. Then, the problem of stable control with varying impedance is addressed. Along with a theoretical discussion on this topic, a sufficient condition for stable varying stiffness and damping is provided. In the second part of the thesis, we explore more complex manipulation scenarios via online generation of the robot trajectory. This is done along two axes 1) learning how to react to contact forces in insertion tasks which are crucial for assembly operations and 2) autonomous Dynamical Systems (DS) for motion representation with the capability to encode a family of trajectories rather than a fixed, time-dependent reference. A novel framework for task representation using DS is introduced, termed Locally Modulated Dynamical Systems (LMDS). LMDS differs from existing DS estimation algorithms in that it supports non-parametric and incremental learning all the while guaranteeing that the resulting DS is globally stable at an attractor point. To combine the advantages of DS motion generation with impedance control, a novel controller for tasks described by first order DS is proposed. The controller is passive, and has the properties of an impedance controller with the added flexibility of a DS motion representation instead of a time-indexed trajectory

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator

    Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning Systems

    Get PDF
    Recent successes combine reinforcement learning algorithms and deep neural networks, despite reinforcement learning not being widely applied to robotics and real world scenarios. This can be attributed to the fact that current state-of-the-art, end-to-end reinforcement learning approaches still require thousands or millions of data samples to converge to a satisfactory policy and are subject to catastrophic failures during training. Conversely, in real world scenarios and after just a few data samples, humans are able to either provide demonstrations of the task, intervene to prevent catastrophic actions, or simply evaluate if the policy is performing correctly. This research investigates how to integrate these human interaction modalities to the reinforcement learning loop, increasing sample efficiency and enabling real-time reinforcement learning in robotics and real world scenarios. This novel theoretical foundation is called Cycle-of-Learning, a reference to how different human interaction modalities, namely, task demonstration, intervention, and evaluation, are cycled and combined to reinforcement learning algorithms. Results presented in this work show that the reward signal that is learned based upon human interaction accelerates the rate of learning of reinforcement learning algorithms and that learning from a combination of human demonstrations and interventions is faster and more sample efficient when compared to traditional supervised learning algorithms. Finally, Cycle-of-Learning develops an effective transition between policies learned using human demonstrations and interventions to reinforcement learning. The theoretical foundation developed by this research opens new research paths to human-agent teaming scenarios where autonomous agents are able to learn from human teammates and adapt to mission performance metrics in real-time and in real world scenarios.Comment: PhD thesis, Aerospace Engineering, Texas A&M (2020). For more information, see https://vggoecks.com
    corecore