8,755 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Novel cruzain inhibitors for the treatment of Chagas' disease.

    Get PDF
    The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas' disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas' disease

    Mechanism of glycan receptor recognition and specificity switch for avian, swine, and human adapted influenza virus hemagglutinins: a molecular dynamics perspective.

    Get PDF
    Hemagglutinins (HA's) from duck, swine, and human influenza viruses have previously been shown to prefer avian and human glycan receptor analogues with distinct topological profiles, pentasaccharides LSTa (alpha-2,3 linkage) and LSTc (alpha-2,6 linkage), in comparative molecular dynamics studies. On the basis of detailed analyses of the dynamic motions of the receptor binding domains (RBDs) and interaction energy profiles with individual glycan residues, we have identified approximately 30 residue positions in the RBD that present distinct profiles with the receptor analogues. Glycan binding constrained the conformational space sampling by the HA. Electrostatic steering appeared to play a key role in glycan binding specificity. The complex dynamic behaviors of the major SSE and trimeric interfaces with or without bound glycans suggested that networks of interactions might account for species specificity in these low affinity and high avidity (multivalent) interactions between different HA and glycans. Contact frequency, energetic decomposition, and H-bond analyses revealed species-specific differences in HA-glycan interaction profiles, not readily discernible from crystal structures alone. Interaction energy profiles indicated that mutation events at the set of residues such as 145, 156, 158, and 222 would favor human or avian receptor analogues, often through interactions with distal asialo-residues. These results correlate well with existing experimental evidence, and suggest new opportunities for simulation-based vaccine and drug development

    Cholesterol modulates acetylcholine receptor diffusion by tuning confinement sojourns and nanocluster stability

    Get PDF
    Translational motion of neurotransmitter receptors is key for determining receptor number at the synapse and hence, synaptic efficacy. We combine live-cell STORM superresolution microscopy of nicotinic acetylcholine receptor (nAChR) with single-particle tracking, mean-squared displacement (MSD), turning angle, ergodicity, and clustering analyses to characterize the lateral motion of individual molecules and their collective behaviour. nAChR diffusion is highly heterogeneous: subdiffusive, Brownian and, less frequently, superdiffusive. At the single-track level, free walks are transiently interrupted by ms-long confinement sojourns occurring in nanodomains of ~36 nm radius. Cholesterol modulates the time and the area spent in confinement. Turning angle analysis reveals anticorrelated steps with time-lag dependence, in good agreement with the permeable fence model. At the ensemble level, nanocluster assembly occurs in second-long bursts separated by periods of cluster disassembly. Thus, millisecond-long confinement sojourns and second-long reversible nanoclustering with similar cholesterol sensitivities affect all trajectories; the proportion of the two regimes determines the resulting macroscopic motional mode and breadth of heterogeneity in the ensemble population.Fil: Mosqueira, Alejo. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Camino, Pablo A.. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; Argentin
    corecore