3,786 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization

    Get PDF
    The increasingly growing data traffic has posed great challenges for mobile operators to increase their data processing capacity, which incurs a significant energy consumption and deployment cost. With the emergence of the Cloud Radio Access Network (C-RAN) architecture, the data processing units can now be centralized in data centers and shared among base stations. By mapping a cluster of base stations with complementary traffic patterns to a data processing unit, the processing unit can be fully utilized in different periods of time, and the required capacity to be deployed is expected to be smaller than the sum of capacities of single base stations. However, since the traffic patterns of base stations are highly dynamic in different time and locations, it is challenging to foresee and characterize the traffic patterns in advance to make optimal clustering schemes. In this paper, we address these issues by proposing a deep-learning-based C-RAN optimization framework. First, we exploit a Multivariate Long Short-Term Memory (MuLSTM) model to learn the temporal dependency and spatial correlation among base station traffic patterns, and make accurate traffic forecast for a future period of time. Afterwards, we build a weighted graph to model the complementarity of base stations according to their traffic patterns, and propose a Distance-Constrained Complementarity-Aware (DCCA) algorithm to find optimal base station clustering schemes with the objectives of optimizing capacity utility and deployment cost. We evaluate the performance of our framework using data in two months from real-world mobile networks in Milan and Trentino, Italy. Results show that our method effectively increases the average capacity utility to 83.4% and 76.7%, and reduces the overall deployment cost to 48.4% and 51.7% of the traditional RAN architecture in the two datasets, respectively, which consistently outperforms the state-of-the-art baseline methods

    Total Cost of Ownership of Digital vs. Analog Radio-Over-Fiber Architectures for 5G Fronthauling

    Get PDF
    The article analyzes the total cost of ownership (TCO) of 5G fronthauling solutions based on analog and digital radio-over-fiber (RoF) architectures in cloud radio access networks (C-RANs). The capital and operational expenditures (CAPEX, OPEX) are assessed, for a 10-year period, considering three different RoF techniques: intermediate frequency analog RoF (IF-A-RoF), digital signal processing (DSP) assisted analog RoF (DSP-A-RoF), and digital RoF (D-RoF) based on the common public radio interface (CPRI) specifications. The greenfield deployment scenario under exam includes both fiber trenching (FT) and fiber leasing (FL) options. The TCO is assessed while varying (i) the number of aggregated subcarriers, (ii) the number of three-sector antennas located at the base station, and (iii) the mean fiber-hop length. The comparison highlights the significance that subcarrier aggregation has on the cost efficiency of the analog RoF solutions. In addition, the analysis details the contribution of each cost category to the overall CAPEX and OPEX values. The obtained results indicate that subcarrier aggregation via DSP results in high cost efficiency for a mobile fronthaul network, while a CPRI-based architecture together with FL brings the highest OPEX value

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    On the specialization of FDRL agents for scalable and distributed 6G RAN slicing orchestration

    Get PDF
    ©2022 IEEE. Reprinted, with permission, from Rezazadeh, F., Zanzi, L., Devoti, F. et.al. On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration. IEEE Transactions on vehicular technology (Online) October 2022Network slicing enables multiple virtual networks to be instantiated and customized to meet heterogeneous use case requirements over 5G and beyond network deployments. However, most of the solutions available today face scalability issues when considering many slices, due to centralized controllers requiring a holistic view of the resource availability and consumption over different networking domains. In order to tackle this challenge, we design a hierarchical architecture to manage network slices resources in a federated manner. Driven by the rapid evolution of deep reinforcement learning (DRL) schemes and the Open RAN (O-RAN) paradigm, we propose a set of traffic-aware local decision agents (DAs) dynamically placed in the radio access network (RAN). These federated decision entities tailor their resource allocation policy according to the long-term dynamics of the underlying traffic, defining specialized clusters that enable faster training and communication overhead reduction. Indeed, aided by a traffic-aware agent selection algorithm, our proposed Federated DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting to end-user mobility patterns and reducing costly interactions with centralized controllersPeer ReviewedPreprin

    On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration

    Get PDF
    Network slicing enables multiple virtual networks to be instantiated and customized to meet heterogeneous use case requirements over 5G and beyond network deployments. However, most of the solutions available today face scalability issues when considering many slices, due to centralized controllers requiring a holistic view of the resource availability and consumption over different networking domains. In order to tackle this challenge, we design a hierarchical architecture to manage network slices resources in a federated manner. Driven by the rapid evolution of deep reinforcement learning (DRL) schemes and the Open RAN (O-RAN) paradigm, we propose a set of traffic-aware local decision agents (DAs) dynamically placed in the radio access network (RAN). These federated decision entities tailor their resource allocation policy according to the long-term dynamics of the underlying traffic, defining specialized clusters that enable faster training and communication overhead reduction. Indeed, aided by a traffic-aware agent selection algorithm, our proposed Federated DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting to end-user mobility patterns and reducing costly interactions with centralized controllers.Comment: 15 pages, 15 Figures, accepted for publication at IEEE TV
    • …
    corecore