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Abstract—Network slicing enables multiple virtual networks to
be instantiated and customized to meet heterogeneous use case
requirements over 5G and beyond network deployments. However,
most of the solutions available today face scalability issues when
considering many slices, due to centralized controllers requiring
a holistic view of the resource availability and consumption over
different networking domains. In order to tackle this challenge,
we design a hierarchical architecture to manage network slices
resources in a federated manner. Driven by the rapid evolution
of deep reinforcement learning (DRL) schemes and the Open
RAN (O-RAN) paradigm, we propose a set of traffic-aware local
decision agents (DAs) dynamically placed in the radio access
network (RAN). These federated decision entities tailor their
resource allocation policy according to the long-term dynamics
of the underlying traffic, defining specialized clusters that enable
faster training and communication overhead reduction. Indeed,
aided by a traffic-aware agent selection algorithm, our proposed
Federated DRL approach provides higher resource efficiency than
benchmark solutions by quickly reacting to end-user mobility pat-
terns and reducing costly interactions with centralized controllers.

Index Terms—B5G/6G, Network Slicing, AI, Federated Learn-
ing, Deep Reinforcement Learning, Distributed Management

I. INTRODUCTION

VEHICLE-TO-EVERYTHING (V2X) communication, In-
ternet of things (IoT), augmented/virtual reality (AR/VR),

are just some examples of emerging use-cases in 5G/6G verti-
cals that need to co-exist over a common physical infrastructure.
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Figure 1: RAN resource allocation in network slicing.

However, the highly heterogeneous performance requirements
in terms of bandwidth, latency, and reliability, exacerbate the
need for orchestration solutions able to accommodate such
services in a resource and cost-efficient manner. Network
slicing represents a promising technology able to address such
a challenging scenario, by enabling the setup of multiple logical
and virtualized network instances, namely slices, on top of
a common physical mobile network infrastructure [1]. Given
the cloud nature of these resources, the networking resources
associated to each slice can be dynamically orchestrated and
tailored to meet the performance requirements of running
services. In this context, temporal variations of the traffic
demand deeply complicate resource planning and allocation
tasks, especially in the radio access network (RAN) domain
where resource allocation [2] decisions, e.g., in terms of
bandwidth, must cope with the additional variability inherent
of the wireless channel and end-user’s mobility. Traditional
RAN slicing solutions envision a centralized controller with
a holistic and real-time view of the network, especially about
resource utilization, availability, and real-time wireless channel
statistics, as depicted in Fig. 1. However, similar approaches
suffer from scalability issues in real deployments, where the
amount of monitoring information to be exchanged, together
with the large number of base stations (BSs), make it practically
impossible to devise optimal resource allocation schemes in
a timely and resource-efficient manner [3]. Motivated by the
need for a more cost-effective and agile RAN, the Open
RAN (O-RAN) Alliance recently presented a vendor-neutral



alternative way of building mobile networks [4], based on
disaggregated hardware and interoperable interfaces that allow
secure network sharing by means of virtualization. Despite the
revolutionary approach, it is still not clear how to efficiently
support slicing scenarios [5] characterized by a large number
of vertical services. Therefore, we take on this challenge and
propose a hierarchical architecture for network slice resource
orchestration. In particular, given the variable spatio-temporal
distribution of mobile traffic demands [6], we envision the
dynamic setup of a network of local decision agents (DAs)
as virtual software instances co-located within the Near-Real
Time RAN Intelligent Controller (Near-RT RIC) premises, able
to access local RAN monitoring information and extract local
knowledge without the need of a centralized entity performing
decisions on aggregated information. Our framework leverages
a dynamic agent selection mechanism based on local traffic
conditions similarity, which enables more efficient information
exchange and collaboration among groups of local DAs, while
specializing their decision policy. The benefit coming from our
approach are several: i) it enables resource allocation at the
edge of the network, thus accounting for more timely and
accurate information, ii) the amount of control information
that needs to cross the network to reach the central controller
dramatically decreases, thus reducing overhead towards the core
network, iii) by allowing information exchange among local
DAs, we enable the provisioning of federated learning schemes
to further enrich the capabilities of the DAs. In fact, DAs
will not only learn from a local observation space, but also
leverage information coming from other (statistically different)
RAN nodes, thus improving the generalization of the learning
procedure.

The main contributions of our paper can be summarized as
follows:

• We cast the RAN resource allocation problem as an
optimization problem, focusing on minimizing the traffic
exceeding the service level agreement (SLA) and assessing
its complexity.

• We propose a distributed architecture for RAN slice re-
source orchestration based on deep reinforcement learning
(DRL), composed of multiple artificial intelligence (AI)-
enabled decision agents that perform local radio allocation
decisions without the need for a centralized control entity.

• We design a federated learning (FL) scheme composed of
multiple parallel layers, one for each slice, to enhance the
capabilities of the local decision-making process, follow-
ing the recent development of the Open RAN architecture.

• We further improve the decision process by dynamically
defining the subset of decision agents to be involved in
the federation process, based on long-term slice traffic
demands variations and their temporal similarities.

• We validate our hierarchical architecture and assess its ca-
pabilities in realistic scenarios by means of an exhaustive
simulation campaign, accounting for a wide geographical
area and thousands of end-users.

The remainder of this paper is as follows: Sec. II provides an

overview of the related works in the field. Sec. III formulates
our problem and describes the considered scenario. Sec. IV
presents the main building blocks of our solution, describing
the interaction among the different entities. Sec. V highlights
the compliance of our solution with respect to the O-RAN
architecture. Sec. VI validates the design principles of our
solution through a comprehensive simulation campaign. Finally,
Sec. VII provides the final remarks and concludes this paper.

II. RELATED WORK

AI-driven approaches applied to mobile networks have re-
cently gained momentum in distributed resource control and
management tasks. In this context, DRL [7], [8] and federated
DRL (FDRL) [9] stand out among a multitude of different
approaches and are at the center of a strong research interest,
especially in the field of automated resource orchestration.
The authors of [10] consider the sum power minimization
problem based on jointly optimizing resource allocation, user
association, and power control in a multi-access edge comput-
ing (MEC) system. In this intent, they propose a multi-agent
federated reinforcement learning algorithm to solve centralized
method limitations and privacy concerns. The simulation results
shown that the proposed approach provides lower maximal
latency, lower maximal computation capacity, higher CPU
cycles for the tasks, and higher data rate. Due to enhancing
spectrum utilization in new generation wireless communication
technologies, the authors in [11] invoke an FDRL approach
to accelerate learning convergence in edge nodes. In [12],
the authors investigate the decentralized joint optimization of
channel selection and power control for V2V communication,
proposing a federated multi-agent DRL (Fed-MARL) approach
to satisfy the reliability and latency requirements of V2V
communication, and maximize the transmit rates of cellular
links. The results have shown how the federation of local
DRL models coming from different V2V agents can tackle
the limitations of partial observability of the entire network,
resulting in superior perfomances over baseline approaches in
terms of communication rate and packet delivery rate. Targeting
at implementing the open RAN (O-RAN) with virtualized
network components, the authors of [13] proposed an FDRL-
based with a global model server installed in the intelligent con-
troller (RIC) to update the deep Q-networks parameters. This
approach can mitigate load balancing and frequent handovers
in the massive base station deployment. Following O-RAN
standardization, the numerical results have demonstrated the
proposed method enables UE to effectively maximizes the long-
term throughput and avoids frequent handovers. The authors
of [14] develop a DRL algorithm for the resource allocation
in a mobility-aware FL network, optimizing the number of
successful transmissions while minimizing energy and channel
costs. In [15], the authors propose a federated network slicing
scheme based on DRL techniques for channels and bandwidth
allocation in the context of industrial IoT (IIoT), highlighting
significant performance improvements when compared against
centralized strategies. In [16] the authors model the network



utility maximization problem and exploit DRL techniques such
as deep Q-learning to solve the decision-making task. Their
work highlights significant improvements over key performance
indicators (KPIs) and networking metrics, such as through-
put and latency. This solution however exploits a centralized
approach that aims to solve a global optimization, therefore
limiting the individual network slices in the management of
their own resources. A similar problem has been addressed
by [17], which however proposes a decentralized resource
orchestration system to automate dynamic end-to-end network
slicing resource management in wireless edge computing net-
works. The proposed architecture makes use of a central per-
formance coordinator entity and multiple orchestration agents.
This work however provides limited details on inter-agent
information exchange aspects. Also [18] proposes a DRL
approach for the orchestration of service function chains in
NFV-enabled networks, addressing both placement-error-rate-
based and reward-based federated weighed strategies, showing
significant convergence performance, higher average reward,
and smaller average resource consumption in a variety of
networking scenarios.

From the viewpoint of real-time inter-slice resource man-
agement and yield an intelligent strategy, the authors of [19]
design a graph attention multi-agent Reinforcement Learning
to cope with frequent BS handover. The simulation results
have demonstrated that the proposed approach is effective to
enhance the cooperation for the multi-BS system in RAN
while satisfying the strict SLA requirements. In [20], the
authors propose a multi-agent reinforcement learning approach
for RAN capacity sharing, showcasing better scalability and
faster learning in comparison to single-agent approaches. More
recently, the authors of [21] develop an FL framework in
the context of fog computing, focusing on the distribution of
training tasks. The numerical results show that the proposed
network-aware scheme significantly improves network resource
utilization while achieving comparable accuracy.

Following this state-of-the-art overview, the key novelty of
our approach relies on the exploitation of distributed RAN
information to design a new class of specialized agents that
collaborate in homogeneous clusters via a federation layer,
which leads to scalable and stable decision under highly dy-
namic traffic conditions and then proposed framework is also
mapped to O-RAN. To the best of our knowledge, this is the
first work to propose an FDRL framework in the context of
distributed radio resource management, by adopting dynamic
agent selection to improve specialization of agents and reduce
communication overhead.

III. FRAMEWORK OVERVIEW

Our solution builds on the concept of slicing-enabled mobile
networks [22], wherein multiple network tenants are sharing a
portion, namely a slice, of a common mobile network infras-
tructure, each one with predefined and dedicated networking
resources to satisfy an SLA. Within the context of our paper,
we focus on the RAN domain and consider the SLAs to be ex-
pressed in terms of maximum slice throughput and transmission

Table I: Notation Table

Notation Description

B Set of BSs
I Set of slices
Cb Capacity of BS b ∈ B
Λi Latency requirement of slice i ∈ I
λi Throughput requirement of slice i ∈ I
T Set of decision intervals
ε Duration of decision intervals t ∈ T
a
(t)
i,b PRB allocation for slice i ∈ I at BS b ∈ B

taken at time interval t ∈ T
σ
(t)
i,b Average SNR experienced by the users of

slice i ∈ I at BS b ∈ B in time interval t ∈ T
ϕ
(t)
i,b Instantaneous traffic demand of the users of

slice i ∈ I at BS b ∈ B in time interval t ∈ T
d
(t)
i,b Traffic of slice i ∈ I at BS b ∈ B

dropped in time interval t ∈ T
ι Minimum PRB allocation
E

(t)
i,b Expected transmission latency

ν
(t)
i Amount of available capacity left by

previous decisions of other agents
α
(t)
i Allocation gap
ρ
(t)
up Upper boundary of allocation gap
ρ
(t)
lower Lower boundary of allocation gap
r
(t)
i Instantaneous reward of the i-th agent
P

(t)
i Penalty of i-th agent
ηi Penalty coefficient
Qπ Action-value function under a given policy π
γ Discount factor
ξ Learning rate
βi Experience buffer
θ
(t)
i Online network parameter
θ̃
(t)
i Target network parameter

Ω
(t+1)
i Global updated model

Ψ Set of clusters

latency. We define transmission latency as the average time the
traffic belonging to a certain slice needs to wait within the base
station transmission buffers before being served due to inter-
slice scheduling procedures. In the following, we overview the
main system building blocks and model assumptions, finally
introducing the mathematical formulation of the RAN resource
allocation problem. We summarize parameters and variables
describing the system model in Table I.

Let us introduce a mobile network infrastructure composed
of a set B of base stations (BSs), wherein a set of slices I is
deployed. Each BS b ∈ B is characterized by a capacity Cb,
expressed in terms of a discrete number of physical resource
blocks (PRBs) of a fixed bandwidth. This resource availability
must be divided into subsets of PRBs, and dynamically assigned
to each network slice according to their real-time traffic demand
and SLA requirements. As part of the SLA between the network
operator and the slice owner, we assume each network slice
to come with predefined latency and throughput requirements
defined by the variables Λi and λi, respectively. In the context
of our work, we focus on the RAN domain, and therefore
consider as latency the queueing delay time experienced by the
traffic while flowing through the scheduling processes of each



base station. Let us consider a time-slotted system where time
is divided into decision intervals t ∈ T = {1, 2, . . . , T}. The
PRB allocation decisions can be taken only at the beginning
of each decision interval, whose duration ε may be decided
according to the infrastructure provider policies, ranging from
few seconds up to several minutes.

We assume the presence of a preliminary admission and
control mechanism, e.g., the one presented in [23], to verify
the admissibility of the current network slice setup within the
available networking capacity, and focus our effort on meeting
the resource allocation for the downlink traffic. We envision the
allocation of radio resources towards the end-users as a two-step
process [24]. Initially, once network slices are admitted into the
system, the infrastructure provider schedules the assignment of
slots of radio resources for each of the tenants. Then, based
on the slice resource availability, each tenant may decide to
enforce proprietary scheduling solutions towards its end-users,
depending on use-case or business requirements [22]. Given the
plethora of user to base station association and scheduling algo-
rithms addressing the end-user resource allocation task [25], we
do not address the intra-slice scheduling issue, but rather focus
on the correct and fair dimensioning of the inter-slice PRB
allocation. To this aim, we denote with the variable a(t)

i,b the PRB
allocation decision for the i-th slice under the b-th BS taken at t-
th decision time interval, and with σ(t)

i,b the signal-to-noise ratio
(SNR) value expressing the wireless channel quality, averaged
over the duration of a decision time interval ε, and over the
end-users of the i-th slice attached to the b-th BS. Similarly,
we introduce ϕ(t)

i,b as the aggregated downlink traffic demand
generated by the users of the i-th slice under the coverage area
of the b-th BS within the t-th time interval. All together, we
can formalize our problem as:
Problem RAN Resource Allocation:

min lim
T→∞

T∑
t=1

E

[∑
i∈I

d
(t)
i,b

]
(1)

subject to:

E
(t)
i,b ≤ Λi, ∀t ∈ T ,∀i ∈ I,∀b ∈ B; (2)∑
i∈I

a
(t)
i,b ≤ Cb, ∀t ∈ T ,∀b ∈ B; (3)

a
(t)
i,b ∈ Z+, d

(t)
i,b ∈ R+, ∀t ∈ T ,∀i ∈ I,∀b ∈ B; (4)

where E(t)
i,b = E

[
ϕ

(t)
i,b

Γ
(
a
(t)
i,b,σ

(t)
i,b

)
+d

(t)
i,b

]
defines the expected trans-

mission latency, and Γ(a, σ) is a function that translates the
PRB allocation a in the equivalent transmission capacity, given
the experienced channel quality σ. The traffic demand generated
within a decision interval might not be fully satisfied due to
erroneous PRB allocation estimations, incurring in additional
transmission latency due to traffic queuing at the base station.
Therefore, we introduce the variable d

(t)
i,b as a deficit value

indicating the volume of traffic not served within the agreed
slice latency tolerance Λi, and that is therefore dropped. Due
to fast traffic variations, slice resource allocation [26] decisions

Figure 2: Generic Federated DRL architecture for RAN slicing.

at the RAN domain should be taken in a dynamic, proactive,
and flexible way to avoid service and performance degradation.
While advanced admission and control mechanisms could select
the set of slices to be admitted to the system, and provide static
resource allocation boundaries to satisfy the available capacity,
the dynamic nature of the slice’s traffic load and wireless
channel statistics may lead to suboptimal performances.

Additionally, the optimization problem underlying RAN re-
source allocation, that is, fitting the requests of the slices
maximizing the overall utilization by considering the limited
resource availability of a BS, has been proven to be NP-
Hard [23]. In fact, this problem can be easily mapped into
a knapsack problem instance, wherein the sum of allocated
resources is bounded by the capacity of the radio interface,
and the experienced latency, i.e., the cost, is minimized. This
family of problems is well-known to be NP-Hard [27], resulting
in a time complexity of O(ICb) in our scenario, where I
is the cardinality of the set I, and Cb is the base station
resource availability in number of PRBs. In order to obtain
a solution for the overall RAN deployment, the same problem
should be solved for all the nodes in the network, therefore
introducing scalability issues. Moreover, the centralization of
all the necessary up-to-date monitoring information further
exacerbates the complexity of this problem, which becomes
impractical in real mobile networks characterized by thousands
of RAN nodes [28].

IV. A MULTI-AGENT ARCHITECTURE FOR RAN RESOURCE
ALLOCATION

In this paper, we advocate for the adoption of an FDRL-based
architecture to address the RAN slicing scenario. In particular,
we rely on local DAs running as software instances within the
premises of each BS, as shown in Fig. 2. Each agent is in charge
of performing slice PRB allocation decisions based on local
monitoring information coming from the underlying network
monitoring system, or BS context. We provide the details of our
local decision algorithm later in Sec. IV-A. Nevertheless, the
distributed nature of RAN deployments, as well as the varying
spatio-temporal behavior of mobile traffic traces [29], make
it difficult for an agent trained exclusively on complex and



multi-variate monitoring metrics to address unknown statistical
distributions of its base station context.

To concurrently address the above issues, we introduce an
FL layer that allows inter-agent information exchange, and
expedites the learning procedure local knowledge sharing. We
provide the details of our FL approach in Sec. IV-B.

A. Local RAN Slicing via DDQN Agent

Deep Q-network (DQN) is a popular reinforcement learn-
ing [30] algorithm that evolves from the well-known concepts
of Q-learning and neural network function approximation. DQN
represents a model-free approach. It stores the trajectory of
experiences for each interaction with the environment in a
replay buffer, as to update the network parameters without
prior knowledge of the underlying environment statistics. In
the following, we will use the i index interchangeably while
referring to slices and DAs, assuming a one-to-one mapping of
each DA with the corresponding network slice. With focus on
a single BS and a single decision interval the design choices
of our DQN model are as follows:
State Space S We define the state of the i-th agent associated
to the b-th BS as a tuple of local monitoring information
s

(t)
i = {(σ(t)

i , λ
(t)
i , ν

(t)
i ) | ∀i ∈ I}, where σ

(t)
i is the SNR

value, averaged over the duration of a decision time interval
experienced by the users of the i-th slice, λ(t)

i is the aggregated
traffic volume generated by the i-th slice over the time decision
duration ε, and ν(t)

i is the amount of available capacity left by
the previous decisions of other agents.
Action Space A Without loss of generality, we define ι as
the minimum PRB allocation step, or chunk size, and assume
that the PRB allocation decision of the i-th agent can only
take values that are an integer multiple of ι. It results that
A = {ι · k | k = {0, 1, . . . , bCι c}}. Such discrete action space
allows controlling the dimensionality of the action space and
positively influences the learning process [31].
Reward R We adopt an iterative reward-penalty approach
to guide the agent learning procedure, which translates into
maximizing a reward function. An accurate PRB allocation
should concurrently guarantee the satisfaction of transmission
latency Λi and the traffic requirements λ

(t)
i , while avoiding

both under-provisioning and over-provisioning of resources.
Given the instantaneous slice traffic volume ϕ

(t)
i , and the

corresponding allocation decision a
(t)
i ∈ A, we can identify

an allocation gap α
(t)
i = Γ(a

(t)
i , σ

(t)
i ) − ϕ(t)

i . To measure the
goodness of the action, we therefore introduce two variables,
namely ρ(t)

up and ρ(t)
lower, which characterize the upper and lower

boundaries of the allocation gap as ρ(t)
up = 2 · Γ(ι(t), σ

(t)
i ) and

ρ
(t)
lower = −Γ(ι(t), σ

(t)
i ). Accordingly, we define the instanta-

neous reward r(t)
i ∈ R of the i-th agent as:

r
(t)
i =


α

(t)
i − 4ρ

(t)
lower if α

(t)
i < ρ

(t)
lower,

(1− α
(t)
i

ρ
(t)
up

)
α

(t)
i

ρ
(t)
up

if ρ
(t)
lower ≤ α

(t)
i ≤ ρ

(t)
up ,

−(α
(t)
i − ρ

(t)
up ) if α

(t)
i > ρ

(t)
up .

(5)

Loss Function

Target NetworkOnline Network

Clone

Replay MemoryEnvironment

Gradient

Mini-Batch

Figure 3: An illustration of DDQN workflow.

Notably, the first case linearly penalizes the occurrence of under
provisioning decisions, while the third case acts in a similar way
on the over-provisioning cases. The middle case is the target
scenario, which assumes correct PRB allocation decisions in
response to the instantaneous slice traffic request. We envision
the multi-agent RAN slicing problem as a sequential proce-
dure, where at the beginning of each decision interval t, the
different agents perform local decisions according to a priority
value µi. Nevertheless, multiple and independent agents may
perform inaccurate decisions and leave the subsequent agents
with no spare resources, specially in the initial training phase.
Therefore, at the end of each training period, we calculate a
penalty

P
(t)
i = −ηi1

(
a

(t)
i > ν

(t)
i

)
, (6)

where ηi is the penalty coefficient of the i-th slice, and 1

denotes the logical operator. This penalty overrides the instan-
taneous agent reward ri if the decision a(t)

i is greater than the
amount of spare resources left by the previous decisions of
the other agents, that in turn prevents the agents to exceed the
available resources at the base station. This design choice is
justified by the results provided in Sec.VI-A.

Training of Agents The training of the local agent
implies the characterization of the action-value function
Q : S → A. Let us define the policy π as a probabilis-
tic function mapping states to actions. The agent makes
decisions and selects the corresponding actions based on
π, determining the best action for each state. Under a
given policy π, the action-value function can be defined as,
Qπ(s(t), a(t)) = Eπ

[∑∞
n=0

(
γnr(t+n+1)|(s(t), a(t))

)]
, where

γ ∈ [0, 1] is a discount factor that weights the short-
sighted and far-sighted reward, and n is the temporal in-
dex. According to Bellman’s equation [32], the optimal state-
action value function can be expressed as Q?(s(t), a(t)) =

E
[
r(t) + γmax

a(t+1)
Q?(s(t+1), a(t+1)|s(t), a(t))

]
, and thereby the

Q-learning update rule based on temporal difference (TD) [33]



is given by,

Q(s(t), a(t))← Q(s(t), a(t))+

ξ[r(t) + γmax
a(t+1)

Q(s(t+1), a(t+1))−Q(s(t), a(t))], (7)

where ξ is the learning rate. DQN adopts deep neural network
(DNN) to approximate the state-action value and surmount
the curse of dimensionality concerning inordinate large state
spaces. To limit the catastrophic interference problem [34],
which is the tendency of a neural network to forget about
previously learned information upon learning new ones, we
adopt an experience replay strategy. In particular, let us in-
troduce βi as the experience buffer. As depicted in Fig. 3, in
every training interval, we store the tuple (s

(t)
i , a

(t)
i , r

(t)
i , s

(t+1)
i )

describing the instantaneous experience generated by the agent
while interacting with the environment, and sample from βi a
random batch of past experiences to regularize the training.

Additionally, DQNs are well known to provide an overopti-
mistic value estimation. We alleviate this problem by leveraging
an additional DQN network, in the form of DDQN [35]-
[36]. With a slight abuse of notation, let us introduce
Q(s

(t)
i , a

(t)
i ; θ

(t)
i ) and Q(s

(t)
i , a

(t)
i ; θ̃

(t)
i ) as the online network

and target network respectively, where θ
(t)
i and θ̃

(t)
i denote

the model parameters. To optimize the parameter set θ(t)
i and

approximate the optimal action-value function Q?(s
(t)
i , a

(t)
i ),

we use the following loss function,

L(θ
(t)
i ) = E[y

(t)
i −Q(s

(t)
i , a

(t)
i ; θ

(t)
i )]2, (8)

where y
(t)
i = r

(t)
i + γmax

a
(t+1)
i

Q(s
(t+1)
i , a

(t+1)
i ; θ̃

(t)
i ) and θ̃

(t)
i is

copied from θ
(t)
i at the end of each episode. Finally, the

objective function of the DDQN model can be written as,

y
(t)
i = r

(t)
i + γQ(s

(t+1)
i , arg max

a
(t+1)
i

Q(s
(t+1)
i , a

(t+1)
i ; θ

(t)
i ); θ̃

(t)
i )),

(9)
where θ

(t)
i is a local training model used for selecting ac-

tions, and θ̃
(t)
i is used to evaluate their values according to

a different policy, thus mitigating over-estimations issues and
improving the decision agents’ performances [35]. The loss
function estimates the difference between true action-value and
target action-value. As the overall training procedure aims at
minimizing this loss function, we adopt stochastic gradient
descent (SGD) approach [37] to pursue this goal. The local
agent training procedure is summarized in Algorithm 1. The
overall local process is aided by a federation scheme (lines
1-6) described in details in the following subsection.

B. Federated DRL for RAN Slicing

FL allows training machine learning models across multiple
decentralized entities which have access to a limited set of the
overall data available. Conversely to multi-agent reinforcement
learning, which defines a set of autonomous agents that observe
a global state (or partial state) of the system, select individual

Algorithm 1: DRL RAN resource allocation for the i-th
slice

Input : t, T, T̂ , i ∈ I, θ(t)i,b ,Ω
(t)
k ;

Output : Improved DDQN model θ(t+1)
i,b ;

Initialize: θ
(0)
i,b ,∀b ∈ B, t = 0;

1 if mod(t, T̂ ) == 0 ∧ t > 0 then
2 Upload θ(t)i,b ;
3 Wait for Algorithm 2;
4 #Get FL model and update the local one;
5 θ

(t+1)
i,b ← Ω

(t)
k ;

6 end
7 for b ∈ B, in parallel do
8 ∇L(θ

(t)
i,b )← Local model training;

9 θ
(t+1)
i,b ← θ

(t)
i,b +∇L(θ

(t)
i,b );

10 end

actions and receive individual rewards, FL allows to collabora-
tively learn a shared prediction model by iteratively aggregating
multiple model updates, thus decoupling the learning procedure
from the need of centralized data sources. A refined version
of the original models, combination of multiple local models
according to specific federation strategies, is then shared to
the agents allowing to significantly improve the learning rate,
ensure privacy [38] and provide better generalization [39].

As depicted in Fig. 2, within the context of our FDRL-based
framework each agent trains a local DDQN model θ(t)

i,b and
shares its experience, under the form of model hyperparameters,
to those entities belonging to the corresponding federation layer.
This iterative training approach enables each federation layer to
aggregate the collected knowledge of single agents into a global
updated model Ω

(t+1)
i , usually stored into a cloud platform

or a nearby edge platform to allow faster feedbacks. In order
to enhance efficiency and avoid communication overhead, we
allow the federation layer to collect the local models (and share
the updated ones) only every T̂ decision intervals, defining
this time period as federation episode. Different strategies
can be adopted to derive the global federated model, each
one implementing a predefined federation strategy function
fstrategy(·).

In Average federation strategy, dubbed as FDRL in the
following of this work, the collective federation model for the
next time interval Ω

(t+1)
i is derived as the simple average of

the incoming model weights belonging to all the agents, as

Ω
(t+1)
i =

1

B

∑
b∈B

θ
(t)
i,b . (10)

Aggregated mobile traffic demands follow repetitive spatio-
temporal trends due to human activities [40]. In this context, it
is expected that a good characterization of such processes would
allow more accurate forecasting of the network utilization and,
in turn, enable an efficient and even proactive planning of
the resource allocation. However, as highlighted in [41], it is
not enough to leverage the geographical locations and related
spatial proximity of the BS to obtain a comprehensive view
of traffic demands, as the land usage of the slice resources
may differ even within base stations belonging to the same



geographical areas. This introduces an additional issue in our
framework, as not all the federated agents should exchange
knowledge with each other, nor this should be restricted to
only nearby entities. To address this fundamental issue, in
the following we propose a clustering algorithm to guide DA
subsets definition, based on network monitoring traces and their
similarity.
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Figure 4: Example comparison of Euclidean distance against Dy-
namic Time Warping distance over traffic demand time series.

C. Dynamic Traffic-Aware Agent Selection

Given the rapid spatio-temporal variation of the traffic de-
mand due to end-user mobility, we advocate for the setup of
a clustering algorithm to derive the subset of slice agents that
should exchange their local knowledge, while considering both
mobility and traffic demand variations. Let us introduce τi,b as
the time series describing the downlink traffic demand of the
i-th slice instantiated over base station b. Then, for each pair
j, z ∈ B, we can compute the similarity of the recorded mon-
itoring information as DTW (j,z) = fDTW (τi,j , τi,z), where
fDTW (·) is the Dynamic Time Warping distance [42], a state-
of-the-art distance metric for time series analysis1. DTW is
particularly suitable in our scenario as it allows, conversely to
standard distance metrics, e.g., Euclidean distance, to calculate
accurate similarity value even in presence of differently sized
sequences, and independently of their time shift. An example
of DTW distance calculation is depicted in Fig. 4, where
it can be noticed how maximum and minimum values of
the traces are correctly mapped to each other. The pairwise
distances are then collected into the distance matrix D =
(DTW (j,z)) ∈ R|B|×|B|, and provided as input of our clustering
algorithm. DTW has linear space complexity, but quadratic
time complexity. To reduce the latter, a number of options are
available. In our case, we limit the maximal shift by setting a
fixed time a window of few hours, thus reducing the complexity
even in case of long sequences. Nevertheless, recent work
from [43] proposed a novel efficient implementation which
breaks the quadratic time complexity to O(n2 log n), where n is

1We refer the reader to [42] for an exhaustive explanation.

Algorithm 2: RAN resource orchestration for the i-th
federation layer

Input : t, T, θ(t)i,b ∀b ∈ B, τ (t)i,b ∀b ∈ B, εd, nmin
Output: Improved federation models Ω

(t+1)
i,k , ∀Ψk ∈ Ψ

1 #Define clusters and send initial/updated model;
2 Collect τ (t)i,b , ∀b ∈ B ;
3 Compute D = (DTW (j,z)),∀j, z ∈ B;
4 Ψk ∈ Ψ← DBSCAN(D, εd, nmin);
5 while t < T do
6 if mod(t, T̂ ) == 0 ∧ t > 0 then
7 for each Ψk ∈ Ψ, in parallel do
8 Collect θ(t)i,k, ∀b ∈ Ψk;
9 #Derive FL models based on Fed. strategy;

10 Ω
(t+1)
i,k ← fstrategy(θ

(t)
i,b ,∀b ∈ Ψk);

11 θ
(t+1)
i,b ← Ω

(t+1)
i,k ∀b ∈ Ψk;

12 end
13 #Return updated local models;
14 return : θ(t+1)

i,b ,∀b ∈ B
15 end
16 Run Algorithm 1;
17 end

the length of the sequence. To perform the final classification,
we rely on an extended version of the Density-based spatial
clustering of applications with noise (DBSCAN) algorithm,
introduced in [44]. DBSCAN is a non-parametric density-based
clustering algorithm that allows finding the most representative
points within a dataset (also known as core samples) based on
their density in a multi-dimensional space, and expands clusters
from them. It expects two inputs: εd, representing the maximum
distance between two samples for one to be considered as in
the neighborhood of the other, and nmin, which defines the
minimum number of samples in a neighborhood of a point to
be considered as a core sample.

Given the above, at the end of each federation episode, we
can derive in a dynamic way (and based on updated mobile
monitoring information) the clusters Ψk ∈ Ψ, k = {1, . . . , |I|},
where Ψ is the cluster set. Each cluster includes the set of
base station b ∈ Ψk that should be involved in the following
model update procedure. Therefore, the framework spawns
multiple federation models Ωk, one for each detected cluster
k, which evolve in parallel till the next federation episode.
The pseudocode of our FDRL-based approach for RAN slicing
resource orchestration is listed in Algorithm 2. We remark that
in our framework multiple instances of Algorithm 2, i.e., one
for each slice i ∈ I, are deployed to build the corresponding FL
domain for a given federation strategy fstrategy(·). It follows that
the updated federation model, combination of the information
coming from the elements of the cluster Ψk (described in line
10), can be derived following the Full-Cluster strategy,
namely fFC(·), as:

Ω
(t+1)
i,k =

1

|ψk|
∑
b∈ψk

ω
(t)
i,b θ

(t)
i,b , ∀ψk ∈ ψ (11)

where |ψk| is the cardinality of ψk , and ω(t)
i,b =

r̂
(t)
i,b∑

b∈ψk
r̂
(t)
i,b

is a
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Figure 5: O-RAN compliant system architecture.

weight parameter. It should be noted that within these settings,
the federation step will occur among models with high degree
of similarity, thus favoring the specialization of the agents
towards the most common traffic statistics.

Other complementary approaches can be defined to guide
the agent selection and subsequent federation model update. In
particular, upon the definition of the cluster set Ψ, we introduce
Random Representative strategy fRR(·) as a baseline
approach, which randomly selects a representative from each
cluster:

ψrandom = {x|x = rand(ψk), ∀ψk ∈ ψ} (12)

and consequently defines the updated federated model as:

Ω
(t+1)
i =

1

|ψrandom|
∑

b∈ψrandom

ω
(t)
i,b θ

(t)
i,b . (13)

Similarly, let us introduce the Best Representative
strategy, as a method that derives the updated federation model
by selecting a representative agent from each cluster as follows:

ψbest = {x|x = arg maxRk
k

, ∀ψk ∈ ψ} (14)

where Rk is the cumulative reward within the past fed-
eration episode. Thus, the model update strategy Best
Representative fBR(·), can be defined as:

Ω
(t+1)
i =

1

|ψbest|
∑
b∈ψbest

ω
(t)
i,b θ

(t)
i,b . (15)

By combining single models derived from each cluster, we
can pursue higher generalization of performances, i.e., aim
at a federated model able to deal with heterogeneous traffic
statistics.

V. O-RAN COMPLIANCE

The design of our solution closely follows the O-RAN
framework [45]. O-RAN represents a worldwide effort to reach
new levels of openness in next-generation virtualized radio
access networks (vRANs). Driven by major carriers, it aims
at disrupting the vRAN ecosystem traditionally dominated by

Figure 6: Software architecture and protocol stack overview.

a small set of player by breaking vendors’ lock-in and opening
the business market [46]. The most important functional com-
ponents introduced by O-RAN are the non-real-time (non-RT)
radio intelligent controller (RIC) and the near-RT RIC [47].
The main functionality provided by the Non-RT RIC it to
support RAN optimization over relatively large time scales
(e.g., seconds or minutes). This often implies machine learning
(ML) model training and subsequent control policy definition,
to be enforced via the A1 interface towards the distributed
Near-RT RICs. The Near-RT RIC is a logical function that
enables near-real-time optimization and control, as well as
data monitoring of O-RAN central unit (O-CU) and O-RAN
distributed unit (O-DU) nodes (which support eNBs/gNBs
deployment as virtualized network functions (VNFs)) in near-
RT timescales (between 10 ms and 1 s). Fig. 5 depicts a
high-level view of the O-RAN architecture, highlighting the
synergies with respect to our proposed approach. In particular,
we envision our federated learning and dynamic agent selection
module as co-located with Non-RT RIC, which handles the
A1’s Policy Management Service to enforce radio policies. On
the other side, local agents co-located with the Near-RT RICs
collect this information, perform local decisions, and exploit
the E2 interface to forward resulting radio policies to the base
station. The same E2 interface would allow the local agent to
gather base station KPIs for the purpose of model training and
monitoring.

As depicted in Fig. 6, we implement our framework in
Python programming language, exploiting OpenAI Gym li-
brary [48] and interfacing DRL agents with a custom base sta-
tion simulator environment, which includes virtual transmission
queues and main PHY/MAC/RLC functionalities, together with
O-RAN E2 interface to allow gathering the slice networking
statistics from each distributed unit (O-DU), and to enforce
PRB policy decisions in the BS slice scheduler based on defined
state space and action space in Sec. IV-A. Finally, as described
in Sec. IV-B, a federation layer connects the DRL agents
of the i-th slice to enable inter-agent information exchange
and expedite the overall learning procedure. The procedure is
summarized in Algorithm 1 and 2.
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VI. PERFORMANCE EVALUATION

In this section, we evaluate our proposed architecture nu-
merical simulations on a dedicated server, equipped with two
Intel(R) Xeon(R) Gold 5218 CPUs @ 2.30GHz and two
NVIDIA GeForce RTX 2080 Ti GPUs. Moreover, the DNNs
are implemented based on TensorFlow-gpu version 2.5.0. In
neural network architecture, we use two fully connected layers
with 24 neurons activated by ReLU function for each layer
where the target network is updated per episode and each
episode consists of 5 decision intervals, or epochs. Each de-
cision interval has a duration of ε = 60 seconds, during which
local monitoring information is collected to build the local
agent state. Online and Target networks are characterized by
the same DNN structure. The hyperparameter tuning depends
highly on capability, scenario, and technology used [49]. The
network parameters are updated using the Adam optimizer [50].
The discount factor γ and learning rate ξ are set to be 0.99 and
0.001 respectively. The replay buffer size of each agent βi,b is
set to 20000 samples, out of which a batch of 32 samples is
extracted for each training interval. Without loss of generality,
We set ηi = 100 as penalty value for all the slices. In order to
provide a comprehensive overview, we first evaluate single base
station settings, focusing on the capabilities of single agents
to deal with RAN resource allocation. Then, we address a
more realistic scenario considering a multi-slice deployment
over several RAN nodes, accounting for end-user mobility and
variable traffic demands.

A. Local Agent Performance Assessment

In our proposed framework, DRL agents optimally allocate
radio resources to each slice, while a federation layer enables a
periodical exchange of the DRL’s parameter values to improve
the learning process across multiple agents of the same slice.
First, we compare the performances of different RL algorithms
when dealing with radio resource allocation, without involving
federated learning. To this aim, we consider a base station
scenario including 3 network slices, i.e., an ultra reliable low
latency communication (URLLC) kind of slice, an enhanced

mobile broadband (eMBB), and one dedicated to massive
machine-type communications (mMTC) traffic, each one char-
acterized by the SLA latency values of Λi = [10, 40, 20] ms,
respectively [51]. Regarding the throughput requirements, we
do not assume any fixed value as it would depend on the
random mobility pattern of the end users and their generated
traffic. Instead, we enforce (with a slight abuse of notation),
λ

(t)
i,b = ϕ

(t)
i,b for every decision interval to let the agents

adapt their decisions to the instantaneous traffic volumes. We
instantiate a DA in every base station for each slice. We model
the instantaneous traffic demand of each slice as the realization
of a Poisson distribution with mean value λi, and emulate
the SNR variability extracting its instantaneous values from
a Rayleigh distribution with the average value set to 25 dB.
Moreover, we set ι = 10 PRBs as the minimum resource
allocation step. Fig. 7 depicts the training procedure for the
eMBB slice, comparing different local decision algorithms.
In particular, we consider the single DQN approach, which
implements standard Q-Learning procedures, discretized Deep
Deterministic Policy Gradient (d-DDPG) a popular reinforce-
ment learning algorithm [52], and our DDQN scheme.

We let the scenario run for 800 federation episodes, and
depict the results in terms of cumulative reward, as defined
in Eq. (5). The variability of the network slicing environment
leads to experience learning curves with high fluctuations. For
visual clarity, results are averaged over 10 simulations. As
expected, the DQN approach hardly copes with the definition of
suitable PRB allocation policies, providing lower performances
both in terms of cumulative reward and convergence time.
Similarly, d-DDPG suffers the temporal periodicity of the traffic
demand, resulting in a steep learning curve that soon saturates
to suboptimal performances. Conversely, after an initial explo-
ration phase, the DDQN approach is able to allocate in a more
consistent way correct amount of PRBs to each slice according
to the corresponding real-time traffic and latency demands. It is
worth highlighting that in terms of convergence time, in general,
FDRL schemes do not necessarily provide better performances
when compared against standard DRL approaches. In fact, one
of the main features of FL is that it allows local DRL agents to
indirectly gain knowledge on a wider state space, extending
the local experience with that coming from other decision
entities deployed within the same environment. This enables
the DAs to provide more robust performances when deployed in
realistic environments. Nevertheless, the same Fig. 7 provides
an overview of the local model training procedure, with and
without the adoption of FL schemes. In our considered scenario,
it can be noticed how DRL curves (dashed lines in the plot)
present slower convergence time and higher fluctuations when
compared against Federated DDQN approach (solid line in
the plot). Additionally, DRL curves present lower cumulative
reward after 400 episodes, suggesting a lower capability of
the DAs to adapt their decisions at the fast-changing network
slicing environment considered in our work.
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Figure 8: Mobility Statistics for different network slices. (Left) CDF of end-users radius of gyration, (Center) Average Spatial distribution of
slice users over 24h time span, and corresponding DTW distance matrix. (Right) Example of resulting clustering for the URLLC slice case,
each color defines a different cluster.

B. System-level Simulations

1) Mobility and Traffic Demand Characterization: In order
to validate our framework in realistic settings, we consider
the city of Milan, Italy, as scenario of study. We collect city-
wide RAN deployment information including more than 50
BSs from publicly available sources2, and simulate realistic
human mobility patterns leveraging the work of [53]. The
density exploration and preferential return (d-EPR) algorithm
allows capturing mobility patterns by specifying as input the
geographical position of the base stations together with several
probabilistic parameters. We let the model evolve adopting the
default parameters described in [54]. By defining the location
relevance on the mobility space, we can influence the next-
hop selection of each end-user, therefore emulating a higher
concentration of mobile devices in specific areas of the city
over time, e.g., the daily commuting over the city center
during working days. Fig. 8 (Left) depicts the CDF of the
resulting radius of gyration per slice, aggregating the results
over 15000 end-users equally distributed among the different
slices. Without loss of generality, we consider the set of BSs
characterized by the same radio capacity Cb = 100 PRBs,
and assume the same 3 slices introduced above simultaneously
running over all the BSs. Fig. 8 (Center) depicts the resulting
spatial distribution of the end-users, accounting for a temporal
time span of a full day. From the picture, it can be noticed how
the spatial distribution of slice users is actually similar along
with the slice set, and influenced in specific areas of the city
by the high density of RAN nodes. This is due to the d-EPR
algorithm, which favors the next-hop destination of each user to
happen towards a nearby point of interest, or, in our settings, the
closest base station location. The instantaneous traffic demand
of each end-user is derived starting from the values reported
in Sec.VI-A, weighted by a temporal factor to account for the
traffic demand fluctuations typical of mobile network scenarios,
as those presented for example by [28] and [55]. In the lower
part of Fig. 8, we depict the resulting distance matrix D of

2https://opencellid.org/
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Figure 9: Sensitivity analysis performed on the clustering parameters
and generated traffic traces.

each, i.e., per slice, downlink traffic demand, calculated at the
beginning of every federation episode for each base station pair
over the past 24 hours. As detailed in Sec. IV-C, this matrix
is used as input to an instance of the DBSCAN algorithm to
derive the set of DAs (belonging to the i-th slice) which should
be involved in the next federation episode and model exchange.
Fig. 8 (Right) shows the resulting output clustering for the
URLLC slice case, using εd = 0.06 and nmin = 2 as pa-
rameters. Such values have been empirically selected following
the sensitivity analysis depicted in Fig. 9, which certifies that
along the evaluation timeline and across the different running
slices, the selection algorithm identified on average 3 clusters
populated by 15 agents each. The resulting behavior of DAs is
heavily affected by the entities participating in the federation
process. Therefore, such kind of characterization is fundamental
to ensure performances.

2) Effects of Different PRB Action space: The size of the
action space is well-known to affect the learning curve of any
reinforcement learning algorithm. In Fig. 10, we investigate this
aspect by varying the minimum PRB chunk size ι = 2, 5, 10
of the URLLC slice, while fixing T̂ = 5 decision epochs
per federation episode and adopting the full-cluster federation
strategy. The plot shows how increasing the PRB chunk size,
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i.e., adopting smaller action spaces, actually influences the
reward of the URLLC slice type and its stringent SLA require-
ments, with larger PRB chunk values achieving satisfactory
performances in a faster way, with about 25% performance gap
with respect to ι = 2. Nevertheless, a too broad PRB chunk
allocation may result in resource wastage, with portions of the
radio resources being under-utilized by the running slices. Such
a trade-off should be carefully investigated according to both
slice and system requirements. In the following, we will adopt
ι = 10 PRBs whenever not specified otherwise.

0 100 200 300 400 500 600 700 800
Episode

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Av
er

ag
e 

Re
wa

rd

eMBB Slice

FDRL
Random-Representative
Best-Representative
Full-Cluster

Figure 11: Comparison of global performances for different dynamic
and non-dynamic federation approaches.

3) Comparison of Different Federation Strategies: Given the
particular nature of the network slicing scenario, in this paper
we advocate for a dynamic agent selection method based on the
time similarity of traffic demands, dubbed as Dynamic Cluster-
ing (DC). As discussed in Sec. IV-C, several strategies can be
adopted to combine local models into federated ones, pursuing
generalization and performance improvements. In this paper we
consider three DC aided approaches, namely Full-Cluster (FC),
Best-Representative (BR) and Random-Representative (RR),
and compare their performances against a standard strategy
which simply derives a new federated model accounting for all
the available local models, without adopting any dynamic agent
selection scheme, dubbed as FDRL. The benchmark FDRL

approach exploits all the local trained models and the respective
knowledge from the agents, and would theoretically allow
for the best generalization of performances [56]. Interestingly
instead, from our experiments it turns out that aggregation of
widely heterogeneous local models actually limits the capability
of the global federated model to converge to a one-fits-all
unified model, motivating our dynamic agent selection approach
which favors the specialization of federated agents working
under similar RAN and mobility contexts. Fig. 11 provides a
comparison of learning performances for different federation
strategies in terms of average reward and for T̂ = 5. The agent’s
action selection follows a greedy approach which balances
exploration of new actions and exploitation of already known
decision policies. We gradually limit the exploration capabilities
in favour of the adoption of the learned policies, such that
around half of the overall simulated time span, the possibility
that the agent will explore new actions given a known instan-
taneous context is in the order of 2%. From the figure, we can
observe how Full-Cluster approach achieves better generaliza-
tion of the learning policies, resulting in stable performances.
Conversely, Best-Representative, Random-Representative and
FDRL suffer the dynamic behavior of the underlying traffic
conditions, presenting inconsistent reward traces.
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Figure 12: CCDF of transmission latency for URLLC and eMBB
slices.

4) Latency Analysis for Different Federation Strategies:
We continue our performance evaluation by considering the
experienced transmission latency. We recall that as mentioned
in Sec. III, we define latency as the time spent by the slice traffic
within transmission buffer of the base station. Fig. 12 depicts
the complementary cumulative distribution function (CCDF)
[57] [58] of the latency experienced by the URLLC and eMBB
slices, resulting by different federation strategies. For the both
slices, this latency is directly proportional to the traffic demand
and the degree of contention of resources among the different
slices, as well as to the resource allocation decisions taken by
the agents. From the results, it can be noticed that the FDRL
strategy leads to the worst performances, as having all the BSs
involved in the learning process results in a slow adaptation
of the decisions of the agents to the local traffic conditions,
therefore leading to sub-optimal resource allocation and higher
latency. In contrast, Full-Cluster presents a good trade-off
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Figure 13: Performance evaluation for different network loads derived by an increasing number of end-users in Full-Cluster settings.

in terms of collaboration among agents and specialization to
the local traffic conditions, resulting in a more efficient PRB
allocation and lower perceived latency. Finally, RR and BR
federation strategies achieve performances comparable with
the FDRL method, resulting from the limited cooperation in
learning that leads these federation approaches to suffer more
from the dynamic behavior of the underlying traffic conditions.

5) Effects of Different Network Loads and Mobility: We
continue our analysis investigating the performances of the
Full-Cluster method in heterogeneous traffic conditions. To
this aim, we generate traffic and mobility dataset for an
increasing number of end-users, namely 15k, 20k, and 25k.
As highlighted in [59], a non-linear relationship characterizes
end-user mobility and throughput performances in crowded
scenarios. Clearly, this also affects the communication latency,
as a higher number of users will be simultaneously active
under the same radio access node. In the context of RAN
slicing resource allocation, this translates to finding the best
DA logic to efficiently address such variability. In Fig. 13,
we focus our analysis on the dropped traffic, i.e., the volume
of traffic that did not meet the latency requirements due to
wrong PRB allocation decisions, measured in percentage of
the offered traffic volume of each federation episode. From the
picture, we can notice how during the initial exploration phase
inexperienced PRB allocation decisions performed by the DAs
heavily affect the latency requirements of all network slices,
with peaks of dropped traffic that increase with the growing
number of end-users. Nevertheless, this trend improves over
time as the agents gain knowledge over the underlying scenario
and get trained, finally converging after policy switch, i.e. after
episode 400, towards values in the order of 2% for the eMBB
slice, and 0,32% for the URLLC slice.

6) Communication Overhead Comparison for Different Fed-
eration Strategies: Federated Learning aims at building global
knowledge from the exchange of multiple locally trained mod-
els towards a centralized entity. Such a frequent model ex-
change however introduces significant communication overhead
and synchronization issues, specially in wide scenarios as those
considered in our work. Fig. 14 compares the model exchange
overhead per federation episode resulting from our experiments
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Figure 14: Communication overhead per federation episode for
different federation strategies (top-part) and for different number of
BSs deployed (bottom-part). RR and BR federation strategies are
referred as Representative.

for a different number of base stations while running the
same 3 slices. In the upper part we focus on the overhead
statistical distribution. The benchmark FDRL approach assumes
the exchange of all the locally trained model weights to derive
the federated ones, which implies the highest communication
overhead. The BR and RR approaches (depicted in the center
of the image, and referred to as Representative) allow reducing
the uplink information exchange by selecting a single repre-
sentative of each cluster, regardless of the dimensions of the
group itself, thus minimizing the communication overhead in
each federation episode. It results in less than 800 kBytes in our
settings. Finally, the Full-Cluster approach is characterized by
an intermediate average value but higher variance. This is due
to the variable size of the DAs clusters, which follows the real-
time traffic variations, and the need to exchange the local model
weights of each element of the cluster, saving communication
resources from those base stations that presented peculiar traffic



traces and remain unclustered.
On the lower part of the picture, we differentiate between

uplink and downlink model exchange overhead. The FDRL
approach presents a symmetric behavior matching the model
exchange of all the running DAs, in both directions. Con-
versely, the RR/BR approaches show an asymmetric behavior
that favors the upload communication with respect to the
downlink one, as only a single DA per cluster shares its local
model during the federation process, resulting in a logarithmic
trend (with respect to the number of BSs) characterizing the
overhead in uplink. This would guarantee better scalability,
at the expense of suboptimal performances, as shown in our
evaluation. Finally, the FC approach shows a sublinear trend,
with a slower growth rate than the benchmark FDRL, but
with significant better performances thanks to the specialization
of the DAs. It is safe to assert that the proposed dynamic
clustering approach enhances the efficiency of the federated
learning scheme, limiting the overall communication overhead
with respect to traditional approaches, while providing better
performances.
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Figure 15: CPU and GPU power consumption for different federation
strategies during agent training.

7) Power Consumption Comparison: Energy consumption is
an important factor in federeated learning schemes. In Fig. 15,
we compare the power consumption of the different DRL
strategies during training both in terms of CPU (left-hand
side) and GPU (right-hand side), assuming they use the same
computational platform as specified at the beginning of Sec. VI.
We use nvidia-smi command line utility3 to retrieve in real-
time the energy consumption of the device, whereas for the
CPU consumption we monitor the CPU utilization during the
training, and consider a proportional fraction of the absorbed
power at full computational load as declared by the vendor4. As
we leverage the GPU hardware to train the models, the different
federation strategies exhibit a similar impact on the power con-
sumption of the CPU. Therefore, we focus on the GPU power
consumption to better highlight their behavior. The obtained
CDFs show that RR/BR schemes present lower consumption

3Part of the NVIDIA management library (NVML). Online available at https:
//developer.nvidia.com/nvidia-management-library-nvml

4https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-
gold-6230-processor-27-5m-cache-2-10-ghz.html

compared to FC and FDRL. Besides being positively influenced
by the communication overhead variation depicted in Fig. 14,
such reduced power consumption also results from the limited
number of RR/BR agents involved in the federation process
(selected through accurate clustering procedures, as shown in
Sec. IV-C), when compared against baseline approaches.

VII. CONCLUSIONS

Major research efforts in the network slicing orchestration
area focus on designing solutions able to concurrently and
efficiently deal with both spatial and temporal aspects of users’
traffic demand. Due to the distributed nature of the RANs
domain, centralized approaches are doomed to provide sub-
optimal performance and introduce significant communication
overhead towards holistic resource controllers. Tackling such
challenging scenario, in this paper we proposed an FDRL-based
architecture for network slice resource orchestration, where
clusters of decision agents are dynamically instantiated as virtu-
alized instances with control over base stations radio resources.
Enabled by the latest developments in federated learning, our
approach allows building specialized knowledge from traffic
and mobility patterns by exploiting similarity metrics. Our
results show that the proposed FDRL-based architecture poses
a trade-off involving the minimization of the communication
overhead and the specialization of the decision agents, which in
turn affects their accuracy along the resource allocation process.
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