8 research outputs found

    Complementary approaches to understanding the plant circadian clock

    Get PDF
    Circadian clocks are oscillatory genetic networks that help organisms adapt to the 24-hour day/night cycle. The clock of the green alga Ostreococcus tauri is the simplest plant clock discovered so far. Its many advantages as an experimental system facilitate the testing of computational predictions. We present a model of the Ostreococcus clock in the stochastic process algebra Bio-PEPA and exploit its mapping to different analysis techniques, such as ordinary differential equations, stochastic simulation algorithms and model-checking. The small number of molecules reported for this system tests the limits of the continuous approximation underlying differential equations. We investigate the difference between continuous-deterministic and discrete-stochastic approaches. Stochastic simulation and model-checking allow us to formulate new hypotheses on the system behaviour, such as the presence of self-sustained oscillations in single cells under constant light conditions. We investigate how to model the timing of dawn and dusk in the context of model-checking, which we use to compute how the probability distributions of key biochemical species change over time. These show that the relative variation in expression level is smallest at the time of peak expression, making peak time an optimal experimental phase marker. Building on these analyses, we use approaches from evolutionary systems biology to investigate how changes in the rate of mRNA degradation impacts the phase of a key protein likely to affect fitness. We explore how robust this circadian clock is towards such potential mutational changes in its underlying biochemistry. Our work shows that multiple approaches lead to a more complete understanding of the clock

    Complementary approaches to understanding the plant circadian clock

    Get PDF
    This is the final version of the article. Available from the Open Publishing Association via the DOI in this record.Proceedings - Third Workshop 'From Biology To Concurrency and back', Paphos, Cyprus, 27 March 2010Circadian clocks are oscillatory genetic networks that help organisms adapt to the 24-hour day/night cycle. The clock of the green alga Ostreococcus tauri is the simplest plant clock discovered so far. Its many advantages as an experimental system facilitate the testing of computational predictions. We present a model of the Ostreococcus clock in the stochastic process algebra Bio-PEPA and exploit its mapping to different analysis techniques, such as ordinary differential equations, stochastic simulation algorithms and model-checking. The small number of molecules reported for this system tests the limits of the continuous approximation underlying differential equations. We investigate the difference between continuous-deterministic and discrete-stochastic approaches. Stochastic simulation and model-checking allow us to formulate new hypotheses on the system behaviour, such as the presence of self-sustained oscillations in single cells under constant light conditions. We investigate how to model the timing of dawn and dusk in the context of model-checking, which we use to compute how the probability distributions of key biochemical species change over time. These show that the relative variation in expression level is smallest at the time of peak expression, making peak time an optimal experimental phase marker. Building on these analyses, we use approaches from evolutionary systems biology to investigate how changes in the rate of mRNA degradation impacts the phase of a key protein likely to affect fitness. We explore how robust this circadian clock is towards such potential mutational changes in its underlying biochemistry. Our work shows that multiple approaches lead to a more complete understanding of the clock.The authors thank Gerben van Ooijen for TopCount data and Jane Hillston and Andrew Millar for their helpful comments. The Centre for Systems Biology at Edinburgh is a Centre for Integrative Systems Biology (CISB) funded by BBSRC and EPSRC, ref. BB/D019621/1. CT is supported by The International Human Frontier Science Program Organization

    PEPA'd Oysters: Converting Dynamic Energy Budget Models to Bio-PEPA, illustrated by a Pacific oyster case study

    Get PDF
    We present a Bio-PEPA (Biochemical-Performance Evaluation Process Algebra) computational model for the Pacific oyster, derived from a DEB (Dynamic Energy Budget) mathematical model. Experience with this specific model allows us to propose a generic scheme for translation between the widely-used DEB theory and Bio-PEPA. The benefits of translation are that a range of novel analysis tools become available, therefore improving the potential to understand complex biological phenomena at a systems level. This work also provides a link between biology, mathematics and computer science: such interlinking of disciplines is the core of the systems approach to biology

    Multiple light inputs to a simple clock circuit allow complex biological rhythms

    Get PDF
    Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable environmental changes. Detailed understanding of the circadian network of higher plants, such as Arabidopsis thaliana, is hampered by the high number of partially redundant genes. However, the picoeukaryotic alga Ostreococcus tauri, which was recently shown to possess a small number of non-redundant clock genes, presents an attractive alternative target for detailed modelling of circadian clocks in the green lineage. Based on extensive time-series data from in vivo reporter gene assays, we developed a model of the Ostreococcus clock as a feedback loop between the genes TOC1 and CCA1. The model reproduces the dynamics of the transcriptional and translational reporters over a range of photoperiods. Surprisingly, the model is also able to predict the transient behaviour of the clock when the light conditions are altered. Despite the apparent simplicity of the clock circuit, it displays considerable complexity in its response to changing light conditions. Systematic screening of the effects of altered day length revealed a complex relationship between phase and photoperiod, which is also captured by the model. The complex light response is shown to stem from circadian gating of light-dependent mechanisms. This study provides insights into the contributions of light inputs to the Ostreococcus clock. The model suggests that a high number of light-dependent reactions are important for flexible timing in a circadian clock with only one feedback loop

    Unwinding biological systems

    Get PDF
    Unwinding conditions have been fruitfully exploited in Information Flow Security to define persistent security properties. In this paper we investigate their meaning and possible uses in the analysis of biological systems. In particular, we elaborate on the notion of robustness and propose some instances of unwinding over the process algebra Bio-PEPA and over hybrid automata. We exploit such instances to analyse two case-studies: Neurospora crassa circadian system and Influenza kinetics models

    Hybrid semantics for Bio-PEPA

    Get PDF
    corecore