255 research outputs found

    Complementary Detection for Hardware Efficient On-site Monitoring of Parkinsonian Progress

    Get PDF
    The progress of Parkinson & #x2019;s disease (PD) in patients is conventionally monitored through follow-up visits. These may be insufficient for clinicians to obtain a good understanding of the occurrence and severity of symptoms in order to adjust therapy to the patients & #x2019; needs. Portable platforms for PD diagnostics can provide in-depth information, thus reducing the frequency of face-to-face visits. This paper describes the first known on-site PD detection and monitoring processor. This is achieved by employing complementary detection which uses a combination of weak k-NN classifiers to produce a classifier with a higher consistency and confidence level than the individual classifiers. Various implementations of the classifier are investigated for trade-offs in terms of area, power and detection performance. Detection performances are validated on an FPGA platform. Achieved accuracy measures were: Matthews correlation coefficient of 0.6162, mean F1-score of 91.38 & #x0025;, and mean classification accuracy of 91.91 & #x0025;. By mapping the implemented designs on a 45 nm CMOS process, the optimal configuration achieved a dynamic power per channel of 2.26 & #x03BC;W and an area per channel of 0.24 mm2

    Computationally efficient algorithms and implementations of adaptive deep brain stimulation systems for Parkinson's disease

    Get PDF
    Clinical deep brain stimulation (DBS) is a tool used to mitigate pharmacologically intractable neurodegenerative diseases such as Parkinson's disease (PD), tremor and dystonia. Present implementations of DBS use continuous, high frequency voltage or current pulses so as to mitigate PD. This results in some limitations, among which there is stimulation induced side effects and shortening of pacemaker battery life. Adaptive DBS (aDBS) can be used to overcome a number of these limitations. Adaptive DBS is intended to deliver stimulation precisely only when needed. This thesis presents work undertaken to investigate, propose and develop novel algorithms and implementations of systems for adapting DBS. This thesis proposes four system implementations that could facilitate DBS adaptation either in the form of closed-loop DBS or spatial adaptation. The first method involved the use of dynamic detection to track changes in local field potentials (LFP) which can be indicative of PD symptoms. The work on dynamic detection included the synthesis of validation dataset using mainly autoregressive moving average (ARMA) models to enable the evaluation of a subset of PD detection algorithms for accuracy and complexity trade-offs. The subset of algorithms consisted of feature extraction (FE), dimensionality reduction (DR) and dynamic pattern classification stages. The combination with the best trade-off in terms of accuracy and complexity consisted of discrete wavelet transform (DWT) for FE, maximum ratio method (MRM) for DR and k-nearest neighbours (k-NN) for classification. The MRM is a novel DR method inspired by Fisher's separability criterion. The best combination achieved accuracy measures: F1-score of 97.9%, choice probability of 99.86% and classification accuracy of 99.29%. Regarding complexity, it had an estimated microchip area of 0.84 mm² for estimates in 90 nm CMOS process. The second implementation developed the first known PD detection and monitoring processor. This was achieved using complementary detection, which presents a hardware-efficient method of implementing a PD detection processor for monitoring PD progression in Parkinsonian patients. Complementary detection is achieved by using a combination of weak classifiers to produce a classifier with a higher consistency and confidence level than the individual classifiers in the configuration. The PD detection processor using the same processing stages as the first implementation was validated on an FPGA platform. By mapping the implemented design on a 45 nm CMOS process, the most optimal implementation achieved a dynamic power per channel of 2.26 μW and an area per channel of 0.2384 mm². It also achieved mean accuracy measures: Mathews correlation coefficient (MCC) of 0.6162, an F1-score of 91.38%, and mean classification accuracy of 91.91%. The third implementation proposed a framework for adapting DBS based on a critic-actor control approach. This models the relationship between a trained clinician (critic) and a neuro-modulation system (actor) for modulating DBS. The critic was implemented and validated using machine learning models, and the actor was implemented using a fuzzy controller. Therapy is modulated based on state estimates obtained through the machine learning models. PD suppression was achieved in seven out of nine test cases. The final implementation introduces spatial adaptation for aDBS. Spatial adaptation adjusts to variation in lead position and/or stimulation focus, as poor stimulation focus has been reported to affect therapeutic benefits of DBS. The implementation proposes dynamic current steering systems as a power-efficient implementation for multi-polar multisite current steering, with a particular focus on the output stage of the dynamic current steering system. The output stage uses dynamic current sources in implementing push-pull current sources that are interfaced to 16 electrodes so as to enable current steering. The performance of the output stage was demonstrated using a supply of 3.3 V to drive biphasic current pulses of up to 0.5 mA through its electrodes. The preliminary design of the circuit was implemented in 0.18 μm CMOS technology

    A framework for adapting deep brain stimulation using Parkinsonian state estimates

    Get PDF
    The mechanisms underlying the beneficial effects of deep brain stimulation (DBS) for Parkinson's disease (PD) remain poorly understood and are still under debate. This has hindered the development of adaptive DBS (aDBS). For further progress in aDBS, more insight into the dynamics of PD is needed, which can be obtained using machine learning models. This study presents an approach that uses generative and discriminative machine learning models to more accurately estimate the symptom severity of patients and adjust therapy accordingly. A support vector machine is used as the representative algorithm for discriminative machine learning models, and the Gaussian mixture model is used for the generative models. Therapy is effected using the state estimates obtained from the machine learning models together with a fuzzy controller in a critic-actor control approach. Both machine learning model configurations achieve PD suppression to desired state in 7 out of 9 cases; most of which settle in under 2 s

    A framework for adapting deep brain stimulation using Parkinsonian state estimates

    Get PDF
    The mechanisms underlying the beneficial effects of deep brain stimulation (DBS) for Parkinson's disease (PD) remain poorly understood and are still under debate. This has hindered the development of adaptive DBS (aDBS). For further progress in aDBS, more insight into the dynamics of PD is needed, which can be obtained using machine learning models. This study presents an approach that uses generative and discriminative machine learning models to more accurately estimate the symptom severity of patients and adjust therapy accordingly. A support vector machine is used as the representative algorithm for discriminative machine learning models, and the Gaussian mixture model is used for the generative models. Therapy is effected using the state estimates obtained from the machine learning models together with a fuzzy controller in a critic-actor control approach. Both machine learning model configurations achieve PD suppression to desired state in 7 out of 9 cases; most of which settle in under 2 s

    Translational pipelines for closed-loop neuromodulation

    Get PDF
    Closed-loop neuromodulation systems have shown significant potential for addressing unmet needs in the treatment of disorders of the central nervous system, yet progress towards clinical adoption has been slow. Advanced technological developments often stall in the preclinical stage by failing to account for the constraints of implantable medical devices, and due to the lack of research platforms with a translational focus. This thesis presents the development of three clinically relevant research systems focusing on refinements of deep brain stimulation therapies. First, we introduce a system for synchronising implanted and external stimulation devices, allowing for research into multi-site stimulation paradigms, cross-region neural plasticity, and questions of phase coupling. The proposed design aims to sidestep the limited communication capabilities of existing commercial implant systems in providing a stimulation state readout without reliance on telemetry, creating a cross-platform research tool. Next, we present work on the Picostim-DyNeuMo adaptive neuromodulation platform, focusing on expanding device capabilities from activity and circadian adaptation to bioelectric marker--based responsive stimulation. Here, we introduce a computationally optimised implementation of a popular band power--estimation algorithm suitable for deployment in the DyNeuMo system. The new algorithmic capability was externally validated to establish neural state classification performance in two widely-researched use cases: Parkinsonian beta bursts and seizures. For in vivo validation, a pilot experiment is presented demonstrating responsive neurostimulation to cortical alpha-band activity in a non-human primate model for the modulation of attention state. Finally, we turn our focus to the validation of a recently developed method to provide computationally efficient real-time phase estimation. Following theoretical analysis, the method is integrated into the commonly used Intan electrophysiological recording platform, creating a novel closed-loop optogenetics research platform. The performance of the research system is characterised through a pilot experiment, targeting the modulation of cortical theta-band activity in a transgenic mouse model

    Use of functional neuroimaging and optogenetics to explore deep brain stimulation targets for the treatment of Parkinson's disease and epilepsy

    Get PDF
    Deep brain stimulation (DBS) is a neurosurgical therapy for Parkinson’s disease and epilepsy. In DBS, an electrode is stereotactically implanted in a specific region of the brain and electrical pulses are delivered using a subcutaneous pacemaker-like stimulator. DBS-therapy has proven to effectively suppress tremor or seizures in pharmaco-resistant Parkinson’s disease and epilepsy patients respectively. It is most commonly applied in the subthalamic nucleus for Parkinson’s disease, or in the anterior thalamic nucleus for epilepsy. Despite the rapidly growing use of DBS at these classic brain structures, there are still non-responders to the treatment. This creates a need to explore other brain structures as potential DBS-targets. However, research in patients is restricted mainly because of ethical reasons. Therefore, in order to search for potential new DBS targets, animal research is indispensable. Previous animal studies of DBS-relevant circuitry largely relied on electrophysiological recordings at predefined brain areas with assumed relevance to DBS therapy. Due to their inherent regional biases, such experimental techniques prevent the identification of less recognized brain structures that might be suitable DBS targets. Therefore, functional neuroimaging techniques, such as functional Magnetic Resonance Imaging and Positron Emission Tomography, were used in this thesis because they allow to visualize and to analyze the whole brain during DBS. Additionally, optogenetics, a new technique that uses light instead of electricity, was employed to manipulate brain cells with unprecedented selectivity

    A wearable biofeedback device to improve motor symptoms in Parkinson’s disease

    Get PDF
    Dissertação de mestrado em Engenharia BiomédicaThis dissertation presents the work done during the fifth year of the course Integrated Master’s in Biomedical Engineering, in Medical Electronics. This work was carried out in the Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) at the MicroElectroMechanics Center (CMEMS) established at the University of Minho. For validation purposes and data acquisition, it was developed a collaboration with the Clinical Academic Center (2CA), located at Braga Hospital. The knowledge acquired in the development of this master thesis is linked to the motor rehabilitation and assistance of abnormal gait caused by a neurological disease. Indeed, this dissertation has two main goals: (1) validate a wearable biofeedback system (WBS) used for Parkinson's disease patients (PD); and (2) develop a digital biomarker of PD based on kinematic-driven data acquired with the WBS. The first goal aims to study the effects of vibrotactile biofeedback to play an augmentative role to help PD patients mitigate gait-associated impairments, while the second goal seeks to bring a step advance in the use of front-end algorithms to develop a biomarker of PD based on inertial data acquired with wearable devices. Indeed, a WBS is intended to provide motor rehabilitation & assistance, but also to be used as a clinical decision support tool for the classification of the motor disability level. This system provides vibrotactile feedback to PD patients, so that they can integrate it into their normal physiological gait system, allowing them to overcome their gait difficulties related to the level/degree of the disease. The system is based on a user- centered design, considering the end-user driven, multitasking and less cognitive effort concepts. This manuscript presents all steps taken along this dissertation regarding: the literature review and respective critical analysis; implemented tech-based procedures; validation outcomes complemented with results discussion; and main conclusions and future challenges.Esta dissertação apresenta o trabalho realizado durante o quinto ano do curso Mestrado Integrado em Engenharia Biomédica, em Eletrónica Médica. Este trabalho foi realizado no Biomedical & Bioinspired Robotic Devices Lab (BiRD Lab) no MicroElectroMechanics Center (CMEMS) estabelecido na Universidade do Minho. Para efeitos de validação e aquisição de dados, foi desenvolvida uma colaboração com Clinical Academic Center (2CA), localizado no Hospital de Braga. Os conhecimentos adquiridos no desenvolvimento desta tese de mestrado estão ligados à reabilitação motora e assistência de marcha anormal causada por uma doença neurológica. De facto, esta dissertação tem dois objetivos principais: (1) validar um sistema de biofeedback vestível (WBS) utilizado por doentes com doença de Parkinson (DP); e (2) desenvolver um biomarcador digital de PD baseado em dados cinemáticos adquiridos com o WBS. O primeiro objetivo visa o estudo dos efeitos do biofeedback vibrotáctil para desempenhar um papel de reforço para ajudar os pacientes com PD a mitigar as deficiências associadas à marcha, enquanto o segundo objetivo procura trazer um avanço na utilização de algoritmos front-end para biomarcar PD baseado em dados inerciais adquiridos com o dispositivos vestível. De facto, a partir de um WBS pretende-se fornecer reabilitação motora e assistência, mas também utilizá-lo como ferramenta de apoio à decisão clínica para a classificação do nível de deficiência motora. Este sistema fornece feedback vibrotáctil aos pacientes com PD, para que possam integrá-lo no seu sistema de marcha fisiológica normal, permitindo-lhes ultrapassar as suas dificuldades de marcha relacionadas com o nível/grau da doença. O sistema baseia-se numa conceção centrada no utilizador, considerando o utilizador final, multitarefas e conceitos de esforço menos cognitivo. Portanto, este manuscrito apresenta todos os passos dados ao longo desta dissertação relativamente a: revisão da literatura e respetiva análise crítica; procedimentos de base tecnológica implementados; resultados de validação complementados com discussão de resultados; e principais conclusões e desafios futuros

    MICROELECTRODE ARRAY STUDIES OF NORMAL AND DISEASE-ALTERED L-GLUTAMATE REGULATION IN THE MAMMALIAN CENTRAL NERVOUS SYSTEM

    Get PDF
    L-glutamate (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system. Monitoring extracellular Glu is critical to understanding Glu regulation to discriminate physiological and pathological roles. To overcome the limitations of previous in vivo extracellular Glu studies, we developed Glu selective microelectrode arrays with better spatial and temporal resolutions than commonly used techniques like microdialysis. We used these microelectrode arrays to characterize basal and potassium-evoked Glu neurotransmission in the normal rat brain. We then investigated disease-related Glu alterations in a rat model of Parkinson\u27s disease and normal Glu regulation in young and aged rhesus monkeys. In the normal anesthetized rat striatum and frontal cortex, basal Glu was regulated by active release and uptake mechanisms, fully TTX-dependent, and measured at ~2 micromolar levels. Potassium-evoked Glu kinetics were fast, concentration-dependent, and rapidly reproducible at 15-20 seconds intervals. In the unilateral 6-hydroxydopamine-lesioned rat, there were significant bilateral increases in potassium-evoked Glu release in the striatum and frontal cortex compared to hemisphere-matched non-lesioned rats. Ipsilateral striatal effects may have been related to DA loss, while contralateral striatal effects and the bilateral frontal corticaleffects may have resulted from parkinsonian neurotransmitter changes or bilateral neuranatomical connectivity, especially in the cortex. There were also alterations in Glu kinetics in the nucleus accumbens in both non-lesioned and lesioned rats. With appropriate technological and methodological modifications, we successfully recorded normal Glu signaling in anesthetized nonhuman primates in the operating room. Fast potassium-evoked Glu signals were recorded in the motor cortex of all monkeys, and Glu ejections showed robust Glu uptake in the motor and frontal cortices of all monkeys. These findings are comparable to initial rat studies. Slow evoked Glu kinetics and high basal Glu levels with oscillatory behavior were recorded in the frontal cortex. The primary age-related differences between monkeys were the nearly ten-fold increases in the volumes of Glu ejected needed in the aged monkey to achieve amplitude-matched signals in the motor and frontal cortices and a decreased uptake rate in the motor cortex. Preliminary work with excised human tissue and future plans for patient-oriented research and clinical applications are discussed

    Development and application of an optogenetic platform for controlling and imaging a large number of individual neurons

    Full text link
    The understanding and treatment of brain disorders as well as the development of intelligent machines is hampered by the lack of knowledge of how the brain fundamentally functions. Over the past century, we have learned much about how individual neurons and neural networks behave, however new tools are critically needed to interrogate how neural networks give rise to complex brain processes and disease conditions. Recent innovations in molecular techniques, such as optogenetics, have enabled neuroscientists unprecedented precision to excite, inhibit and record defined neurons. The impressive sensitivity of currently available optogenetic sensors and actuators has now enabled the possibility of analyzing a large number of individual neurons in the brains of behaving animals. To promote the use of these optogenetic tools, this thesis integrates cutting edge optogenetic molecular sensors which is ultrasensitive for imaging neuronal activity with custom wide field optical microscope to analyze a large number of individual neurons in living brains. Wide-field microscopy provides a large field of view and better spatial resolution approaching the Abbe diffraction limit of fluorescent microscope. To demonstrate the advantages of this optical platform, we imaged a deep brain structure, the Hippocampus, and tracked hundreds of neurons over time while mouse was performing a memory task to investigate how those individual neurons related to behavior. In addition, we tested our optical platform in investigating transient neural network changes upon mechanical perturbation related to blast injuries. In this experiment, all blasted mice show a consistent change in neural network. A small portion of neurons showed a sustained calcium increase for an extended period of time, whereas the majority lost their activities. Finally, using optogenetic silencer to control selective motor cortex neurons, we examined their contributions to the network pathology of basal ganglia related to Parkinson’s disease. We found that inhibition of motor cortex does not alter exaggerated beta oscillations in the striatum that are associated with parkinsonianism. Together, these results demonstrate the potential of developing integrated optogenetic system to advance our understanding of the principles underlying neural network computation, which would have broad applications from advancing artificial intelligence to disease diagnosis and treatment

    Optogenetic Brain Interfaces

    Get PDF
    The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.United States. Defense Advanced Research Projects Agency (Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-12-C-4025)University of Wisconsin--Madison (Research growth initiative; grant 101X254)University of Wisconsin--Madison (Research growth initiative; grant 101X172)University of Wisconsin--Madison (Research growth initiative; grant 101X213)National Science Foundation (U.S.) (MRSEC DMR-0819762)National Science Foundation (U.S.) (NSF CAREER CBET-1253890)National Institutes of Health (U.S.) (NIH/NIBIB R00 Award (4R00EB008738)National Institutes of Health (U.S.) (NIH Director’s New Innovator award (1-DP2-OD002989))Okawa Foundation (Research Grant Award)National Institutes of Health (U.S.) (NIH Director’s New Innovator Award (1DP2OD007265))National Science Foundation (U.S.) (NSF CAREER Award (1056008)Alfred P. Sloan Foundation (Fellowship)Human Frontier Science Program (Strasbourg, France) (Grant No. 1351/12)Israeli Centers of Research Excellence (I-CORE grant, program 51/11)MINERVA Foundation (Germany
    • …
    corecore