1,625 research outputs found

    06472 Abstracts Collection - XQuery Implementation Paradigms

    Get PDF
    From 19.11.2006 to 22.11.2006, the Dagstuhl Seminar 06472 ``XQuery Implementation Paradigms'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Higher-Order Attribute Semantics of Flat Declarative Languages

    Get PDF
    A technique is described that provides a convenient instrument for implementation of semantics of simple declarative languages called flat languages. Semantics of a specification is defined in the paper as a set of programs derivable for solvable goals. We introduce higher-order attribute models that include more control information than conventional attribute models and explain the algorithm for dynamic evaluation of attributes on these models. A visual tool CoCoViLa is briefly described as an instrument for implementing attribute semantics of flat languages

    06472 Abstracts Collection - XQuery Implementation Paradigms

    Get PDF

    Polymorphism and Type Inference in Database Programming

    Get PDF
    The polymorphic type system of ML can be extended in two ways that make it appropriate as the basis of a database programming language. The first is an extension to the language of types that captures the polymorphic nature of field selection; the second is a technique that generalizes relational operators to arbitrary data structures. The combination provides a statically typed language in which relational databases may be cleanly represented as typed structures. As in ML types are inferred, which relieves the programmer of making the rather complicated type assertions that may be required to express the most general type of a program that involves field selection and generalized relational operators. It is also possible to use these ideas to implement various aspects of object-oriented databases. By implementing database objects as reference types and generating the appropriate views - sets of structures with identity - we can achieve a degree of static type checking for object-oriented databases. Moreover it is possible to exploit the type system to check the consistency of object-oriented classes (abstract data types with inheritance). A prototype language based on these ideas has been implemented. While it lacks some important practical features, it demonstrates that a wide variety of database structures can be cleanly represented in a polymorphic programming language

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Automating Seccomp Filter Generation for Linux Applications

    Get PDF
    Software vulnerabilities in applications undermine the security of applications. By blocking unused functionality, the impact of potential exploits can be reduced. While seccomp provides a solution for filtering syscalls, it requires manual implementation of filter rules for each individual application. Recent work has investigated automated approaches for detecting and installing the necessary filter rules. However, as we show, these approaches make assumptions that are not necessary or require overly time-consuming analysis. In this paper, we propose Chestnut, an automated approach for generating strict syscall filters for Linux userspace applications with lower requirements and limitations. Chestnut comprises two phases, with the first phase consisting of two static components, i.e., a compiler and a binary analyzer, that extract the used syscalls during compilation or in an analysis of the binary. The compiler-based approach of Chestnut is up to factor 73 faster than previous approaches without affecting the accuracy adversely. On the binary analysis level, we demonstrate that the requirement of position-independent binaries of related work is not needed, enlarging the set of applications for which Chestnut is usable. In an optional second phase, Chestnut provides a dynamic refinement tool that allows restricting the set of allowed syscalls further. We demonstrate that Chestnut on average blocks 302 syscalls (86.5%) via the compiler and 288 (82.5%) using the binary-level analysis on a set of 18 widely used applications. We found that Chestnut blocks the dangerous exec syscall in 50% and 77.7% of the tested applications using the compiler- and binary-based approach, respectively. For the tested applications, Chestnut prevents exploitation of more than 62% of the 175 CVEs that target the kernel via syscalls. Finally, we perform a 6 month long-term study of a sandboxed Nginx server

    Polymorphism and Inference in Database Programming

    Get PDF
    The polymorphic type system of ML can be extended in two ways to make it the appropriate basis of a database programming language. The first is an extension to the language of types that captures the polymorphic nature of field selection; the second is a technique that generalizes relational operators to arbitrary data structures. The combination provides a statically typed language in which relational databases may be cleanly represented as typed structures. As in ML types are inferred, which relieves the programmer of making the rather complicated type assertions that may be required to express the most general type of a program that involving field selection and generalized relational operators. These extensions may also be used to provide static polymorphic typechecking in object-oriented languages and databases. A problem that arises with object-oriented databases is the apparent need for dynamic typechecking when dealing with queries on heterogeneous collections of objects. An extension of the type system needed for generalized relational operations can also be used for manipulating collections of dynamically typed values in a statically typed language. A prototype language based on these ideas has been implemented. While it lacks a proper treatment of persistent data, it demonstrates that a wide variety of database structures can be cleanly represented in a polymorphic programming language
    corecore