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Abstract 

The polymorphic type system of ML can be extended in two ways that make it appropriate as the basis 
of a database programming language. The first is an extension to the language of types that captures 

the polymorphic nature of field selection; the second is a technique that  generalizes relational operators 

to arbitrary data structures. The combination provides a statically typed language in which relational 

databases may be cleanly represented as typed structures. As in ML types are inferred, which relieves 

the programmer of making the rather complicated type assertions that may be required to express the 
most general type of a program that involves field selection and generalized relational operators. 

It is also possible to use these ideas to implement various aspects of object-oriented databases. By im- 

plementing database objects as reference types and generating the appropriate views - sets of structures 

with "identityn - we can achieve a degree of static type checking for object-oriented databases. More- 

over it is possible to exploit the type system to check the consistency of object-oriented classes (abstract 
data types with inheritance). A prototype language based on these ideas has been implemented. While 

it lacks some important practical features, it demonstrates that a wide variety of database structures can 

be cleanly represented in a polymorphic programming language. 

1 Introduction 

Expressions such as 3 + "cat" and [Name = "J.  Doe"] .PartNumber contain type errors: the application of 

some primitive operation such as "+" or "." (field selection) t o  inappropriate values. T h e  detection of type 

errors in a program before i t  is executed is, we believe, of great importance in database programming, which 

is characterized by the  complexity and size of the  d a t a  structures involved. For relational query languages 

checking of the  type  correctness of a query such as 

s e l e c t  Name 

from Employee 

w h e r e  Salary > 100000 

is a straightforward process tha t  is routinely carried ou t  by the  compiler. However, once we add some form 

of procedural abstraction to  the  language, the  problem is no longer trivial. For example, how d o  we check 

the  type correctness of a program containing definitions such as 
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func t ion  Wealthy(S) = select lame 
f r o m  S 

w h e r e  Salary > iOOOOO ? 

This function is polymorphic in the sense that it should be applicable to  any relation S that contains 

lame and Salary fields of the appropriate type. In database programming languages there have been 

two general strategies. One is to follow the approach of Pascal-R [Sch77] and Galileo [AC085] and insist 
that the parameters of procedures are given specific types, e.g. func t ion  Wealthy(S:EmployeeRel) . ... 
Type checking in both these languages is static and the database types are relatively simple and elegant 

extensions to the existing type systems of the programming languages on which they are based. However, 
in these languages it is not possible to express the kind of polymorphism inherent in a function such as 

Wealthy. The other approach is used in persistent languages such as PS-algol [ABC+83] and some of 

the more recent object-oriented database languages such as Gemstone [CM84], EXODUS [CDJS86] and 

Trellis-Owl [OBS86] where, if it is a t  all possible to  write polymorphic code, some dynamic type-checking 

is required. Napier [MBCD89] attempts to  combine parametric polymorphism [Rey74] and persistence but 

its polymorphism does not extend to  labeled records and other database structures. The current practice 

in database programming is to use a query language embedded in a host language. In this arrangement, 

communication between programs in different languages is so low-level that type-checking is effectively non- 

existent, so that  programs that violate the intended types result in "junk". See [AB87] for a survey of the 
various approaches to  type-checking. 

The language ML [HMT88] has a t ype  inference system which infers, if possible, a most general poly- 

morphic type for a program. Because of this, ML enjoys much of the flexibility of untyped (or dynamically 
typed) languages without sacrificing the advantage of static type checking. Unfortunately the type inference 

of ML [Mi178, DM821 is not general enough to be applied to structures and operations needed for database 

programming. For example, it cannot infer a polymorphic type for a function containing field selection 

such as Wealthy above. Our goal in this paper is to show that a polymorphic programming language can 

uniformly incorporate databases. In particular, we will show that a polymorphic type system, when properly 

extended to  suitable data types and database operations, will serve as a medium to represent both relational 

databases and more recent object-oriented databases directly within a polymorphic programming language. 

Database programming in such a language can make full use of a rich, statically checked polymorphic type 

system. These ideas are embodied in Machiavelli, an experimental programming language in the tradition of 

ML, developed a t  University of Pennsylvania. A prototype implementation has been developed that demon- 

strates most of the material presented here with the exception of reference types, cyclic data and some form 
of persistence. Our hope is that Machiavelli (or some language like it) will provide a framework for dealing 

uniformly with both relational and object-oriented databases. 

To illustrate a program in Machiavelli, consider the function Wealthy. Note that this function takes a 

set of records (i.e. a relation) with Name and Salary information and returns the set of all lame values which 

occur in records which contain Salary values over 100K. For example, applied to the relation 

{ [Name = "Joe", Salary = 223401 , 
[Name = "Fred", Salary = 1234561. 
[lame = "Helen", Salary = 1320001) 

which is Machiavelli syntax for a set of records, this function should yield the set {"Fred",  elen en") of 
character strings. This function is written in Machiavelli (whose syntax mostly follows that of ML) as follows 

f u n  Wealthy(S) = select x.Name 



from x <- S 

where x.Salary > 100000; 

The select . . . from . . . where . . . form is simple syntactic sugar for more basic Machiavelli program 

structure (see section 2). 

Although no data types are mentioned in the code, Machiavelli in f e r s  the type information 

Wealthy : {[("a) Name:"b, ~ a l a r y : i n t ] )  -> {"b) 

This t y p e  s c h e m e  may be instantiated with appropriate substitutions for the type variables "a and "b. For 

example 

{[Name: s t r ing ,  Salary: i n t l )  -> {string) 

{[Name: s t r ing ,  Age: i n t  , Salary: i n t l )  -> {string) 

{ [Name: [First:  s t r ing ,  Last : s t r i n g l ,  Weight : i n t  , Salary: int]  ) 
-> {[First:  s t r ing ,  Last: string] ) 

are legal instantiations of the type of Wealthy. On the other hand the following expressions and definitions 

involving Wealthy 

Wealthy({[Name = "Joe"], [Name =  red"])) 
Wealthy({[~ame = "Joe", Salary = "nonsense"] )) 
fun F(S) = sum(Wea1thy (union(S,  {[Name = "Joe", Salary = 2000001 )) ))  

will be rejected by the compiler. 

In order to extend ML's type inference to handle these examples, we need to consider two restrictions 

that control the way substitutions may be applied to type variables. The first of these is that "b, for example, 

should be a d e s c r i p t i o n  t y p e  - one for which equality is available. The need for this is seen from the fact that 

the type expression {"b) indicates that values of type "b are members of some set, and therefore we must 

have an equality test for such values. Description types are a generalization of ML's eqtypes  and also have 

available a number of useful relational database operations such as join and projection. We need to  treat 

description types specially because equality is not available on certain values such as functions or, perhaps, 

certain base types. Description types are those that can be constructed from the allowed base types through 

any type construction other than a function type outside the scope of a reference type. 

The second form of restriction is expressed by [("a) Name:"b, Sa lary : in t l ,  which is also a type 

variable. In addition to being a description type it is kinded with the restriction that any instance must 

contain the fields Name:u and S d a r y : i n t  where a is any instance of "b. Kinded type variables capture 
the two forms of polymorphism in the definition of Wealthy: it is polymorphic with respect to the type of 

the Name field, and it is also polymorphic with respect t o  the record type containing the Name and Salary 

fields. It is because we can extend ML's type inference to deal with description and kinded type variables 

that Machiavelli has the power to deal with a wide range of database constructs. 

In the polymorphism represented by the kinded type variables, there is a close relationship with object- 
oriented programming. The type scheme {[("a) Name:"b, Salary : i n t l )  can be thought of as  a class and 
functions that are polymorphic with respect to this, such as Wealthy, can be thought of as methods of 

that class. For the purposes of finding a typed approach to object-oriented programming, Machiavelli's type 
system has similar goals to the systems proposed by Cardelli and Wegner [Car88, CW85]. However, there 

are important technical differences, the most important of which is that in Machiavelli database values have 



unique types, while they have multiple types in Cardelli and Wegner's type systems. Database types in 

Machiavelli specify the exact structure of values and this property is needed in order to implement various - 
database operations such as equality and natural join. (See [BTB089] for more discussion.) In Machiavelli 

inheritance is achieved not by subtyping but by polymorphic instantiation of kinded type variables. The 

most important practical difference is that this polymorphism is inferred, which means that the programmer 

does not have to declare and explicitly instantiate the rather complicated forms needed in the Cardelli and 

Wegner system to capture precisely the polymorphic nature of functions such as Wealthy. 

Another important extension to these type systems for objects and inheritance is that Machiavelli uni- 

formly integrates set types and various database operations including generalized join and projection in 
its polymorphic type system. Sets may be constructed on any description type; combined with labeled 

records, labeled variants and cyclic definitions, the Machiavelli type system allows us to represent most of 

the structures found in various complex data models [HK87]. Cyclic structures are supported by exploiting 

the properties of regular trees [Cou83]. Join and projection are generalized to arbitrary, possibly cyclic, 

structures and are polymorphic functions in Machiavelli's type system. This immediately provides a natural 

representation of a generalized relational (or complex object) data model within a polymorphic type system 

of a programming language and achieves a natural integration of databases and a programming language. 
Although there is some argument about the nature of object identity, we shall assume that it is adequately 

captured through reference types; then, by representing "objects" as references to complex values, we obtain 
representations similar to those used in object-oriented databases in a static type system. In particular, by 
the construction of views, functions that preserve identity, we are able to combine naturally two notions of 

inheritance: subclasses in programming languages and subsets in databases. In fact, it is the availability 

of generalized relational operations that allows us to do this. Also, as we shall see in section 6 the form 

of inheritance expressed by Machiavelli's polymorphism can be integrated with data abstraction, thereby 

achieving a basic property of object-oriented programming in a statically typed framework. 

The organization of this paper is as follows. Section 2 introduces the basic data structures of Machiavelli 

including records, variants and sets, and shows how relational queries can be obtained with the operations 

for these structures. Section 3 contains a definition of the core language itself. It defines the syntax of types 

and terms, and describes the type inference system. In section 4, the language is extended with relational 
operations - specifically join and projection - that cannot be derived from basic set operations, and the 

type inference system is extended to handle them. In section 5 we show how this type system can be used 

to represent some important aspects of object oriented databases. Section 6 extends the core type system 

to represent data abstraction and multiple inheritance. Again, we should emphasize that Machiavelli is far 
from a complete database programming language, and while we believe that its type system can be used in 

a full-fledged language, some care must be taken to ensure that the type system can be used in conjunction 

with other useful features. Section 7 discusses these problems and the further work that is needed to make 

the language useful in dealing with external databases. 

2 Basic Structures for Data Representation 

As we have just mentioned, one of the goal of this study is to develop a polymorphic type system that 
serves as a medium to represent various database structures. In particular it should be expressive enough to 
represent various forms of complex objects that violate the "first-normal-form assumption" that underlies 

most implemented relational database systems and most of the traditional theory of relational databases. 



For example we want to be able to deal with structures such as 

{[lame = [F i r s t  = "Bridget", Last  = "Ludford"], 

Children = {"Jeremy", "~hr i s tophe r" ) ]  , 
[lame = [F i r s t  = "Ellen". Last = "Curman"], 

Children = {"Adam" , " ~ e n j  amin")] ) 

which is built up out of records and (uniformly typed) sets. This structure is a "non-first-normal-form" 

relation in which the lame field contains a record and the Children field contains a set of strings. It is an 

example of a description term, and in this section we shall describe the constructors that enable us to build 

up such terms from atomic data: records, variants, sets and references. We shall also describe how cyclic 

structures are created. 

Some of the basic syntactic forms of Machiavelli for value and function definition have been borrowed from 

ML [HMT88]. Knowledge of ML syntax should not be needed provided a few basic forms are understood. 
In particular, names are bound to values by the use of va l ,  as in 

val f o u r  = 2 + 2;  

functions are defined through the use of fun ,  as  in 

f u n  f (n) = if eq(n ,o )  t h e n  0 else n + f (n-1); 

and there is an function constructor f n  x => . . . that is used to create functions without naming them, as 
in 

(fn x => x + x) (4) 

which evaluates to 8. In fact, since a fixed point operator is lambda-definable in Machiavelli (using recursive 

types), recursive function definition can be obtained from value definition and is not essential. It  is here 
for convenience. Finally there is the form le t  x = el in e2 end ,  which evaluates e2 in the environment in 

which x is bound to e l .  Example: 

let x = 4 + 5 in x + x*x e n d  

which evaluates to 90. In an untyped language, let . . . in . . . end is also not essential, but the type 

inference rules are such that this form is treated specially, and is the basis for ML's polymorphism. By 
implicit or explicit use of le t ,  polymorphic functions are bound and used. Polymorphic function definitions 

such as that of Wealthy above are treated as shorthand for a let binding whose scope is the rest of the 
program. 

2.1 Labeled Records and Labeled Variants 

The syntax for labeled records is: 

where 11, . . . , I, stand for labels. A record is a description term if all its fields vl, . . . , v, are description 
terms. Other than record construction, ( C  . . . I ) ,  there are two primitives for records. The first, r.1, is field 
selection found in many programming languages, which selects the 1 field form the record r .  The second, 
mod i fy ( r , l , e ) ,  is field modification, which creates a new record identical to r except on the 1 field where 

its value is e. For example, 



modify ( [Hame = "J. Doe", Age = 211 , Age, 22) 

yields (evaluates to) [Name = "J. Doe", Age = 221. It is important to note that modify does not have a 

side-effect. It  is a function that returns another record. The syntax (el, e2) for pairs is simply an abbreviation 
for the record [ f i r s t  = e l ,  second = eal . Triples and, generally, n-tuples are similarly constructed. 

The syntax of labeled variants (injection to labeled disjoint union) is: 

A variant is a description term if its component v is a description term. The operation for decomposing a 

variant is case statement: 

case e of 

<ll=xl> => e l ,  

<ln=xn> => en,  

else eo 

endcase 

where xi in <li=xi> => ej is a variable whose scope is in ei. This operation first evaluates e and if it yields 

a variant <li=v> then binds the variable xi to the value v and evaluates ei under this binding. If there is no 

matching case then the else clause is selected. The else is optional, and if it is omitted the argument e must 
be evaluated to a variant labeled with one of 11, . . . , In .  This condition is ensured by the type system. Note 

that case. .  . o f .  . . endcase is an expression, and returns a value. The possible results el ,  . . . , en, eo should 

all have the same type. 

For example, 

case <Consultant = [lame = "J. Doe", Address = "10 Main St ." ,  

Phone = "222-1234"]> 

of 

<Consultant = x> => x.Phone, 

<Employee = y> => y.Extension 

endcase 

yields "222-1234". 

2.2 Sets 

Sets in Machiavelli can only contain description terms and sets themselves are always description terms. 
This restriction is essential to generalize database operations over structures containing sets. There are four 
basic operations for sets: 

{ 1 empty set, 
{XI, 12,. . . , x n )  set constructor, 

union(sl  set union, 
horn( f , op , z  ,s)  homomorphic extension 



Of these operations, horn requires some explanation. This is a primitive function in Machiavelli, similar to 

the "pump" operation in FAD [BBKV88] and the "fold" or "reducen of many functional languages, whose - 
definition is 

for example, a function to add up the members of a set may be defined as 

fun sum S = h o m ( f n  x  => x ,  +, 0 ,  S) 

and a function that finds the size of a set is 

fun card S  = h o m ( f n  x => 1 ,  +, 0, S) 

In general the result of this operation will depend on the order in which the elements of the set are encoun- 

tered; however if op is an associative commutative operation and f has no side-effects (as is the case in the 

sum and card examples) then the result of horn will be independent of the order of this evaluation. When 

this happens we shall call the application of horn proper. Machiavelli cannot guarantee that every applica- 

tion of horn is proper; indeed improper applications of horn are frequently useful. Proper applications of 

hom give rise to deterministic computations and have the property of being computable in parallel. Equality 

on values that result from improper applications may not be what was intended by the programmer. It is 
an interesting question to ask when an application of hom can be shown, by static analysis of a program, to 
be proper. 

There is an alternative form of horn, horn* that applies to non-empty sets and does not require the 
argument z.  Thus 

When z is an identity for op, hom behaves as horn* on non-empty sets. horn* is useful when the value z 
for the empty set is difficult to find as in the example: 

fun rnax(S) = horn* (fn x=>x, fn (x ,  y) => if  x  > y then x  else y  ,s)  

which computes the maximal element of a non empty set of integers. 

The following useful functions can be defined using horn: 

fun =p( f , s )  = horncf , union, {) I S) 

map( f ,  S )  applies the function f to each member of S; for example map (card, {{ l,2), (31, {6 ,5 ,4) )  evaluates 
to {2 ,1 ,3) .  

fun f i l t e r ( p , S )  = hom(fn x  => if p(x) then  {x) else {) , union, {) ,S) 

f i l t er (p ,  S )  extracts those members of S that satisfy property p; for example f i l ter(odd,  {I, 2.3.4)) 

evaluates to {2 ,4) .  

In addition to these examples horn can be used to define set intersection, membership in a set, set 
difference, the n-fold cartesian product (denoted by pro& below) of sets and the powerset (the set of 
subsets) of a set. Also, the form 



select E 
from XI  <- S I ,  

1 2  <- S2, 

Zn <- S n  
where  P 

which is provided in the spirit of relational query languages and the list comprehensions of Miranda [Tur85], 

can be implemented as 

Where map, f i l t e r  and prod are the functions we have just described, and (E, P )  is a pair of values 

(implemented in Machiavelli as records). 

2.3 Cyclic Structures 

In many languages, the ability to  define cyclic structures depends on the ability to reassign a pointer. In 

Machiavelli, these two ideas are separated. It is possible to create a structure with cycles through use of the 

( rec  v  . e )  construct, e.g. 

val Montana = ( rec  v .  [Name = "Montana", Motto = "Big Sky Country", 

Cap i t a l  = [Name = "Bi l l i ngs" ,  S t a t e  = v ] ] )  

This record behaves like an infinite tree obtained by arbitrary unfolding by substitution for v .  For example, 

the expressions Montana. Cap i t a l ,  Montana. Cap i t a l .  S t a t e ,  Montana. Capi ta l  . S t a t e .  Capi ta l ,  etc are all 

valid. Moreover, equality and other database operations on description terms generalize to those cyclic 

structures. This uniform treatment is achieved by treating description terms as  regular trees [Cou83]. The 

syntax ( r e c  v . e )  denotes the regular tree given as the solution to the equation v  = e ,  where e may contain 

the symbol v .  

2.4 References 

We believe that the notion of "objects" in databases is equivalent to that of references as they are implemented 

in ML. There are three primitives for references: 

n e w ( v )  reference creation, 
! r de-referencing, 

r : =v assignment. 

n e w ( v )  creates a new reference and assigns the value v  to it. ! r  returns the value associated with the 
reference r .  r:=v changes the value associated with the reference r to v .  In a database context, they 
correspond respectively to the creation of an object with identity, retrieving the value of an object, and 

changing the associated value of an object without affecting its identity. 



When combined with other description term constructors, references represent objects with identity. The 

uniqueness of identity is guaranteed by the uniqueness of each reference. Two references are equal only if - 
they are the results of the same invocation of new primitive. For example if we create the following two 

objects (i.e. references to records): 

John1 = new([Name="John", Age= 211) ; 
John2 = new( [Name=" John", Age= 211 ) ; 

then eq(John1 ,Johni) and eq( ! Johni , ! John2) are true but Johni = John2 is f a l s e  even though their 

associated values are the same. Sharing and mutability are also represented by references. If we define a 

departmenk object as: 

SalesDept = new( [Name = "Sales", Building = 111 ) ; 

and from this we define two employee objects as: 

John = new([Name="John", Age =21, Dept = SalesDeptl) ; 

Mary = new ([Name="Mary", Age =31, Dept = SalesDept]) ; 

then John and Mary share the same object SalesDept as the value of Department field. An update to the 

object SalesDept as seen from John. 

( ! ~ o h n )  . Dept : = modify ( ! ( ( ! John). Dept ) , Building, 98) 

is reflected in the department as seen from Mary. After this statement, 

evaluates t o  98. Unlike many languages references do not have an optional "nil" or "undefined" value. If 

such an option is required it must be explicitly introduced through the use of a variant. 

3 Type Inference and Polymorphism in Machiavelli 

Type inference is a method to infer type information that represents the polymorphic nature of a given 

untyped (or partially typed) program. Hindley established [Hin69] a complete type inference algorithm for 

untyped lambda terms. Independently, Milner developed [Mi1781 a complete type inference algorithm for 

functional programming language including polymorphic definition (using let construct.) This has been 

successfully used in the ML family of programming languages [Aug84, HMT881 and also been adopted by 
other functional languages [Tur85, HW891. Unfortunately this method cannot be used directly with some 

of the data structures and operations we have described in the previous section. In this section we give an 

account of the extension to the Hindley-Milner type system that is used in Machiavelli, first through some 

examples and then through a definition of the "core" language and its type system. 

For programs which do not involve field selection, variants and database operations, Machiavelli infers 
type information similar to those of ML. For example, for the identity function 

fun id x = x;  

the type system infers the following type information 

i d :  ' a - >  'a 



where 'a is a type variable intuitively representing an "arbitrary type". This is a type scheme which is a 

representation of the set of all types obtained by substituting its type variables with some types (such as int,  

boo1 or int --+ int). This distinction of type schemes from types is crucial to understand Machiavelli's type 
system. Note that  a type is also a type scheme representing the singleton set of itself. The most important 

property of the ML type system is that for any type consistent expression it infers a principal type scheme .  

This is a type scheme such that all its ground instance are types of the expression and conversely any type of 

the expression is its instance. This means that the type system infers a type scheme that  exactly represents 

the set of all possible types of an expression. By this mechanism, ML achieves polymorphism without explicit 

type abstraction and type application. The inferred type scheme can be regarded as the polymorphic type 
of the expression. In the case of id, the type scheme 'a  -> ' a  represents the set of all possible types of i d  

and is therefore regarded as the polymorphic type V t .  t + t of id. 

A more substantial example of type inference is given by the function map of the previous section, which 

has type scheme 

map : ("a->"b * {"a}) -> {"b) 

Here "a and "b are also type variables, but in this case they only represent description types. The type scheme 

for map indicates that it is a function that takes a function of type b1 -> b2 and a set of type {bl}  and returns 

a set of type (62)  where b l ,  62 can be any description types. Thus map(card, {{I , 2 ,3} ,  (71, {5,2})) and 
map(odd, {9,8,7,6}) are both legitimate applications of map. Again, the type scheme ("a->"b * {"a}) 

-> {"b} is principal in that any type for map is obtained by substituting description types for the type 

variables "a and "b. In the example, ({int} -> int  * {{ int) ) )  -> {int) is the type of map in map(card, 

{ { l s 2 , 3 ) , .  ..}I. 

Similar examples are possible in ML and its relatives. However it is not possible for ML's type inference 

method to  infer a type scheme for a program involving field selection, variants or the relational database 
operations that we shall describe later. For example, the simplest function using field selection 

fun name x = x .Name 

cannot be typed by ML. (In Standard ML,  this function is written fun name {~ame = x ,  . . . }  = x, which 

is rejected by the compiler unless a conlplete type is specified for the argument.) The difficulty is that the 
conventional notion of type schemes is not general enough to represent the relationship between the argument 

type and the result type, which in this case is the inclusion of a field type in a record type. 

Wand attempted [Wan871 to solve this problem (with the operation that extends a record with a field) 

using the notion of row variables ,  which are variables ranging over record fields. The system, however, does 
not share with ML the property of principal typing (see [OB88, Wan881 for the analysis of the problem 

and [JM88, Em891 for the refinement of the system.) Based on Wand's general observation, in [OB88] 
we developed a type inference method which overcomes the difficulty and extends the method to database 

operations. Instead of using row variables, we introduced syntactic conditions to  control substitution of type 
variables. For records and variants, the necessary conditions can be refined a s  kinded type variables [Oh0901 
which have pleasantly simple representation, as we have seen in the example of Wealthy in the introduction. 
For example, the function name above is given the following type scheme 

name : [ ( 'a)  Name:'bl -> 'b 

As explained in the introduction, the notation [('a) Name: 'b] is a kinded type variable representing the set 

of all record types containing the field Name: T where r is any instance of 'b. Substitutions are restricted to 



-> v d  joe = [Name="JoeM, Age=21, 
Status=<Consultant = [Address="Philadelphia", Telephone=22212341>1; 

>> v d  joe = [Name="Joe", Age=21. 
Status=<Consultant = [Address="PhiladelphiaM, Telephone=22212341>1 

: [Name: string, Age: k t ,  Status: <( 'a)Consultant : [Address: string,Telephone: kt] >I 

-> fun phone(x) = case x.Status of 
<Employee = y> => y.Extension, 
<Consultant = y> => y.Telephone 

endcase 

>> val phone = fn : [('a) Status:<Employee:[('b) Extension:'d], 

Consultant : [('c) Telephone: 'dl >I -> 'd 

-> phone ( j oe) ; 
>> val it = 2221234 : int 

-> fun incrementage(x) = modify(x, Age, X- Age + 1) ; 

>> val increment-age = fn : [('a) Age:intl -> [('a) Age:int] 

-> increment-age( CName="John" ,~ge=211) ; 

>> val it = [~ame=" John", Age=22] : [Name : string, Age : int] 

Figure 1: Some Simple Machiavelli Examples 

those that  respect kind restrictions of type variables. The type scheme above then represents the exact set of 

all possible types of the function name and therefore regarded as  a principal (kinded) type scheme for name. 

More examples of type inference for records and variants are shown in figure 1 which shows an interactive 

session in Machiavelli. Input to the system is prompted by ->, and output is preceded by >>. At the top 

level input is either a value or function binding; it is a name for the result of evaluation of an expression. 

The output consists of some description of the value that  has just been evaluated or bound together with 

its inferred type. 

We now define a small polymorphic functional language by combining the data  structures described in 

the previous section with a functional calculus and giving its type system. This will serve as the polymorphic 

"core" of Machaivelli. 

3.1 Expressions 

The syntax of programs or expressions of the core language is given by 

e ::= c,  I () I x I (fn x => e) I e(e) I let x=e in e end I 
if e then e else e I eq(e.e) I 
[I=e ,..., /=el I e.1 I modify(e,l,e) I 
<I=e> I case e of <l=x> => e . . . . . <l=x> => e endcase I 
case e of <l=x> => e.. . .,<l=x> => e else => e endcase I 
{e , . . . ,  e) I union(e,e) I hom(e,e,e,e) I hom*(e,e,e) I 



In this, c, stands for standard constants including constants of base types and ordinary primitive functions 

on base types. z stands for the variables of the language. 0 is the single value of type unit and is returned 

by expressions such as assignment. Examples of the syntax have already been given in section 2 and, in 

particular, in figure 1. Value binding val id = e l ;  e2 is syntactic sugar for le t  id = el in e2. Recursive 

function definition with multiple argument is also syntactic sugar for expressions constructed from let, 
records, field selection and a fixed point combinator, which is already lambda-definable in Machiavelli using 

recursive types. Evaluation rules for those expressions are obtained by extending the operational semantics 

of ML such as the one defined in [Tof88] with the rules for e q  and the operations on records, sets, and 

variants and the rules for recursive expressions. The rule for e q  requires delicate treatment in connection 

with cyclic structures and sets and we defer it until we discuss database operations in section 4. We have 

already informally described the evaluation rules for operations on records, sets, and variants. It is not 

hard to give their formal definitions as reduction rules. In order to handle recursive expressions, we add 

the following rules. Let E(x)  be one of the expressions e.1, modify (x , I ,  e) , case x of . . ., union(x  , e l ,  

un ion (x , e ) ,  or h o m ( x , e l  ,e2,es). 

where e[(rec x.e)/x] is the expression obtained form e by substituting x in e for (rec x.e). This rule 

corresponds to "unfolding" of cyclic definitions. 

3.2 Types, Description Types and Typing Rules 

As explained above, Machiavelli type system is based on type inference. A legal hlachiavelli program corre- 

sponds to  an (untyped) expression associated with a type scheme inferred by the type inference system. As 

such an implicit type system, the definition of hlachiavelli type system requires two steps. The first is to give 

typing rules, which determines when an untyped expression e is considered to have a type r and therefore 

considered as a well typed expression. The second step is to develop a type inference algorithm that infers 

for any type consistent expression a principal type scheme representing the set of all possible types of the 

expression derivable form the typing rules. In this subsection, we give the complete set of typing rules. 

The set of types of Machiavelli is the set of regular trees [Cou83] represented by the following type 

expressions: 

T ::= unit 1 b 1 b d  1 r-+ r 1 [1: T , . . . ,  1 :  T] l ( 1 :  T , . . . ,  1 :  r) 1 {r} 1 ref(?) l(rec v . r (v ) )  

unit is the trivial type whose only value is 0. b and b d  range respectively over the base types and base 

description types of the constants in the language. The other type expressions are: r + T for function types, 

[ I  : r , .  . . , I  : r] for record types, (1 : r , .  . . , I  : r) for variant types, and { r )  for set types. In (rec v. ~ ( v ) ) ,  
r (v)  is a type expression possibly involving the symbol v but not v itself and the entire expression denotes 

the solution to the equation v = T(v), which exists in the set of regular trees. In keeping with our syntax for 

records we shall use the notation rl * r 2  as an abbreviation for the type [first : TI,  second : 721. Triples and. 

generally, n-tuple types are similarly treated. Database examples of hlachiavelli types are: a relation type, 

{[PartNum:int, PartName:string, Color: <Red:unit,  Green:unit ,  ~ l u e : u n i t > ] }  

a complex object type, 



{ [Name: [ F i r s t :  s t r i n g ,  Last :  s t r i ng ]  , Children: {s t r ing)] )  

and a mutable object type, 

( r ec  p. re f  ([1d#: i n t ,  Name: s t r i n g ,  Children: {p)])) 

Note that (rec v. r(v)) is not a type constructor but a syntax to  denote the solution to  the equation 

v = r(v) .  As a consequence, distinct type expressions may denote the same type. For example, the following 

type expression denotes the same type as the one above: 

( r ec  p .  r e f ( [ I d # : i n t ,  Name:string, 

Children: {ref ( [id#: i n t ,  lame: s t r i n g ,  Children: {p)])])) 

There is an efficient algorithm [Cou83] to  test whether two type expressions denote the same type (i.e. 

regular tree) or not. We can therefore identify type expressions as the types they denote. Note also that an 

"infinite" (cyclic) type does not necessarily mean that its values are cyclic. In the last example, while the 

type is cyclic, a cyclic value of this type presents some biological difficulties. 

The set of description types is the subset of types represented by the following syntax: 

6 ::= unit I bd ( [l : 6,.  . . , 1  : 61 1 (1 : 6, .  . . , 1  : 6) 1 (6) ( r e f ( r )  I (rec v. S(v)) 

where r ranges over the syntax of all type given previously. This syntax forbids the use of a function type 

or a base type which is not a description type in a description type unless within a r e f  (. . .). Thus i n t  -> 
i n t  is not a description type but 

r e f  ( [x-coord: i n t  , y-coord: i n t  , movehorizontal :  i n t  -> ( ) I  ) 

is a description type. Note the similarity - and differences - between this type and a class definition in 

object-oriented languages. 

The typing rules are given as a set of rules to derive typing judgements. Since the type of an expression 

depends on the type of its free variables, a typing judgement has the form: 

where A is a function, called a type assignment, from a finite subset of variables to  types. We write A{x := T) 

for the function A' such that  dom(A) = dom(A) U {x) ,  A1(x) = T and A1(y) = A(y) for y # x. The typing 

rules for all the operations we have so far given is shown in figure 2. 

Our treatment of polymorphic let  (the rule LET) differs form Damas-Milner system [DM821 in that it does 

not use generic types (a  type expression of the form V t .  r )  but instead it use syntactic substitution of terms. 

A naive implementation of this form of typing rule would require recursive unfolding of le t  definitions. This 

unfolding process always terminates but would prohibit the possibility of incremental type-checking. For the 

closed raw terms, however, our proof system is equivalent (when restricted to the raw terms ML) to Damas 

and Milner's system and their technique for inferring type scheme for let  expressions (their algorithms W 
and J )  is also applicable to our system. The advantage of our treatment of let is that the type system can be 
extended to records, variants and database operations. While it is shown that [Oh0901 it is still possible to 

extend Damas-Milner generic type schemes to records and variants using kinded type abstraction, we do not 

know how to extend them to the conditional typing schemes that we shall require for database operations. 



A b let z = ez i n  el : r 

A b e 1 : b o o l  A b e 2 : r  A b e 2 : r  

A b if el t h e n  ez else e3 : T 

d b e ,  : TI, ..., d b e ,  : r, 

A b [ll=el,. . . ,ln=enl : [ll : T I , .  . . , 1, : r,] 

A b e : r ~  
if rl is a record type containing 1 : r 2  

d b e.1 : r 2  

A b e l : ~ ~  d b e z : r z  
if TI is a record type containing 1  : r 2  

A b rnod i fy (e l , l , ez )  : rl 

A b e : r ~  
if 72 is a variant type containing 1 : 

d b <l=e> : r2 

d b e  : ( l i : r l ,  . . . , [ , : r , )  d { z i : = r i )  b e ,  : r ( l s i < n )  

d b c a s e  e  of <11=z1> => e l .  ..., <ln=z,> => en e n d c a s e :  r 

A b e  : 1 : 1 , .  . . 1 : r . . )  d { z ,  := r ,)  b ei : r (1 < i 5 n )  A b eo : r 

A b case e  of  <ll=zl> => e l , .  . ., <l,=z,> => en else => eo endcase  : r 

A b e l :  6 . . - A  b e , :  6 

A b {el ,. . . , en)  : {6) 

A b el :=e2 : unit 

Figure  2: T h e  Proof S y s t e m  for nilachiavelli Typings  



3.3 Type Inference 

The proof system of figure 2 determines which expressions are type correct legal Machiavelli programs. 

Unlike the simple type discipline, this proof system does not immediately yield a decision procedure for 
type checking expressions. The second step of the definition of the type system is t o  give such a decision 
procedure. Since an expression may have more than one typing, we need to develop a representation for sets 

of typings and an algorithm which, given any typable expression, infers a representation for the set of all 

derivable typings for the expression. This is the type inference problem. 

In [Hin69, Mi1781 this problem was solved by defining a language of type schemes containing type variables 

and developing an algorithm which, given a typable expression e, computes a principal typing scheme C k e : u 

satisfying the property that A b e : T is derivable if and only if there is some substitution 0 such that 

A(x) = B(C(x))  for all x E dom(C) and r = 0(u). A legal ML program is one with a principal typing scheme 

with an empty type assignment C. 

There are two problems in applying this method to  our type system. The first one is that the operational 

semantics for references does not agree with polymorphic type discipline for let binding. As pointed out in 
[Mac88b, Tof881, the straightforward application of the type inference method of [Mi1781 to references yield 
unsound type system. The following example is given in [Mac88b]: 

let 
val f = new(fn x => X )  

in (f:=(fn x=> x + x ) ,  (!f>(true>> 
end 

If the type system treats the primitive new as an ordinary expression constructor then it would infer the 

type boo1 for the above expression but the expression causes a run time type error if the evaluation of a pair 
(record) is left-to-right. In [Tof88, Mac88b1, solutions have been proposed. They differ in detailed technical 

treatment but are both based on the idea that the type system prohibits reference values from having a 

polymorphic type. In what follows, we may assume either of these proposals. 

The other problem we need to  address is that,  in figure 2, some of the rules have associated conditions: 

1. a type should be a description type, 

2. TI is a record type containing 1 : r 2 ,  

3.  rl is a variant type containing 1 : 72, 

4. a t,ype should be of the form (11 : TI,.  . . ,I,  : T,,, . . .). 

The second, third and fourth of these conditions are explicitly required in the the rules (DOT), (MODIFY), 

(VARIANT) and (CASE'). The first requirement, that a type should be a description type, is indicated by the 
use of a 6 (rather than T )  in the rules (SET), (UNION), (HOM),  (EQ) and (REC). 

The first condition is handled by introducing a new class of type variables description type variables, 
similar to ML's eqtype variables. In order to represent the other three conditions, we refine type schemes 
as  kinded type schemes by introducing kind constraint on type variables. The set of kinded type schemes 
appropriate for Machiavelli is given by the following syntax: 

u ::= t K  1 dK 1 unit 1 u + u 1 [l : u , .  . . , l  : u] 1 (1 : u , .  . . , l  : u) 1 {u} 1 ref(u) 1 ( ~ e c  v. u(v)) 



a :: U for all a 

t[ l~:o~~~. .~ln:ons.~.I  :: [ll : gl, . . . ,In : an] 

~ [ l ~ : o l ~ . . . ~ l n : ~ r n ~ . . . ]  :: Ill : gl, . . . , ln : un] 

[II ::(TI ,..., In :an, ...I ::[/I : U l , . - . , l n  : a n ]  

t((~~:~l~..~~lm:onv~..)) :: ((Il : al, . . . , ln : an)) 

d ( ( l l : o l ~ ~ . . ~ l m : o n ~ ~ ~ . ) )  1: ((11 : g l ,  . . . , ln : an)) 

[11 :: UI , .  . . , l n  : a n , .  . .] :: ((11 : ~ 1 , .  - .  ,ln : an)) 

Figure 3: The Proof System for Kindings 

where tK stands for type variables with the kind tag Ii', dK stands for description type variables with kind 

tag K. The set of kinds is given by the following syntax: 

K ::= U 111: a ,..., 1 :  a] 1 ((1: u , . . . ,  1 :  u)) 

The idea is that  U denotes the set of all type schemes, [l : a , .  . . ,1 : u] denotes the set of record type schemes 

containing the set of all fields 1 : a, . . . , l  : a,  and ((I : a , .  . . , I  : a)) denotes the set of variant type schemes 

containing the set of all fields 1 : a , .  . . , l  : a .  Figure 3 gives kinding rules. 

Kind constraints on type variables are analogous t o  type constraints on variables. The only legal instan- 

tiation of a type variable of the form tK is a type scheme u such that we can derive the kinding u :: I<. This 
constraint is reflected in the following definition. A kind preserving substitution 0 is a function from the set 

of kinded type variables to  kinded type schemes such that O(tK) # tK  for only finitely many tK and satisfies 

the conditions: (1) it maps description type variables to  description type schemes and (2) O(tK) :: B(K) ,  
O(dK) :: 0(I<) for all tK and dK. Robinson's unification algorithm [Rob651 can be extended to kinded type 

schemes. Let E be a set of pairs of kinded type schemes. A kind preserving substitution 0 is a unifier if 

O(al) = 6(a2) for all pair ( a l ,  a 2 )  E E. It is shown [Oh0901 that: 

P ropos i t i on  1 There is an algorithm U which computes a most general unifier for any unifiable set E of 

pairs of kinded type schemes. 

With these definitions, we can refine the notion of principal typing scheme. Let C be an assignment of 

kinded type schemes to  a finite set of variables and a be a kinded type scheme. A principal kinded typing 

scheme is a formula of the form C b e : a such that A b e : r is a typing of e if and only if there is a 
kind preserving substitution 0 such that A(x) = 0(C(x)) for all z 2: dom(C) and r = 0(a). Using a kind 

preserving unification algorithm, we can extend ML type inference to the set of Machiavelli's expressions: 

Proposition 2 There is an algorithm, K ,  which, given any expression e, returns either a pair (C, u) o r  

failure such that if K(e) = @ , a )  then C b e : a is a principal kinded typing scheme otherwise e has no 
typing. 1 

The detailed proof can be found in [Oho90]. Here we only show the algorithm for the case of field selection 
e .  I, which illustrates the use of kinded type variables. 



EC(e.1) = let 

(E l ,  ~ l )  = K(e) 
[l i t:]  

0 = U({(ul, t l  ))) (where t l ,  t2  are fresh) 

in 

C = 0(C1) 

u = O(tY) 

end 

Just as legal ML programs correspond to principal typing schemes with empty type assignment, legal 

Machaivelli programs correspond to principal kinded typing schemes with empty type assignment. Machi- 

avelli prints kinded type schemes as follows: 

as already seen in examples. Thus 

-> fun name x = x.Name; 
>> val name = fn : [('a)~ame:'b] -> 'b 

is a representation of the the following kinded typing scheme: 

Examples shown in figure 1 are to be similarly understood. 

To summarize our progress to  this point: we have augmented type schemes of ML with description types 

(which already exist in ML in a limited form) and kinded type variables. This has provided us with a type 

system that not only expresses the generic properties of field selection, but also allows sets to be uniformly 

treated in the language. However relational databases require more than the operations we have so far 

described, and it is to these that we now turn. 

4 Operat ions for Generalized Relations 

We are now going to show how we can extend Machiavelli to include the operations of the relational algebra, 
projection and natural join that are not covered by the operations for sets and records that we have so far 

developed. Before doing this, there are two important points to be made. The first is that, in order to achieve 

a general definition of these operations we are going to put an ordering on values and on description types. 
The ordering on types, although somewhat similar to that used by Cardelli [Car881 is in no sense a part of 

Machiavelli's polymorphism. This should be apparent from the fact that we have already incorporated field 

selection as a polymorphic operation without having to  make use of such an ordering. 



The second point is that the introduction of join complicates the presentation of the type inference system 

and increases the complexity of the type inference problem. The typing rule for join operation is associated - 
a complex condition which can no longer be represented by some kind. To give a type scheme for jo in,  

we need t o  extend the notion of (kinded) typing schemes to  conditional typing schemes [OB88] by adding 

syntactic conditions on instantiation of type variables. A similar problem was later observed in [Wan891 if 

one uses a record concatenation operation rather than join. Since we are primarily concerned with database 

operations, our inclination is t o  examine the record joining operation that naturally arises as a result of 

generalizing the relational algebra. 

Our strategy in this section is first t o  provide a method for generalizing relational algebra over arbitrary 

description types. We then provide the additional typing rules, which have associated order constraints on 

the types. Finally we show that although there is no longer a principal typing scheme for a term, we can still 

provide a principal conditional typing scheme which represent the exact set of provable typings. We then 

describe the method t o  check the satisfiability of conditions before the evaluation of the term associated with 

the conditions. In other words, we are still able t o  guarantee that a program will not cause a type error. 

4.1 Generalizing Relational Algebra 

Our rationale for wanting t o  generalize relational operations is that,  in keeping with the rest of the language, 

we would like them to be as "polymorphic" as possible. Since equality is essential to the definition of most of 

these operations, we cannot expect to generalize them to arbitrary terms of the language. Instead we content 

ourselves with their effect on description terms, which are those terms that can be typed with a description 

type. To achieve this end Machiavelli generalizes the following four operations to arbitrary description terms 

and introduces them as polymorphic functions in its type system: 

e q ( e l  . e 2 )  equality t e s t ,  

j o i n ( e l  , e z )  database join operation, 

c o n ( e l  , e n )  operation for consis tency check, 

p r o j e c t ( e , b )  projection of d onto  the type b .  

The intuition underlying their generalization is the idea exploited in [BJ089] that database objects are 

partial descript ions of real-world entities and can be ordered by goodness of descript ion.  The polymorphic 

type system to  represent these generalized operations has been developed in [Oho89]. In what follows, we 

describe how equality, join and projection are generalized to  finite description terms. For the treatment of 

cyclic structures as well as the precise semantics of the type system for descriptions, the reader is referred 

to  [Oho89]. 

We first consider join and equality. We claim that join in the relational model is based on the underlying 

operation that  computes a join of tuples. By regarding tuples as partial descriptions of real-world entities, 

we can characterize it as a special case of very general operations on partial descriptions that  combines two 

consistent descriptions. For example, if we consider the following non-flat tuples 

t l  = [Name = [First = "Joe"]]; 

and 

t2 = [Name = [Last = "Doe"]] 



as partial descriptions, then the combination of the two should be 

t = [ lame = [First= " J o e " ,  Last = " D o e " ] ] .  

This is characterized by the property that t is the least upper bound of t l  and t z  under the ordering induced 

by the inclusion of record fields. Denoting the ordering by IZ, join is defined as: 

Equality in partial descriptions is an operation which tests the equality on the amount of information and 
is characterized by the equivalence relation induced by the information ordering, i.e. 

e q ( d , d 1 )  = d d'and d' 5 d 

This approach also provides a uniform treatment of null values [Zan84, BisSl], which are essential to database 

programming involving incomplete information. Join and projection extend smoothly to  data containing null 

values. However care must be taken [Lip79, IL84] to  ensure that in using an algebra with these extended 

operations they provide the required semantics. To represent null values, we also extend the syntax of 

Machiavelli terms with: 

n u l l ( b )  the null  value of a base type b 
<> the (polymorphic) null  value of  variant types 

A11 other incomplete values are those that are constructed by description term constructors. 

The importance of these characterizations is that they do not depend on any particular data structure 

such as flat records. Once we have defined a (computable) ordering on the set of description terms which 

represents our intuition of the goodness of description, join and equality is generalized to arbitrary complex 
description terms. To get such an ordering, we first define the pre-order 5 on description terms. For finite 

descriptions, 5 is given as: 

cb 

null ( b )  

n u l l ( b )  

[11 = d l , .  . . ,in = dnl  
<> 
<> 

<I = d> 

r 

{d l  sdn} 

cb for all constant cbof t ype  b ,  

cb for a11 constant cbof type b y  

n u l l ( b )  for any  base type b 

[11 = d ; ,  ..., 1, = d; ,... I i f d ,  d d ; ( l < i < n ) ,  
<> , 
<1 = d> for any  description d ,  
<I = d'> i f d 5 d 1 ,  

r for any reference r 

{ d  . . d }  i f  Vd' E {d',, . . . , dk) .  3d E {dl , .  . . , d,}. d 5 d' 

The rule for sets is defined to capture the properties of sets in database programming. 3 fails to be 
anti-symmetric because of this rule. An ordering is obtained by taking induced equivalence relation and 
regarding a description term as a representative of an equivalence class. In what follows, we denote by C_ the 
ordering induced by the preorder 5 .  Since the ordering relation and the least upper bound are shown to be 
computable, our characterization of join and eq immediately gives their definitions on general description 
terms. The equality (eq) is a generalization of structural equality to sets and null values. Figure 4 shows an 
example of a join of complex descriptions. This definition of join is a faithful generalization of the join in 
the relational model. In [BJ089] it is shown that: 



rl = {[Pname = "Nut" ,Supplier = { [Sname = "Smith" ,City = "London"] , 
[Sname = "Jones", City = "Paris"] , 
[Sname = "Blake", City = "Paris"] )I , 

[Pname = "Bolt",Supplier = { [Pname = "Blake",City = "Paris"], 
[Sname = "AdamsW,City = "Athens"])]) 

r2 = {[Pname = "NutU,Supplier = {[City = "Paris"l),Qty = 1001, 
[Pname = "BoltN,Supplier = {[City="Paris"]) ,qty = 2001) 

join(ri,r2)=  name = "Nut",Supplier  name = "Jones",City = "Paris"], 
[Sname = "Blake" ,City = "~aris"]), qty = 1001 , 

[Pname = "Bolt",Supplier   name = "Blake",City = "~aris"]), qty = 2001) 

Figure 4: Natural join of higher-order relations 

Proposition 3 If r l ,  rz are first-normal form relations then j o in ( r l ,  r 2 )  is the natural join of r l  and r:! in 
the relational model. I 

A useful property of join is that it coincides with intersection when applied to two sets of the same base 

type, such as {int). I t  also provides an interesting and useful generalization of intersection when applied to 
sets of "objects". This is discussed in section 5. 

We turn our attention to  projection. In the relational model, it is defined as  a projection on a set of 

labels. We generalize it to  an operation which project a complex description onto its "substructure". In a 
programming language, a structure of data  is represented by a type and we define projection as an operation 

specified by its target type. Recall that the syntax of description types is 

6 ::= bd 1 [I : 6, .  . . , I  : 61 1 (I : 6,. . . , l  : 6) ( (6) 1 (rec v. 6(v)) 

Projection becomes an operation indexed by a description type. project (x ,6) is the operation which, given 

a description x whose type is "bigger" than 6, returns a description of type 6 by 'throwing away" part of its 

information. The following is a simple projection on flat relation: 

project({ [Name = "J. Doe", Age = 21, Salary = 210001 , 
[Name = "S. Jones", Age = 31, Salary = 310001 ), 

{ [Name : string, Salary: int] )) 

= { [Name = "J. Doe", Salary = 210001 , 
[Name = "S. Jones", Salary = 310001 ) 

To define such an operation, we use an ordering on description types t o  model our intuition that the structure 
represented by one description type "contains" the other. For finite description types, the appropriate 
ordering is given as: 



n n  << [ / 1 : 6 ;  ,..., l n : b L  , . . .  ] i f 6 i < 6 i ( l < i < n )  

n n )  << ( ~ l : 6 ~ , . . . , l n : b ~ )  i f b i < b i ( l < i s n )  

(61) << (52) if 61 << 6? 

By this ordering and the typing relation already etablished in section 3, projection has the following general 

definition: 

projec t (x ,  6 )  = U { d l d  C_ r ,  d : 6 )  

which is a computable function for any description type 6. 

4.2 Extended Expressions and Their Evaluation 

The syntax of expressions is extended with the term constructors join, con ,  and project we have just 

described: 

We extend the evaluation rules for expressions described in section 3 with the rules for the above new 

term constructors and e q .  Note that they are only applicable to  description terms. A description term d 
denote an equivalence class of regular trees induced by the ordering we have just described. We write D(d)  

for the equivalence class denoted by d. The evaluation rules for those term constructors are given as: 

jo in(d l  ,d:,) ++ d3 if  D(d3) = D(d1) U D(d2) 
c o n ( d l  , d2 )  - t r u e  if D ( d l )  U D(d:,) exists 

c o n ( d l  , d2 )  ++ f a l s e  if D(d1) U D(d2)  does not exist 

pro jec t (d l  ,6) ++ d:, if D(d:,) is the leas element of { D ( d ) ( D ( d )  D ( d l ) ,  d : 6)  

e q ( d l , d 2 )  i. t r u e  if D(d1) D(d:,) and D(d:,) E D ( d l )  

e q ( d l  , d2 )  - f a l s e  if !L D(d:,) or D(d:,) (z D ( d l )  

As we have mentioned, there are generic algorithms to compute these functions. 

4.3 Type Inference for Relational Algebra 

Figure 5 gives two simple examples of the typing schemes that are inferred by Machiavelli. The type scheme 

for join3,  a join of three records is given as a type scheme ("a * "b * "c) -> "d together with a set of 

conditions { "d = j o in t ype ( "a ,  " a ) ,  " e  = j o in t ype ( "b ,  "c)  ). There is clearly extra work to  be done 

for we have to  infer precise conditions and to verify that there are instances of the type variables that satisfy 

the conditions. 

Figure 6 gives the additional typing rules for the operations join, project ,  and con ,  which must be 

considered in conjunction with those in figure 2. In order t o  include these operations we explicitly introduce 
syntactic conditions on substitution of type variables that represent the last three forrns of constraint that 

appear in these rules; they are 61 U ti:, exists, 6 = 61 U 6 2 ,  and 6:, << 61. In fact we only need to consider the 

last two forms of constraint since 61 U 61 will exist whenever we can find a type 63 = 61 U 6:,. To represent 

them we introduce the following syntactic conditions: 



-> fun join3(xDy,z) = join(x,join(y,z)); 
>> v d  join3 = fn : ("a * "b * "c) -> "d 

where { "d = "a lub "e, "e = "b lub " c  ) 
-> Join3( [lame = "Joe"] , [Age = 211 , [Off ice = 271 ) ; 
>> v d  it = [lame = "JoeN,Age = 21,Office = 271 : [Name:string,Age:int ,Office:int] 

-> project (it, [lame: string] ) ; 
>> va1 it = [lame="Joe"] : [Name: string] 

Figure 5: Some Simple Relational Examples 

d b e l  : 61 d b e 2  : 52 
( C O N )  if 51 u 6 2  exists 

A b con(el , e 2 )  : boo1 

Figure 6: The Typing Rules for Relational Operations 

1. a = jointype(u, a ) ,  and 

2. lessthan(a, a) .  

Note the difference between b3 = b1 U 6 2  and a3 = jointype(al,u2). The former is a property on 

the relationship between three description types. On the other hand, the latter is a syntactic formula 

denoting the constraint on substitutions of type variables to  represent such property. Similarly for b1 << 6 2  

and lessthan(ul, a2).  The following definition provides the meaning of those syntactic conditions. A kind 

preserving ground substitution 0 satisfies a condition c if 

1. if c ul = jointype(az, a2)  then B(ul), B(a?), B(a3) are all description types and B(a1) = @(as) UB(u3), 

2. if c lessthan(a1, a2) then B(ul), B(a2) are description types and B(al) << B(u3). 

0 satisfies a set C of conditions if it satisfies each member of C.  

Combining this with the mechanism of kinded type schemes given in section 3, we can extend our 

inference algorithm. Let C be a set of conditions, C be an assignment of kinded type schemes to variables. A 
conditional typ ing  scheme is a formula of the form C, C b e : a such that  if a kind preserving substitution B 

satisfies C then B(C) b e  : B(a) is a derivable typing. A typing A b e  : r is an instance of a conditional typing 
scheme C ,  C b e : a if there is a kind preserving substitution 8 such that B satisfies C,  A(x )  = B(C(x)) for 

all x E dom(C), and T = B(a). A conditional typing scheme C, C b e : a is principal if any derivable typing 

for e is an instance of it. The following result establishes the complete inference of principal conditional 

typing schemes. 



Propos i t i on  4 There i s  a n  algorithm which, given any  raw t e r n  e ,  re turns e i ther  failure o r  a triple (C, C ,  u )  

such that if it re turns ( C , C , u )  then C, C b e : u is a principal conditional typing scheme,  otherwise e has - 
no typing.  1 

A proof of this, which also gives the type inference algorithm for Machiavelli, is based on the technique we 

have developed in [OB88] which established the theorem for a sublanguage of Machiavelli. A complete proof 
and a complete type inference algorithm can be found in [Oho89]. For example, the type ("a * "b * "c) 
-> "d where { "d = "a lub "e, "e = "b lub "c ) of the three-way join join3 is the representation of 

of the principal conditional typing scheme: 

It is therefore tempting to  identify legal Machiavelli programs with principal conditional typing schemes. 
There is however one problem in this approach. As we have mentioned at the beggining of this section, the 

definition of conditional typing schemes does not imply that they have an instance. This happens because 
the set C of conditions in a typing scheme may not be satisfiable. In such case, the term has no typing 
and should therefore be regarded as a term with type error. In order to achieve a complete static type- 

checking, we therefore need to check the satisfiability of the set of conditions. Unfortunately, however, the 

satisfiability checking cannot be made efficient since it is shown that [OB88] the introduction of jo in makes 

the type inference problem for the simply typed lambda calculus itself NP-complete, while the construction 

of a conditional type scheme can be done in polynomial time. A practical solution we adopt here is to delay 
the satisfiability check of a condition until its type variables are fully instantiated. Once the types of all 

type variables in a condition are known then the satisfiability of the condition can be efficiently checked and 

the condition can be eliminated. Since the reduction associated with join is performed only after actual 

parameters are supplied, this method also detects all run time type errors. We therefore identify legal 
Machiavelli programs with principal conditional typing schemes where the only conditions are those that 
contain type variables. 

This strategy supports arbitrarily complex structures that can be constructed with records, variants and 

sets. This allows us t o  define directly in hlachiavelli databases supporting complex structures including 

non-first-normal form relations, nested relations and complex objects. Figure 7 shows an example of a 

database containing non-flat records, variants, and nested sets. With the availability of a generalized join 
and projection, we can immediately write programs that manipulate such databases. Figure 8 shows some 

simple query processing for the database example in figure 7. Note the use of join and other relational 

operations on "non-flat" relations. 

This approach to defining generalized relational operations completely eliminates the problem of "imped- 

ance mismatch" between relational databases and a programming language. Data and operations can be 
freely mixed with other features of the language including recursion, higher-order functions, polymorphism. 

This allows us to  write powerful programs relatively easily. The type correctness of programs is then auto- 
matically checked a t  compile time. Moreover, the resulting programs are in general polymorphic and can be 
shared in many applications. Figure 9 shows a simple implementation of a polymorphic transitive closure 
function. By using renaming operation, this function can be used t o  compute the transitive closure of any 
binary relation. Figure 10 shows query processing on the example database using polymorphic functions. 
The function cost taking a part record and a set of such records as arguments computes the total cost of the 
part. Note that  scope of type variables is limited to a single type scheme, so that instantiations of "a in the 
type of cost have nothing to do instantiations of "a in the type of expensive-parts. Also, the apparent 



-> parts; 
>> val it = {[~name="bolt",P#=l ,Pinf o=<Base= [Cost=5] >I, 

... 
[Pname="engine",P#=2189, 

Pinfo=<Composite = [SU~P~~S={[P#=I ,Qty=189], . . .), 
AssemCost=lOOO] >I , . . .) 

: {[Pname: string,P#: int , 
Pinfo:<Base: [Cost:int] , 

Composite: [SubParts : { [P#: int ,Qty : int] ) ,Assemcost : int] >I ) 

-> suppliers; 
>> val it ={[~name="~aker" ,S#=l ,City="Paris"] ,. . .) 

: {[~name:string,~#:int,City:string]} 

-> supplied-by ; 
>> Val it = { [p#=l, suppliers={ [S#=ll , [S#=121 , . . .}I , . . .) 
: {[P#: int ,Suppliers: {[Sit:  inti}]} 

Figure 7: A Part-Supplier Database in Generalized Relational Model 

(* Select all base parts *) 

-> join(parts , { [Pinf o=<Base= >I )) ; 

>> val it = { [Pname="boltU , P#=1, Pinf o=<Base= [Cost=5] >] , . . .} 
: {[Pname : string,P#: int , 

Pinfo:<Base: [Cost: intl , 
Composite: [SubParts: {[P#: int ,qty: int]} , Assemcost: int] >]) 

(* List part names supplied by "Baker" *) 

-> select x . Pname 
from x <- join(parts, supplied-by) 
where JoinJ(x. Suppliers, suppliers, { [Sname="Baker"] )) <> {) ; 

>> {"bolt", . . .) : {string) 

Figure 8: Some Simple Queries 



-> f u n  Closure R = 
let val  r = select [A=X.A ,B=Y.BI 

f r o m  x <- R, y <- R 

where  eq(x. B , y .A) andalso not (member( [A=x. A ,B=y . B1 ,R) ) 
in if r = {} then R else Closure(union(R,r)) 

end ; 

>> val  Closure = f n  : {[A:"a,~:"b]} -> {[~:"a,~:"b]) 

Figure 9: A Simple Implementation of Polymorphic Transitive Closure 

complexity of the type of cost could be reduced by giving a name to the large repeated sub-expression. 
Without proper integration of the data model and programming language, defining such a function and 

checking type consistency is a rather difficult problem. Ikloreover, the functions cost and expensive-parts 

are both parameterized by the relation (partdb) and their polymorphism allows them to  be applied to  many 
different types sharing the same common structures. This is particularly useful when we have several differ- 

ent parts databases with the same structure of cost information. Even if the individual databases differ in 
the structure of other information, these functions are uniformly applicable. 

5 Manipulation of Object-Oriented Databases 

While we make no claim that Machiavelli exhibits all the desirable properties of an object-oriented database 

language, we believe that the inheritance of methods that is implicit in functions that exploit field selection 

captures a basic property of object-oriented databases: the ability to describe and manipulate data models 

that express inheritance. In this section we show how to  represent certain important features of object- 
oriented databases within the type system we have developed. 

We shall single out two features of object-oriented data models [LRV88, ABD+89] that set them apart 

from other data  models. The first is the idea of object identity which, as we suggested in subsection 2.4, 
can be represented by reference types. A second property of object oriented databases has to do with the 

connection between classes and extents. When we say an Employee ISA Person, there are a t  least two things 
we could understand by this relationship. One of them is that  the "methods" that apply to  a Person object 
can also be applied to an Employee; another is that the database contains a set of objects and that the set 

of Employee objects is a subset of the set of Person objects. Now there is no a priori reason why these two 
definitions of ISA should have anything to do with each other. Indeed, if we think of Person and Employee 
as types and objects as values, the second (extensional) definition of ISA is excluded because database values 
in Machiavelli have a unique type. Even if we allow values t o  have multiple types [Car88], it is not clear how 
we generalize this property to sets of values in order to allow heterogeneous sets. This is something we shall 
discuss in section 7. 

Nevertheless it seems to  be a desideratum of object-oriented databases that these two definitions of ISA 
should be coupled: if you select the Employee objects from the database, you get a subset of the Person 



(* a function to compute the total cost of a part *) 

-> fun cost(p,partdb) = 
case p.Pinfo of 

<Base = x> => x.Cost, 
<Composite = x> => 

hom(fn(y)=>y .SubpartsCost ,+ ,x.AssemCost , 
select [SubpartsCost=cost ( z  ,partdb) * w 
from w <- x.SubParts, z <- partdb 
where eq(z. P# ,w. P#)) 

endcase ; 

qty ,P#=w. P#l 

>> val cost = fn 
: ([("a) Pinfo:<Base: [("b) Cost: intl , 

Composite: [("c) ~ub~arts: {[("d) P#: "e,qty: intl}, 

AssemCost : inti>, 

P# : "el 

* {[("a) Pinfo:<Base: [("b) Cost: intl , 
Composite: [("c) ~ub~arts: {[("d) P#: "e,9ty: intl}, 

AssemCost : int] >, 
P#:lie1)) 

-> int 

(* select names of "expensive" parts *) 

-> fun expensive-parts (partdb ,n) = select x .  Pname 

from x <- partdb 
where cost(x,partdb) > n; 

>> val expensive-parts = fn : 

: ({[("a) Pinf o: <Base: [("b) Cost : int] , 
Composite: [("c) SubParts: {[("dl P#: int ,qty: intl}, 

AssemCost: intl>, 

P#:"e, ~name:"fl} 

* int) -> {"f} 

-> expensive-parts(parts ,1000) ; 

>> val it = {"engine", . . .) : {string} 

Figure 10: Query Processing Using Polymorphic Functions 



I People ( 

Employees Students 

Teaching Fellows 

Figure 11: A Simple Class Structure 

objects in the database and the methods available for Employee objects form a superset of the methods 

available for Person objects. But note that this argument only asks that the two definitions of ISA are 

coupled relative to  some database; we see no reason for having a distinguished extent associated with certain 

types, as happens in many database programming languages. Among other things, this restriction implies 

that a program written in such languages cannot deal comfortably with more than one database at a time. 

The way we capture this idea in Machiavelli is through coercions or views. A database object will, 

in general, be a reference to  a structure whose type, say PersonObj, may rather complicated and will 

describe all possible states of a Person object including an indicator of whether or not it is an Employee 

and its attributes as an Employee . A database (or a part of it) will consist of a set DB of such objects, 

i.e. a value of type {PersonObj).  A view of DB is a set of relatively simple records in which we "reveal" a 

part of the structure of each member of DB in a fashion that allows us to exploit the relational operations 

we have already developed. For example, { [~ame:  s t r ing ,  Id: PersonObjl ) and { [Hame: string,  
Age: int , Id: PersonObj] ) are both types of possible views of set DB. But notice that within these records 

we have kept a distinguished Id field that contains the object itself, and this field, being a reference type 

can also be treated as an "identity" or key when we have a set of objects. Because of the presence of this 

field, we can perform generalized set operations on views even though they are of different type. In fact we 

have already seen one such operation, the natural join (join). When applied to views it is an operation that 

takes the intersection of sets of identities, but produces a result that  has a join type and gives us the union 

of the "methods". In fact we shall simply define an object type as any record type that  contains an Id field, 

which will be assumed to  be some reference type. We shall single out object types for special treatment in 

the language by adding some additional functions that are applicable only to object types. 

As an example, a part of the database could be a collection of "person" objects modeling the set of 
persons in a university. Among persons, some are students and others are employees. Such subsets naturally 

form a taxonomic hierarchy or class structure. Figure 11 shows a simple example. Note that the arrows 

not only represent inheritance of properties but also actual set inclusions; they also run opposite to  the 
information ordering described earlier. \Ire use variant types to  represent structures of objects that share 
common properties (e.g. being a person) but differ in special properties. The example is then represented 

by the types shown in figure 12. \Ire should emphasize that the definitions in figure 12 are not hfachiavelli 



PersonObj = (rec p . ref ( [Name : string, Salary : <None :unit, Value : int>, 
Advisor:<None:unit, Value:p>, 

Course:<None:unit, Value:string>]); 

Person = [Name: string, Id: PersonObj] ; 

Student = [Name : string. Advisor : PersonObj , Id: PersonObj] 
Employee = [Name : string, Salary: int , Id: PersonObj] 
TeachingFellow = [Name: string. Salary: int , Advisor: PersonObj, 

Course: String, Id: PersonObj] 

Figure 12: Some hlachiavelli Types 

definitions, they are simply shorthands for certain types that we shall use in describing the examples that 

follow. The  reference type PersonObj is the type of a person object. The type Person, Employee and 

TeachingFellow are types of person objects viewed as persons, employees and teaching fellows respectively. 

For example, a person object is viewed as (or more precisely can be coerced to) an employee if it has name 

and salary attributes. A database would presumably contain a set of person objects, i.e. a set of type 

{PersonObj), and to  view this as a set of values of type Person we can simply write a function Personview, 

as shown in figure 13, which can be applied to any set of type {PersonObj) to extract the Name field, which 

is always available, and produces a set of type {Person). The function EmployeeViea similarly applies to  a 

set of type {PersonObj), but selects only those records that have a defined Salary, and produces a set of 

type {Employee). Quite general types will be inferred from these definitions; for example the type inferred 

for EhployeeView is 

{ref([('a) Name:'b, Salary:<('c) Value:'d>])) -> 
{[Name: 'b, Salary: 'dl 1d:ref ( [ ( ' a )  Name: 'b, Salary:<('c) Value: 'd>])]) 

and the type {PersonObj) -> {Employee) is an instance of this type. 

In the definition of TFVieu, the join of two views provides both the intersection of the two sets of 

objects (i.e. expressions of object types) and the inheritance of methods. If bl, 62 are object types, then 

62 << S1 implies that project (View6, (S) , (62)) C Viewa, (S))  where Views, and Viewa, denote the corre- 

sponding viewing functions on object types 61 and 6?. This property guarantees that the join of two views 

corresponds to the intersection of the two. The property of the ordering on types and Machiavelli's poly- 

morphism also supports the inheritance of methods. For example, suppose we have a database DB of type 

{PersonObj). Then join(StudentViev(DB) , EmployeeVieu(DB)) always represents the set of objects that 

are both student and employee. Moreover, methods defined on StudentViev(DB) and EmployeeView(DB) 

are automatically inherited by Machiavelli's type inference mechanism. As an example of inheritance of 
methods, the function Wealthy, as defined in the introduction, has type {[("a) lame:"b, Sdlary:intl) 

-> {"b), which is applicable to  EmployeeViev(DB), is also applicable to TFView(DB). Figure 14 shows how 

join can be used to construct a new view and gives a query on that view. 

Dual to  the join which corresponds to the intersection of sets of object types, the union of sets of object 

types can be also represented in hlachiavelli. The primitive operation unionc is a generalization of the union 

defined in connection with horn to the operate on type {61)*{62} for all description types b1,b2 such that 



fun ~ersonView(S) = select [Name= ( ! x) .Name, Id=x] 
from x <- S 
where true ; 

fun EmployeeView(S) = 
hom(case (!x).Salary of 

<Value=y> => { [Name=( ! x) .Name, Salary=y , Id=x] } , 
else => {) 

endcase, union, {) , S) 

fun ~tudentView(S) = 

hom (case ( ! x) . Advisor of 
<Value=y> => {[Name=(!x).Name, Advisor=y, Id=x]), 

else => {} 
endcase, union, { ) , S) 

fun TFView(S) = 

hom(case ( ! (x . Id) ) . Course of 
<Value=y> => {join(x, [Course=y] ) ) 
else => {) 

endcase ,union, {) ,join(StudentView(S) ,EhployeeView(S) ) )  

Figure 13: Definition of Views 

(* New view of people who are both Student and Employees *) 

-> val supported-students = join(StudentView(DB) ,EhployeeVieu(DB)) ; 

>> val supported-students = {. . .) 
: {[Name:string, Salary: int, Advisor: PersonObj, Id: PersonObj]) 

(* Names of students who earn more than their advisors *) 

-> select x . Name 
from x <- supported-student, y<-EmployeeView(DB) 

where x.Advisor=y.Id andalso x.Salary > y.Salary; 
>> val it = {.  . .) : {string) 

Figure 14: Using join to find an intersection 



61 fl6, exists. Let sl, s2 be two sets having types {bl), (62) respectively. Then unionc(sl ,s2) satisfies the 

following equation: 

which is reduced t o  the standard set-theoretic union when 61 = b2. This operation can be used t o  give a 

union of sets of object types event though their types differ. For example, unionc(StudentView(Person) , 
EmployeeView(Person)) correspond to  the un.ion of students and employees. On such a set, one can only 

safely apply methods that  are defined both on students and employees. As with join, this constraint is 

automatically maintained by Machiavelli's type system because the result type is {Person). 

In addition one can easily define the "membership" operation on other sets of disparate type: 

fun member(x ,S) = join({x) ,S) <> {) 

member(z,S) = true iff there is some member of s of S such that x and s have a common identity. In this 

fashion it  is possible to  extend a large catalog of set-theoretic operations to  sets of object types. 

I t  is interesting to  note that  this approach, when considered as a data  model, has some similarities with 

that  proposed in the I F 0  model [AH87]. The database consists of a collection of sets of different types of 

which a set of type PersonObj in our example, would be one. "specializations" in I F 0  correspond to views. 

However, unions of these cannot be formed directly, because the Id fields will have different types. The 

correct way to form a union (IFO's "generalizations") would be to  exploit a variant type. 

6 Data Abstraction and Inheritance 

In the previous section, we haved given example of a simple hierarchy of object types (in figure 11) and 

showed how Machiavelli's polymorphic type system represents both method inheritance and inclusion of 

extents. This, however, depends on the explicit types of the implementations of these objects. For example, 

the type of Employee is explicitly defined as 

[Name : string, Age : int , Salary : int , Id : PersonObj] 

where PersonObj is another concrete type given in figure 12. A drawback to this approach is that it does not 

combine data  abstraction with inheritance in the same sense as object-oriented languages do this. Exposing 

concrete representations is in many cases undesirable. In the above example, the availability of the type 

of Id field is particularly dangerous as the user can access and change any part of the object. As argued 

in [CDMBSO], database views should be integrated with data  abstraction mechanism to provide protection 

mechanism. 

A well known data abstraction mechanism in a static type system is to use abstract data types which 

has been implemented in several polymorphic type systems such as Standard ML [HMT88] and Miranda 

[Tur85]. These type systems, however, do not allow abstract data types t o  be organized into a class hierarchy. 
This means that method inheritance achieved by polymorphism does not extend to abstract types. Galileo 

[AC085] integrates inheritance and class hierarchy in a static type system by combining the subtype relation 

and abstract type declarations. However, Galileo supports neither polymorphism nor type inference. 

In object-oriented languages [GR83] each data  element (object) belongs to a unique member of a user 

defined class hierarchy. Objects can be manipulated only through methods defined in its class and super 



classes. This mechanism nicely integrates data  abstraction and method inheritance. We would like to  extend 
our polymorphic type system with this feature. Jategaonkar and Mitchell [JM88] suggested the pcssibility - 
of using their type inference method to extend ML's abstract data types to  support inheritance. In [OB89], 
we have developed a formal system for parametric classes that achieves a proper intergration of ML style 
parametric abstract data types and multiple inheritance in object-oriented programming. Based on this 

result, we can extend the Machiavelli's type system with data  abstraction and multiple inheritance. In the 

extended system, the programmer can define a hierarchy of classes. A class can be parametric and can 

contain multiple inheritance declarations. The type correctness of such a class definition (including the type 
consistency of all inherited methods) is statically checked by the type system. Moreover, apart from the type 

assertions needed in the definition of a class, the type inference mechanism we have described in section 3 
extends to  these parametric classes. In [OB89] it is shown that the type system with class definition is sound 

with respect to  the underlying polymorphic type system (i.e. the one we have defined in section 3) and it 
has a complete type inference algorithm. This section explains this feature through examples. The reader is 

referred to  [OB89] for the full description of the type system and type inference method with class definition, 

which require a certain amount of mathematical development and is beyond the scope of this paper. 

First we must note one design decision we made in developing hlachiavelli's classes. Different from ML's 

abstract types, Machiavelli's classes inherit equality from their implementation types. We adopt this because 

our main goal of classes is t o  provide a protection mechanism in database programming involving sets, which 
require equality. A richer language might, as in Ada [IBH*79], allow a choice of whether equality is inherited 

from the underlying representation or whether it is to be hidden or redefined. 

In the previous section, we have defined the type PersonObj and four viewing functions. We will make 

them abstract by using class definition. LVe assume that the variable DB of type {PersonObj) is defined, 

which is protected by some form of scoping mechanism. Note that we continue to use PersonObj as an 
abbreviation for the actual type definition. We encapsulate the concrete structure of PersonObj by defining 

the following class: 

c lass  PObj = PersonObj w i th  

f u n  NewPersonView ()  = select [Name= ( ! x)  . ~ a m e ,  Id=x] 

f r o m  x <- DB 

w h e r e  t r u e  
: u n i t  -> {[Name:string, 1d:PObjl) 

f u n  NewFmployeeView S = 

h o m ( f n  x => case ( ! x) .Sa la ry  of 

<Va.lue=y> => { [Name=( ! x) . Name, Salary=y , Id=xl} , 
else => {) 

endcase ,  un ion (x ,y ) ,  {), DB) 

: u n i t  -> { [ ~ a m e : s t r i n g ,  S a l a r y : i n t ,  1d:P0bj]} 

fun Newstudentview = 
h o m ( f n  x => case ( ! x) .Advisor of 

<Value=y> => { [Name= ( ! x) .Name, Advisor=y , Id=xl}, 

e lse  => {) 
endcase ,  u n i o n ( x , y ) ,  {), DB) 

: u n i t  -> { [~ame :  s t r i n g ,  Advisor:PObj , 1d:PCIbjl) 



fun NewTFViev 0 = 
hom(case ( ! x) .Course of 

<Values=y> => {join(x, [Course=y] )) 
else => { }  

endcase,union, {) ,join(NewStudentView() ,NewEmployeeView())) 
: unit -> {[~ame:string, Salary: int, Advisor:PObj , Course: string Id:PObjl} 

fun increment-ob j-age p = (p : =modify ( ! p, Age, ( ! p) .Age + I) ; p) 
: PObj -> PObj 

end 

Outside of the definition, the actual structure of objects of the type PersonObj is hidden and can only be 
manipulated through the explicitly defined set of interface functions (methods). This is enforced by treating 
classes and the set of interface functions as if they were base types and primitive operations associated with 

them. As in Miranda's abstract data types, we require the programmer to specify the type (type-scheme) 

of each method. Note that  the value DB is embedded in this class definition. This technique, exploited in 

[CDMBSO], is necessary t o  hide the type information of PersonObj. For users who have no need for access to  
the value DB itself, this definition successfully hides the representation type of DB. They can only manipulated 

the database by explicitly defined viewing functions and any other functions such as increment-obj-age 

within the class definition. 

So far Machiavelli's classes behave similar to abstract types found in ML and Miranda. However classes 

may be organized in a hierarchy connected by multiple inheritance declarations. We demonstrate this feature 
by defining a hierarchy of views. The class PObj encapsulates the concrete structure of PersonObj but not 

the types that  represents views. We also want t o  encapsulate them to  prevent meaningless manipulation on 

views while maintaining the advantages of method inheritance discussed in the previous section. We start 
with the class Person which is the maximum class in the class hierarchy. 

class Person = [Name: string, Age: int , Id: PObjl with 
fun persons() = NewPerson~iew() : unit -> {person); 

fun name(p) = p. Name : s u b  -> string; 

fun age(p) = p.Age : s u b  -> int ; 

fun incrementage(p) = 
modify (modify (p, Id, increment-obj-age(p. Id) ) , Age, p. Age +I) 
: s u b  -> s u b  

end 

Note that  the fourth function increment-age increment both the Age field in the view and in the actual 
object. The  keyword s u b  in the type specifications of methods is a special type variable representing all 
possible subclasses of the class which are to  be defined later. It is to  be regarded as an assertion by the 
programmer (which may later prove t o  be inconsistent with a subclass definition) that a method can be 

applied t o  values of any subclass. This definition is type consistent and the Machiavelli compiler generates 
the following bindings: 

class Person with 
persons : unit -> {Person) 



name : ("a < Person) -> string 

age : ("a < Person) -> int 

increment-age : ("a < Person) -> ("a < Person) 

Note that Person in the type schemes is not shorthand but a class name, which is a part of Machiavelli 

type system. ("a < Person) is another kinded type variable whose range is the set of all subclasses of the 
class Person. At this moment, there is no proper subclass of Person and therefore the range of "a is the 

singleton set of Person and the above class definition behaves similarly t o  ML's abstract types. But we can 

define a number of useful subclasses of Person, which inherits method defined in Person. The following is 
the definition for the class Employee. 

class Employee = [Name : string, Age : int , Salary : int , Id: PObjl 
isa Person with 

f u n  employees0 = NewEmployeeViewO : unit -> {Employee) 

f u n  salary(x) = x.Salary : sub -> int 

end 

which inherits the methods name, age and increment-age, but not persons from the class Person because 

there is no sub in the type specification of persons.  from this definition, Machiavelli compiler prints the 

following information. 

class Employee isa Person with 

employees : unit -> {~mployee) 

salary : ("a < Employee) -> int 

inherited method 

name : ("a < Person) -> string 

age : ("a < Person) -> int 

incrementage : ("a < Person) -> ("A < Person) 

In order t o  preserve complete static type inference, we have given the complete record type required to 
implement Employee, not just the additional fields we need to add t o  the implementation of Person. It is 

possible that  for simple record extensions such as these we could invent a syntactic shorthand that is more 

in line with object-oriented languages. Continuing in this fashion, we can define the class Student and 
TeachingFellow t o  complete the previous example. 

c lass  Student = [Name: string, Advisor: PersonObj , Id: PObj] 
isa Person with 

fun students 0 = Newstudentview() : unit -> {student) 

f u n  advisor x = x.Advisor : s u b  -> PObj 

end 
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class TeachingFellow = [Name : string, Salary: int , Advisor: PObj , 
Course:String. Id:PObj] 

isa {Employee, Student) wit11 
f u n  teaching-f ellows ()  = NewTFView() : unit -> {~eachin~~ellow) 

f u n  Course x = x.Course : s u b  -> string 

end 

The second one these illustrate the use of multiple inheritance. 



It  should be stressed that the method we have developed in [OB89] allows static checking of the type 

correctness of these class definitions containing multiple inheritance declarations. Moreover, a principal - 
conditional typing scheme is always inferred for expressions containing methods defined in classes. For 

example, for the following function 

which computes the average salary using the method salary defined in the class Employee, the type system 
infers the following principal conditional typing scheme: 

{("a < Employee)} -> int 

This function can be applied to any set of type {r} such that r is a subclass of Employee. In the above 
example, it can be applied to  {~mployee} and {Teaching~elloa}. The type correctness of such applications 

is statically checked. 

To demonstrate the use of type parameters, consider how a class for lists might be constructed. We start 

from a class which defines a "skeletal" structure for lists. 

class prelist = ( rec  t .<Empty :unit, List : [Tail : t] >) 

w i t h  

nil = <Empty = ()> : s u b ;  
fun tl(x) = case x of 

<Empty = y> => . . . error . . .; 
<List = z> => z.Tai1; 

endcase : s u b  -> s u b  

fun null(x) = case x of 
<Empty = y> => true; 
<List = z> => false; 

endcase : s u b  -> bool; 
end 

By itself, the class prelist is useless for it provides no method for constructing non-empty lists. We may 

nevertheless derive a useful subclass from it. 

class listoa) = 

( r ec  t. <Fhpty:unit,List:[Head:'a,Tail:t]> 

isa prelist 
with 

fun cons (h ,  t) = <List= [Head=h ,Tail=t] > 
: ( 'a*sub) -> s u b ;  

fun hd(x) = case x of 
<Empty=y> => . . . error . ..; 
<List=z> => z.Head; 

e n d  : s u b  -> 'a; 

end 

which is a class for polymorphic lists much as they appear in ML. Separating the definition into two parts 
may seem pointless here but we may be able to define other useful subclasses of pre-list. Moreover, since a 
may itself be a record type, we may be able to define further useful subclasses of list. For example, we could 

construct a class 



class genintlist ( 'b) = 
(rec t. <Empty:unit, 

List : [Head: [Ival : int , Cont : ' b] , 
Tail : tl >) 

isa list ( [Ivd : int , Cont : ' bl ) 
with 

end 

which could be used, say, as the implementation type for a "bag" of values of type 'b. In this case all the 

methods of prelist and list are inherited. 

Conclusions and Direct ions for Further Investigations 

Throughout this paper we have stressed the fact that we only have an experimental version of Machiavelli, 
which lacks many of the useful features of other programming languages. While we believe that the type 

system of Machiavelli can be used as the basis for a full-blown programming language, this claim can only be 

proved by a careful analysis of the addition of new features and, ultimately, by a full-blown implementation. 

Let us briefly mention some of the additions. 

Standard ML of New Jersey [hIac88b] incorporates a number of features that we have not mentioned 

here. It  exploits pat tern matching to bind variables and has a system of ezcept ions.  We believe that both 
of these could safely be added to Machiavelli and would be useful in many of the examples in this paper. 

More problematic is the system of modules  [Mac861 in this language. Modules bear some relationship to 

the classes (or abstract data types) described in this paper. However it remains to be seen whether the 

sophisticated schemes for defining and instantiating modules that are available in SML can be combined 
with the typechecking for classes with inheritance that we have described here. 

Turning to  object-oriented databases or, more generally, database programming languages, all such lan- 

guages have a layer that supports some kind of persistent database. While the implementation of such 

storage systems is a serious technical problem, we see no difficulty in exploiting such a system to  provide 

a real database manager for Machiavelli. However, operating systems do not respect the type systems of 
programming languages and, as with files in most programming languages, on opening a database one must 

either do a dynamic type check or trust that the declared type of the database conforms to that specified in 

the program. We believe the former is the only satisfactory option and it is therefore essential to find ways 

of encapsulating the type of a database with the database and to incorporate dynamic type-checking into 

the language a t  certain points. In order to  do this we must study the us of d y n a m i c  types [ACPPSg]. 

Other issues raised by object-oriented languages include late binding and overloading. The former should 
not present a problem for the type system if we are able to constrain a given method to just one type. 
However some object-oriented languages allow overloading of methods. The type of the result of a method 
may depend in an a d  hoc way on the type of some input parameter or on the class of the instance. Some 
recent results [AKWSO] show the undecidability of type checking (let alone type inference) for a rather 
general form of overloading. It  remains to  be seen whether the type system of Machiavelli can be used in 
conjunction with some more restricted form of overloading. 



The problem of heterogeneous structures is not, to  our knowledge, addressed in any statically typed 

language, and yet it is common in database work to  want to deal with a collection of (say) records of 

different types. Consider, for example, the set 

{[Name = "Joe". Age = 211, 
[Name="JohnM, Age = 23, Dept = "Sales"], 

[IYame="HaryN, Dept = "Research"] ) 

which is not a legal expression in Machiavelli, nor is a bulk structure of this form possible in most statically 

typed languages. Yet there are some properties of the members of this set, for example they are all of kind 

[Name : string]. If this information could be represented in the type system, then it might be possible 

t o  make such expressions legal and justify the apparently reasonable selection of the Name field from each 

member of this set. Recent investigations by the authors indicate that the right way t o  approach the 
problem of heterogeneity is to  exploit a form of dynamic value whose type is "partially abstract". The 
advantage to  dealing with heterogeneous structures is that it appears to  provide a more general solution to  
the subset/subtype paradox mentioned a t  the beginning of section 5. Here, the inclusion ordering is derived 

from an ordering on kinds rather than one on types which, as  we have observed, is not needed to express 

the generic properties of field selection. 
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