
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1990

Polymorphism and Type Inference in Database Programming Polymorphism and Type Inference in Database Programming

Peter Buneman
University of Pennsylvania

Atsushi Ohori
University of Glasgow

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Peter Buneman and Atsushi Ohori, "Polymorphism and Type Inference in Database Programming", .
September 1990.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-64.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/557
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/557
mailto:repository@pobox.upenn.edu

Polymorphism and Type Inference in Database Programming Polymorphism and Type Inference in Database Programming

Abstract Abstract
The polymorphic type system of ML can be extended in two ways that make it appropriate as the basis of
a database programming language. The first is an extension to the language of types that captures the
polymorphic nature of field selection; the second is a technique that generalizes relational operators to
arbitrary data structures. The combination provides a statically typed language in which relational
databases may be cleanly represented as typed structures. As in ML types are inferred, which relieves the
programmer of making the rather complicated type assertions that may be required to express the most
general type of a program that involves field selection and generalized relational operators.

It is also possible to use these ideas to implement various aspects of object-oriented databases. By
implementing database objects as reference types and generating the appropriate views - sets of
structures with "identity" - we can achieve a degree of static type checking for object-oriented databases.
Moreover it is possible to exploit the type system to check the consistency of object-oriented classes
(abstract data types with inheritance). A prototype language based on these ideas has been
implemented. While it lacks some important practical features, it demonstrates that a wide variety of
database structures can be cleanly represented in a polymorphic programming language.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-90-64.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/557

https://repository.upenn.edu/cis_reports/557

Polymorphism And Type Inference
In Database Programming

MS-CIS-90-64
LOGIC & COMPUTATION 23

Peter Buneman
University of Pennsylvania

Atsushi Ohori
University of Glasgow

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

September 1990

Polymorphism and Type Inference in Database Programming

Peter Buneman*
Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104, U.S.A.

Atsushi Ohorit
Department of Computing Science

University of Glasgow
Glasgow GI2 8QQ, Scotland

Abstract

The polymorphic type system of ML can be extended in two ways that make it appropriate as the basis
of a database programming language. The first is an extension to the language of types that captures

the polymorphic nature of field selection; the second is a technique that generalizes relational operators

to arbitrary data structures. The combination provides a statically typed language in which relational

databases may be cleanly represented as typed structures. As in ML types are inferred, which relieves

the programmer of making the rather complicated type assertions that may be required to express the
most general type of a program that involves field selection and generalized relational operators.

It is also possible to use these ideas to implement various aspects of object-oriented databases. By im-

plementing database objects as reference types and generating the appropriate views - sets of structures

with "identityn - we can achieve a degree of static type checking for object-oriented databases. More-

over it is possible to exploit the type system to check the consistency of object-oriented classes (abstract
data types with inheritance). A prototype language based on these ideas has been implemented. While

it lacks some important practical features, it demonstrates that a wide variety of database structures can

be cleanly represented in a polymorphic programming language.

1 Introduction

Expressions such as 3 + "cat" and [Name = "J. Doe"] .PartNumber contain type errors: the application of

some primitive operation such as "+" or "." (field selection) t o inappropriate values. T h e detection of type

errors in a program before i t is executed is, we believe, of great importance in database programming, which

is characterized by the complexity and size of the d a t a structures involved. For relational query languages

checking of the type correctness of a query such as

s e l e c t Name

from Employee

w h e r e Salary > 100000

is a straightforward process tha t is routinely carried ou t by the compiler. However, once we add some form

of procedural abstraction to the language, the problem is no longer trivial. For example, how d o we check

the type correctness of a program containing definitions such as

'Supported by research pants NSF IRI86-10617, ARO DAA6-29-84-k-0061 and ONR N000-14-88-K-0634

+Supported by a British Royal Society Research Fellowship. On leave from OK1 Electric Industry, Co., Japan.

func t ion Wealthy(S) = select lame
f r o m S

w h e r e Salary > iOOOOO ?

This function is polymorphic in the sense that it should be applicable to any relation S that contains

lame and Salary fields of the appropriate type. In database programming languages there have been

two general strategies. One is to follow the approach of Pascal-R [Sch77] and Galileo [AC085] and insist
that the parameters of procedures are given specific types, e.g. func t ion Wealthy(S:EmployeeRel)
Type checking in both these languages is static and the database types are relatively simple and elegant

extensions to the existing type systems of the programming languages on which they are based. However,
in these languages it is not possible to express the kind of polymorphism inherent in a function such as

Wealthy. The other approach is used in persistent languages such as PS-algol [ABC+83] and some of

the more recent object-oriented database languages such as Gemstone [CM84], EXODUS [CDJS86] and

Trellis-Owl [OBS86] where, if it is a t all possible to write polymorphic code, some dynamic type-checking

is required. Napier [MBCD89] attempts to combine parametric polymorphism [Rey74] and persistence but

its polymorphism does not extend to labeled records and other database structures. The current practice

in database programming is to use a query language embedded in a host language. In this arrangement,

communication between programs in different languages is so low-level that type-checking is effectively non-

existent, so that programs that violate the intended types result in "junk". See [AB87] for a survey of the
various approaches to type-checking.

The language ML [HMT88] has a t ype inference system which infers, if possible, a most general poly-

morphic type for a program. Because of this, ML enjoys much of the flexibility of untyped (or dynamically
typed) languages without sacrificing the advantage of static type checking. Unfortunately the type inference

of ML [Mi178, DM821 is not general enough to be applied to structures and operations needed for database

programming. For example, it cannot infer a polymorphic type for a function containing field selection

such as Wealthy above. Our goal in this paper is to show that a polymorphic programming language can

uniformly incorporate databases. In particular, we will show that a polymorphic type system, when properly

extended to suitable data types and database operations, will serve as a medium to represent both relational

databases and more recent object-oriented databases directly within a polymorphic programming language.

Database programming in such a language can make full use of a rich, statically checked polymorphic type

system. These ideas are embodied in Machiavelli, an experimental programming language in the tradition of

ML, developed a t University of Pennsylvania. A prototype implementation has been developed that demon-

strates most of the material presented here with the exception of reference types, cyclic data and some form
of persistence. Our hope is that Machiavelli (or some language like it) will provide a framework for dealing

uniformly with both relational and object-oriented databases.

To illustrate a program in Machiavelli, consider the function Wealthy. Note that this function takes a

set of records (i.e. a relation) with Name and Salary information and returns the set of all lame values which

occur in records which contain Salary values over 100K. For example, applied to the relation

{ [Name = "Joe", Salary = 223401 ,
[Name = "Fred", Salary = 1234561.
[lame = "Helen", Salary = 1320001)

which is Machiavelli syntax for a set of records, this function should yield the set {"Fred", elen en") of
character strings. This function is written in Machiavelli (whose syntax mostly follows that of ML) as follows

f u n Wealthy(S) = select x.Name

from x <- S

where x.Salary > 100000;

The select . . . from . . . where . . . form is simple syntactic sugar for more basic Machiavelli program

structure (see section 2).

Although no data types are mentioned in the code, Machiavelli in f e r s the type information

Wealthy : {[("a) Name:"b, ~ a l a r y : i n t]) -> {"b)

This t y p e s c h e m e may be instantiated with appropriate substitutions for the type variables "a and "b. For

example

{[Name: s t r ing , Salary: i n t l) -> {string)

{[Name: s t r ing , Age: i n t , Salary: i n t l) -> {string)

{ [Name: [First: s t r ing , Last : s t r i n g l , Weight : i n t , Salary: int])
-> {[First: s t r ing , Last: string])

are legal instantiations of the type of Wealthy. On the other hand the following expressions and definitions

involving Wealthy

Wealthy({[Name = "Joe"], [Name = red"]))
Wealthy({[~ame = "Joe", Salary = "nonsense"]))
fun F(S) = sum(Wea1thy (union(S, {[Name = "Joe", Salary = 2000001))))

will be rejected by the compiler.

In order to extend ML's type inference to handle these examples, we need to consider two restrictions

that control the way substitutions may be applied to type variables. The first of these is that "b, for example,

should be a d e s c r i p t i o n t y p e - one for which equality is available. The need for this is seen from the fact that

the type expression {"b) indicates that values of type "b are members of some set, and therefore we must

have an equality test for such values. Description types are a generalization of ML's eqtypes and also have

available a number of useful relational database operations such as join and projection. We need to treat

description types specially because equality is not available on certain values such as functions or, perhaps,

certain base types. Description types are those that can be constructed from the allowed base types through

any type construction other than a function type outside the scope of a reference type.

The second form of restriction is expressed by [("a) Name:"b, Sa lary : in t l , which is also a type

variable. In addition to being a description type it is kinded with the restriction that any instance must

contain the fields Name:u and S d a r y : i n t where a is any instance of "b. Kinded type variables capture
the two forms of polymorphism in the definition of Wealthy: it is polymorphic with respect to the type of

the Name field, and it is also polymorphic with respect t o the record type containing the Name and Salary

fields. It is because we can extend ML's type inference to deal with description and kinded type variables

that Machiavelli has the power to deal with a wide range of database constructs.

In the polymorphism represented by the kinded type variables, there is a close relationship with object-
oriented programming. The type scheme {[("a) Name:"b, Salary : i n t l) can be thought of as a class and
functions that are polymorphic with respect to this, such as Wealthy, can be thought of as methods of

that class. For the purposes of finding a typed approach to object-oriented programming, Machiavelli's type
system has similar goals to the systems proposed by Cardelli and Wegner [Car88, CW85]. However, there

are important technical differences, the most important of which is that in Machiavelli database values have

unique types, while they have multiple types in Cardelli and Wegner's type systems. Database types in

Machiavelli specify the exact structure of values and this property is needed in order to implement various -
database operations such as equality and natural join. (See [BTB089] for more discussion.) In Machiavelli

inheritance is achieved not by subtyping but by polymorphic instantiation of kinded type variables. The

most important practical difference is that this polymorphism is inferred, which means that the programmer

does not have to declare and explicitly instantiate the rather complicated forms needed in the Cardelli and

Wegner system to capture precisely the polymorphic nature of functions such as Wealthy.

Another important extension to these type systems for objects and inheritance is that Machiavelli uni-

formly integrates set types and various database operations including generalized join and projection in
its polymorphic type system. Sets may be constructed on any description type; combined with labeled

records, labeled variants and cyclic definitions, the Machiavelli type system allows us to represent most of

the structures found in various complex data models [HK87]. Cyclic structures are supported by exploiting

the properties of regular trees [Cou83]. Join and projection are generalized to arbitrary, possibly cyclic,

structures and are polymorphic functions in Machiavelli's type system. This immediately provides a natural

representation of a generalized relational (or complex object) data model within a polymorphic type system

of a programming language and achieves a natural integration of databases and a programming language.
Although there is some argument about the nature of object identity, we shall assume that it is adequately

captured through reference types; then, by representing "objects" as references to complex values, we obtain
representations similar to those used in object-oriented databases in a static type system. In particular, by
the construction of views, functions that preserve identity, we are able to combine naturally two notions of

inheritance: subclasses in programming languages and subsets in databases. In fact, it is the availability

of generalized relational operations that allows us to do this. Also, as we shall see in section 6 the form

of inheritance expressed by Machiavelli's polymorphism can be integrated with data abstraction, thereby

achieving a basic property of object-oriented programming in a statically typed framework.

The organization of this paper is as follows. Section 2 introduces the basic data structures of Machiavelli

including records, variants and sets, and shows how relational queries can be obtained with the operations

for these structures. Section 3 contains a definition of the core language itself. It defines the syntax of types

and terms, and describes the type inference system. In section 4, the language is extended with relational
operations - specifically join and projection - that cannot be derived from basic set operations, and the

type inference system is extended to handle them. In section 5 we show how this type system can be used

to represent some important aspects of object oriented databases. Section 6 extends the core type system

to represent data abstraction and multiple inheritance. Again, we should emphasize that Machiavelli is far
from a complete database programming language, and while we believe that its type system can be used in

a full-fledged language, some care must be taken to ensure that the type system can be used in conjunction

with other useful features. Section 7 discusses these problems and the further work that is needed to make

the language useful in dealing with external databases.

2 Basic Structures for Data Representation

As we have just mentioned, one of the goal of this study is to develop a polymorphic type system that
serves as a medium to represent various database structures. In particular it should be expressive enough to
represent various forms of complex objects that violate the "first-normal-form assumption" that underlies

most implemented relational database systems and most of the traditional theory of relational databases.

For example we want to be able to deal with structures such as

{[lame = [F i r s t = "Bridget", Last = "Ludford"],

Children = {"Jeremy", "~hr i s tophe r")] ,
[lame = [F i r s t = "Ellen". Last = "Curman"],

Children = {"Adam" , " ~ e n j amin")])

which is built up out of records and (uniformly typed) sets. This structure is a "non-first-normal-form"

relation in which the lame field contains a record and the Children field contains a set of strings. It is an

example of a description term, and in this section we shall describe the constructors that enable us to build

up such terms from atomic data: records, variants, sets and references. We shall also describe how cyclic

structures are created.

Some of the basic syntactic forms of Machiavelli for value and function definition have been borrowed from

ML [HMT88]. Knowledge of ML syntax should not be needed provided a few basic forms are understood.
In particular, names are bound to values by the use of va l , as in

val f o u r = 2 + 2;

functions are defined through the use of fun , as in

f u n f (n) = if eq(n ,o) t h e n 0 else n + f (n-1);

and there is an function constructor f n x => . . . that is used to create functions without naming them, as
in

(fn x => x + x) (4)

which evaluates to 8. In fact, since a fixed point operator is lambda-definable in Machiavelli (using recursive

types), recursive function definition can be obtained from value definition and is not essential. It is here
for convenience. Finally there is the form le t x = el in e2 end , which evaluates e2 in the environment in

which x is bound to e l . Example:

let x = 4 + 5 in x + x*x e n d

which evaluates to 90. In an untyped language, let . . . in . . . end is also not essential, but the type

inference rules are such that this form is treated specially, and is the basis for ML's polymorphism. By
implicit or explicit use of le t , polymorphic functions are bound and used. Polymorphic function definitions

such as that of Wealthy above are treated as shorthand for a let binding whose scope is the rest of the
program.

2.1 Labeled Records and Labeled Variants

The syntax for labeled records is:

where 11, . . . , I, stand for labels. A record is a description term if all its fields vl, . . . , v, are description
terms. Other than record construction, (C . . . I) , there are two primitives for records. The first, r.1, is field
selection found in many programming languages, which selects the 1 field form the record r . The second,
mod i fy (r , l , e) , is field modification, which creates a new record identical to r except on the 1 field where

its value is e. For example,

modify ([Hame = "J. Doe", Age = 211 , Age, 22)

yields (evaluates to) [Name = "J. Doe", Age = 221. It is important to note that modify does not have a

side-effect. It is a function that returns another record. The syntax (el, e2) for pairs is simply an abbreviation
for the record [f i r s t = e l , second = eal . Triples and, generally, n-tuples are similarly constructed.

The syntax of labeled variants (injection to labeled disjoint union) is:

A variant is a description term if its component v is a description term. The operation for decomposing a

variant is case statement:

case e of

<ll=xl> => e l ,

<ln=xn> => en,

else eo

endcase

where xi in <li=xi> => ej is a variable whose scope is in ei. This operation first evaluates e and if it yields

a variant <li=v> then binds the variable xi to the value v and evaluates ei under this binding. If there is no

matching case then the else clause is selected. The else is optional, and if it is omitted the argument e must
be evaluated to a variant labeled with one of 11, . . . , In . This condition is ensured by the type system. Note

that case. . . o f . . . endcase is an expression, and returns a value. The possible results el , . . . , en, eo should

all have the same type.

For example,

case <Consultant = [lame = "J. Doe", Address = "10 Main St ." ,

Phone = "222-1234"]>

of

<Consultant = x> => x.Phone,

<Employee = y> => y.Extension

endcase

yields "222-1234".

2.2 Sets

Sets in Machiavelli can only contain description terms and sets themselves are always description terms.
This restriction is essential to generalize database operations over structures containing sets. There are four
basic operations for sets:

{ 1 empty set,
{XI, 12,. . . , x n) set constructor,

union(sl set union,
horn(f , op , z ,s) homomorphic extension

Of these operations, horn requires some explanation. This is a primitive function in Machiavelli, similar to

the "pump" operation in FAD [BBKV88] and the "fold" or "reducen of many functional languages, whose -
definition is

for example, a function to add up the members of a set may be defined as

fun sum S = h o m (f n x => x , +, 0 , S)

and a function that finds the size of a set is

fun card S = h o m (f n x => 1 , +, 0, S)

In general the result of this operation will depend on the order in which the elements of the set are encoun-

tered; however if op is an associative commutative operation and f has no side-effects (as is the case in the

sum and card examples) then the result of horn will be independent of the order of this evaluation. When

this happens we shall call the application of horn proper. Machiavelli cannot guarantee that every applica-

tion of horn is proper; indeed improper applications of horn are frequently useful. Proper applications of

hom give rise to deterministic computations and have the property of being computable in parallel. Equality

on values that result from improper applications may not be what was intended by the programmer. It is
an interesting question to ask when an application of hom can be shown, by static analysis of a program, to
be proper.

There is an alternative form of horn, horn* that applies to non-empty sets and does not require the
argument z. Thus

When z is an identity for op, hom behaves as horn* on non-empty sets. horn* is useful when the value z
for the empty set is difficult to find as in the example:

fun rnax(S) = horn* (fn x=>x, fn (x , y) => if x > y then x else y ,s)

which computes the maximal element of a non empty set of integers.

The following useful functions can be defined using horn:

fun =p(f , s) = horncf , union, {) I S)

map(f , S) applies the function f to each member of S; for example map (card, {{ l,2), (31, {6 ,5 ,4)) evaluates
to {2 ,1 ,3) .

fun f i l t e r (p , S) = hom(fn x => if p(x) then {x) else {) , union, {) ,S)

f i l t er (p , S) extracts those members of S that satisfy property p; for example f i l ter(odd, {I, 2.3.4))

evaluates to {2 ,4) .

In addition to these examples horn can be used to define set intersection, membership in a set, set
difference, the n-fold cartesian product (denoted by pro& below) of sets and the powerset (the set of
subsets) of a set. Also, the form

select E
from XI <- S I ,

1 2 <- S2,

Zn <- S n
where P

which is provided in the spirit of relational query languages and the list comprehensions of Miranda [Tur85],

can be implemented as

Where map, f i l t e r and prod are the functions we have just described, and (E, P) is a pair of values

(implemented in Machiavelli as records).

2.3 Cyclic Structures

In many languages, the ability to define cyclic structures depends on the ability to reassign a pointer. In

Machiavelli, these two ideas are separated. It is possible to create a structure with cycles through use of the

(rec v . e) construct, e.g.

val Montana = (rec v . [Name = "Montana", Motto = "Big Sky Country",

Cap i t a l = [Name = "Bi l l i ngs" , S t a t e = v]])

This record behaves like an infinite tree obtained by arbitrary unfolding by substitution for v . For example,

the expressions Montana. Cap i t a l , Montana. Cap i t a l . S t a t e , Montana. Capi ta l . S t a t e . Capi ta l , etc are all

valid. Moreover, equality and other database operations on description terms generalize to those cyclic

structures. This uniform treatment is achieved by treating description terms as regular trees [Cou83]. The

syntax (r e c v . e) denotes the regular tree given as the solution to the equation v = e , where e may contain

the symbol v .

2.4 References

We believe that the notion of "objects" in databases is equivalent to that of references as they are implemented

in ML. There are three primitives for references:

n e w (v) reference creation,
! r de-referencing,

r : =v assignment.

n e w (v) creates a new reference and assigns the value v to it. ! r returns the value associated with the
reference r . r:=v changes the value associated with the reference r to v . In a database context, they
correspond respectively to the creation of an object with identity, retrieving the value of an object, and

changing the associated value of an object without affecting its identity.

When combined with other description term constructors, references represent objects with identity. The

uniqueness of identity is guaranteed by the uniqueness of each reference. Two references are equal only if -
they are the results of the same invocation of new primitive. For example if we create the following two

objects (i.e. references to records):

John1 = new([Name="John", Age= 211) ;
John2 = new([Name=" John", Age= 211) ;

then eq(John1 ,Johni) and eq(! Johni , ! John2) are true but Johni = John2 is f a l s e even though their

associated values are the same. Sharing and mutability are also represented by references. If we define a

departmenk object as:

SalesDept = new([Name = "Sales", Building = 111) ;

and from this we define two employee objects as:

John = new([Name="John", Age =21, Dept = SalesDeptl) ;

Mary = new ([Name="Mary", Age =31, Dept = SalesDept]) ;

then John and Mary share the same object SalesDept as the value of Department field. An update to the

object SalesDept as seen from John.

(! ~ o h n) . Dept : = modify (! ((! John). Dept) , Building, 98)

is reflected in the department as seen from Mary. After this statement,

evaluates t o 98. Unlike many languages references do not have an optional "nil" or "undefined" value. If

such an option is required it must be explicitly introduced through the use of a variant.

3 Type Inference and Polymorphism in Machiavelli

Type inference is a method to infer type information that represents the polymorphic nature of a given

untyped (or partially typed) program. Hindley established [Hin69] a complete type inference algorithm for

untyped lambda terms. Independently, Milner developed [Mi1781 a complete type inference algorithm for

functional programming language including polymorphic definition (using let construct.) This has been

successfully used in the ML family of programming languages [Aug84, HMT881 and also been adopted by
other functional languages [Tur85, HW891. Unfortunately this method cannot be used directly with some

of the data structures and operations we have described in the previous section. In this section we give an

account of the extension to the Hindley-Milner type system that is used in Machiavelli, first through some

examples and then through a definition of the "core" language and its type system.

For programs which do not involve field selection, variants and database operations, Machiavelli infers
type information similar to those of ML. For example, for the identity function

fun id x = x;

the type system infers the following type information

i d : ' a - > 'a

where 'a is a type variable intuitively representing an "arbitrary type". This is a type scheme which is a

representation of the set of all types obtained by substituting its type variables with some types (such as int,

boo1 or int --+ int). This distinction of type schemes from types is crucial to understand Machiavelli's type
system. Note that a type is also a type scheme representing the singleton set of itself. The most important

property of the ML type system is that for any type consistent expression it infers a principal type scheme .

This is a type scheme such that all its ground instance are types of the expression and conversely any type of

the expression is its instance. This means that the type system infers a type scheme that exactly represents

the set of all possible types of an expression. By this mechanism, ML achieves polymorphism without explicit

type abstraction and type application. The inferred type scheme can be regarded as the polymorphic type
of the expression. In the case of id, the type scheme 'a -> ' a represents the set of all possible types of i d

and is therefore regarded as the polymorphic type V t . t + t of id.

A more substantial example of type inference is given by the function map of the previous section, which

has type scheme

map : ("a->"b * {"a}) -> {"b)

Here "a and "b are also type variables, but in this case they only represent description types. The type scheme

for map indicates that it is a function that takes a function of type b1 -> b2 and a set of type {bl} and returns

a set of type (62) where b l , 62 can be any description types. Thus map(card, {{I , 2 ,3} , (71, {5,2})) and
map(odd, {9,8,7,6}) are both legitimate applications of map. Again, the type scheme ("a->"b * {"a})

-> {"b} is principal in that any type for map is obtained by substituting description types for the type

variables "a and "b. In the example, ({int} -> int * {{ int))) -> {int) is the type of map in map(card,

{ { l s 2 , 3) , . ..}I.

Similar examples are possible in ML and its relatives. However it is not possible for ML's type inference

method to infer a type scheme for a program involving field selection, variants or the relational database
operations that we shall describe later. For example, the simplest function using field selection

fun name x = x .Name

cannot be typed by ML. (In Standard ML, this function is written fun name {~ame = x , . . . } = x, which

is rejected by the compiler unless a conlplete type is specified for the argument.) The difficulty is that the
conventional notion of type schemes is not general enough to represent the relationship between the argument

type and the result type, which in this case is the inclusion of a field type in a record type.

Wand attempted [Wan871 to solve this problem (with the operation that extends a record with a field)

using the notion of row variables , which are variables ranging over record fields. The system, however, does
not share with ML the property of principal typing (see [OB88, Wan881 for the analysis of the problem

and [JM88, Em891 for the refinement of the system.) Based on Wand's general observation, in [OB88]
we developed a type inference method which overcomes the difficulty and extends the method to database

operations. Instead of using row variables, we introduced syntactic conditions to control substitution of type
variables. For records and variants, the necessary conditions can be refined a s kinded type variables [Oh0901
which have pleasantly simple representation, as we have seen in the example of Wealthy in the introduction.
For example, the function name above is given the following type scheme

name : [('a) Name:'bl -> 'b

As explained in the introduction, the notation [('a) Name: 'b] is a kinded type variable representing the set

of all record types containing the field Name: T where r is any instance of 'b. Substitutions are restricted to

-> v d joe = [Name="JoeM, Age=21,
Status=<Consultant = [Address="Philadelphia", Telephone=22212341>1;

>> v d joe = [Name="Joe", Age=21.
Status=<Consultant = [Address="PhiladelphiaM, Telephone=22212341>1

: [Name: string, Age: k t , Status: <('a)Consultant : [Address: string,Telephone: kt] >I

-> fun phone(x) = case x.Status of
<Employee = y> => y.Extension,
<Consultant = y> => y.Telephone

endcase

>> val phone = fn : [('a) Status:<Employee:[('b) Extension:'d],

Consultant : [('c) Telephone: 'dl >I -> 'd

-> phone (j oe) ;
>> val it = 2221234 : int

-> fun incrementage(x) = modify(x, Age, X- Age + 1) ;

>> val increment-age = fn : [('a) Age:intl -> [('a) Age:int]

-> increment-age(CName="John" ,~ge=211) ;

>> val it = [~ame=" John", Age=22] : [Name : string, Age : int]

Figure 1: Some Simple Machiavelli Examples

those that respect kind restrictions of type variables. The type scheme above then represents the exact set of

all possible types of the function name and therefore regarded as a principal (kinded) type scheme for name.

More examples of type inference for records and variants are shown in figure 1 which shows an interactive

session in Machiavelli. Input to the system is prompted by ->, and output is preceded by >>. At the top

level input is either a value or function binding; it is a name for the result of evaluation of an expression.

The output consists of some description of the value that has just been evaluated or bound together with

its inferred type.

We now define a small polymorphic functional language by combining the data structures described in

the previous section with a functional calculus and giving its type system. This will serve as the polymorphic

"core" of Machaivelli.

3.1 Expressions

The syntax of programs or expressions of the core language is given by

e ::= c, I () I x I (fn x => e) I e(e) I let x=e in e end I
if e then e else e I eq(e.e) I
[I=e ,..., /=el I e.1 I modify(e,l,e) I
<I=e> I case e of <l=x> => e <l=x> => e endcase I
case e of <l=x> => e.. . .,<l=x> => e else => e endcase I
{e , . . . , e) I union(e,e) I hom(e,e,e,e) I hom*(e,e,e) I

In this, c, stands for standard constants including constants of base types and ordinary primitive functions

on base types. z stands for the variables of the language. 0 is the single value of type unit and is returned

by expressions such as assignment. Examples of the syntax have already been given in section 2 and, in

particular, in figure 1. Value binding val id = e l ; e2 is syntactic sugar for le t id = el in e2. Recursive

function definition with multiple argument is also syntactic sugar for expressions constructed from let,
records, field selection and a fixed point combinator, which is already lambda-definable in Machiavelli using

recursive types. Evaluation rules for those expressions are obtained by extending the operational semantics

of ML such as the one defined in [Tof88] with the rules for e q and the operations on records, sets, and

variants and the rules for recursive expressions. The rule for e q requires delicate treatment in connection

with cyclic structures and sets and we defer it until we discuss database operations in section 4. We have

already informally described the evaluation rules for operations on records, sets, and variants. It is not

hard to give their formal definitions as reduction rules. In order to handle recursive expressions, we add

the following rules. Let E(x) be one of the expressions e.1, modify (x , I , e) , case x of . . ., union(x , e l ,

un ion (x , e) , or h o m (x , e l ,e2,es).

where e[(rec x.e)/x] is the expression obtained form e by substituting x in e for (rec x.e). This rule

corresponds to "unfolding" of cyclic definitions.

3.2 Types, Description Types and Typing Rules

As explained above, Machiavelli type system is based on type inference. A legal hlachiavelli program corre-

sponds to an (untyped) expression associated with a type scheme inferred by the type inference system. As

such an implicit type system, the definition of hlachiavelli type system requires two steps. The first is to give

typing rules, which determines when an untyped expression e is considered to have a type r and therefore

considered as a well typed expression. The second step is to develop a type inference algorithm that infers

for any type consistent expression a principal type scheme representing the set of all possible types of the

expression derivable form the typing rules. In this subsection, we give the complete set of typing rules.

The set of types of Machiavelli is the set of regular trees [Cou83] represented by the following type

expressions:

T ::= unit 1 b 1 b d 1 r-+ r 1 [1: T , . . . , 1 : T] l (1 : T , . . . , 1 : r) 1 {r} 1 ref(?) l(rec v . r (v))

unit is the trivial type whose only value is 0. b and b d range respectively over the base types and base

description types of the constants in the language. The other type expressions are: r + T for function types,

[I : r , . . . , I : r] for record types, (1 : r , . . . , I : r) for variant types, and { r) for set types. In (rec v. ~ (v)) ,
r (v) is a type expression possibly involving the symbol v but not v itself and the entire expression denotes

the solution to the equation v = T(v), which exists in the set of regular trees. In keeping with our syntax for

records we shall use the notation rl * r 2 as an abbreviation for the type [first : TI, second : 721. Triples and.

generally, n-tuple types are similarly treated. Database examples of hlachiavelli types are: a relation type,

{[PartNum:int, PartName:string, Color: <Red:unit, Green:unit , ~ l u e : u n i t >] }

a complex object type,

{ [Name: [F i r s t : s t r i n g , Last : s t r i ng] , Children: {s t r ing)])

and a mutable object type,

(r ec p. re f ([1d#: i n t , Name: s t r i n g , Children: {p)]))

Note that (rec v. r(v)) is not a type constructor but a syntax to denote the solution to the equation

v = r(v) . As a consequence, distinct type expressions may denote the same type. For example, the following

type expression denotes the same type as the one above:

(r ec p . r e f ([I d # : i n t , Name:string,

Children: {ref ([id#: i n t , lame: s t r i n g , Children: {p)])]))

There is an efficient algorithm [Cou83] to test whether two type expressions denote the same type (i.e.

regular tree) or not. We can therefore identify type expressions as the types they denote. Note also that an

"infinite" (cyclic) type does not necessarily mean that its values are cyclic. In the last example, while the

type is cyclic, a cyclic value of this type presents some biological difficulties.

The set of description types is the subset of types represented by the following syntax:

6 ::= unit I bd ([l : 6,. . . , 1 : 61 1 (1 : 6, . . . , 1 : 6) 1 (6) (r e f (r) I (rec v. S(v))

where r ranges over the syntax of all type given previously. This syntax forbids the use of a function type

or a base type which is not a description type in a description type unless within a r e f (. . .). Thus i n t ->
i n t is not a description type but

r e f ([x-coord: i n t , y-coord: i n t , movehorizontal : i n t -> () I)

is a description type. Note the similarity - and differences - between this type and a class definition in

object-oriented languages.

The typing rules are given as a set of rules to derive typing judgements. Since the type of an expression

depends on the type of its free variables, a typing judgement has the form:

where A is a function, called a type assignment, from a finite subset of variables to types. We write A{x := T)

for the function A' such that dom(A) = dom(A) U {x) , A1(x) = T and A1(y) = A(y) for y # x. The typing

rules for all the operations we have so far given is shown in figure 2.

Our treatment of polymorphic let (the rule LET) differs form Damas-Milner system [DM821 in that it does

not use generic types (a type expression of the form V t . r) but instead it use syntactic substitution of terms.

A naive implementation of this form of typing rule would require recursive unfolding of le t definitions. This

unfolding process always terminates but would prohibit the possibility of incremental type-checking. For the

closed raw terms, however, our proof system is equivalent (when restricted to the raw terms ML) to Damas

and Milner's system and their technique for inferring type scheme for let expressions (their algorithms W
and J) is also applicable to our system. The advantage of our treatment of let is that the type system can be
extended to records, variants and database operations. While it is shown that [Oh0901 it is still possible to

extend Damas-Milner generic type schemes to records and variants using kinded type abstraction, we do not

know how to extend them to the conditional typing schemes that we shall require for database operations.

A b let z = ez i n el : r

A b e 1 : b o o l A b e 2 : r A b e 2 : r

A b if el t h e n ez else e3 : T

d b e , : TI, ..., d b e , : r,

A b [ll=el,. . . ,ln=enl : [ll : T I , . . . , 1, : r,]

A b e : r ~
if rl is a record type containing 1 : r 2

d b e.1 : r 2

A b e l : ~ ~ d b e z : r z
if TI is a record type containing 1 : r 2

A b rnod i fy (e l , l , ez) : rl

A b e : r ~
if 72 is a variant type containing 1 :

d b <l=e> : r2

d b e : (l i : r l , . . . , [, : r ,) d { z i : = r i) b e , : r (l s i < n)

d b c a s e e of <11=z1> => e l, <ln=z,> => en e n d c a s e : r

A b e : 1 : 1 , . . . 1 : r . .) d { z , := r ,) b ei : r (1 < i 5 n) A b eo : r

A b case e of <ll=zl> => e l , . . ., <l,=z,> => en else => eo endcase : r

A b e l : 6 . . - A b e , : 6

A b {el ,. . . , en) : {6)

A b el :=e2 : unit

Figure 2: T h e Proof S y s t e m for nilachiavelli Typings

3.3 Type Inference

The proof system of figure 2 determines which expressions are type correct legal Machiavelli programs.

Unlike the simple type discipline, this proof system does not immediately yield a decision procedure for
type checking expressions. The second step of the definition of the type system is t o give such a decision
procedure. Since an expression may have more than one typing, we need to develop a representation for sets

of typings and an algorithm which, given any typable expression, infers a representation for the set of all

derivable typings for the expression. This is the type inference problem.

In [Hin69, Mi1781 this problem was solved by defining a language of type schemes containing type variables

and developing an algorithm which, given a typable expression e, computes a principal typing scheme C k e : u

satisfying the property that A b e : T is derivable if and only if there is some substitution 0 such that

A(x) = B(C(x)) for all x E dom(C) and r = 0(u). A legal ML program is one with a principal typing scheme

with an empty type assignment C.

There are two problems in applying this method to our type system. The first one is that the operational

semantics for references does not agree with polymorphic type discipline for let binding. As pointed out in
[Mac88b, Tof881, the straightforward application of the type inference method of [Mi1781 to references yield
unsound type system. The following example is given in [Mac88b]:

let
val f = new(fn x => X)

in (f:=(fn x=> x + x) , (!f>(true>>
end

If the type system treats the primitive new as an ordinary expression constructor then it would infer the

type boo1 for the above expression but the expression causes a run time type error if the evaluation of a pair
(record) is left-to-right. In [Tof88, Mac88b1, solutions have been proposed. They differ in detailed technical

treatment but are both based on the idea that the type system prohibits reference values from having a

polymorphic type. In what follows, we may assume either of these proposals.

The other problem we need to address is that, in figure 2, some of the rules have associated conditions:

1. a type should be a description type,

2. TI is a record type containing 1 : r 2 ,

3. rl is a variant type containing 1 : 72,

4. a t,ype should be of the form (11 : TI,. . . ,I, : T,,, . . .).

The second, third and fourth of these conditions are explicitly required in the the rules (DOT), (MODIFY),

(VARIANT) and (CASE'). The first requirement, that a type should be a description type, is indicated by the
use of a 6 (rather than T) in the rules (SET), (UNION), (HOM), (EQ) and (REC).

The first condition is handled by introducing a new class of type variables description type variables,
similar to ML's eqtype variables. In order to represent the other three conditions, we refine type schemes
as kinded type schemes by introducing kind constraint on type variables. The set of kinded type schemes
appropriate for Machiavelli is given by the following syntax:

u ::= t K 1 dK 1 unit 1 u + u 1 [l : u , . . . , l : u] 1 (1 : u , . . . , l : u) 1 {u} 1 ref(u) 1 (~ e c v. u(v))

a :: U for all a

t[l~:o~~~. .~ln:ons.~.I :: [ll : gl, . . . ,In : an]

~ [l ~ : o l ~ . . . ~ l n : ~ r n ~ . . .] :: Ill : gl, . . . , ln : un]

[II ::(TI ,..., In :an, ...I ::[/I : U l , . - . , l n : a n]

t((~~:~l~..~~lm:onv~..)) :: ((Il : al, . . . , ln : an))

d ((l l : o l ~ ~ . . ~ l m : o n ~ ~ ~ .)) 1: ((11 : g l , . . . , ln : an))

[11 :: UI , . . . , l n : a n , . . .] :: ((11 : ~ 1 , . - . ,ln : an))

Figure 3: The Proof System for Kindings

where tK stands for type variables with the kind tag Ii', dK stands for description type variables with kind

tag K. The set of kinds is given by the following syntax:

K ::= U 111: a ,..., 1 : a] 1 ((1: u , . . . , 1 : u))

The idea is that U denotes the set of all type schemes, [l : a , . . . ,1 : u] denotes the set of record type schemes

containing the set of all fields 1 : a, . . . , l : a, and ((I : a , . . . , I : a)) denotes the set of variant type schemes

containing the set of all fields 1 : a , . . . , l : a . Figure 3 gives kinding rules.

Kind constraints on type variables are analogous t o type constraints on variables. The only legal instan-

tiation of a type variable of the form tK is a type scheme u such that we can derive the kinding u :: I<. This
constraint is reflected in the following definition. A kind preserving substitution 0 is a function from the set

of kinded type variables to kinded type schemes such that O(tK) # tK for only finitely many tK and satisfies

the conditions: (1) it maps description type variables to description type schemes and (2) O(tK) :: B(K) ,
O(dK) :: 0(I<) for all tK and dK. Robinson's unification algorithm [Rob651 can be extended to kinded type

schemes. Let E be a set of pairs of kinded type schemes. A kind preserving substitution 0 is a unifier if

O(al) = 6(a2) for all pair (a l , a 2) E E. It is shown [Oh0901 that:

P ropos i t i on 1 There is an algorithm U which computes a most general unifier for any unifiable set E of

pairs of kinded type schemes.

With these definitions, we can refine the notion of principal typing scheme. Let C be an assignment of

kinded type schemes to a finite set of variables and a be a kinded type scheme. A principal kinded typing

scheme is a formula of the form C b e : a such that A b e : r is a typing of e if and only if there is a
kind preserving substitution 0 such that A(x) = 0(C(x)) for all z 2: dom(C) and r = 0(a). Using a kind

preserving unification algorithm, we can extend ML type inference to the set of Machiavelli's expressions:

Proposition 2 There is an algorithm, K , which, given any expression e, returns either a pair (C, u) o r

failure such that if K(e) = @ , a) then C b e : a is a principal kinded typing scheme otherwise e has no
typing. 1

The detailed proof can be found in [Oho90]. Here we only show the algorithm for the case of field selection
e . I, which illustrates the use of kinded type variables.

EC(e.1) = let

(E l , ~ l) = K(e)
[l i t:]

0 = U({(ul, t l))) (where t l , t2 are fresh)

in

C = 0(C1)

u = O(tY)

end

Just as legal ML programs correspond to principal typing schemes with empty type assignment, legal

Machaivelli programs correspond to principal kinded typing schemes with empty type assignment. Machi-

avelli prints kinded type schemes as follows:

as already seen in examples. Thus

-> fun name x = x.Name;
>> val name = fn : [('a)~ame:'b] -> 'b

is a representation of the the following kinded typing scheme:

Examples shown in figure 1 are to be similarly understood.

To summarize our progress to this point: we have augmented type schemes of ML with description types

(which already exist in ML in a limited form) and kinded type variables. This has provided us with a type

system that not only expresses the generic properties of field selection, but also allows sets to be uniformly

treated in the language. However relational databases require more than the operations we have so far

described, and it is to these that we now turn.

4 Operat ions for Generalized Relations

We are now going to show how we can extend Machiavelli to include the operations of the relational algebra,
projection and natural join that are not covered by the operations for sets and records that we have so far

developed. Before doing this, there are two important points to be made. The first is that, in order to achieve

a general definition of these operations we are going to put an ordering on values and on description types.
The ordering on types, although somewhat similar to that used by Cardelli [Car881 is in no sense a part of

Machiavelli's polymorphism. This should be apparent from the fact that we have already incorporated field

selection as a polymorphic operation without having to make use of such an ordering.

The second point is that the introduction of join complicates the presentation of the type inference system

and increases the complexity of the type inference problem. The typing rule for join operation is associated -
a complex condition which can no longer be represented by some kind. To give a type scheme for jo in,

we need t o extend the notion of (kinded) typing schemes to conditional typing schemes [OB88] by adding

syntactic conditions on instantiation of type variables. A similar problem was later observed in [Wan891 if

one uses a record concatenation operation rather than join. Since we are primarily concerned with database

operations, our inclination is t o examine the record joining operation that naturally arises as a result of

generalizing the relational algebra.

Our strategy in this section is first t o provide a method for generalizing relational algebra over arbitrary

description types. We then provide the additional typing rules, which have associated order constraints on

the types. Finally we show that although there is no longer a principal typing scheme for a term, we can still

provide a principal conditional typing scheme which represent the exact set of provable typings. We then

describe the method t o check the satisfiability of conditions before the evaluation of the term associated with

the conditions. In other words, we are still able t o guarantee that a program will not cause a type error.

4.1 Generalizing Relational Algebra

Our rationale for wanting t o generalize relational operations is that, in keeping with the rest of the language,

we would like them to be as "polymorphic" as possible. Since equality is essential to the definition of most of

these operations, we cannot expect to generalize them to arbitrary terms of the language. Instead we content

ourselves with their effect on description terms, which are those terms that can be typed with a description

type. To achieve this end Machiavelli generalizes the following four operations to arbitrary description terms

and introduces them as polymorphic functions in its type system:

e q (e l . e 2) equality t e s t ,

j o i n (e l , e z) database join operation,

c o n (e l , e n) operation for consis tency check,

p r o j e c t (e , b) projection of d onto the type b .

The intuition underlying their generalization is the idea exploited in [BJ089] that database objects are

partial descript ions of real-world entities and can be ordered by goodness of descript ion. The polymorphic

type system to represent these generalized operations has been developed in [Oho89]. In what follows, we

describe how equality, join and projection are generalized to finite description terms. For the treatment of

cyclic structures as well as the precise semantics of the type system for descriptions, the reader is referred

to [Oho89].

We first consider join and equality. We claim that join in the relational model is based on the underlying

operation that computes a join of tuples. By regarding tuples as partial descriptions of real-world entities,

we can characterize it as a special case of very general operations on partial descriptions that combines two

consistent descriptions. For example, if we consider the following non-flat tuples

t l = [Name = [First = "Joe"]];

and

t2 = [Name = [Last = "Doe"]]

as partial descriptions, then the combination of the two should be

t = [lame = [First= " J o e " , Last = " D o e "]] .

This is characterized by the property that t is the least upper bound of t l and t z under the ordering induced

by the inclusion of record fields. Denoting the ordering by IZ, join is defined as:

Equality in partial descriptions is an operation which tests the equality on the amount of information and
is characterized by the equivalence relation induced by the information ordering, i.e.

e q (d , d 1) = d d'and d' 5 d

This approach also provides a uniform treatment of null values [Zan84, BisSl], which are essential to database

programming involving incomplete information. Join and projection extend smoothly to data containing null

values. However care must be taken [Lip79, IL84] to ensure that in using an algebra with these extended

operations they provide the required semantics. To represent null values, we also extend the syntax of

Machiavelli terms with:

n u l l (b) the null value of a base type b
<> the (polymorphic) null value of variant types

A11 other incomplete values are those that are constructed by description term constructors.

The importance of these characterizations is that they do not depend on any particular data structure

such as flat records. Once we have defined a (computable) ordering on the set of description terms which

represents our intuition of the goodness of description, join and equality is generalized to arbitrary complex
description terms. To get such an ordering, we first define the pre-order 5 on description terms. For finite

descriptions, 5 is given as:

cb

null (b)

n u l l (b)

[11 = d l , . . . ,in = dnl
<>
<>

<I = d>

r

{d l sdn}

cb for all constant cbof t ype b ,

cb for a11 constant cbof type b y

n u l l (b) for any base type b

[11 = d ; , ..., 1, = d; ,... I i f d , d d ; (l < i < n) ,
<> ,
<1 = d> for any description d ,
<I = d'> i f d 5 d 1 ,

r for any reference r

{ d . . d } i f Vd' E {d',, . . . , dk) . 3d E {dl , . . . , d,}. d 5 d'

The rule for sets is defined to capture the properties of sets in database programming. 3 fails to be
anti-symmetric because of this rule. An ordering is obtained by taking induced equivalence relation and
regarding a description term as a representative of an equivalence class. In what follows, we denote by C_ the
ordering induced by the preorder 5 . Since the ordering relation and the least upper bound are shown to be
computable, our characterization of join and eq immediately gives their definitions on general description
terms. The equality (eq) is a generalization of structural equality to sets and null values. Figure 4 shows an
example of a join of complex descriptions. This definition of join is a faithful generalization of the join in
the relational model. In [BJ089] it is shown that:

rl = {[Pname = "Nut" ,Supplier = { [Sname = "Smith" ,City = "London"] ,
[Sname = "Jones", City = "Paris"] ,
[Sname = "Blake", City = "Paris"])I ,

[Pname = "Bolt",Supplier = { [Pname = "Blake",City = "Paris"],
[Sname = "AdamsW,City = "Athens"])])

r2 = {[Pname = "NutU,Supplier = {[City = "Paris"l),Qty = 1001,
[Pname = "BoltN,Supplier = {[City="Paris"]) ,qty = 2001)

join(ri,r2)= name = "Nut",Supplier name = "Jones",City = "Paris"],
[Sname = "Blake" ,City = "~aris"]), qty = 1001 ,

[Pname = "Bolt",Supplier name = "Blake",City = "~aris"]), qty = 2001)

Figure 4: Natural join of higher-order relations

Proposition 3 If r l , rz are first-normal form relations then j o in (r l , r 2) is the natural join of r l and r:! in
the relational model. I

A useful property of join is that it coincides with intersection when applied to two sets of the same base

type, such as {int). I t also provides an interesting and useful generalization of intersection when applied to
sets of "objects". This is discussed in section 5.

We turn our attention to projection. In the relational model, it is defined as a projection on a set of

labels. We generalize it to an operation which project a complex description onto its "substructure". In a
programming language, a structure of data is represented by a type and we define projection as an operation

specified by its target type. Recall that the syntax of description types is

6 ::= bd 1 [I : 6, . . . , I : 61 1 (I : 6,. . . , l : 6) ((6) 1 (rec v. 6(v))

Projection becomes an operation indexed by a description type. project (x ,6) is the operation which, given

a description x whose type is "bigger" than 6, returns a description of type 6 by 'throwing away" part of its

information. The following is a simple projection on flat relation:

project({ [Name = "J. Doe", Age = 21, Salary = 210001 ,
[Name = "S. Jones", Age = 31, Salary = 310001),

{ [Name : string, Salary: int]))

= { [Name = "J. Doe", Salary = 210001 ,
[Name = "S. Jones", Salary = 310001)

To define such an operation, we use an ordering on description types t o model our intuition that the structure
represented by one description type "contains" the other. For finite description types, the appropriate
ordering is given as:

n n << [/ 1 : 6 ; ,..., l n : b L , . . .] i f 6 i < 6 i (l < i < n)

n n) << (~ l : 6 ~ , . . . , l n : b ~) i f b i < b i (l < i s n)

(61) << (52) if 61 << 6?

By this ordering and the typing relation already etablished in section 3, projection has the following general

definition:

projec t (x , 6) = U { d l d C_ r , d : 6)

which is a computable function for any description type 6.

4.2 Extended Expressions and Their Evaluation

The syntax of expressions is extended with the term constructors join, con , and project we have just

described:

We extend the evaluation rules for expressions described in section 3 with the rules for the above new

term constructors and e q . Note that they are only applicable to description terms. A description term d
denote an equivalence class of regular trees induced by the ordering we have just described. We write D(d)

for the equivalence class denoted by d. The evaluation rules for those term constructors are given as:

jo in(d l ,d:,) ++ d3 if D(d3) = D(d1) U D(d2)
c o n (d l , d2) - t r u e if D (d l) U D(d:,) exists

c o n (d l , d2) ++ f a l s e if D(d1) U D(d2) does not exist

pro jec t (d l ,6) ++ d:, if D(d:,) is the leas element of { D (d) (D (d) D (d l) , d : 6)

e q (d l , d 2) i. t r u e if D(d1) D(d:,) and D(d:,) E D (d l)

e q (d l , d2) - f a l s e if !L D(d:,) or D(d:,) (z D (d l)

As we have mentioned, there are generic algorithms to compute these functions.

4.3 Type Inference for Relational Algebra

Figure 5 gives two simple examples of the typing schemes that are inferred by Machiavelli. The type scheme

for join3, a join of three records is given as a type scheme ("a * "b * "c) -> "d together with a set of

conditions { "d = j o in t ype ("a , " a) , " e = j o in t ype ("b , "c)). There is clearly extra work to be done

for we have to infer precise conditions and to verify that there are instances of the type variables that satisfy

the conditions.

Figure 6 gives the additional typing rules for the operations join, project , and con , which must be

considered in conjunction with those in figure 2. In order t o include these operations we explicitly introduce
syntactic conditions on substitution of type variables that represent the last three forrns of constraint that

appear in these rules; they are 61 U ti:, exists, 6 = 61 U 6 2 , and 6:, << 61. In fact we only need to consider the

last two forms of constraint since 61 U 61 will exist whenever we can find a type 63 = 61 U 6:,. To represent

them we introduce the following syntactic conditions:

-> fun join3(xDy,z) = join(x,join(y,z));
>> v d join3 = fn : ("a * "b * "c) -> "d

where { "d = "a lub "e, "e = "b lub " c)
-> Join3([lame = "Joe"] , [Age = 211 , [Off ice = 271) ;
>> v d it = [lame = "JoeN,Age = 21,Office = 271 : [Name:string,Age:int ,Office:int]

-> project (it, [lame: string]) ;
>> va1 it = [lame="Joe"] : [Name: string]

Figure 5: Some Simple Relational Examples

d b e l : 61 d b e 2 : 52
(C O N) if 51 u 6 2 exists

A b con(el , e 2) : boo1

Figure 6: The Typing Rules for Relational Operations

1. a = jointype(u, a) , and

2. lessthan(a, a) .

Note the difference between b3 = b1 U 6 2 and a3 = jointype(al,u2). The former is a property on

the relationship between three description types. On the other hand, the latter is a syntactic formula

denoting the constraint on substitutions of type variables to represent such property. Similarly for b1 << 6 2

and lessthan(ul, a2). The following definition provides the meaning of those syntactic conditions. A kind

preserving ground substitution 0 satisfies a condition c if

1. if c ul = jointype(az, a2) then B(ul), B(a?), B(a3) are all description types and B(a1) = @(as) UB(u3),

2. if c lessthan(a1, a2) then B(ul), B(a2) are description types and B(al) << B(u3).

0 satisfies a set C of conditions if it satisfies each member of C.

Combining this with the mechanism of kinded type schemes given in section 3, we can extend our

inference algorithm. Let C be a set of conditions, C be an assignment of kinded type schemes to variables. A
conditional typ ing scheme is a formula of the form C, C b e : a such that if a kind preserving substitution B

satisfies C then B(C) b e : B(a) is a derivable typing. A typing A b e : r is an instance of a conditional typing
scheme C , C b e : a if there is a kind preserving substitution 8 such that B satisfies C, A(x) = B(C(x)) for

all x E dom(C), and T = B(a). A conditional typing scheme C, C b e : a is principal if any derivable typing

for e is an instance of it. The following result establishes the complete inference of principal conditional

typing schemes.

Propos i t i on 4 There i s a n algorithm which, given any raw t e r n e , re turns e i ther failure o r a triple (C, C , u)

such that if it re turns (C , C , u) then C, C b e : u is a principal conditional typing scheme, otherwise e has -
no typing. 1

A proof of this, which also gives the type inference algorithm for Machiavelli, is based on the technique we

have developed in [OB88] which established the theorem for a sublanguage of Machiavelli. A complete proof
and a complete type inference algorithm can be found in [Oho89]. For example, the type ("a * "b * "c)
-> "d where { "d = "a lub "e, "e = "b lub "c) of the three-way join join3 is the representation of

of the principal conditional typing scheme:

It is therefore tempting to identify legal Machiavelli programs with principal conditional typing schemes.
There is however one problem in this approach. As we have mentioned at the beggining of this section, the

definition of conditional typing schemes does not imply that they have an instance. This happens because
the set C of conditions in a typing scheme may not be satisfiable. In such case, the term has no typing
and should therefore be regarded as a term with type error. In order to achieve a complete static type-

checking, we therefore need to check the satisfiability of the set of conditions. Unfortunately, however, the

satisfiability checking cannot be made efficient since it is shown that [OB88] the introduction of jo in makes

the type inference problem for the simply typed lambda calculus itself NP-complete, while the construction

of a conditional type scheme can be done in polynomial time. A practical solution we adopt here is to delay
the satisfiability check of a condition until its type variables are fully instantiated. Once the types of all

type variables in a condition are known then the satisfiability of the condition can be efficiently checked and

the condition can be eliminated. Since the reduction associated with join is performed only after actual

parameters are supplied, this method also detects all run time type errors. We therefore identify legal
Machiavelli programs with principal conditional typing schemes where the only conditions are those that
contain type variables.

This strategy supports arbitrarily complex structures that can be constructed with records, variants and

sets. This allows us t o define directly in hlachiavelli databases supporting complex structures including

non-first-normal form relations, nested relations and complex objects. Figure 7 shows an example of a

database containing non-flat records, variants, and nested sets. With the availability of a generalized join
and projection, we can immediately write programs that manipulate such databases. Figure 8 shows some

simple query processing for the database example in figure 7. Note the use of join and other relational

operations on "non-flat" relations.

This approach to defining generalized relational operations completely eliminates the problem of "imped-

ance mismatch" between relational databases and a programming language. Data and operations can be
freely mixed with other features of the language including recursion, higher-order functions, polymorphism.

This allows us to write powerful programs relatively easily. The type correctness of programs is then auto-
matically checked a t compile time. Moreover, the resulting programs are in general polymorphic and can be
shared in many applications. Figure 9 shows a simple implementation of a polymorphic transitive closure
function. By using renaming operation, this function can be used t o compute the transitive closure of any
binary relation. Figure 10 shows query processing on the example database using polymorphic functions.
The function cost taking a part record and a set of such records as arguments computes the total cost of the
part. Note that scope of type variables is limited to a single type scheme, so that instantiations of "a in the
type of cost have nothing to do instantiations of "a in the type of expensive-parts. Also, the apparent

-> parts;
>> val it = {[~name="bolt",P#=l ,Pinf o=<Base= [Cost=5] >I,

...
[Pname="engine",P#=2189,

Pinfo=<Composite = [SU~P~~S={[P#=I ,Qty=189], . . .),
AssemCost=lOOO] >I , . . .)

: {[Pname: string,P#: int ,
Pinfo:<Base: [Cost:int] ,

Composite: [SubParts : { [P#: int ,Qty : int]) ,Assemcost : int] >I)

-> suppliers;
>> val it ={[~name="~aker" ,S#=l ,City="Paris"] ,. . .)

: {[~name:string,~#:int,City:string]}

-> supplied-by ;
>> Val it = { [p#=l, suppliers={ [S#=ll , [S#=121 , . . .}I , . . .)
: {[P#: int ,Suppliers: {[Sit: inti}]}

Figure 7: A Part-Supplier Database in Generalized Relational Model

(* Select all base parts *)

-> join(parts , { [Pinf o=<Base= >I)) ;

>> val it = { [Pname="boltU , P#=1, Pinf o=<Base= [Cost=5] >] , . . .}
: {[Pname : string,P#: int ,

Pinfo:<Base: [Cost: intl ,
Composite: [SubParts: {[P#: int ,qty: int]} , Assemcost: int] >])

(* List part names supplied by "Baker" *)

-> select x . Pname
from x <- join(parts, supplied-by)
where JoinJ(x. Suppliers, suppliers, { [Sname="Baker"])) <> {) ;

>> {"bolt", . . .) : {string)

Figure 8: Some Simple Queries

-> f u n Closure R =
let val r = select [A=X.A ,B=Y.BI

f r o m x <- R, y <- R

where eq(x. B , y .A) andalso not (member([A=x. A ,B=y . B1 ,R))
in if r = {} then R else Closure(union(R,r))

end ;

>> val Closure = f n : {[A:"a,~:"b]} -> {[~:"a,~:"b])

Figure 9: A Simple Implementation of Polymorphic Transitive Closure

complexity of the type of cost could be reduced by giving a name to the large repeated sub-expression.
Without proper integration of the data model and programming language, defining such a function and

checking type consistency is a rather difficult problem. Ikloreover, the functions cost and expensive-parts

are both parameterized by the relation (partdb) and their polymorphism allows them to be applied to many
different types sharing the same common structures. This is particularly useful when we have several differ-

ent parts databases with the same structure of cost information. Even if the individual databases differ in
the structure of other information, these functions are uniformly applicable.

5 Manipulation of Object-Oriented Databases

While we make no claim that Machiavelli exhibits all the desirable properties of an object-oriented database

language, we believe that the inheritance of methods that is implicit in functions that exploit field selection

captures a basic property of object-oriented databases: the ability to describe and manipulate data models

that express inheritance. In this section we show how to represent certain important features of object-
oriented databases within the type system we have developed.

We shall single out two features of object-oriented data models [LRV88, ABD+89] that set them apart

from other data models. The first is the idea of object identity which, as we suggested in subsection 2.4,
can be represented by reference types. A second property of object oriented databases has to do with the

connection between classes and extents. When we say an Employee ISA Person, there are a t least two things
we could understand by this relationship. One of them is that the "methods" that apply to a Person object
can also be applied to an Employee; another is that the database contains a set of objects and that the set

of Employee objects is a subset of the set of Person objects. Now there is no a priori reason why these two
definitions of ISA should have anything to do with each other. Indeed, if we think of Person and Employee
as types and objects as values, the second (extensional) definition of ISA is excluded because database values
in Machiavelli have a unique type. Even if we allow values t o have multiple types [Car88], it is not clear how
we generalize this property to sets of values in order to allow heterogeneous sets. This is something we shall
discuss in section 7.

Nevertheless it seems to be a desideratum of object-oriented databases that these two definitions of ISA
should be coupled: if you select the Employee objects from the database, you get a subset of the Person

(* a function to compute the total cost of a part *)

-> fun cost(p,partdb) =
case p.Pinfo of

<Base = x> => x.Cost,
<Composite = x> =>

hom(fn(y)=>y .SubpartsCost ,+ ,x.AssemCost ,
select [SubpartsCost=cost (z ,partdb) * w
from w <- x.SubParts, z <- partdb
where eq(z. P# ,w. P#))

endcase ;

qty ,P#=w. P#l

>> val cost = fn
: ([("a) Pinfo:<Base: [("b) Cost: intl ,

Composite: [("c) ~ub~arts: {[("d) P#: "e,qty: intl},

AssemCost : inti>,

P# : "el

* {[("a) Pinfo:<Base: [("b) Cost: intl ,
Composite: [("c) ~ub~arts: {[("d) P#: "e,9ty: intl},

AssemCost : int] >,
P#:lie1))

-> int

(* select names of "expensive" parts *)

-> fun expensive-parts (partdb ,n) = select x . Pname

from x <- partdb
where cost(x,partdb) > n;

>> val expensive-parts = fn :

: ({[("a) Pinf o: <Base: [("b) Cost : int] ,
Composite: [("c) SubParts: {[("dl P#: int ,qty: intl},

AssemCost: intl>,

P#:"e, ~name:"fl}

* int) -> {"f}

-> expensive-parts(parts ,1000) ;

>> val it = {"engine", . . .) : {string}

Figure 10: Query Processing Using Polymorphic Functions

I People (

Employees Students

Teaching Fellows

Figure 11: A Simple Class Structure

objects in the database and the methods available for Employee objects form a superset of the methods

available for Person objects. But note that this argument only asks that the two definitions of ISA are

coupled relative to some database; we see no reason for having a distinguished extent associated with certain

types, as happens in many database programming languages. Among other things, this restriction implies

that a program written in such languages cannot deal comfortably with more than one database at a time.

The way we capture this idea in Machiavelli is through coercions or views. A database object will,

in general, be a reference to a structure whose type, say PersonObj, may rather complicated and will

describe all possible states of a Person object including an indicator of whether or not it is an Employee

and its attributes as an Employee . A database (or a part of it) will consist of a set DB of such objects,

i.e. a value of type {PersonObj). A view of DB is a set of relatively simple records in which we "reveal" a

part of the structure of each member of DB in a fashion that allows us to exploit the relational operations

we have already developed. For example, { [~ame: s t r ing , Id: PersonObjl) and { [Hame: string,
Age: int , Id: PersonObj]) are both types of possible views of set DB. But notice that within these records

we have kept a distinguished Id field that contains the object itself, and this field, being a reference type

can also be treated as an "identity" or key when we have a set of objects. Because of the presence of this

field, we can perform generalized set operations on views even though they are of different type. In fact we

have already seen one such operation, the natural join (join). When applied to views it is an operation that

takes the intersection of sets of identities, but produces a result that has a join type and gives us the union

of the "methods". In fact we shall simply define an object type as any record type that contains an Id field,

which will be assumed to be some reference type. We shall single out object types for special treatment in

the language by adding some additional functions that are applicable only to object types.

As an example, a part of the database could be a collection of "person" objects modeling the set of
persons in a university. Among persons, some are students and others are employees. Such subsets naturally

form a taxonomic hierarchy or class structure. Figure 11 shows a simple example. Note that the arrows

not only represent inheritance of properties but also actual set inclusions; they also run opposite to the
information ordering described earlier. \Ire use variant types to represent structures of objects that share
common properties (e.g. being a person) but differ in special properties. The example is then represented

by the types shown in figure 12. \Ire should emphasize that the definitions in figure 12 are not hfachiavelli

PersonObj = (rec p . ref ([Name : string, Salary : <None :unit, Value : int>,
Advisor:<None:unit, Value:p>,

Course:<None:unit, Value:string>]);

Person = [Name: string, Id: PersonObj] ;

Student = [Name : string. Advisor : PersonObj , Id: PersonObj]
Employee = [Name : string, Salary: int , Id: PersonObj]
TeachingFellow = [Name: string. Salary: int , Advisor: PersonObj,

Course: String, Id: PersonObj]

Figure 12: Some hlachiavelli Types

definitions, they are simply shorthands for certain types that we shall use in describing the examples that

follow. The reference type PersonObj is the type of a person object. The type Person, Employee and

TeachingFellow are types of person objects viewed as persons, employees and teaching fellows respectively.

For example, a person object is viewed as (or more precisely can be coerced to) an employee if it has name

and salary attributes. A database would presumably contain a set of person objects, i.e. a set of type

{PersonObj), and to view this as a set of values of type Person we can simply write a function Personview,

as shown in figure 13, which can be applied to any set of type {PersonObj) to extract the Name field, which

is always available, and produces a set of type {Person). The function EmployeeViea similarly applies to a

set of type {PersonObj), but selects only those records that have a defined Salary, and produces a set of

type {Employee). Quite general types will be inferred from these definitions; for example the type inferred

for EhployeeView is

{ref([('a) Name:'b, Salary:<('c) Value:'d>])) ->
{[Name: 'b, Salary: 'dl 1d:ref ([(' a) Name: 'b, Salary:<('c) Value: 'd>])])

and the type {PersonObj) -> {Employee) is an instance of this type.

In the definition of TFVieu, the join of two views provides both the intersection of the two sets of

objects (i.e. expressions of object types) and the inheritance of methods. If bl, 62 are object types, then

62 << S1 implies that project (View6, (S) , (62)) C Viewa, (S)) where Views, and Viewa, denote the corre-

sponding viewing functions on object types 61 and 6?. This property guarantees that the join of two views

corresponds to the intersection of the two. The property of the ordering on types and Machiavelli's poly-

morphism also supports the inheritance of methods. For example, suppose we have a database DB of type

{PersonObj). Then join(StudentViev(DB) , EmployeeVieu(DB)) always represents the set of objects that

are both student and employee. Moreover, methods defined on StudentViev(DB) and EmployeeView(DB)

are automatically inherited by Machiavelli's type inference mechanism. As an example of inheritance of
methods, the function Wealthy, as defined in the introduction, has type {[("a) lame:"b, Sdlary:intl)

-> {"b), which is applicable to EmployeeViev(DB), is also applicable to TFView(DB). Figure 14 shows how

join can be used to construct a new view and gives a query on that view.

Dual to the join which corresponds to the intersection of sets of object types, the union of sets of object

types can be also represented in hlachiavelli. The primitive operation unionc is a generalization of the union

defined in connection with horn to the operate on type {61)*{62} for all description types b1,b2 such that

fun ~ersonView(S) = select [Name= (! x) .Name, Id=x]
from x <- S
where true ;

fun EmployeeView(S) =
hom(case (!x).Salary of

<Value=y> => { [Name=(! x) .Name, Salary=y , Id=x] } ,
else => {)

endcase, union, {) , S)

fun ~tudentView(S) =

hom (case (! x) . Advisor of
<Value=y> => {[Name=(!x).Name, Advisor=y, Id=x]),

else => {}
endcase, union, {) , S)

fun TFView(S) =

hom(case (! (x . Id)) . Course of
<Value=y> => {join(x, [Course=y]))
else => {)

endcase ,union, {) ,join(StudentView(S) ,EhployeeView(S)))

Figure 13: Definition of Views

(* New view of people who are both Student and Employees *)

-> val supported-students = join(StudentView(DB) ,EhployeeVieu(DB)) ;

>> val supported-students = {. . .)
: {[Name:string, Salary: int, Advisor: PersonObj, Id: PersonObj])

(* Names of students who earn more than their advisors *)

-> select x . Name
from x <- supported-student, y<-EmployeeView(DB)

where x.Advisor=y.Id andalso x.Salary > y.Salary;
>> val it = {. . .) : {string)

Figure 14: Using join to find an intersection

61 fl6, exists. Let sl, s2 be two sets having types {bl), (62) respectively. Then unionc(sl ,s2) satisfies the

following equation:

which is reduced t o the standard set-theoretic union when 61 = b2. This operation can be used t o give a

union of sets of object types event though their types differ. For example, unionc(StudentView(Person) ,
EmployeeView(Person)) correspond to the un.ion of students and employees. On such a set, one can only

safely apply methods that are defined both on students and employees. As with join, this constraint is

automatically maintained by Machiavelli's type system because the result type is {Person).

In addition one can easily define the "membership" operation on other sets of disparate type:

fun member(x ,S) = join({x) ,S) <> {)

member(z,S) = true iff there is some member of s of S such that x and s have a common identity. In this

fashion it is possible to extend a large catalog of set-theoretic operations to sets of object types.

I t is interesting to note that this approach, when considered as a data model, has some similarities with

that proposed in the I F 0 model [AH87]. The database consists of a collection of sets of different types of

which a set of type PersonObj in our example, would be one. "specializations" in I F 0 correspond to views.

However, unions of these cannot be formed directly, because the Id fields will have different types. The

correct way to form a union (IFO's "generalizations") would be to exploit a variant type.

6 Data Abstraction and Inheritance

In the previous section, we haved given example of a simple hierarchy of object types (in figure 11) and

showed how Machiavelli's polymorphic type system represents both method inheritance and inclusion of

extents. This, however, depends on the explicit types of the implementations of these objects. For example,

the type of Employee is explicitly defined as

[Name : string, Age : int , Salary : int , Id : PersonObj]

where PersonObj is another concrete type given in figure 12. A drawback to this approach is that it does not

combine data abstraction with inheritance in the same sense as object-oriented languages do this. Exposing

concrete representations is in many cases undesirable. In the above example, the availability of the type

of Id field is particularly dangerous as the user can access and change any part of the object. As argued

in [CDMBSO], database views should be integrated with data abstraction mechanism to provide protection

mechanism.

A well known data abstraction mechanism in a static type system is to use abstract data types which

has been implemented in several polymorphic type systems such as Standard ML [HMT88] and Miranda

[Tur85]. These type systems, however, do not allow abstract data types t o be organized into a class hierarchy.
This means that method inheritance achieved by polymorphism does not extend to abstract types. Galileo

[AC085] integrates inheritance and class hierarchy in a static type system by combining the subtype relation

and abstract type declarations. However, Galileo supports neither polymorphism nor type inference.

In object-oriented languages [GR83] each data element (object) belongs to a unique member of a user

defined class hierarchy. Objects can be manipulated only through methods defined in its class and super

classes. This mechanism nicely integrates data abstraction and method inheritance. We would like to extend
our polymorphic type system with this feature. Jategaonkar and Mitchell [JM88] suggested the pcssibility -
of using their type inference method to extend ML's abstract data types to support inheritance. In [OB89],
we have developed a formal system for parametric classes that achieves a proper intergration of ML style
parametric abstract data types and multiple inheritance in object-oriented programming. Based on this

result, we can extend the Machiavelli's type system with data abstraction and multiple inheritance. In the

extended system, the programmer can define a hierarchy of classes. A class can be parametric and can

contain multiple inheritance declarations. The type correctness of such a class definition (including the type
consistency of all inherited methods) is statically checked by the type system. Moreover, apart from the type

assertions needed in the definition of a class, the type inference mechanism we have described in section 3
extends to these parametric classes. In [OB89] it is shown that the type system with class definition is sound

with respect to the underlying polymorphic type system (i.e. the one we have defined in section 3) and it
has a complete type inference algorithm. This section explains this feature through examples. The reader is

referred to [OB89] for the full description of the type system and type inference method with class definition,

which require a certain amount of mathematical development and is beyond the scope of this paper.

First we must note one design decision we made in developing hlachiavelli's classes. Different from ML's

abstract types, Machiavelli's classes inherit equality from their implementation types. We adopt this because

our main goal of classes is t o provide a protection mechanism in database programming involving sets, which
require equality. A richer language might, as in Ada [IBH*79], allow a choice of whether equality is inherited

from the underlying representation or whether it is to be hidden or redefined.

In the previous section, we have defined the type PersonObj and four viewing functions. We will make

them abstract by using class definition. LVe assume that the variable DB of type {PersonObj) is defined,

which is protected by some form of scoping mechanism. Note that we continue to use PersonObj as an
abbreviation for the actual type definition. We encapsulate the concrete structure of PersonObj by defining

the following class:

c lass PObj = PersonObj w i th

f u n NewPersonView () = select [Name= (! x) . ~ a m e , Id=x]

f r o m x <- DB

w h e r e t r u e
: u n i t -> {[Name:string, 1d:PObjl)

f u n NewFmployeeView S =

h o m (f n x => case (! x) .Sa la ry of

<Va.lue=y> => { [Name=(! x) . Name, Salary=y , Id=xl} ,
else => {)

endcase , un ion (x ,y) , {), DB)

: u n i t -> { [~ a m e : s t r i n g , S a l a r y : i n t , 1d:P0bj]}

fun Newstudentview =
h o m (f n x => case (! x) .Advisor of

<Value=y> => { [Name= (! x) .Name, Advisor=y , Id=xl},

e lse => {)
endcase , u n i o n (x , y) , {), DB)

: u n i t -> { [~ame : s t r i n g , Advisor:PObj , 1d:PCIbjl)

fun NewTFViev 0 =
hom(case (! x) .Course of

<Values=y> => {join(x, [Course=y]))
else => { }

endcase,union, {) ,join(NewStudentView() ,NewEmployeeView()))
: unit -> {[~ame:string, Salary: int, Advisor:PObj , Course: string Id:PObjl}

fun increment-ob j-age p = (p : =modify (! p, Age, (! p) .Age + I) ; p)
: PObj -> PObj

end

Outside of the definition, the actual structure of objects of the type PersonObj is hidden and can only be
manipulated through the explicitly defined set of interface functions (methods). This is enforced by treating
classes and the set of interface functions as if they were base types and primitive operations associated with

them. As in Miranda's abstract data types, we require the programmer to specify the type (type-scheme)

of each method. Note that the value DB is embedded in this class definition. This technique, exploited in

[CDMBSO], is necessary t o hide the type information of PersonObj. For users who have no need for access to
the value DB itself, this definition successfully hides the representation type of DB. They can only manipulated

the database by explicitly defined viewing functions and any other functions such as increment-obj-age

within the class definition.

So far Machiavelli's classes behave similar to abstract types found in ML and Miranda. However classes

may be organized in a hierarchy connected by multiple inheritance declarations. We demonstrate this feature
by defining a hierarchy of views. The class PObj encapsulates the concrete structure of PersonObj but not

the types that represents views. We also want t o encapsulate them to prevent meaningless manipulation on

views while maintaining the advantages of method inheritance discussed in the previous section. We start
with the class Person which is the maximum class in the class hierarchy.

class Person = [Name: string, Age: int , Id: PObjl with
fun persons() = NewPerson~iew() : unit -> {person);

fun name(p) = p. Name : s u b -> string;

fun age(p) = p.Age : s u b -> int ;

fun incrementage(p) =
modify (modify (p, Id, increment-obj-age(p. Id)) , Age, p. Age +I)
: s u b -> s u b

end

Note that the fourth function increment-age increment both the Age field in the view and in the actual
object. The keyword s u b in the type specifications of methods is a special type variable representing all
possible subclasses of the class which are to be defined later. It is to be regarded as an assertion by the
programmer (which may later prove t o be inconsistent with a subclass definition) that a method can be

applied t o values of any subclass. This definition is type consistent and the Machiavelli compiler generates
the following bindings:

class Person with
persons : unit -> {Person)

name : ("a < Person) -> string

age : ("a < Person) -> int

increment-age : ("a < Person) -> ("a < Person)

Note that Person in the type schemes is not shorthand but a class name, which is a part of Machiavelli

type system. ("a < Person) is another kinded type variable whose range is the set of all subclasses of the
class Person. At this moment, there is no proper subclass of Person and therefore the range of "a is the

singleton set of Person and the above class definition behaves similarly t o ML's abstract types. But we can

define a number of useful subclasses of Person, which inherits method defined in Person. The following is
the definition for the class Employee.

class Employee = [Name : string, Age : int , Salary : int , Id: PObjl
isa Person with

f u n employees0 = NewEmployeeViewO : unit -> {Employee)

f u n salary(x) = x.Salary : sub -> int

end

which inherits the methods name, age and increment-age, but not persons from the class Person because

there is no sub in the type specification of persons. from this definition, Machiavelli compiler prints the

following information.

class Employee isa Person with

employees : unit -> {~mployee)

salary : ("a < Employee) -> int

inherited method

name : ("a < Person) -> string

age : ("a < Person) -> int

incrementage : ("a < Person) -> ("A < Person)

In order t o preserve complete static type inference, we have given the complete record type required to
implement Employee, not just the additional fields we need to add t o the implementation of Person. It is

possible that for simple record extensions such as these we could invent a syntactic shorthand that is more

in line with object-oriented languages. Continuing in this fashion, we can define the class Student and
TeachingFellow t o complete the previous example.

c lass Student = [Name: string, Advisor: PersonObj , Id: PObj]
isa Person with

fun students 0 = Newstudentview() : unit -> {student)

f u n advisor x = x.Advisor : s u b -> PObj

end
8

class TeachingFellow = [Name : string, Salary: int , Advisor: PObj ,
Course:String. Id:PObj]

isa {Employee, Student) wit11
f u n teaching-f ellows () = NewTFView() : unit -> {~eachin~~ellow)

f u n Course x = x.Course : s u b -> string

end

The second one these illustrate the use of multiple inheritance.

It should be stressed that the method we have developed in [OB89] allows static checking of the type

correctness of these class definitions containing multiple inheritance declarations. Moreover, a principal -
conditional typing scheme is always inferred for expressions containing methods defined in classes. For

example, for the following function

which computes the average salary using the method salary defined in the class Employee, the type system
infers the following principal conditional typing scheme:

{("a < Employee)} -> int

This function can be applied to any set of type {r} such that r is a subclass of Employee. In the above
example, it can be applied to {~mployee} and {Teaching~elloa}. The type correctness of such applications

is statically checked.

To demonstrate the use of type parameters, consider how a class for lists might be constructed. We start

from a class which defines a "skeletal" structure for lists.

class prelist = (rec t .<Empty :unit, List : [Tail : t] >)

w i t h

nil = <Empty = ()> : s u b ;
fun tl(x) = case x of

<Empty = y> => . . . error . . .;
<List = z> => z.Tai1;

endcase : s u b -> s u b

fun null(x) = case x of
<Empty = y> => true;
<List = z> => false;

endcase : s u b -> bool;
end

By itself, the class prelist is useless for it provides no method for constructing non-empty lists. We may

nevertheless derive a useful subclass from it.

class listoa) =

(r ec t. <Fhpty:unit,List:[Head:'a,Tail:t]>

isa prelist
with

fun cons (h , t) = <List= [Head=h ,Tail=t] >
: ('a*sub) -> s u b ;

fun hd(x) = case x of
<Empty=y> => . . . error . ..;
<List=z> => z.Head;

e n d : s u b -> 'a;

end

which is a class for polymorphic lists much as they appear in ML. Separating the definition into two parts
may seem pointless here but we may be able to define other useful subclasses of pre-list. Moreover, since a
may itself be a record type, we may be able to define further useful subclasses of list. For example, we could

construct a class

class genintlist ('b) =
(rec t. <Empty:unit,

List : [Head: [Ival : int , Cont : ' b] ,
Tail : tl >)

isa list ([Ivd : int , Cont : ' bl)
with

end

which could be used, say, as the implementation type for a "bag" of values of type 'b. In this case all the

methods of prelist and list are inherited.

Conclusions and Direct ions for Further Investigations

Throughout this paper we have stressed the fact that we only have an experimental version of Machiavelli,
which lacks many of the useful features of other programming languages. While we believe that the type

system of Machiavelli can be used as the basis for a full-blown programming language, this claim can only be

proved by a careful analysis of the addition of new features and, ultimately, by a full-blown implementation.

Let us briefly mention some of the additions.

Standard ML of New Jersey [hIac88b] incorporates a number of features that we have not mentioned

here. It exploits pat tern matching to bind variables and has a system of ezcept ions. We believe that both
of these could safely be added to Machiavelli and would be useful in many of the examples in this paper.

More problematic is the system of modules [Mac861 in this language. Modules bear some relationship to

the classes (or abstract data types) described in this paper. However it remains to be seen whether the

sophisticated schemes for defining and instantiating modules that are available in SML can be combined
with the typechecking for classes with inheritance that we have described here.

Turning to object-oriented databases or, more generally, database programming languages, all such lan-

guages have a layer that supports some kind of persistent database. While the implementation of such

storage systems is a serious technical problem, we see no difficulty in exploiting such a system to provide

a real database manager for Machiavelli. However, operating systems do not respect the type systems of
programming languages and, as with files in most programming languages, on opening a database one must

either do a dynamic type check or trust that the declared type of the database conforms to that specified in

the program. We believe the former is the only satisfactory option and it is therefore essential to find ways

of encapsulating the type of a database with the database and to incorporate dynamic type-checking into

the language a t certain points. In order to do this we must study the us of d y n a m i c types [ACPPSg].

Other issues raised by object-oriented languages include late binding and overloading. The former should
not present a problem for the type system if we are able to constrain a given method to just one type.
However some object-oriented languages allow overloading of methods. The type of the result of a method
may depend in an a d hoc way on the type of some input parameter or on the class of the instance. Some
recent results [AKWSO] show the undecidability of type checking (let alone type inference) for a rather
general form of overloading. It remains to be seen whether the type system of Machiavelli can be used in
conjunction with some more restricted form of overloading.

The problem of heterogeneous structures is not, to our knowledge, addressed in any statically typed

language, and yet it is common in database work to want to deal with a collection of (say) records of

different types. Consider, for example, the set

{[Name = "Joe". Age = 211,
[Name="JohnM, Age = 23, Dept = "Sales"],

[IYame="HaryN, Dept = "Research"])

which is not a legal expression in Machiavelli, nor is a bulk structure of this form possible in most statically

typed languages. Yet there are some properties of the members of this set, for example they are all of kind

[Name : string]. If this information could be represented in the type system, then it might be possible

t o make such expressions legal and justify the apparently reasonable selection of the Name field from each

member of this set. Recent investigations by the authors indicate that the right way t o approach the
problem of heterogeneity is to exploit a form of dynamic value whose type is "partially abstract". The
advantage to dealing with heterogeneous structures is that it appears to provide a more general solution to
the subset/subtype paradox mentioned a t the beginning of section 5. Here, the inclusion ordering is derived

from an ordering on kinds rather than one on types which, as we have observed, is not needed to express

the generic properties of field selection.

8 Acknowledgements

Val Breazu-Tannen deserves our special thanks. He has contributed to many of the ideas in this paper and

has greatly helped us in our understanding of type systems. We would also like to acknowledge helpful
conversations with Serge Abiteboul, Malcolm Atkinson, Luca Cardelli, John Mitchell, Rick Hull and Aaron
Watters.

References

[AB87] M.P. Atkinson and O.P. Buneman. Types and persistence in database programming languages.
ACM Computing Surveys, June 1987.

[ABC+83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Morrison. An approach to
persistent programming. Computer Journal, 26(4), November 1983.

[ABD+89] M.P. Atkinson, F. Bancilhon, D. DeWitt, I<. Dittrick, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In Proceedings of the First Deductive and Object-Oriented
Database Conference, Kyoto, Japan, DEcember 1989.

[AC085] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual language.
ACM Transactions on Database Systems, 10(2):230-260, 1985.

[ACPP89] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed language.
In Proc. 16th ACM Symposium on Principles of Programming Languages, 1989.

[AH871 S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACM Transactions on

Database Systems, 12(4):525-565, December 1987.

[AKWSO] S. Abiteboul, P. Kanellakis, and E. Waller. Method schemas (preliminary report). In Proceedings
of ACM Symposium on Principles of Database Systems, 1990.

[Aug84] L. Augustsson. A compiler for lazy ML. In Symposium on LISP and Functional Programming,
pages 218-227. ACM, 1984.

[BBKV88] F. Bancilhon, T . Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple database
language. In Proc. Intl. Conf. on Very Large Data Bases, pages 97-105, 1988.

[Bis81] J . Biskup. A formal approach to null values in database relations. In Advances in Data Base
Theory Vol1, Prenum Press, New York, 1981.

[BJ089] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize relational databases.
Theoretical Computer Science, To appear. Available as a technical report from Department of
Computer and Information Science, University of Pennsylvania, 1989.

[BTB089] V. Breazu-Tannen, P. Buneman, and A. Ohori. Can object-oriented databases be statically
typed? In Proc. ,Td International Workshop on Database Programming Languages, pages 226 -
237, Gleneden Beach, Oregon, June 1989. hlorgan Kaufmann Publishers.

[Car881 L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,
1988. (Special issue devoted to Symp. on Semantics of Data Types, Sophia-Antipolis, France,
1984).

[CDJS86] M. Carey, D. DeWitt, Richardson J. , and E Sheikta. Object and file management in the EXODUS
extensible database system. In Proceedings of the 12th VLDB Conference, Kyoto, Japan, August
1986.

[CDMBSO] R. Connor, A. Dearle, R. Morrison, and F . Brown. Existentially quantified types as a database
viewing mechanism. In Proceedings of 2nd International Conference on Extending Data Base
Technology, Venice, Italy, March 1990.

[CM84] G. Copeland and D. Maier. hlaking smalltalk a database system. In Proceedings of ACM
SIGMOD, pages 316-325. AChl, June 1984.

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95-169,
1983.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
Computing Surverys, 17(4):471-522, December 1985.

[DM821 L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc. 9th ACM
Symposium on Principles of Programming Languages, pages 207-212, 1982.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation. Addison-Wesley,
1983.

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory logic. Tmns. American
Mathematical Society, 146:29-60, December 1969.

[HK87] R. Hull and R. King. Semantic database modeling: Survey, applications and research issues.
Computing Surveys, 19(3), September 1987.

[HMT88] R. Harper, R. Milner, and M. Tofte. The definition of Standard ML (version 2). LFCS Report
Series ECS-LFCS-88-62, Department of Computer Science, University of Edinburgh, August

1988.

[HW89] P. Hudak and P. (editors) Wadler. Report on the programming language Haskell, a non-strict,
purely functional language, version 1.0. Technical report, University of Glasgow, 1989. Pre-

release Draft for FPCA '89.

[IBH*79] J.H. Ichbiah, J .G.P. Barnes, J .C. Heliard, B. Krieg-Bruckner, 0 . Roubine, and B.A. Wichmann.
Rationale of the design of the programming language Ada. SIGPLAN Notices, 14(6), 1979.

[IL84] T. Irnielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM,
31(4):761-791, October 1984.

[JM88] L. A. Jategaonkar and J.C. hlitchell. ML with extended pattern matching and subtypes. In

Proc. ACM Conference on LISP and Functional Programming, pages 198-211, Snowbird, Utah,
July 1988.

[Lip791 W. Lipski. On semantic issues connected with incomplete information databases. ACM Tmns-
actions on Database Systems, 4(3):262-296, September 1979.

[LRV88] C. Lecluse, P. Richard, and F. Velez. 0 2 , an object-oriented data model. In Proceedings of ACM
SIGMOD Conference, pages 424-434, 1988.

[Mac861 D. B. MacQueen. Using dependent types to express modular structure. In Conf. Record Thir-
teenth Ann. Symp. Principles of Programming Languages, pages 277-286. ACM, January 1986.

[Mac88a] D. MacQueen. An implementation of Standard ML modules. In Proc. ACM Conference on LISP
and Functional Programming, pages 212-243, Snowbird, Utah, July 1988.

[Mac88b] D. MacQueen. References and weak polymoprhism. Note in Standard ML of New Jersey Distri-
bution Package, 1988.

[MBCD89] R. Morrison, A.L. Brown, R.C.H. Connor, and A. Dearle. Napier88 reference manual. Technical
report, Department of Computational Science, University of St Andrews, 1989.

[Mi1781 R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348-375, 1978.

[OB88] A. Ohori and P. Buneman. Type inference in a database programming language. In Proc. ACM
Conference on LISP and Functional Programming, pages 174-183, Snowbird, Utah, July 1988.

[OB89] A. Ohori and P. Buneman. Static type inference for parametric classes. In Proceedings of ACM
OOPSLA Conference, pages 445-456, New Orleans, Louisiana, October 1989.

[OBS86] P O'Brien, B Bullis, and C. Schaffert. Persistent and shared objects in Trellis/Owl. In Proc. of
1986 IEEE International Workshop on Object-Oriented Database Systems., 1986.

[Oh0891 A. Ohori. Semantics of types for database objects. Theoretical Computer Science, To appear.
(Special issue devoted to 2nd International Conference on Database Theory,) Available as a

technical report form University of Pennsylvania, 1989.

A. Ohori. A Study of Types, Semantics and Languages for Databases and Object-oriented Pro-

gramming. PhD thesis, University of Pennsylvania, 1989.

A. Ohori. Extending polymorphism to records and variants. Unpublished manuscript, Prelimi-

nary abstract presented a t 6th Workshop on Mathematical Foundation of Programming Seman-

tics, 1990.

D. %my. Typechecking records and variants in a natural extension of ML. In David MacQueen,
editor, ACM Conference on Principles of Programming Languages, 1989.

J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on Programming, pages
408-425. Springer-Verlag, 1974.

J . A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,

12:23-41, March 1965.

J.W. Schmidt. Some high level language constructs for data of type relation. ACM Zhnsactions
on Database Systems, 2(3):247-261, 1977.

M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Department of
Computer Science, University of Edinburgh, 1988.

D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Functional
Programming Languages and Computer Architecture, Lecture Notes in Computer Science 201,

pages 1-16. Springer-Verlag, 1985.

M. Wand. Complete type inference for simple objects. In Proceedings of the Second Annual

Symposium on Logic in Computer Science, pages 37-44, Ithaca, New York, June 1987.

M. Wand. Corrigendum : Complete type inference for simple object. In Proceedings of the Th id
Symposium on Logic in Computer Science, 1988.

M. Wand. Type inference for records concatenation and simple objects. In Proceedings of 4th
IEEE Symposim on Logic in Computer Science, pages 92-97, 1989.

C. Zaniolo. Database relation with null values. Journal of Computer and System Sciences,
28(1): 142-166, 1984.

	Polymorphism and Type Inference in Database Programming
	Recommended Citation

	Polymorphism and Type Inference in Database Programming
	Abstract
	Comments

	tmp.1187886620.pdf.SXsxA

