209 research outputs found

    CASCH: a tool for computer-aided scheduling

    Get PDF
    A software tool called Computer-Aided Scheduling (CASCH) for parallel processing on distributed-memory multiprocessors in a complete parallel programming environment is presented. A compiler automatically converts sequential applications into parallel codes to perform program parallelization. The parallel code that executes on a target machine is optimized by CASCH through proper scheduling and mapping.published_or_final_versio

    Dynamic Systolization for Developing Multiprocessor Supercomputers

    Get PDF
    A dynamic network approach is introduced for developing reconfigurable, systolic arrays or wavefront processors; This allows one to design very powerful and flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant, multiprocessor computer system. The concepts of macro-dataflow and multitasking can be integrated to handle variable-resolution granularities in computationally intensive algorithms. A multiprocessor architecture, Remps, is proposed based on these design methodologies. The Remps architecture is generalized from the Cedar, HEP, Cray X- MP, Trac, NYU ultracomputer, S-l, Pumps, Chip, and SAM projects. Our goal is to provide a multiprocessor research model for developing design methodologies, multiprocessing and multitasking supports, dynamic systolic/wavefront array processors, interconnection networks, reconfiguration techniques, and performance analysis tools. These system design and operational techniques should be useful to those who are developing or evaluating multiprocessor supercomputers

    Structure driven multiprocessor compilation of numeric problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.Title as it appears in the Feb. 1991 M.I.T. Graduate List: Structure driven compilation of numeric problems.Includes bibliographical references (leaves 134-136).by G.N. Srinivasa Prasanna.Ph.D

    Dataflow development of medium-grained parallel software

    Get PDF
    PhD ThesisIn the 1980s, multiple-processor computers (multiprocessors) based on conven- tional processing elements emerged as a popular solution to the continuing demand for ever-greater computing power. These machines offer a general-purpose parallel processing platform on which the size of program units which can be efficiently executed in parallel - the "grain size" - is smaller than that offered by distributed computing environments, though greater than that of some more specialised architectures. However, programming to exploit this medium-grained parallelism remains difficult. Concurrent execution is inherently complex, yet there is a lack of programming tools to support parallel programming activities such as program design, implementation, debugging, performance tuning and so on. In helping to manage complexity in sequential programming, visual tools have often been used to great effect, which suggests one approach towards the goal of making parallel programming less difficult. This thesis examines the possibilities which the dataflow paradigm has to offer as the basis for a set of visual parallel programming tools, and presents a dataflow notation designed as a framework for medium-grained parallel programming. The implementation of this notation as a programming language is discussed, and its suitability for the medium-grained level is examinedScience and Engineering Research Council of Great Britain EC ERASMUS schem

    Static Scheduling Strategies for Heterogeneous Systems

    Get PDF
    In this paper, we consider static scheduling techniques for heterogeneous systems, such as clusters and grids. We successively deal with minimum makespan scheduling, divisible load scheduling and steady-state scheduling. Finally, we discuss the limitations of static scheduling approaches

    Chapter 4 DATAFLOW ANALYSIS FOR REAL-TIME EMBEDDED MULTIPROCESSOR SYSTEM DESIGN

    Get PDF
    Keywords: Dataflow analysis techniques are key to reduce the number of design iterations and shorten the design time of real-time embedded network based multiprocessor systems that process data streams. With these analysis techniques the worstcase end-to-end temporal behavior of hard real-time applications can be derived from a dataflow model in which computation, communication and arbitration is modeled. For soft real-time applications these static dataflow analysis techniques are combined with simulation of the dataflow model to test statistical assertions about their temporal behavior. The simulation results in combination with properties of the dataflow model are used to derive the sensitivity of design parameters and to estimate parameters like the capacity of data buffers. real-time, dataflow analysis, multiprocessor system, predictable design, systemon-chip 1

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council
    corecore