
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

10-1-1984

Dynamic Systolization for Developing
Multiprocessor Supercomputers
Kai Hwang
Purdue University

Zhiwei Xu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hwang, Kai and Xu, Zhiwei, "Dynamic Systolization for Developing Multiprocessor Supercomputers" (1984). Department of Electrical
and Computer Engineering Technical Reports. Paper 526.
https://docs.lib.purdue.edu/ecetr/526

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages

J.

Kai Hwang
Zhiwei Xu

TR-EE 84-42
October 1984

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Dynamic Systolization for Developing

Multiprocessor Supercomputers

Kai Hwang, Senior Member, IEEE, and Zhiwiei Xu
Purdue University*

Abstract: A dynamic network approach is introduced for developing reconfigurable,
systolic arrays or wavefront processors; This allows one to design very powerful and
flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant,
multiprocessor computer system. The concepts of macro-dataflow and multitasking can
be integrated to handle variable-resolution granularities in computationally intensive
algorithms. A multiprocessor architecture, Remps, is proposed based on these design
methodologies. The Remps architecture is generalized from the Cedar, HEP, Cray X-
MP, Trac, NYU ultracomputer, S-l, Pumps, Chip, and SAM projects. Our goal is to
provide a multiprocessor research model for developing design methodologies, multipro­
cessing and multitasking supports, dynamic systolic/wavefront array processors, inter­
connection networks, reconfiguration techniques, and performance analysis tools. These
system design and operational techniques should be useful to those who are developing
or evaluating multiprocessor supercomputers.

Index Terms; Systolic, arrays, wavefront arrays, interconnection networks, macro
dataflow, multitasking, reconfiguration techniques, supercomputer performances.

1. Introduction

Multiprocessor supercomputers are playing a vital role in modern civilization.
With fixed functional capability of the processors and fixed interconnection structures,
most existing supermachines have very biased performances [28], A machine may per­
form very well for certain classes of algorithms, but very poorly for Other classes. It is
very desirable to develop a reconfigurabie multiprocessor system, that can be dynami­
cally tuned to match with the special requirements of different application domains at
different times. Such a general-purpose supercomputer may demand very costly

This research was supported in part, by research grant AFOSR-84-0385 and in part by Fujitsu Limited.
From January 1985, the authors will be with Computer Research Institute, Dept, of Electrical Engineer­
ing, University of Southern California, Los Angeles, Calif. 90089. All rights are reserved by the authors,
October 1984. A preliminary version of this paper was submitted for presentation at the 12th Interna­
tional Annual Symposium on Computer Architecture, Boston, Mass., June 17-19, 1985.

hardware and software. However, its application flexibility and system performance
will improve significantly, This paper proposes a dynamic network approach to
developing very flexible processors for use in a multiprocessor system. Two design
methodologies are developed based on dynamic systolizationand macro dataflpwing.
These two design methodologies can be applied to many exploratory multiprocessor sys­
tems with prespecified performance levels. The Remps architecture is an integrated
system consisting of multiple processors (each with multiple PEs), shared memory, and
fast I/O facilities. The system has absorbed many of the attractive features from the
Cray X-MP [1], the Denelcor HEP [2], the S-l project [3], the Trac [4, 5], the NYU
ultracomputer [6, 7], the blue Chip project [8], the Pringle [30], the SAM project [9],
the Pumps [10], the Cedar [11], and several dataflow projects [12-16].

The Remps architecture is generalized from the aforementioned systems as a mul­
tiprocessor research model for developing design methodologies, multiprocessing and
multitasking supports, application adaptability, and dynamic reconfiguration tech­
niques. We are aimed at achieving high throughput with dynamic multiconfigurations,
high availability by graceful degradation, and high performance with reduced develop­
ment overhead.

The Remps exploits high-level, multitasking among communicating tasks with
crude granularity based on the macro dataflow concept [17-19]; and the intratask paral­
lelism using “dynamic” systolic/wavefront array processors, which are extended from
their “static” counterparts [20-22]. The Remps differs from the Cedar in that hardware
supports are provided for multitasking and intertask communications. The dynamic
systolization concept is inspired by the Chip project [8], the PSC project [23], the mul­
tipipeline chaining in Cray X-MP [1], the restructurable computer [24], the expression
processor [25], and the Pringle [30].

Static systolic arrays [20] or static wavefront processors [22] are dedicated for fixed
algorithms. For special-purpose applications, such static hardware accelerators do per­
form very well, if the problems are compute-bound (rather I/O bound). Snyder’s Chip
project proposed to build dynamic systolic arrays using programmable switch lattices
[8]. The reconfiguration capability of a switch lattice is limited by the capacity of the
switch memory, the complexity of the lattice control, and the overhead associated with
reconfiguration. The switch lattice must maintain local connectivity among processing
elements (PEs) within short distance. We propose a network approach to implementing
dynamic systolic arrays, which are not restricted by the local connectivities among PEs.

Such a multi-PE systolization approach demands the use of a dynamically
reconfigurable, interconnection network among the PEs. A reconfigurable, packet
switched network will be used for a dynamic wavefront processor. A dynamic systolic
or wavefront processor should be able to execute different compound functions and
algorithms with variable granularity [26]. It is of fundamental importance to provide

- 3-

■.'dynamic hardware supports for macro-dataflow multitasking computations. The obvi­
ous advantage lies in significantly increased flexibility and adaptability for general-
purpose, scientific applications. However, the gain may be overshadowed by the
increased array reconfiguration overhead. We shall address these tradeoff issues and
prove that the dynamic systolic approach is indeed plausible with state-of-the-art
microelectronics technologies [55], [56], [59].

We present the Remps architecture and its reconfigurability in Section 2. The
concept of dynamic systolic arrays and dynamic wavefront processors are introduced in
Section 3. Then, we present in Section 4 the systolization methods and networking
requirements of multiple PEs in each processor: In Section 5, multitasking among mul­
tiprocessors for macro-dataflow in Remps is described. Illustrative example algorithms
and performance analysis are given in Section 6. Finally, we indicate the future
research demand and the potential applications of Remps for numerical scientific com­
putations and/or for symbolic Al-oriented applications.

Our studies intend to complement many of the on-going multiprocessor research
projects. The proposed design methodologies, functional mechanisms * and communica­
tion networks, once completely developed^ should be useful to computer designers, who
are developing their own supercomputer systems or evaluating commercially acquired
systems for specific applications.

2. The Remps Architecture and Reconfigurability

The Remps is an MIMD computer with a three-level hierarchical structure, as dep­
icted in Fig. 1. An nxm configuration of Remps has n identical processors, which are
capable of exploiting high-level parallelisms among communicating tasks. Each proces­
sor has m pipelined PEs, for executing low-level parallelisms among individual instruc­
tions. At the global level, the machine is an event-driven, data-flow computer with
token storage; while at the lower level, each processor is a multipipeline control-flow
system. The system uses several interconnection networks to achieve flexibility in
implementing a wide range of computation tasks.

System components of Remps are functionally described below. The shared
memory consists of multiple modules, each module can be used to store a number of
tasks for execution. A small portion of each module can implement an I-structure
storage [13], where global data can be shared by several communicating tasks on
different processors. A global network is used to interface the global memory with the
processors. Tasks may be assigned to multiple processors for concurrent processing.
Each processor has a local memory, some local I/O devices, a large register file, and
multiple PEs that can operate in parallel. Note that the PEs are identical, each being

Peripheral and Fcontend System

Shared Memories

Processors

I/O Subsystem

Interprocessor Network

Global Network
Global

Controller

al structure of the Remps

Global ControllerGlobal Network

Local

Instruction
Stream

Dynamic Systolic/Wavefront Processor
Local

Memories Processing Elements

Interprocessor
Network

(bj The detailed structure of each processor

Figure 1. The system architecture of the Remps

Address
Mapping

Local
Controller

multifunctional, and they do not have to operate in a lock-step manner. Different func­
tions can be performed at different PEs at the same time, similar to those parallel func­
tional pipelines used in IBM 360/91, CDC 7600, or in Cray X-MP [27].

The I/O subsystem is connected to the shared memories for the input/output of
large programs, data sets, and result sets. For small jobs, these I/O activities can be
also directly handled by the local I/O facilities attached to each processor. The inter-
processor network provides direct communication paths and buffers between processors.
Shared data registers and special semaphore registers are contained in this network, so
that interface buffers can be established to support multitasking in multiple processors.
This kind of interprocessor network has been implemented in the Cray X-MP series for
the same purposes. The global controller is responsible for task scheduling, memory
management, multiprogramming, synchronization/and other functions at the global
level. . ■' ,

Each processor is itself a high-speed, reconfigurable computer of the control-flow
type. The interior structure of the processor is illustrated in Fig. lb. This structure is
generalized from Cray X-MP and NEC SX-2, among other multipipeline supercomput­
ers [28]. Each PE is a functional pipeline which is capable of performing many
arithmetic/logic operations of different data formats. The program codes and data sets
are stored in the local memory. The register files can be dynamically allocated to the
PEs. Multiple data streams are allowed to flow between the local memory and the PEs
through an allocation network. The PEs can be interconnected as a systolic array pro­
cessor or as a wavefront processor via the routing network. Each processor has a local
controller, which must communicate with the global controller for multitask scheduling.

Static and unifunction pipelines are implemented as PEs in most of today’s com­
puters with multiple functional units. Such fixed function pipelines have two major
shortcomings: -

(a) Low pipeline utilization may exist due to poor matching of resource demands
and low PE availability.

(b) Every pipeline becomes a critical resource due to no duplications. This renders
the system to be prone to catastrophic failure.

By using homogeneous, multifunctional pipelines as PEs, the above problems can be
greatly alleviated or eliminated. In the Remps, the PEs in each processor are identical
and universal in their functional capability. At most m independent operations can be
executed by m PEs in each processor simultaneously, resulting in a full utilization of
the functional resources. Since a failing PE can be replaced by other PEs, graceful
degradation is possible. By adding some handshaking mechanism into each PE, the
dynamic systolic array (the dash-line box in Fig. lb) can be modified to become a
dynamic wavefront process or, ex tended from the static wavefront arrays suggested in
Kung [22]. In this case, the routing network must be pipelined and packet switched as

- 6 -

suggested in [29].
In static systolic; arrays, only boundary PEs communicate with the memory as I/O

interfaces. In our dynamic approach, different PEs may be used for I/O in differently
connected topologies. The allocation network is responsible to interface between the
local memory and the PE registers being assigned for I/O operations. Data can be also
manipulated on-the-fly via the allocation network. The entire sequence of operations
from the memory to allocation network, the register files, the input PEs, the routing
network, the interior PEs, the output PEs, the register file, the allocation network, and
back to the local memory form a macropipeline. Masked memory accesses and masked
PE operations are also possible. Different systolic or wavefront arrays can be imple­
mented in different processors when the system is used in MIMD multitasking mode or
in multiple SISD mode.

The Remps is being designed to realize data-driven computations at the task level.
A compiler is needed to partition a large job into a number of communicating tasks, to
be processed by multiple processors. The task dependence graph, formed by crude
granularity at compile time, is transmitted to the global controller for use in schedul­
ing. An executable task queue is established for each job, which contains all the exe­
cutable tasks. The global controller assigns an executable task to one or more proces­
sors whenever the resource becomes available.

Once a task is assigned to a processor, the processor assumes exclusive control of
the execution. After a task is executed, the bulk of the results is stored back to the
shared memory. Scalar results or semaphore messages can be passed directly among
the processors through the interprocessor network. In a multiprogramming environ­
ment, the execution queues of several jobs can be combined into a single queue. When­
ever there is an idle processor, the global controller will check this queue to initiate a
new .task. '

Difficulties may arise for macro dataflow, when two or more tasks must communi­
cate with each other before they finish. The Remps overcomes this problem by
employing the I-structure storages, low-level context switches, and the interprocessor
network. The shared data such as global variables can be stored in the I-structure
residing in the shared memory. Status tags are associated with each shared data item
in order to resolve conflicts. Special synchronization semaphores and interrupt signals
are passed directly among the processors via the interprocessor network.

If the shared data are individual variables, each task will have a duplicated copy of
the variables in the local memory. When the task requests to access a shared variable,
it will check with the local copy. If the request is granted by the status tags, the tasks
will continue. In case the request is to write a shared variable in the global memory
which is locked by another task, the requesting task will be suspended until the status
tags change. A processor level context switching is then performed and another ready-

to-run task is initialized for execution. Shared data in large blocks (such as an array or
a tree), are only stored in the global memory. Any task Accessing these data blocks
must have exclusive control of the access until completion.

Reconfigurability is supported by the hierarchical control and the extensive use of
pipelines and interconnection networks. This feature greatly enhances the system relia­
bility, application flexibility, and availability of the system. The system can be
reconfigured to meet different application demands and environmental changes. Two
Remps reconfigurations are shown in Fig. 2 in order to emulate the Cray X-MP-4 and
the Denelcor IIEP.

In part (a), the shared memories become the central memory in X-MP [1, 28, 46,
56]. The Solid-state Storage Device (SSD) in X-MP is connected to both the central
memory and the I/O subsystem, The interprocessor network now serves the same func­
tion as the inter-CPU communication and control unit in X-MP. Each CPU now has
m—13 functional pipelines (PEs). In part (b), the global network is combined with the
interprocessor network to form a single packet-switched network between the proces­
sors; and the data memory modules in HEP [2, 28}. The I/O and peripheral devices are
connected to this combined network.

The Remps can be used to model a humber of rea.1 supercomputers. Our intention
is to provide a general model to help develop future Supercomputers. The emulation
modeling can help detect the system bottlenecks, determine the major shortcomings in
existing machines, and predicate the performance of future machines. Such high-level
emulation studies will significantly reduce the development overhead find, in many
cases, totally eliminate unnecessary wrong undertakings. In the context of performance
scalability, the Remps should increase its computing power linearly with the increase of
the processor number (n) and the number of PEs (m) per processor.

3. Dynamic Systolic/Wavefront Array Processors

A network approach to performing dynamic, systolic or wavefront computations is
proposed for fast execution of compound functions or algorithms with crude granular­
ity. Different PEs are allowed to perform different functiohs at the same time. Multi­
ple PEs in each processor can be interconnected to form any systolic arrays or wave-
front arrays using a dynamically reconfigurable network as shown in Fig. 3a. This
approach allows the system to reconfigure the pool of PEs and the network resource
into different systolic arrays at different times. The connectivity among the PEs is
governed by the interconnection provided by the routing network. Note that this
approach is not restricted by local connectivity or uniform PE functions, as required in
the static systolic arrays [20], [51], [52], or in the programmable switch-lattices [8], [30].

Disks & Tapes

Front-

System

Central
Memory

Processors

Interprocessor Network

Global Network

(a) Emulating Cray X-MP-4

I/O & Peripheral
Devices

Shared Memories

Processors

Global Network
(Combining Interprocessor Network)

(b) Emulating HEP using Remps

Figure 2. The reconfigurations of Remps for emulating X-MP-4 and HEP

In general, each PE has p inputs and <7 outputs as specified in Fig. 3a. The size of
the network in Fig. 3b is qmxpm, where m is the number of PEs in a processor. For
illustrative purposes, we can assume p = q = 3 in Fig. 4, which shows how to con­
struct a systolic tree using 7 PEs and a crossbar network. The solid lines correspond to
top-down connections and dash lines for bottom-up connections. This allows one to
traverse the tree machine in either direction.

In Fig. 5, we show a linearly-connected systolic ring [31] for solving triangular
linear system of equations. Each PE in this case has 3 inputs and 2 outputs as specified
in Fig. 5a. The 4 PEs can be interconnected using a data manipulator [32]. Another
example is shown in Fig. 6. In this case, a hexagonal systolic array is implemented
using a Benes network [33].

In order to implement any array topology, the crossbar network offers the highest
connectivity. Due to the high cost of crossbar, one can also consider a number of other
network classes, such as the Omega network, binary n-cube, data manipulators, flip
network, regular S-W banyan, Benes networks, and baseline networks and their deriva­
tives [34]. In order to systolize an array of PEs, the cutset theorem [22] and the local
correctness 'criterion: [£1]' /must be satisfied. Furthermore, the network must be
designed to resolve conflicts and to allow pipelined operations, which must be synchron­
ized with the PE operations.

What we proposed here is to separate the interconnections of PEs from the collec­
tion of PEs. This approach is very different from most of the existing systolic
approaches. Various systolic/wavefront array processors are summarized in Table 1.
The advantages of this dynamic-network-approach are listed below:

(a) Many of the state-of-the-art research results on interconnection networks can
be applied. Instead of using multiple static systolic arrays, only a single
dynamic routing network is needed.

(b) Reconfigurable systolic arrays or wavefront processors can support wider appli­
cations and provide better match between the memory bandwidth and the
throughput of the array processor.

(c) The separation of PEs from their interconnections offers some freedom in their
VLSI/WSI implementations. Of course, the interconnections between the two
parts should be minimized.

Of course, there are many other problems yet to be solved before we can claim
that this network approach is more cost-effective for systolic/wavefront computing.
The major problems include the network structures and control schemes, the
reconfiguration overhead, the I/O port multiplexing, and the pipelined dataflow
through the network. A thorough study is needed to determine the PE functionality
and to select an efficient network, in order to cover a wide range of
scientific/engineering applications.

Table 1. Various Systolic/Wavefront Processors

Systolic Arrays
(using synchronous PEs

Wavefront Arrays
(using handshaking PEs

with a common clock
control)

with data-driven
operations)

Static systolic arrays:
• Fixed interconnection

among PEs with fixed
in notion iPC liner onH

Static wavefront arrays:
• Fixed array structure with

wavefront propagation
1 tillV vlvJIl 11 dllU
Leiserson [51])

• Fixed array structure using
programmable PEs (the
PSC project at CMU
[52])-

uriven oy aaia
availability through
handshaking among PEs
(S. Y. Kung [22]).

Dynamic systolic arrays:
• Reconfigurable switch

lattice of programmable
PEs (The Chip project
by Snyder, et al. [8],
Ml.

• Programmable systolic
array using
multifunctional PEs
which are dynamically
interconnected by a
circuit-switched network
(Hwang and Xu [26]).

Dynamic wavefront arrays:
• A wavefront array of

multifunction PEs,
which are dynamically
interconnected by a
packet-switched network
(Hwang and Xu [26]).

• Attractive for arbitrarily
structured parallelism in
user algorithms.

Dynamic,
Inter-PE
Routing
Network

(qm x pm

(b) Multi-PE networking

Figure 3. -The concept of multi-rjb networKing lor me consirucm

>*
0

A systolic tree machine for searching operations

Feedback

Feedback
Connections

External
Inputs

Routing NetworkOutputs

(b) The

Figure 4. A s;

Output

External inputs

a) A systolic ring of 4 PEs

Routing Network

Feedback 5
Inputs fi

Output

Figure 5

External /
Inputs \

-/4-~

(a) A hexagonal systolic array

Outputs

Feedback,
Connections

Figure 6.

Two additional overheads are introduced with dynamic systolization: the
reconfiguration setup time and the network delays. Whenever a systolic computation is
to be performed, the routing network must be set up to create the desired Systolic
array. This setup time in most cases is dominated by the control complexity of the
routing network. The problem of matching the problem size with the size of the sys­
tolic array is less severe in a dynamic processor. Multiple small arrays can coexist in
one processor. In Remps, several systolic arrays in different processors can he intercon­
nected via the shared registers to form a larger systolic computing structure. Our
study is concentrated on multi-PE systolization within each processor. Only after we
gain enough experience with intraprocessor systolization, then we shall challenge inter-
processor systolization.

Design of the PE needs to cover the most frequently used scientific operators.
Besides functional selection for the PEs, one must be Concerned about the PE
reconfiguration control and the I/O ports requirements. The Construction of pro­
grammable PEs is desired [22], [23]. Design of packet-switched networks is needed for
inter-PE connections in a dynamic wavefront array processor. Systolization experi­
ments On the routing network demand the simulation of the connectivities and assess­
ing the network delays. Other studies include the dynamic PE allocation, the linkage
across processor boundaries, timing analysis, overhead and performance analysis on
various systolic arrays.

4. Systolization and Networking Requirements

The design of a dynamic systolic/wavefront array processor involves three basic
considerations: the structure of the PEs, the routing network, and the systolization pro­
cedures. These design considerations are discussed below. Because all PEs are identi­
cal, they must be multifunctional and can handle variable granularities. Register files
should be allocated to each PE. Besides the primitive arithmetic/logic functions, each
PE may have such functions as dot product, compare and exchange, and even butterfly
operations used in FFT. Rescaling the clock rate is needed in order to match the PE
processing rate with the network data transfer rate- Interface registers (or latches)
must be used between the PEs and I/O ports of various networks involved. This is
necessary to achieve pipelining with synchronous control in a systolic processor. For a
wavefront processor, the PEs should also have some handshaking mechanism to support
the data flow operations [12, 22].

Systolization procedures include: (i) the transformation of a dataflow graph or a
signal flow graph to a systolic array; and (ii) the setup of a systolic array by specifying
the function of each PE and establishing the desired connection pattern in the routing
network. Systematically mapping parallel algorithms into systolic array structure is

- 16-

very desirable. Up to now, many algorithms have been proven systolizable [20]. Sys­
tematic synthesis procedures have been suggested in [35], [36]. However, the problem is
still open for general systolic arrays. With our dynamic systolic approach, not only
regularly-structured arrays (such as ring, tree, hexagonal, square, linear, triangular
arrays) but also irregular arrays (such as any partially-ordered graphs) are implement-
able. Thus the array synthesis procedures should be more generalized and easier to be
automated.

Although the dynamic systolization removes the 'spat ial locality constraint, which is
inherent with static systolic arrays, temporal locality is still required for dynamic sys­
tolic arrays. The local correctness property suggested in [31] is sufficient to guarantee
the global delay correctness in static systolic arrays. This criterion also holds for
dynamic systolic arrays. Furthermore, if the dynamic array is feedback-free, the systol­
ization procedures (i.e., the cut-set rules) in [22] are directly applicable. Even if the
dynamic array has feedback connections, the procedures can still be effective after only
some minor modifications. Programmable noncompute delays should be associated with
the routing network in order to add necessary delays among PEs, so that the local delay
criterion is satisfied. The LINK chip reported in [21] is an interconnection chip, which
can have up to 32 units of programmable delays between an input and an output,
which covers most frequently-used computation structures.

With respect to the dynamic wavefront arrays, the above systolization problems
can be greatly alleviated. This is due to the fact that both the spatial locality and the
temporal locality are no longer needed. Theoretically, any dataflow graph or signal
flow graph can be directly transformed into a wavefront array for execution, if enough
handshaking registers are associated with the PEs [22]. Nevertheless, since the PEs
cannot have infinite (or even large) number of handshaking registers, some workable
procedure is still needed to transform the algorithm structure into a practical wavefront
array.

The inter-PE routing network should offer nonblocking and a high degree of con­
nectivity with a low hardware complexity, 0(m log m), a short network delay, 0(log
m), and simple control complexity, O(log m) or even 0(1), where m is the network size.
Of course, when m is not excessively large, the crossbar network offers the most flexibil­
ity in interconnecting the PEs. Among all the candidate networks, our initial finding
shows that the modified Benes networks may be the most promising type for a large
scale system and the crossbar network is preferable for small systems.

Other networks issues worthy of further study include: the dynamic connectivity,
the control strategies, the localization of broadcast operations, the reconfiguration topo­
logies, and the modular construction of the networks. The purpose is to reduce the
network delay and increase the bandwidth. Several inter-PE connection networks are
examined below for systolization purposes. These networks are characterized by their

- 17- ' ;-:.V

connectivity, blocking or nonblocking, hardware demand, network delay, and control com­
plexity. Noxious network properties are summarized in Table 2.

Crossbar Networks:
Crossbar switching networks are nonblocking and thus have full connectivity. The

network delay may be either 0(m) or 0(log m) depending on crossbar implementation
schemes. The major disadvantage of a crossbar network is its high hardware demand
0(m2), especially when the PE number m is very large. For small systems with less
than 16 PEs per processor, crossbar switch is acceptable based on today’s technology.
In the LINK chip [21], an 8x8 crossbar network with a 4-bit wordlength was imple­
mented Sixty four such chips can be interconnected to form a 16x16 crossbar with a
64-bit wordlength.

When m is large, Franklin [37] has observed that a crossbar or a Banyan network
can be implemented with a VLSI chip in an area of 0(tn2). For VLSI implementatioh,
the gate complexity is not so severe an obstacle as compared with the pinout limita­
tion. The Snyder’s Chip machine [8] requires 0(m2) switches for implementing all
planar graphs with an 0(m) lattice delay. Thus crossbar should be at least as good as
the switch lattices for general purpose applicationsi as far as hardware demand and net­
work delay are concerned.

Denes Networks:
The Benes network is rearrangeable and thus has full connectivity. However, the

network is blocking with a delay of O(log m) and a hardware demand of 6(m log m).
These are attractive features for systolization. Unfortunately, the control complexity
for Benes network is 0(m log m), which is not desirable, Nassimi and Sahni [38] have
developed a self-routing scheme with control complexity 0(1), which sets up the net­
work on-the-fly for a large number of permutations. It is still an open problem to
determine whether Benes networks can provide all Useful connection patterns in 0(1)
.time.

Other Blocking Networks:
This class of networks are not rearrangeable and thus have limited connectivity

[34]. The modified data manipulator, flip networks, Omega networks, indirect binary
n-cute, regular SW Banyan, and baseline networks are all belonging to this class. The
network delay is d(log m) and the hardware demand is 0(m log m). It is doubtful to
utilize the limited connectivity in providing arbitrary connections. The major advan­
tage of using this class is its low network control complexity 0(1).

Table 2. Various mxtn Networks for the Construction of Dynamic
Systolic/Wavefront Arrays

Network
Class

Network Properties

Connectivity
Hardware
Demand

Control
Complexity

Network
Delay

Crossbar
Switch [21,37]

Nonblocking 0(m2) 0(1)
0(m)

;■ or ■'
0(logm)

Benes [33], [38] Rearrangeable O(mlogm)
O(mlogm)

or
oil)

O(logm)

Blocking
Networks* [34]

Not ■
rearrangeable

0(m log w) OH) 0(logm)

Nonblocking
Networks [34], [39]

Nonblocking 0(mlog2m) Q(logm) 0(logm)

Packet
Switching
Networks [29,43]

Nonblocking O(mlogm) o(D 0(logm)

‘(Omega, flip, n-cube, data manipulator, Banyan and Baseline).

Other Nonblocking Networks:
Besides crossbar, there are other nonblocking networks with a hardware demand of

0(m log m) as assessed in [39], [40]. Unfortunately, there is no systematic method to
construct such nonblocking networks, let alone the concern of the network delay ', and ;
control complexity. Cantor [41] constructed a nonblocking network with hardware
complexity of 0(m log^ m) and network delay of 0(log m). The control complexity for
such network was determined as 0[log m) [42].

Packet-switched Networks:
This class includes many of the buffered multistage networks spch as the buffered

Delta networks [43] and multipath packet switching networks [29], The 3-ported
switches used in HEP network [2] are also a,n interesting design. The multipath, mul­
tistage networks require a hardware demand, 0(m log m), a network delay of Q(log m),,
and a control complexity of 0(1). When the traffic rate is moderate, such buffered neb-
works become essentially nonblocking. This class of networks is necessary for the con­
struction of dynamic wavefront array processors using the handshaking PEs.

Because of the increased overhead by network reconfiguration arid transmission
delays, a dynamic systolic array processor cannot be faster than a static counterpart.
A tradeoff study between the increased application flexibility arid the degraded array
speed must be made. The performance degradation due to these extra delays is
analyzed below. Let k be the number of pipeline stages in each PE, c be the length bf
the critical dataflow path in a systolic array, and N be the probtem size which is equal
to the number of operand blocks (or wavefronts) entering a Systolic array. Then the
total time required to process the AT operand blocks in a static array is equal to:

ts = k -(c +i)+ N-i; ■ (i)

where k • (c +1) clock periods are needed to process the very first block and the
remaining N~l data blocks each takes one clock period to come out of the pipeline.

Now consider the case of a dynamic systolic array with the same parameters
k, c, and N. Let a be the network reconfiguration overhead, which is primarily deter­
mined by the network control complexity. The routing network has a size of mxm
with 0 — 0(log2 m) stages. If the routing network has a stage delay equal to one clock
period of the PE pipeline, the network then has a transmission delay of fl clock periods.
This implies the total delay through the dynamic systolic array is equal to c */?, because
the critical path is the longest dataflow path in the array. This leads to the following
total time required to process N operand blocks in a dynamic systolic array:

Td-:= a + (k +P)'C +k + N-l

where (k + 0)c + k is the time for the first operand block to pass through the entire

array and N— 1 additional clock periods are needed to process the rejnaining .
blocks. For crossbar network, the overhead a equals a constant and /? = log2m, and
for Benes network with self routing control, a is also a constant and /? — 2log2W—1.

The throughputs of the static and dynamic systolic arrays are 1/TS and 1/Td
respectively. Thus (l/Tj/fl/T^ = Td/Ts represents theperformance ratio of the
dynamic versus static systolic arrays. By (1) and (2), we have Td/Ts < 1. This perform
mance ratio is plotted in Fig. 7 under the assumption a — 10, A: — 8, c = 15, and an
array size 3tn x3m (if each PE has 3 inputs and 3 outputs). The curves correspond to
dynamic systolic arrays using either crossbar or Benes networks. Part (a) shows the
performance ratio as a function of the array size 3m and Part (b) of the problem size
N. When the problem size is small (say N — 64), both networks degrade with the
increase of the array size. However, the performance ratios become fairly close to 1
when the problem size becomes very large (say N — 2048), regardless of the array size.
With fixed network size (say m = 1024 as in part b), the performance ratios approach
to 1 with the increase of the problem size. In both drawings, the crossbar-structured
systolic array always has better performance than the array built with a Benes net­
work. v.x :

The dynamic systolic array can perform equally well as the static arrays, if the
problem size is large. The smaller is the interconnection network, the better will be the
performance. If the problem size is larger than the network size-then the dynarnic sys­
tolic arrays can maintain 60~90c6 the performance of the static counterparts. For
general-purpose applications, the flexibility in implementing any systolic algorithms is
far more important than a minor speed degradation due to added network overhead.
There is no doubt that static systolic arrays are still superior for implementing fixed
algorithms. However, static arrays become useless when the application algorithms are
changed.

5. Multitasking for Macro-Dataflowing

The potential problems of instruction-level, data-driven machines have been dis­
cussed in [44]. The major drawback is the excessive pipeline overhead per instruction.
The task-level or macro dataflow will have much cruder granularities. It is fair to view
the Remps as a macro dataflow machine with token storage, where a token represents a
task and an operator corresponds to a processor. This architecture combines the
advantages of both macro dataflowing at the global level and control-flowing at the
processor level. Data-sharing among communicating tasks is implemented either with
1-structure storage at the global memory or via the shared registers between processors.

Pe
rf

or
m

an
ce

 R
at

io
, T

s/T
d

Pe
rf

or
m

an
ce

 R
at

io
, T

s/T
d

Crossbar
Benes

N = 2048

3m (Array Size)

(a) Performance vs. the size of systolic array

Crossbar
Benes

A. (Problem Size)
16 32 64 128 256 512 1024 2048 4006

(b) Performance vs; probieih size witha fixed array sizem — 1024

Figure 7. Relative performance of static versus dynamic systolic arrays

i-V; : V,,22- ' -- /V;::/;-V

Macro dataflow can ho implemented with macro pipelining at two different levels.
Tasks with crude granularity are handled at the global level. Tasks with refined granu­
larity are handled at the processor level or even at the PE level. Thus variable-
resolution tasks can be executed at different clusters of PEs and/or processors at the
same time. This macro dataflowing with variable task granularities must be supported
by the hierarchical controls, the use of the multifunction PEs, and the interconnection
capability provided by various networks in Remps.

Gaudiot and Ercegovac [18] have conducted an experimental performance evalua­
tion of dataflow computers using variable-resolution actors. The machine model with
which they have simulated is similar to the Arvind’s dataflow machine at MIT [13].
They use a variable number of processing elements to handle various node granularities.
Arvind’s model does not have a hierarchical control as existent in the Remps. This
shows the fundamental difference between our approach and that in [18], The two
approaches in fact complement each other in many aspects.

Example 1 (Multitasking of A DO Loop wi th IF statement)

Consider the dataflow graph in Fig. 8 containing an IP' statement and the vector
merge operation through masking. After vectorization, fine operations in the graph can
be lumped together to yield the graph with crude granularity. If we use 3 PEs from
Processor Pj and 5 PEs from Processor P2, two multipipeline systolic arrays are formed,
respectively. The Boolean vector, X, generated by processor 1, can be transmitted to
processor 2 through the shared registers in the interprocessor network.

Note that pipeline chaining in Cray X-MP implements only linear data flow
graphs. The proposed multitasking technique can implement any program graphs. Of
course, the communication of systolic arrays from different processors must be sup­
ported by the interprocessor network. These networks should be designed to have high
bandwidth, low transmission delays, and some data manipulation capabilities.

Advantages of the above approach to achieve macro dataflowing among multipipe­
lines and multiprocessors are summarized below:

(i) The application flexibility will be greatly enhanced. Memory latency problem
in handling intermediate results can be alleviated by using shared registers and
packet switched networks.

(ii) The scheduling of vector instructions to pipelines and multiple tasks to proces­
sors is controlled at the local and the global levels, respectively. Thus higher
resource utilization can be expected.

(iii) The system reconfiguration is supported by the flexible connectivities among
hardware resources. Parallelism can be exploited at both task and instruction

- 24-

levels. . :'y;.'7r; .. \
Multitasking for macro dataflow demands the partitioning of program graphs.

This can be done by users at algorithm design time, using a language which can specify
parallelism and indicate data communications between separated tasks. The partition­
ing can be also performed by compilers, such as the Parafrase [45]. Finally, the parti­
tioning can be done at run time using sophisticated parallelism-detection schemes such
as those for exploiting multiple functional units in IBM 360/91 and for multitasking in
Cray X-MP [46]. Compile-time methods are needed for estimating the space and time
complexities of computing events within a program. The purpose is to support
automatic program partitioning subject only to constraints on data dependency and
resource availability. These will include program restructuring, partitioning criteria,
language extensions, compile algorithms, and heuristics for granularity complexity
analysis of program sections.

Program analysis should be performed at compile-time to yield better resource util­
ization and higher system throughput and at run-time to reveal concurrent
arithmetic/logic activities. In a multiprocessor system, the percentage of code that can
be vectorized ranges from ten to ninety percent across a broad range of scientific appli­
cations. The nonvectorizable code (scalar operations) tends to become the bottleneck.
Using a few very powerful processors, we emphasize crude granularity. Therefore, the
partitioning should be conducted at the highest possible level. This must be linked to
the resource availability, time and space tradeoffs, and the overhead problem associated
with fine granularity at the lower levels. Some language features and procedure calls
must be incorporated to support the automatic partitioning of programs.

Analysis of various program graph characteristics is needed to determine depen­
dence properties, critical paths, maximum resource demanded, and tradeoffs between
computation, memory and I/O activities for algorithms with fine and crude granulari­
ties in node primitives. Nested loop analysis and multitasking conditions need to be
revealed for various program graph types. Vectorization will support expression
evaluation. Crude-granularity partitioning must be performed to have low overhead.

Multipipeline and multiprocessor scheduling policies have been suggested for a
control-flow supercomputer [47], [48]. Run-time methods are needed for dynamically
scheduling partitioned computing modules to multiprocessor hardware resources. These
will include special hardware and software extensions for detecting the executability of
computing modules. These extended functional mechanisms must meet the perfor­
mance requirement and achieve better fault, tolerance.

We are considering several priority heuristic schemes [17] such as most successor
first and least processing time first, etc., for scheduling multiple tasks to multiple pro­
cessors. The choice of a particular scheme depends on workload distributions and
application demands. We have found some heuristic algorithms, even though the

- 25 -

underlying problem is probably of exponential complexity. Analytical and experimeh-
tal results are needed to access the speed and quality of various scheduling algorithms
including data flow and heuristic optimization.

Synchronization is needed to execute parallel tasks, because different tjasks may
require different amounts of time to finish. Either control level or data-level synchroni­
zation methods can be used. In the control level, we use directed synchronization
graphs. In the data-level, synchronization is implemented through shared variables.
The shared semaphore registers will facilitate interproeessor communications. The
memory latency problem must be overcome in order to support multi-PE systolization.
The interconnection networks must be designed to have short delays. We prefer to use
the pipelined multistage networks. Program and data caches must be used in proces­
sors In this case, the local register file forms the data caches. Prefetch scheme is used
to shorten the effective instruction fetch delays.

6. Throughput Analysis of the Remps

The throughput analysis of any multiprocessor system is often problem-dependent.
In this sense, any conclusion on general machine performance must be biase<i and
unrealistic. The performance of Remps is assessed with benchmark ."algorithms.-/. We
choose to provide two benchmark evaluations of the Remps, The first benchmark
shows how to use the multiple processors in Remps to form a, large macropipeline for
solving linear recurrence systems with vector unknowns. The second example shows
multitasking among multiple processors for finding the inverse of a large, triangular
matrix. In both examples, multi-PE systolization within each processor is practiced.
To evaluate the performance of these dynamically formed systolic array processors,
various network delays and overheads are quantified to show their effects on the overall
performance.

Let a and 7 be the setup times of the routing network in each processor and of the
interprocessor network, respectively. Let ft and 6 be the delays of these two networks,
respectively. For general applications, we assume crossbar networks in both cases.
Thus the a and 7 are small constants, say each equal to tens of the clock periods of the
PE pipeline. The two network delays are ft = log2m and 0 = log2U> respectively.
With the projected growth in multiprocessor and network sizes, we can assume
0(10) < n < 0(102) and 0(102) < m < 0(103). Thus, we can estimate 0 < ft < 0(10)
clock periods: The number of pipeline stages, k, in each PE is usually also a small
number, around 0(10). The above discussions lead to the assumption that all the five
parameters, a, ft, 7, 9, and k are small constants with an order of tens of the PE clock
periods.

In the Remps with n processors and m PEs per processor, the maximum speedup is
equal to m*n, as compared with a uniprocessor system with a single PE (« = 1 and
m = i). We shall denote the total compute times for a given algorithm executed on
the Remps as Tm n and that on an uniprocessor as Tj i. Then the speedup is defined as
S„ n = Ti i/Tmn Again, the problem size, N, indicates the number of operand blocks
(or wavefronts) to be processed in the multiple systolic array processors. Whenever
two-dimensional array is involved, we use the shorthand notation \/m r or r —m.

Example £ (Macropipelining for solving linear recurrence systems)

As often performed in solving a linear, block-tridiagonal system [49j, a family of
linear recurrence systems needs to be solved for a sequence of vector unknowns:
X; = (xu, Xi2, xim)T for where each X; is an m-dimensional column vec­
tor. The computations involved are matrix-vector multiplications defined by:

Xi = Ai^Xi-! +Ai2-xi_, + • • • + 1=1,2,..;,^,;V. ^(3).

where each Ajj is an mxm matrix. The initial values of the system,
Xo, X_x, ..., X_(2n-i), should be given as inputs. The output of the systems are X; for

The n processors in Remps can be interconnected to form a macropipeline ring
(Fig. 9a) for solving a recurrence system of order 2n 1. Note that n prpcessors are
needed in the systolic ring for solving an order-(2n-l) recurrence system as shown in
[31] The m PEs in each processor are configured into a linear systolic array (Fig. 9b)
to carry out the component matrix-vector multiplications as characterized below:
D enlote XjM = ^ A; 2„ j * X- (2n j) f°r k =1> 2,... ,2 h" — 1 and X/2"""" M — Xj. Each linear sys-

. ■■ j=i v '
tolic array processor performs:

X<k + ,> = Aii2l._(* + 1)-XH2,,_t_,,+X?k) forl<k<2B-l (4)

The Xi<k| = (xjk>, x.jk!......xJM)T are from the outputs of the preceding processor and
Xfk + 1) are the outputs to the next processor in the ring. The constant matrix Aj^-j
must be pf estored in the local memory of the working processor.

The interprocessor network is used to establish the interfaces between adjacent
processors in the ring. The n processors can communicate with each other in a
dataflow fashion, that is, a processor initiates a task whenever all required data inputs
become available. The global controller generates semaphores to be used for interpro­
cessor communications. The interprocessor activities are mainly for block data
transfers of the intermediate vectors, X/k', between adjacent processors. These inter­
mediate vectors are passed directly between .processors without accessing the shared
memory. .

—2.7-

Interprocessor

LJ

(a) Macropipeline ring of n processors

>XJ

x2
V ^i-2n +(Jt-l)
/ (Processor Pj)

yXi(k+i)

(b) The linear systolic array in each processor for computing Eq. 4

Figure 9. Multiprocessor macropipelining for solving linear recurrence system
(Example 2).

- 28 -

In each processor, it takes mk+(m-l)/?+(m-4l) = (k +/?+l)m-(/3+l) clock
periods to compute Eq. (4). The interprocessor network requires 0 + m-1 cycles to
transfer the intermediate vector X/kl. It takes tj time to compute the first output vec­
tor Xj, where tj = 7+ft + (2n-l)[(l+/3+I)m-(/3+l)]+(2n-2)0. The remaining vec-
tors X; for i=2,3,...,7V, each can be produced in every 2m cycles. Thus, the total time
needed to solve the recurrence system is:

Ttn.n - t| + 2m(iV-l)- 2miV + C,mn-C2m-C3n + C4 (5)

where C, =:2(kd-4-1), C2—/?+3y C3and C4=or + /?+qr20-T are all small con-
stants, compared with the much larger values of N>tn >h. On the other hand, the
same recurrence system requires Tj | time on a unprocessor, where

T^! '(2?i—ic.,k. v.’- -,j} ' '■

where the PE in the uniprocessor is a pipelined scalar unit with k stages. However, the
inner product operation a+—a+bxc, takes 1 cycle to complete in this PE, once the pipe­
line is full. The speedup is thus obtained by dividing (6) by (5):

m,n SmiV+Gitnn-^w-Cafi+C4

■■ = mn, as N-*oo

In Fig. 10, we plotted the speedup Sm^ as a function of the problem size N, under
various Remps sizes (m,n). This example demonstrates a worst-case study, because
the critical path in the linear systolic array has the longest possible length, m. Foisys-
tolic trees and hexagonal (or square) systolic arrays, the critical paths Would be respec­
tively log2m and VwT; much shorter than this worst-case of m. Therefore, the perfor­
mance of the Remps would be even better for those systolic arrays with higher dimen­
sions.'

Example 3 (Multitasking for triangular matrix inversion)

The inversion of a nonsingular, triangular matrix can be done in a block-
partitionmg fashion as suggested in [50]. Given an upper, triangular matrix U of order
rN. Suppose U is proven nonsingular. The purpose is to find the inverse matrix
U-1 ■=■ V The matrix U is being partitioned into jV(AT + l)/2 submatrices, each of
which has a dimension rxr. The output matrix V can be partitioned accordingly as
shown below: ;;

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

-2t -

N
16 32 64 128 256 512 1024

Problem Size

Processor Number

N-1024

n =32

n = 32

n =8

16 32 64 128
PE Number

Figure 10. The speedup performance for Example 2.

-30-

t ■
A.' U,2 •• • VlN -i v„ V,2 ... Via/

u22 .. . U 2N
—•

V» ... V2A/

c)
■ UjViV. 0 • Va/jv;

where every Ujj and are rxr matrices for l<i<j<JV. The partitioned algorithm
for systematically generating the output submatrices, V-, from input submatrices, VVp
is specified below:

Fop i«—1 to N step 1 do

: v- = U”!v n '•'u
Repeat
For i«— 1 to (iV—1) step 1 do

Fop j<-l io 1) step 1 do

S^j,j+T*Vj + r,j + l (10)
r=i /O'

vi,i+i - —V- •W- ■ 4." ' ^VJJ J.J+1
Repeat

Repeat

The case of N =4 is shown in Fig. 11. The computing granularity of each node is
specified in the submatrix level. All the submatrix computation tasks are listed in part
(a). A precedence graph, showing the data dependence relations among these tasks, is
given in part (b). From this graph, all the tasks belonging to the same level can be
executed in parallel. There are i(i +1)/2 independent tasks parallelly executable at
level 2i-l and i parallel tasks at level 2i for l<i<A-l In general, there are
2(N~l) + l=2N—l levels in the graph. A sample nonpreemptive schedule is shown in
Fig. 11c for a Remps with n =4 processors.

The submatrix inversions (Eq. 9) are performed only with the diagonal subma­
trices A triangular systolic array of r(r + l)/2 PEs has been suggested [50], [53] for
computing the inverse of a triangular matrix of order r, as depicted in Fig. 12a. The
elements of the input matrix UB are initially distributed in the PEs. The diagonal PEs
perform scalar division operations. The remaining PEs perform scalar inner-product
operations. It is assumed that each division or each inner-product operation takes one
time step, which equals k clock periods in the PE pipeline. Such a triangular systolic
array requires 2r~l time steps to complete the inversion process. Detailed PE opera­
tions in these steps can be found in [53]

—31 -

Tasks Submatrix Computations

T,~T4 Vji = Un1 for i=l,2,3,4
t5~t10 W |2 s Vij-Vjj, .Wjj = Ujj’Vjj,

W34 = u34-v44, w24 = u24-v44, w44 = u14-v44,

Tti ~ T|3 V,2 = -v„-w12. v.,3 - -v.,..- \va. v34 = -v33- w34

T14 ~T16 W13 = W13+U12*V23! W24 — W24'FU23V34, W|4 = Wi4 + U13‘V34

Tn ~ T18

<M

£•<n

*11

>•IICO

H CO

w14 = w14+u12-v24

t20 V14 = -Vn-w.4 :

(a) The partitioned computation tasks

t 1 2 ; .3 : 4 5 / e 7 ■'

Pi Ti t5 T9 T„. T17

P2 t2 t6 T,o t14 T,g Tig T2q

p3 t3 t7 t12 Tij

P4 t4 '% T,3 Tj6

(b) Precedence graph

Figure 11. Partitioned matrix inversion for Example 3 with N — 4

an ai2 a13 a14 -i b„ b(2 bu b„
0 *22 *23 *24 0 b22 b24
0 0 *33 *34 0 0 b33 b34
0 0 o *44. 0 0 0 b'44.

(a) A triangular systolic array for matrix inversion
(Preparata and Vuillemin 1980 [53])

(b) Multiple linear systolic arrays for matrix multiplication (C -♦ A x B + C)
(Kulkarni and Yen 1982 [54])

Figure 12. Dynamically reconfigured systolic arrays used in Example 8.

- 33-

Using a dynamic systolic implementation, the total time, including network over­
head, required to invert a triangular submatrix, U;j, equals a +12, where
t2 = (r-l)/?+(2r-l)& = (,S+2k)r~(P+k) ==0+2k)r clock periods for large r. Note
that the setup time a should be counted only once, if the array is to be used repeatedly
for similar tasks. The N matrix inversions (Tasks Tj~T4 in Fig. 12a) can be performed
by n processors in a+ AH2 cycles, where h —N/n is assumed an integer and only one
triangular systolic array is implements!)le in each processor.

The remaining submatrix computations are for accumulative matrix-matrix multi­
plications (Eq. 10). Even there are square or hexagonal static arrays suggested for
matrix multiplication in linear time [22], [29], [51], we choose to implement r indepen­
dent, linear systolic arrays in each processor (Fig. 12b), to carry out r matrix-matrix
multiplications in parallel. This decision is made due to the detrimental delay effects of
using larger networks. There are at most nr linear systolic arrays in the entire system.
Each linear systolic array multiplies t\Vo matrices, and, if needed, simultaneously adds
the product AxB to a third input matrix CTor accumulative operations. The detailed
matrix-matrix multiplication steps in a linear array are described in [54]. The input
matrix elements are flowing through the array, not the partial products. Every out­
put element of the resulting matrix is computed (dot product operations) exclusively
within, each PE.

Once a linear array is set up, it requires t3 = (k+/3)(r-l)+k+(r2-l)
— r2 + (k + f3)r—(/3 + l) cycles to multiply a pair of r xr matrices. For large value of r,
we can approximate t3^r2+(Ar +/?)r. Assuming the desired operand data are continu­
ously supplied to the systolic processors without a memory latency problem, we can
estimate the total matrix multiplication time as follows:

The execution of all tasks at the same level on the precedence graph (Fig. lib)
must be completed before tasks at the successor level can be initiated. When N is very
large, the number of matrix multiplications at each level may exceed the number, rn,
of available systolic arrays. Consider i — 1,2,...,TV—T . At the odd level 2i—1,

p2i-1— iterations are needed to carry out the i(i+l)/2 pairs of multiplica-
rn

tion. At the even level 2i, q2i=fi/rn] iterations are needed to perform i matrix multipli-
': N-l ' . . . ■ /. ■ ;

cations. In total, M = V] [p2i_j + q2i] =;(Ar/6 + 5Ar/4)/rn iterations are needed. Each
i + 1

iteration requires t3 cycles to complete. Therefore, the total matrix multiplication time
equals a +t3*M. The total time required to invert the entire matrix U is thus equal to:

Tm,n - (« + h •t2)+(«+t3>M)

34-

= (iV3/6 + 5iy2/4)(r + it +/3)/n + N{/3+2k)r/n + 2a

rN3
6n

as the matrix size rN—*oo

On the other hand, a uniprocessor PE can compute U 1 in:

Tm = (*+rN-l)+{k + ^r2A^+3rAf-4)-l]

r3iV3 ; r2iV2
6

rN■+-^r- + — + 2k~2
2 3 ■

The speedup performance is obtained by dividing (12) by

_ _
'm,n

m,n
= r2n — mn, as riV—*-oo. (33)

n

The above analysis ignores the memory latency problem associated with fetching
or storing the large number of matrix elements through the memory hierarchy (register
files, local memory, and global memory). The memory latency is caused by memory
access delays and various network delays. If one adds these delays, then we should
modify the processing times t2 and t3 to t2 = t2 + Cr“ and t3 — t3+Cr3, respectively,
where G is the average memory latency per matrix element. Depending on the hierarch­
ical memory structure and technology involved, the value of the latency, 0, may range
from a few tenths to tens of the processor clock period. The higher is the degree of
memory interleaving and the faster is the memory technology, the smaller will be the
value of C. The added terms Gr2 and Cr3 are the memory latencies associated With
transferring r2 and r3 matrix elements in submatrix inversion- and in r submatrix mul­
tiplications, respectively, in each processor. Substituting t2 and t3 by t2 and t3 respec-
tivelyinEq.lljWeobtainadegradedprocessingtime:

2a+ h t' + Mt3 — , as rN^oo (14)m,n 6 n
Using Eq. 12 in Eq. 14, we obtain a reduced speedup with T-ym : Note that the
memory latency does not pose a problem for the scalar uniprocessors. Thus, the time
T1(1 does not change.

Jm,n
_ 11,1 _ mn _ n.
“ T' ~ Cr ~ ■■± m,n

as rN—>oo

The memory latency problem causes a degradation in processor performance, only
when the processors are required to wait for the complete arrival of all the required
data blocks for each task to be executed. This processor idling situation can be allevi­
ated if context switching is allowed at the processor level. Whenever a dynamic systolic

processor becomes free but the desired data blocks are not resident in the processor, the
processor is allowed to be switched (and the systolic array be reconfigured) to execute
other ready-to-run tasks. Only after all the required operands have been loaded into
the register file, the processor can be switched back to execute an old task, which was
waiting to be initiated. However, once a task is initiated, it must be executed until
completion.

Context switching reduces processor idle time (waiting for operands) and
increases the processor utilization. However, additional switching overhead, 0, is intro­
duced every time the processor switches to another executable task. This overhead is
attributed to the time needed to perform context switching of all register contents and
processor states [27]. The value of the overhead, fl, may vary from tens to hundreds of
the processor clock periods, depending on the degree of multiprocessing being supported
by the operating system. With context switching, the basic processing times t2 and t3
should be changed to t2' = t2 + 0 and t3' = t3+0, respectively. The total compute
time in Eq. 11 should be modified as follows:

: Tw,n ^ + + (« +t3)*M
rN* ,, , Q + a , 0+k v

= —*(i+—r"+ .6n rz r
as WV—►00 (16)

The speedup in Eq. 13 then becomes

„!> Til mn

m,n Q +a , fi+k
as riV—► 00

m y/m

The three speedups STO n, n, and are plotted in Fig. 13 under the assump­
tion a = A:-10, C =2, 0=20, and /?=log23m. When the memory latency does not pose a
serious problem, the speedup function, Sm n, increases rapidly to the maximum value of
mn. The curve B shows a serious performance degradation caused by memory
latency. The middle curve S” „ shows that context switching indeed helps improve the
performance significantly, even the memory latency is long when processors must go to
the shared global memory for exchange of large data blocks. If 0,a=0(m) and
,3,k=0(y/m), then the S” n declines only slightly, as the problem size N becomes large.

In Fig. 14, we show the detrimental effects on the speedup functions, Smn and
S” n) by increasing the values of the memory latency C and the context switching over­
head n, respectively. We conclude from these plots that the memory latency should be
minimized in any multiprocessor system. If an appreciable memory latency does exist,
then context switching is highly recommended to alleviate the problem. To support
multitasking among multiple processors with shared memory, context switching is
necessary to minimize the processor idle time and thus increase the system throughput.

Speedup

256x16 (max)m xn

64x4 (max)m xn

Assumptions: C

(Problem Size)

solid curves for (m ,n)Speedup performance for Example 3
(256,16) and dashed curves for (m,n)

Figure 13

256x16
4096 (max)

mxti

Speedup

mxn

(clock periods)

(Averge memory latency)

256x16 = 4096 (max)mxn

Speedup

64x4 — 256 (max)mxn

500 (clock periods)

(Contex t switching overhead)

Figure 14. Performance degradation of the Remps of two sizes due to memory

However, the switching overhead should be maintained as low as possible. The above
two examples demonstrate that the speed improvement can be achieved by the same
set of hardware PEs to perform different algorithmic computations at different times.
For large problem size, jV, or large resource pool, (m,n), the speedups are rather
impressive, plus the obvious gains in application flexibility.

7. Conclusions

The interprocessor network is used only to directly pass small and regular data
sets between processors (as shown in Examples 1 and 2). The shared memory must be
used, when large data sets are transferred among processors (as shown in Example 3).
For reasonably large problems, the dynamic systolic arrays can perform as well as their
static counterparts. The increased network overhead does not pose a serious problem
when the problem size is sufficiently large and well partitioned for multitasking. When
the problem size is small, frequent reconfiguration of the systolic processor may not be
advantageous. Building dynamic, systolic/wavefront array processors demands exten­
sive R/D efforts, before achieving cost-effectiveness in real machines.

The proposed reconfigurable multiprocessor system is designed at this stage pri­
marily for supercomputing in scientific/engineering applications. Special design metho­
dologies and operational features of the Remps are presented. The proposed MIMD
system has a hierarchical structure which provides macro dataflowing at the interpro­
cessor level and control flowing at the intraprocessor level. Reconfigurability of the sys­
tem emphasizes application flexibility and fault tolerance [56].

Our continued efforts are being directed to performance analysis of Remps for
large-scale, scientific/vector computations; such as for solving partial differential equa.-
tions (PDE) problems [57], [58]. We are also extending the PE designs for implement­
ing parallel-production systems in a multiprocessor environment [59], [60]. This
explores the prospects of designing a supercomputer which is useful for both numerical
analysis and Al-oriented applications [61], [62]. Our initial findings show that the
dynamic systolic arrays may be more suitable for numeric processing, whereas the
dynamic wavefront processors may be more attractive to symbolic manipulations.

References

1. Cray Research, Inc., “The Cray X-MP Series of Computer Systems,” Technical
Brochure, Minneapolis, Minnesota, Aug. 1984.

2. Smith, B. J j “Architecture and Application of the HEP Multiprocessor Computer
System,” Real Time Signal Processing IV, Vol. 298, August 1981.

3. Farmwald, P. M. “The S-l Mark IIA Supercomputer,” in High-Speed Computa­
tions (J. S. Kowalik ed.), Springer-Verlag, 1984.

4 Lipovski, G. J. and Tripathi, A., “A Reconfigurable Varistructured Array Proces­
sor,”Proc. 1977 lnt. Conf. on Parallel Processing, 1977, pp. 165-174.

5. Brown, J. C., “TRAC: An Environment for Parallel Computing,” COMPON, pp.
294-298, Spring 1984.

6. Schwartz, J. T., “Ultracomputers,” ACM Trans. Programming Languages and Sys­
tems, Vo\. 2, No. 4, 1980, pp. 484-521.

7. Gottlieb, A., Grishman, R., Kruskal, C. P., McAaliffe, K. P., Randolph, L, and
Snir, M., “The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel
Computer,” IEEE Trans. Computers, February 1983, pp. 175-189.

8 Snyder, L., “Introduction to the Configurable Highly Parallel Computer,” IEEE
Computer, January 1982, pp. 47-64.

9. Kung, H. T., “Overview of Systolic Array Projects at CMU,” internal document,
Carnegie-Mellon University, September 1984. v

10. Briggs, F. A., Fu, K. S., Hwang, K., and Wah, B. W., “Pumps Architecture for
Pattern Analysis and Image Database Management,” IEEE Trans. Computers, Vol.
C-31, No. 10, October 1982, pp. 969-982.

11. Gajski, D., Kuck, D., Lawrie, I)., and Sameh, A., “Construction of a Large Scale
Multiprocessor,” Rept. No. UIUCDCS-R-83-1128, Dept, of Computer Science,
University of Illinois, Urbana, February 1983.

12. Dennis, J. B., “Data Flow Supercomputers,” IEEE Computer Magazine, November
1980, pp: 48-56.

13. Arvind and Iannucci, R. A , “A Critique of Multiprocessing von Neumann Style,”
Proc. of 10th Ann. Symp. Computer Architecture, June 1983, pp. 426-436.

14. Carlson, W. W., and Hwang, K , “On Structural Data Aecessing.in Dataflow Com­
puters,” Proc. 1st Int 7. Conf. Computers and Applications, Beijing, China, June
1984.:

15. Keller, R. M , Patil, S. S., and Lindstrom, G., “A Loosely Coupled Applicative
Multiprocessing System,” Proc. Nat’l Computer Conf., AFIPS Press, 1979.

16. Watson, I. and Curd, J., “A Practical Data Flow Computer,” IEEE Computer,
Yol. 15, No. 2, 1982, pp. 51-57.

17. Hwang, K. and Su, S. P., “Priority Scheduling in Event-Driven Dataflow Compute
ers,” TR-EE 83-86, School of E.E., Purdue University, 1983.

18. Gaudiot, J. L. and Ercegovac, M. D., “Performance Analysis of a Data-Flow Com­
puter with Variable Resolution Actors,” 4th Int’l. Conf. on Distributed Computing
Systems, San Francisco, California, May 1984.

19. Gajski, D and Pier, J. K., “Parallel Processing: Problems and Solutions,” Tech.
Report, Univ. of Illinois, Urbana, 111., 1984.

20. Kung, H. T., “Why Systolic Architectures?,” IEEE Computer, January 1982, pp.
37-46. ■■■ ;

21. Hsu, F. H., Kung, H- T., Nishizawa, T., and Sussman, A., “LINC: The Link and
Interconnection Chip,” CMU internal document, Dept, of Computer Science,
Carnegie-Mellon Univ., May 1984.

22 Rung, S.Y., “On Supercomputing with Systolic/Wavefront Array Processors,”
Proc. of IEEE, Vol. 72, No. 7, July 19841

23. Fisher, A L., Rung, H. T., Monier, L. M., and Dohi, Y., “Architecture of the PSG:
A Programmable Systolic Chip,” 10th Ann. Inti Symp. on Computer Architecture,
June 1984, pp. 48-53.

24. Reddi, S. S., and Feustel, E. A,, “A Restructurable Computer System,” IEEE
Trans. Comp., Vol. C-27, Jan. 1978, pp. 1-20.

25. Vanaken, J. R., and Zick, G. L , “The Expression Processor: A Pipelined
Multiple-Processor Architecture,” IEEE Trans. Comp., Vol. C-30, Aug, 1981, pp.
-525-536. -I'."’;

26. Hwang, R. and Xu, Z. “Dynamic Systolization for Developing Multiprocessor
Supercomputers,” TR-EE 84-42, School of E. E., Purdue University, November
1.984

27. Hwang, R. and Briggs, F. A., Computer Architecture and Parallel Processing,
McGraw-Hill, New York, 1984.

28. Hwang, R. (Editor), Supercomputers: Design and Applications, IEEE Computer
Society Press, August 1984.

29. Chin, C. Y. and Hwang, R, “Packet Switching Networks for Multiprocessors and
Dataflow Computers,” IEEE Trans, on Computers, special issue on Parallel Pro­
cessing, November 1984.

30. Rapauan, A , Field, J. T-, Gannon, D. B., and L. Snyder, uThe Pringle Parallel
Computer,” Proc. of the 11th Int’l Symp. on Computer Architecture, June 1984, pp.
12-20. . Y.;Y ;Y:'Y,Y'

31. Rung, H. T. and Lam, M., “Wafter-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays,” Journal of Parallel and Distributed Comput­
ing, Vol. 1, No. 1, September 1984, pp. 32-63.

32. Feng, T. Y., “Data Manipulation Functions in Parallel Processors arid Their
Implementations,” IEEE Trans. Computers, Vol. C-23, No. 3, March 1974, pp.
309-318.

33. Benes, V. E., Mathematical Theory of Connection Networks and Telephone Traffic,
New York, Academic Press, Inc., 1965.

34. Wu, C.-L., and Feng, T.-Y. (Editors), Interconnection Networks for parallel and
Distributed Processing, IEEE Computer Society Press, August 1984.

35 Moldovan, D. I., “On the Design of Algorithms for VLSI Systolic Arrays,” Proc. of
IEEE, Vol. 71, No. 1, 1983, pp. 113-120.

36. Quinton, P., “Automatic Synthesis of Systolic Arrays from Uniform Recurrent
Equations,” 11th Ann. Inti Symp. on Computer Architecture, June 1984, pp. 208-
214. Y ■ ' Y ■' ■ ■:: ■■■'' ' .

37. Franklin, M. A., “VLSI Performance Comparison of Banyan and Crossbar Com­
munication Networks,” IEEE Trans. Computers, April 1981, pp; 283-290.

38. Nassimi, D., and Sahni, S., “A Self-Routing Benes Network and Parallel Permuta­
tion Algorithms,” IEEE Trans. Computers, May 1981, pp. 332-340.

39. Cantor, D. G., “On Non-Blocking Switching Networks,” Networks, Winter 1971,
pp. 367-377. V-Y,

40. Bassalygo, L. A., and Pinsker, M. S., “On the Complexity of Optima Non-
Blocking Switching Networks Without Rearrangement,” in Problems in Informal
tioh Transmission, Plenum Pub. Corp.,^^ New York, 1973, pp. 84-87.

-47-*

41. Cantor, D. G., “On Construction of Nonblocking Switching NetworkSi” Froc.
Symp. Computer-Communication Networks and Teletraffk, Polytechnic Institute of
Brooklyn, 1972.

42. Pippengen, N., “On Rearrangeable and Non-Blocking Switching Networks,” J. of
Computer and System Science,September 1978, pp. 145-162.

43. Kumar, M. and Jump, J. R , “Performance Enhancement in Buffered Delta Net;
works Using Crossbar Switches and Multiple Links,” Journal of Parallel and Distri­
buted Computing, Vol. 1, No. 1, August 1984, pp. 81-103.

41. Gajski, D. D., Panda, D. A., Kuck, D. J., and Kuhn, R. IL, “A Second Opinion on
Dataflow Machines and Languages,” IEEE Computer, February 1982, pp. 58-70.

45. Kuck, D. J., Kuhn, R. II., Leasure, B., and Wolf, M. J., “The Structure of An
Advanced Retargetable Vectorizer,” in Supercomputers: Design and Applications,
(Ed. Hwang) IEEE Computer Society Press, August 1984.

46. Larson, J., “Multitasking on the CrayX-MP/2 Multiprocessor,”IEEE Computer,
July 1984, pp. 62-69.

47. Su, S. P. and Hwang, K., “Multiple Pipeline Scheduling in Vector Supercomput­
ers,” Proc. Int'l. Conf. on Parallel Processing, August 1982, pp. 226-234.

48. Sahni, S., “Scheduling Multipipeline and Multiprocessor Computers,” IEEE Trans.
Computers, July 1984, pp. 637-645.

49. Sameh, A. H., “On Two Numerical Algorithms for Multiprocessors,” Proc. NATO
Advanced Research Workshop on High Speed Computing, Edited by Kowa.Uk, W.
Germany, June 1983.

50 Hwang, K. and Cheng, Y. IL, “Partitioned Matrix Algorithms for VLSI Arithmetic
Systems,” IEEE Trans. Computers, Vol. C-31, No. 12, December 1982, pp. 1215-
1224. . .

51 Kung, H. T., and Leiserson, C. E., “Systolic Arrays (for VLSI),” Sparse Matrix
Proc., (Duff, et. al., eds.), SIAM, Philadelphia, Penn., 1978, pp. 245-282.

52 Fisher, A, L. Kung, H. T., Mohter.i L M., and Dohi, Y.,“Architecture of the PSC:
A Programmable Systolic Chip,” Proc. of the 10th Annual Int’l Symp. on Computer
Architecture, June 1983, pp. 48-53.

53. Preparata, F. P. and Vuillemin, J., “Optimal Integrated-Circuit. Implementation of
Triangular Matrix Inversion,” Proc. Int’l. Conf. on Parallel Processing, August
1980, pp. 211-216.

54. Kulkarni, A. V. and Yen, D. W., “Systolic Processing and an Implementation for
Signal and Image Processing,” IEEE Trans. Computers, Vol. C-31, No. 10, Oct.
1982, pp. 1000-1009.

55. Hwang, K., “VLSI Computer Arithmetic for Real-Time Image Processing,” in
VLSI Electronics: Micro-structure Science, Vol. 7, (Einspruch, Ed,), 1983,
Academic Press, New York, pp. 303-331.

56. Hwang, K., “Multiprocessor Supercomputers for Scientific Applications,” IEEE
Computer, special issue on Multiprocessing Technology and Systems, July 1985 (to
appear).

57. Rice, J. R., “Very Large Least Square Problems and Supercomputers,” Technical
Report 464, Dept, of Computer Science, Purdue University, December 1983.

58. Ni. L. M. and Hwang, K., “Vector Reduction Methods for Arithmetic Pipelines,”
IEEE Trans. Computers, accepted to appear early 1985.

59. McDonald, J. F., Rogers, E. IL, Rose, K., and Steckl, A. J., “The Trials of Wafer
Scale Integration,” IEEE Spectrum, Oct. 1984, pp. 32-39.

4* -

60. Stolfo, S. J., Miranker, D. and Shaw, D. E. “Architecture and Applications of
DADO: A Large-Scale Parallel Computer for Artificial Intelligence,” Proc. of Int ’l
Joint Conf. on Artificial Intelligence, 1983.

61. Ullman, J. D., “Flux, Sorting and Supercomputer Organization for AI Applica­
tions,” Jourrtal of Parallel and Distributed Computing, Vol. 1., No. 2, November
1984. ■■

62. Zadeh, L. A , “Making Computers Think Like People,” IEEE Spectrum, August
1984, pp. 26-32.

	Purdue University
	Purdue e-Pubs
	10-1-1984

	Dynamic Systolization for Developing Multiprocessor Supercomputers
	Kai Hwang
	Zhiwei Xu

	tmp.1542052450.pdf.nIlGy

