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Dynamic Systolization for Developing

Multiprocessor Supercomputers

Kai Hwang, Senior Member, IEEE, and Zhiwiei Xu 
Purdue University*

Abstract: A dynamic network approach is introduced for developing reconfigurable, 
systolic arrays or wavefront processors; This allows one to design very powerful and 
flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant, 
multiprocessor computer system. The concepts of macro-dataflow and multitasking can 
be integrated to handle variable-resolution granularities in computationally intensive 
algorithms. A multiprocessor architecture, Remps, is proposed based on these design 
methodologies. The Remps architecture is generalized from the Cedar, HEP, Cray X- 
MP, Trac, NYU ultracomputer, S-l, Pumps, Chip, and SAM projects. Our goal is to 
provide a multiprocessor research model for developing design methodologies, multipro
cessing and multitasking supports, dynamic systolic/wavefront array processors, inter
connection networks, reconfiguration techniques, and performance analysis tools. These 
system design and operational techniques should be useful to those who are developing 
or evaluating multiprocessor supercomputers.

Index Terms; Systolic, arrays, wavefront arrays, interconnection networks, macro 
dataflow, multitasking, reconfiguration techniques, supercomputer performances.

1. Introduction

Multiprocessor supercomputers are playing a vital role in modern civilization. 
With fixed functional capability of the processors and fixed interconnection structures, 
most existing supermachines have very biased performances [28], A machine may per
form very well for certain classes of algorithms, but very poorly for Other classes. It is 
very desirable to develop a reconfigurabie multiprocessor system, that can be dynami
cally tuned to match with the special requirements of different application domains at 
different times. Such a general-purpose supercomputer may demand very costly
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hardware and software. However, its application flexibility and system performance 
will improve significantly, This paper proposes a dynamic network approach to 
developing very flexible processors for use in a multiprocessor system. Two design 
methodologies are developed based on dynamic systolizationand macro dataflpwing. 
These two design methodologies can be applied to many exploratory multiprocessor sys
tems with prespecified performance levels. The Remps architecture is an integrated 
system consisting of multiple processors (each with multiple PEs), shared memory, and 
fast I/O facilities. The system has absorbed many of the attractive features from the 
Cray X-MP [1], the Denelcor HEP [2], the S-l project [3], the Trac [4, 5], the NYU 
ultracomputer [6, 7], the blue Chip project [8], the Pringle [30], the SAM project [9], 
the Pumps [10], the Cedar [11], and several dataflow projects [12-16].

The Remps architecture is generalized from the aforementioned systems as a mul
tiprocessor research model for developing design methodologies, multiprocessing and 
multitasking supports, application adaptability, and dynamic reconfiguration tech
niques. We are aimed at achieving high throughput with dynamic multiconfigurations, 
high availability by graceful degradation, and high performance with reduced develop
ment overhead.

The Remps exploits high-level, multitasking among communicating tasks with 
crude granularity based on the macro dataflow concept [17-19]; and the intratask paral
lelism using “dynamic” systolic/wavefront array processors, which are extended from 
their “static” counterparts [20-22]. The Remps differs from the Cedar in that hardware 
supports are provided for multitasking and intertask communications. The dynamic 
systolization concept is inspired by the Chip project [8], the PSC project [23], the mul
tipipeline chaining in Cray X-MP [1], the restructurable computer [24], the expression 
processor [25], and the Pringle [30].

Static systolic arrays [20] or static wavefront processors [22] are dedicated for fixed 
algorithms. For special-purpose applications, such static hardware accelerators do per
form very well, if the problems are compute-bound (rather I/O bound). Snyder’s Chip 
project proposed to build dynamic systolic arrays using programmable switch lattices 
[8]. The reconfiguration capability of a switch lattice is limited by the capacity of the 
switch memory, the complexity of the lattice control, and the overhead associated with 
reconfiguration. The switch lattice must maintain local connectivity among processing 
elements (PEs) within short distance. We propose a network approach to implementing 
dynamic systolic arrays, which are not restricted by the local connectivities among PEs.

Such a multi-PE systolization approach demands the use of a dynamically 
reconfigurable, interconnection network among the PEs. A reconfigurable, packet 
switched network will be used for a dynamic wavefront processor. A dynamic systolic 
or wavefront processor should be able to execute different compound functions and 
algorithms with variable granularity [26]. It is of fundamental importance to provide
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■.'dynamic hardware supports for macro-dataflow multitasking computations. The obvi
ous advantage lies in significantly increased flexibility and adaptability for general- 
purpose, scientific applications. However, the gain may be overshadowed by the 
increased array reconfiguration overhead. We shall address these tradeoff issues and 
prove that the dynamic systolic approach is indeed plausible with state-of-the-art 
microelectronics technologies [55], [56], [59].

We present the Remps architecture and its reconfigurability in Section 2. The 
concept of dynamic systolic arrays and dynamic wavefront processors are introduced in 
Section 3. Then, we present in Section 4 the systolization methods and networking 
requirements of multiple PEs in each processor: In Section 5, multitasking among mul
tiprocessors for macro-dataflow in Remps is described. Illustrative example algorithms 
and performance analysis are given in Section 6. Finally, we indicate the future 
research demand and the potential applications of Remps for numerical scientific com
putations and/or for symbolic Al-oriented applications.

Our studies intend to complement many of the on-going multiprocessor research 
projects. The proposed design methodologies, functional mechanisms * and communica
tion networks, once completely developed^ should be useful to computer designers, who 
are developing their own supercomputer systems or evaluating commercially acquired 
systems for specific applications.

2. The Remps Architecture and Reconfigurability

The Remps is an MIMD computer with a three-level hierarchical structure, as dep
icted in Fig. 1. An nxm configuration of Remps has n identical processors, which are 
capable of exploiting high-level parallelisms among communicating tasks. Each proces
sor has m pipelined PEs, for executing low-level parallelisms among individual instruc
tions. At the global level, the machine is an event-driven, data-flow computer with 
token storage; while at the lower level, each processor is a multipipeline control-flow 
system. The system uses several interconnection networks to achieve flexibility in 
implementing a wide range of computation tasks.

System components of Remps are functionally described below. The shared 
memory consists of multiple modules, each module can be used to store a number of 
tasks for execution. A small portion of each module can implement an I-structure 
storage [13], where global data can be shared by several communicating tasks on 
different processors. A global network is used to interface the global memory with the 
processors. Tasks may be assigned to multiple processors for concurrent processing. 
Each processor has a local memory, some local I/O devices, a large register file, and 
multiple PEs that can operate in parallel. Note that the PEs are identical, each being
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multifunctional, and they do not have to operate in a lock-step manner. Different func
tions can be performed at different PEs at the same time, similar to those parallel func
tional pipelines used in IBM 360/91, CDC 7600, or in Cray X-MP [27].

The I/O subsystem is connected to the shared memories for the input/output of 
large programs, data sets, and result sets. For small jobs, these I/O activities can be 
also directly handled by the local I/O facilities attached to each processor. The inter- 
processor network provides direct communication paths and buffers between processors. 
Shared data registers and special semaphore registers are contained in this network, so 
that interface buffers can be established to support multitasking in multiple processors. 
This kind of interprocessor network has been implemented in the Cray X-MP series for 
the same purposes. The global controller is responsible for task scheduling, memory 
management, multiprogramming, synchronization/and other functions at the global 
level. . ■' ,

Each processor is itself a high-speed, reconfigurable computer of the control-flow 
type. The interior structure of the processor is illustrated in Fig. lb. This structure is 
generalized from Cray X-MP and NEC SX-2, among other multipipeline supercomput
ers [28]. Each PE is a functional pipeline which is capable of performing many 
arithmetic/logic operations of different data formats. The program codes and data sets 
are stored in the local memory. The register files can be dynamically allocated to the 
PEs. Multiple data streams are allowed to flow between the local memory and the PEs 
through an allocation network. The PEs can be interconnected as a systolic array pro
cessor or as a wavefront processor via the routing network. Each processor has a local 
controller, which must communicate with the global controller for multitask scheduling.

Static and unifunction pipelines are implemented as PEs in most of today’s com
puters with multiple functional units. Such fixed function pipelines have two major 
shortcomings: -

(a) Low pipeline utilization may exist due to poor matching of resource demands 
and low PE availability.

(b) Every pipeline becomes a critical resource due to no duplications. This renders 
the system to be prone to catastrophic failure.

By using homogeneous, multifunctional pipelines as PEs, the above problems can be 
greatly alleviated or eliminated. In the Remps, the PEs in each processor are identical 
and universal in their functional capability. At most m independent operations can be 
executed by m PEs in each processor simultaneously, resulting in a full utilization of 
the functional resources. Since a failing PE can be replaced by other PEs, graceful 
degradation is possible. By adding some handshaking mechanism into each PE, the 
dynamic systolic array (the dash-line box in Fig. lb) can be modified to become a 
dynamic wavefront process or, ex tended from the static wavefront arrays suggested in 
Kung [22]. In this case, the routing network must be pipelined and packet switched as
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suggested in [29].
In static systolic; arrays, only boundary PEs communicate with the memory as I/O 

interfaces. In our dynamic approach, different PEs may be used for I/O in differently 
connected topologies. The allocation network is responsible to interface between the 
local memory and the PE registers being assigned for I/O operations. Data can be also 
manipulated on-the-fly via the allocation network. The entire sequence of operations 
from the memory to allocation network, the register files, the input PEs, the routing 
network, the interior PEs, the output PEs, the register file, the allocation network, and 
back to the local memory form a macropipeline. Masked memory accesses and masked 
PE operations are also possible. Different systolic or wavefront arrays can be imple
mented in different processors when the system is used in MIMD multitasking mode or 
in multiple SISD mode.

The Remps is being designed to realize data-driven computations at the task level. 
A compiler is needed to partition a large job into a number of communicating tasks, to 
be processed by multiple processors. The task dependence graph, formed by crude 
granularity at compile time, is transmitted to the global controller for use in schedul
ing. An executable task queue is established for each job, which contains all the exe
cutable tasks. The global controller assigns an executable task to one or more proces
sors whenever the resource becomes available.

Once a task is assigned to a processor, the processor assumes exclusive control of 
the execution. After a task is executed, the bulk of the results is stored back to the 
shared memory. Scalar results or semaphore messages can be passed directly among 
the processors through the interprocessor network. In a multiprogramming environ
ment, the execution queues of several jobs can be combined into a single queue. When
ever there is an idle processor, the global controller will check this queue to initiate a 
new .task. '

Difficulties may arise for macro dataflow, when two or more tasks must communi
cate with each other before they finish. The Remps overcomes this problem by 
employing the I-structure storages, low-level context switches, and the interprocessor 
network. The shared data such as global variables can be stored in the I-structure 
residing in the shared memory. Status tags are associated with each shared data item 
in order to resolve conflicts. Special synchronization semaphores and interrupt signals 
are passed directly among the processors via the interprocessor network.

If the shared data are individual variables, each task will have a duplicated copy of 
the variables in the local memory. When the task requests to access a shared variable, 
it will check with the local copy. If the request is granted by the status tags, the tasks 
will continue. In case the request is to write a shared variable in the global memory 
which is locked by another task, the requesting task will be suspended until the status 
tags change. A processor level context switching is then performed and another ready-



to-run task is initialized for execution. Shared data in large blocks (such as an array or 
a tree), are only stored in the global memory. Any task Accessing these data blocks 
must have exclusive control of the access until completion.

Reconfigurability is supported by the hierarchical control and the extensive use of 
pipelines and interconnection networks. This feature greatly enhances the system relia
bility, application flexibility, and availability of the system. The system can be 
reconfigured to meet different application demands and environmental changes. Two 
Remps reconfigurations are shown in Fig. 2 in order to emulate the Cray X-MP-4 and 
the Denelcor IIEP.

In part (a), the shared memories become the central memory in X-MP [1, 28, 46, 
56]. The Solid-state Storage Device (SSD) in X-MP is connected to both the central 
memory and the I/O subsystem, The interprocessor network now serves the same func
tion as the inter-CPU communication and control unit in X-MP. Each CPU now has 
m—13 functional pipelines (PEs). In part (b), the global network is combined with the 
interprocessor network to form a single packet-switched network between the proces
sors; and the data memory modules in HEP [2, 28}. The I/O and peripheral devices are 
connected to this combined network.

The Remps can be used to model a humber of rea.1 supercomputers. Our intention 
is to provide a general model to help develop future Supercomputers. The emulation 
modeling can help detect the system bottlenecks, determine the major shortcomings in 
existing machines, and predicate the performance of future machines. Such high-level 
emulation studies will significantly reduce the development overhead find, in many 
cases, totally eliminate unnecessary wrong undertakings. In the context of performance 
scalability, the Remps should increase its computing power linearly with the increase of 
the processor number (n) and the number of PEs (m) per processor.

3. Dynamic Systolic/Wavefront Array Processors

A network approach to performing dynamic, systolic or wavefront computations is 
proposed for fast execution of compound functions or algorithms with crude granular
ity. Different PEs are allowed to perform different functiohs at the same time. Multi
ple PEs in each processor can be interconnected to form any systolic arrays or wave- 
front arrays using a dynamically reconfigurable network as shown in Fig. 3a. This 
approach allows the system to reconfigure the pool of PEs and the network resource 
into different systolic arrays at different times. The connectivity among the PEs is 
governed by the interconnection provided by the routing network. Note that this 
approach is not restricted by local connectivity or uniform PE functions, as required in 
the static systolic arrays [20], [51], [52], or in the programmable switch-lattices [8], [30].



Disks & Tapes

Front-

System

Central
Memory

Processors

Interprocessor Network

Global Network

(a) Emulating Cray X-MP-4

I/O & Peripheral 
Devices

Shared Memories

Processors

Global Network
(Combining Interprocessor Network)

(b) Emulating HEP using Remps

Figure 2. The reconfigurations of Remps for emulating X-MP-4 and HEP



In general, each PE has p inputs and <7 outputs as specified in Fig. 3a. The size of 
the network in Fig. 3b is qmxpm, where m is the number of PEs in a processor. For 
illustrative purposes, we can assume p = q = 3 in Fig. 4, which shows how to con
struct a systolic tree using 7 PEs and a crossbar network. The solid lines correspond to 
top-down connections and dash lines for bottom-up connections. This allows one to 
traverse the tree machine in either direction.

In Fig. 5, we show a linearly-connected systolic ring [31] for solving triangular 
linear system of equations. Each PE in this case has 3 inputs and 2 outputs as specified 
in Fig. 5a. The 4 PEs can be interconnected using a data manipulator [32]. Another 
example is shown in Fig. 6. In this case, a hexagonal systolic array is implemented 
using a Benes network [33].

In order to implement any array topology, the crossbar network offers the highest 
connectivity. Due to the high cost of crossbar, one can also consider a number of other 
network classes, such as the Omega network, binary n-cube, data manipulators, flip 
network, regular S-W banyan, Benes networks, and baseline networks and their deriva
tives [34]. In order to systolize an array of PEs, the cutset theorem [22] and the local 
correctness 'criterion: [£1]' /must be satisfied. Furthermore, the network must be 
designed to resolve conflicts and to allow pipelined operations, which must be synchron
ized with the PE operations.

What we proposed here is to separate the interconnections of PEs from the collec
tion of PEs. This approach is very different from most of the existing systolic 
approaches. Various systolic/wavefront array processors are summarized in Table 1. 
The advantages of this dynamic-network-approach are listed below:

(a) Many of the state-of-the-art research results on interconnection networks can 
be applied. Instead of using multiple static systolic arrays, only a single 
dynamic routing network is needed.

(b) Reconfigurable systolic arrays or wavefront processors can support wider appli
cations and provide better match between the memory bandwidth and the 
throughput of the array processor.

(c) The separation of PEs from their interconnections offers some freedom in their 
VLSI/WSI implementations. Of course, the interconnections between the two 
parts should be minimized.

Of course, there are many other problems yet to be solved before we can claim 
that this network approach is more cost-effective for systolic/wavefront computing. 
The major problems include the network structures and control schemes, the 
reconfiguration overhead, the I/O port multiplexing, and the pipelined dataflow 
through the network. A thorough study is needed to determine the PE functionality 
and to select an efficient network, in order to cover a wide range of 
scientific/engineering applications.



Table 1. Various Systolic/Wavefront Processors

Systolic Arrays
(using synchronous PEs

Wavefront Arrays
(using handshaking PEs

with a common clock 
control)

with data-driven 
operations)

Static systolic arrays:
• Fixed interconnection 

among PEs with fixed
in notion iPC liner onH

Static wavefront arrays:
• Fixed array structure with 

wavefront propagation
1 tillV vlvJIl 11 dllU
Leiserson [51])

• Fixed array structure using 
programmable PEs (the 
PSC project at CMU 
[52])-

uriven oy aaia 
availability through 
handshaking among PEs 
(S. Y. Kung [22]).

Dynamic systolic arrays:
• Reconfigurable switch

lattice of programmable 
PEs (The Chip project 
by Snyder, et al. [8],
Ml.

• Programmable systolic
array using 
multifunctional PEs 
which are dynamically 
interconnected by a 
circuit-switched network 
(Hwang and Xu [26]).

Dynamic wavefront arrays:
• A wavefront array of

multifunction PEs, 
which are dynamically 
interconnected by a 
packet-switched network 
(Hwang and Xu [26]).

• Attractive for arbitrarily
structured parallelism in 
user algorithms.
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Two additional overheads are introduced with dynamic systolization: the
reconfiguration setup time and the network delays. Whenever a systolic computation is 
to be performed, the routing network must be set up to create the desired Systolic 
array. This setup time in most cases is dominated by the control complexity of the 
routing network. The problem of matching the problem size with the size of the sys
tolic array is less severe in a dynamic processor. Multiple small arrays can coexist in 
one processor. In Remps, several systolic arrays in different processors can he intercon
nected via the shared registers to form a larger systolic computing structure. Our 
study is concentrated on multi-PE systolization within each processor. Only after we 
gain enough experience with intraprocessor systolization, then we shall challenge inter- 
processor systolization.

Design of the PE needs to cover the most frequently used scientific operators. 
Besides functional selection for the PEs, one must be Concerned about the PE 
reconfiguration control and the I/O ports requirements. The Construction of pro
grammable PEs is desired [22], [23]. Design of packet-switched networks is needed for 
inter-PE connections in a dynamic wavefront array processor. Systolization experi
ments On the routing network demand the simulation of the connectivities and assess
ing the network delays. Other studies include the dynamic PE allocation, the linkage 
across processor boundaries, timing analysis, overhead and performance analysis on 
various systolic arrays.

4. Systolization and Networking Requirements

The design of a dynamic systolic/wavefront array processor involves three basic 
considerations: the structure of the PEs, the routing network, and the systolization pro
cedures. These design considerations are discussed below. Because all PEs are identi
cal, they must be multifunctional and can handle variable granularities. Register files 
should be allocated to each PE. Besides the primitive arithmetic/logic functions, each 
PE may have such functions as dot product, compare and exchange, and even butterfly 
operations used in FFT. Rescaling the clock rate is needed in order to match the PE 
processing rate with the network data transfer rate- Interface registers (or latches) 
must be used between the PEs and I/O ports of various networks involved. This is 
necessary to achieve pipelining with synchronous control in a systolic processor. For a 
wavefront processor, the PEs should also have some handshaking mechanism to support 
the data flow operations [12, 22].

Systolization procedures include: (i) the transformation of a dataflow graph or a 
signal flow graph to a systolic array; and (ii) the setup of a systolic array by specifying 
the function of each PE and establishing the desired connection pattern in the routing 
network. Systematically mapping parallel algorithms into systolic array structure is
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very desirable. Up to now, many algorithms have been proven systolizable [20]. Sys
tematic synthesis procedures have been suggested in [35], [36]. However, the problem is 
still open for general systolic arrays. With our dynamic systolic approach, not only 
regularly-structured arrays (such as ring, tree, hexagonal, square, linear, triangular 
arrays) but also irregular arrays (such as any partially-ordered graphs) are implement- 
able. Thus the array synthesis procedures should be more generalized and easier to be 
automated.

Although the dynamic systolization removes the 'spat ial locality constraint, which is 
inherent with static systolic arrays, temporal locality is still required for dynamic sys
tolic arrays. The local correctness property suggested in [31] is sufficient to guarantee 
the global delay correctness in static systolic arrays. This criterion also holds for 
dynamic systolic arrays. Furthermore, if the dynamic array is feedback-free, the systol
ization procedures (i.e., the cut-set rules) in [22] are directly applicable. Even if the 
dynamic array has feedback connections, the procedures can still be effective after only 
some minor modifications. Programmable noncompute delays should be associated with 
the routing network in order to add necessary delays among PEs, so that the local delay 
criterion is satisfied. The LINK chip reported in [21] is an interconnection chip, which 
can have up to 32 units of programmable delays between an input and an output, 
which covers most frequently-used computation structures.

With respect to the dynamic wavefront arrays, the above systolization problems 
can be greatly alleviated. This is due to the fact that both the spatial locality and the 
temporal locality are no longer needed. Theoretically, any dataflow graph or signal 
flow graph can be directly transformed into a wavefront array for execution, if enough 
handshaking registers are associated with the PEs [22]. Nevertheless, since the PEs 
cannot have infinite (or even large) number of handshaking registers, some workable 
procedure is still needed to transform the algorithm structure into a practical wavefront 
array.

The inter-PE routing network should offer nonblocking and a high degree of con
nectivity with a low hardware complexity, 0( m log m ), a short network delay, 0(log 
m), and simple control complexity, O(log m) or even 0(1), where m is the network size. 
Of course, when m is not excessively large, the crossbar network offers the most flexibil
ity in interconnecting the PEs. Among all the candidate networks, our initial finding 
shows that the modified Benes networks may be the most promising type for a large 
scale system and the crossbar network is preferable for small systems.

Other networks issues worthy of further study include: the dynamic connectivity, 
the control strategies, the localization of broadcast operations, the reconfiguration topo
logies, and the modular construction of the networks. The purpose is to reduce the 
network delay and increase the bandwidth. Several inter-PE connection networks are 
examined below for systolization purposes. These networks are characterized by their
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connectivity, blocking or nonblocking, hardware demand, network delay, and control com
plexity. Noxious network properties are summarized in Table 2.

Crossbar Networks:
Crossbar switching networks are nonblocking and thus have full connectivity. The 

network delay may be either 0(m) or 0(log m) depending on crossbar implementation 
schemes. The major disadvantage of a crossbar network is its high hardware demand 
0(m2), especially when the PE number m is very large. For small systems with less 
than 16 PEs per processor, crossbar switch is acceptable based on today’s technology. 
In the LINK chip [21], an 8x8 crossbar network with a 4-bit wordlength was imple
mented Sixty four such chips can be interconnected to form a 16x16 crossbar with a 
64-bit wordlength.

When m is large, Franklin [37] has observed that a crossbar or a Banyan network 
can be implemented with a VLSI chip in an area of 0(tn2). For VLSI implementatioh, 
the gate complexity is not so severe an obstacle as compared with the pinout limita
tion. The Snyder’s Chip machine [8] requires 0(m2) switches for implementing all 
planar graphs with an 0(m) lattice delay. Thus crossbar should be at least as good as 
the switch lattices for general purpose applicationsi as far as hardware demand and net
work delay are concerned.

Denes Networks:
The Benes network is rearrangeable and thus has full connectivity. However, the 

network is blocking with a delay of O(log m) and a hardware demand of 6(m log m). 
These are attractive features for systolization. Unfortunately, the control complexity 
for Benes network is 0(m log m), which is not desirable, Nassimi and Sahni [38] have 
developed a self-routing scheme with control complexity 0(1), which sets up the net
work on-the-fly for a large number of permutations. It is still an open problem to 
determine whether Benes networks can provide all Useful connection patterns in 0(1) 
.time.

Other Blocking Networks:
This class of networks are not rearrangeable and thus have limited connectivity 

[34]. The modified data manipulator, flip networks, Omega networks, indirect binary 
n-cute, regular SW Banyan, and baseline networks are all belonging to this class. The 
network delay is d(log m) and the hardware demand is 0(m log m). It is doubtful to 
utilize the limited connectivity in providing arbitrary connections. The major advan
tage of using this class is its low network control complexity 0(1).



Table 2. Various mxtn Networks for the Construction of Dynamic 
Systolic/Wavefront Arrays

Network
Class

Network Properties

Connectivity
Hardware
Demand

Control
Complexity

Network
Delay

Crossbar
Switch [21,37]

Nonblocking 0(m2) 0(1)
0(m)

;■ or ■'
0(logm)

Benes [33], [38] Rearrangeable O(mlogm)
O(mlogm)

or
oil)

O(logm)

Blocking
Networks* [34]

Not ■
rearrangeable

0( m log w) OH) 0(logm)

Nonblocking 
Networks [34], [39]

Nonblocking 0(mlog2m) Q(logm) 0(logm)

Packet
Switching
Networks [29,43]

Nonblocking O(mlogm) o(D 0(logm)

‘(Omega, flip, n-cube, data manipulator, Banyan and Baseline).



Other Nonblocking Networks:
Besides crossbar, there are other nonblocking networks with a hardware demand of 

0(m log m) as assessed in [39], [40]. Unfortunately, there is no systematic method to 
construct such nonblocking networks, let alone the concern of the network delay ', and ; 
control complexity. Cantor [41] constructed a nonblocking network with hardware 
complexity of 0(m log^ m) and network delay of 0(log m). The control complexity for 
such network was determined as 0[log m) [42].

Packet-switched Networks:
This class includes many of the buffered multistage networks spch as the buffered 

Delta networks [43] and multipath packet switching networks [29], The 3-ported 
switches used in HEP network [2] are also a,n interesting design. The multipath, mul
tistage networks require a hardware demand, 0(m log m), a network delay of Q(log m ),, 
and a control complexity of 0(1). When the traffic rate is moderate, such buffered neb- 
works become essentially nonblocking. This class of networks is necessary for the con
struction of dynamic wavefront array processors using the handshaking PEs.

Because of the increased overhead by network reconfiguration arid transmission 
delays, a dynamic systolic array processor cannot be faster than a static counterpart. 
A tradeoff study between the increased application flexibility arid the degraded array 
speed must be made. The performance degradation due to these extra delays is 
analyzed below. Let k be the number of pipeline stages in each PE, c be the length bf 
the critical dataflow path in a systolic array, and N be the probtem size which is equal 
to the number of operand blocks (or wavefronts) entering a Systolic array. Then the 
total time required to process the AT operand blocks in a static array is equal to:

ts = k -(c +i)+ N-i; ■ (i)

where k • (c +1) clock periods are needed to process the very first block and the 
remaining N~l data blocks each takes one clock period to come out of the pipeline.

Now consider the case of a dynamic systolic array with the same parameters 
k, c, and N. Let a be the network reconfiguration overhead, which is primarily deter
mined by the network control complexity. The routing network has a size of mxm 
with 0 — 0(log2 m) stages. If the routing network has a stage delay equal to one clock 
period of the PE pipeline, the network then has a transmission delay of fl clock periods. 
This implies the total delay through the dynamic systolic array is equal to c */?, because 
the critical path is the longest dataflow path in the array. This leads to the following 
total time required to process N operand blocks in a dynamic systolic array:

Td-:= a + (k +P)'C +k + N-l

where (k + 0)c + k is the time for the first operand block to pass through the entire



array and N— 1 additional clock periods are needed to process the rejnaining .
blocks. For crossbar network, the overhead a equals a constant and /? = log2m, and 
for Benes network with self routing control, a is also a constant and /? — 2log2W—1.

The throughputs of the static and dynamic systolic arrays are 1/TS and 1/Td 
respectively. Thus (l/Tj/fl/T^ = Td/Ts represents theperformance ratio of the 
dynamic versus static systolic arrays. By (1) and (2), we have Td/Ts < 1. This perform 
mance ratio is plotted in Fig. 7 under the assumption a — 10, A: — 8, c = 15, and an 
array size 3tn x3m (if each PE has 3 inputs and 3 outputs). The curves correspond to 
dynamic systolic arrays using either crossbar or Benes networks. Part (a) shows the 
performance ratio as a function of the array size 3m and Part (b) of the problem size 
N. When the problem size is small (say N — 64), both networks degrade with the 
increase of the array size. However, the performance ratios become fairly close to 1 
when the problem size becomes very large (say N — 2048), regardless of the array size. 
With fixed network size (say m = 1024 as in part b), the performance ratios approach 
to 1 with the increase of the problem size. In both drawings, the crossbar-structured 
systolic array always has better performance than the array built with a Benes net
work. v.x :

The dynamic systolic array can perform equally well as the static arrays, if the 
problem size is large. The smaller is the interconnection network, the better will be the 
performance. If the problem size is larger than the network size-then the dynarnic sys
tolic arrays can maintain 60~90c6 the performance of the static counterparts. For 
general-purpose applications, the flexibility in implementing any systolic algorithms is 
far more important than a minor speed degradation due to added network overhead. 
There is no doubt that static systolic arrays are still superior for implementing fixed 
algorithms. However, static arrays become useless when the application algorithms are 
changed.

5. Multitasking for Macro-Dataflowing

The potential problems of instruction-level, data-driven machines have been dis
cussed in [44]. The major drawback is the excessive pipeline overhead per instruction. 
The task-level or macro dataflow will have much cruder granularities. It is fair to view 
the Remps as a macro dataflow machine with token storage, where a token represents a 
task and an operator corresponds to a processor. This architecture combines the 
advantages of both macro dataflowing at the global level and control-flowing at the 
processor level. Data-sharing among communicating tasks is implemented either with 
1-structure storage at the global memory or via the shared registers between processors.
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Figure 7. Relative performance of static versus dynamic systolic arrays
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Macro dataflow can ho implemented with macro pipelining at two different levels. 
Tasks with crude granularity are handled at the global level. Tasks with refined granu
larity are handled at the processor level or even at the PE level. Thus variable- 
resolution tasks can be executed at different clusters of PEs and/or processors at the 
same time. This macro dataflowing with variable task granularities must be supported 
by the hierarchical controls, the use of the multifunction PEs, and the interconnection 
capability provided by various networks in Remps.

Gaudiot and Ercegovac [18] have conducted an experimental performance evalua
tion of dataflow computers using variable-resolution actors. The machine model with 
which they have simulated is similar to the Arvind’s dataflow machine at MIT [13]. 
They use a variable number of processing elements to handle various node granularities. 
Arvind’s model does not have a hierarchical control as existent in the Remps. This 
shows the fundamental difference between our approach and that in [18], The two 
approaches in fact complement each other in many aspects.

Example 1 (Multitasking of A DO Loop wi th IF statement)

Consider the dataflow graph in Fig. 8 containing an IP' statement and the vector 
merge operation through masking. After vectorization, fine operations in the graph can 
be lumped together to yield the graph with crude granularity. If we use 3 PEs from 
Processor Pj and 5 PEs from Processor P2, two multipipeline systolic arrays are formed, 
respectively. The Boolean vector, X, generated by processor 1, can be transmitted to 
processor 2 through the shared registers in the interprocessor network.

Note that pipeline chaining in Cray X-MP implements only linear data flow 
graphs. The proposed multitasking technique can implement any program graphs. Of 
course, the communication of systolic arrays from different processors must be sup
ported by the interprocessor network. These networks should be designed to have high 
bandwidth, low transmission delays, and some data manipulation capabilities.

Advantages of the above approach to achieve macro dataflowing among multipipe
lines and multiprocessors are summarized below:

(i) The application flexibility will be greatly enhanced. Memory latency problem 
in handling intermediate results can be alleviated by using shared registers and 
packet switched networks.

(ii) The scheduling of vector instructions to pipelines and multiple tasks to proces
sors is controlled at the local and the global levels, respectively. Thus higher 
resource utilization can be expected.

(iii) The system reconfiguration is supported by the flexible connectivities among 
hardware resources. Parallelism can be exploited at both task and instruction
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levels. . :'y;.'7r; .. \
Multitasking for macro dataflow demands the partitioning of program graphs. 

This can be done by users at algorithm design time, using a language which can specify 
parallelism and indicate data communications between separated tasks. The partition
ing can be also performed by compilers, such as the Parafrase [45]. Finally, the parti
tioning can be done at run time using sophisticated parallelism-detection schemes such 
as those for exploiting multiple functional units in IBM 360/91 and for multitasking in 
Cray X-MP [46]. Compile-time methods are needed for estimating the space and time 
complexities of computing events within a program. The purpose is to support 
automatic program partitioning subject only to constraints on data dependency and 
resource availability. These will include program restructuring, partitioning criteria, 
language extensions, compile algorithms, and heuristics for granularity complexity 
analysis of program sections.

Program analysis should be performed at compile-time to yield better resource util
ization and higher system throughput and at run-time to reveal concurrent 
arithmetic/logic activities. In a multiprocessor system, the percentage of code that can 
be vectorized ranges from ten to ninety percent across a broad range of scientific appli
cations. The nonvectorizable code (scalar operations) tends to become the bottleneck. 
Using a few very powerful processors, we emphasize crude granularity. Therefore, the 
partitioning should be conducted at the highest possible level. This must be linked to 
the resource availability, time and space tradeoffs, and the overhead problem associated 
with fine granularity at the lower levels. Some language features and procedure calls 
must be incorporated to support the automatic partitioning of programs.

Analysis of various program graph characteristics is needed to determine depen
dence properties, critical paths, maximum resource demanded, and tradeoffs between 
computation, memory and I/O activities for algorithms with fine and crude granulari
ties in node primitives. Nested loop analysis and multitasking conditions need to be 
revealed for various program graph types. Vectorization will support expression 
evaluation. Crude-granularity partitioning must be performed to have low overhead.

Multipipeline and multiprocessor scheduling policies have been suggested for a 
control-flow supercomputer [47], [48]. Run-time methods are needed for dynamically 
scheduling partitioned computing modules to multiprocessor hardware resources. These 
will include special hardware and software extensions for detecting the executability of 
computing modules. These extended functional mechanisms must meet the perfor
mance requirement and achieve better fault, tolerance.

We are considering several priority heuristic schemes [17] such as most successor 
first and least processing time first, etc., for scheduling multiple tasks to multiple pro
cessors. The choice of a particular scheme depends on workload distributions and 
application demands. We have found some heuristic algorithms, even though the
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underlying problem is probably of exponential complexity. Analytical and experimeh- 
tal results are needed to access the speed and quality of various scheduling algorithms 
including data flow and heuristic optimization.

Synchronization is needed to execute parallel tasks, because different tjasks may 
require different amounts of time to finish. Either control level or data-level synchroni
zation methods can be used. In the control level, we use directed synchronization 
graphs. In the data-level, synchronization is implemented through shared variables. 
The shared semaphore registers will facilitate interproeessor communications. The 
memory latency problem must be overcome in order to support multi-PE systolization. 
The interconnection networks must be designed to have short delays. We prefer to use 
the pipelined multistage networks. Program and data caches must be used in proces
sors In this case, the local register file forms the data caches. Prefetch scheme is used 
to shorten the effective instruction fetch delays.

6. Throughput Analysis of the Remps

The throughput analysis of any multiprocessor system is often problem-dependent. 
In this sense, any conclusion on general machine performance must be biase<i and 
unrealistic. The performance of Remps is assessed with benchmark ."algorithms.-/. We 
choose to provide two benchmark evaluations of the Remps, The first benchmark 
shows how to use the multiple processors in Remps to form a, large macropipeline for 
solving linear recurrence systems with vector unknowns. The second example shows 
multitasking among multiple processors for finding the inverse of a large, triangular 
matrix. In both examples, multi-PE systolization within each processor is practiced. 
To evaluate the performance of these dynamically formed systolic array processors, 
various network delays and overheads are quantified to show their effects on the overall 
performance.

Let a and 7 be the setup times of the routing network in each processor and of the 
interprocessor network, respectively. Let ft and 6 be the delays of these two networks, 
respectively. For general applications, we assume crossbar networks in both cases. 
Thus the a and 7 are small constants, say each equal to tens of the clock periods of the 
PE pipeline. The two network delays are ft = log2m and 0 = log2U> respectively. 
With the projected growth in multiprocessor and network sizes, we can assume 
0(10) < n < 0(102) and 0(102) < m < 0(103). Thus, we can estimate 0 < ft < 0(10) 
clock periods: The number of pipeline stages, k, in each PE is usually also a small 
number, around 0(10). The above discussions lead to the assumption that all the five 
parameters, a, ft, 7, 9, and k are small constants with an order of tens of the PE clock 
periods.



In the Remps with n processors and m PEs per processor, the maximum speedup is 
equal to m*n, as compared with a uniprocessor system with a single PE (« = 1 and 
m = i). We shall denote the total compute times for a given algorithm executed on 
the Remps as Tm n and that on an uniprocessor as Tj i. Then the speedup is defined as 
S„ n = Ti i/Tmn Again, the problem size, N, indicates the number of operand blocks 
(or wavefronts) to be processed in the multiple systolic array processors. Whenever 
two-dimensional array is involved, we use the shorthand notation \/m r or r —m.

Example £ (Macropipelining for solving linear recurrence systems)

As often performed in solving a linear, block-tridiagonal system [49j, a family of 
linear recurrence systems needs to be solved for a sequence of vector unknowns: 
X; = (xu, Xi2, xim)T for where each X; is an m-dimensional column vec
tor. The computations involved are matrix-vector multiplications defined by:

Xi = Ai^Xi-! +Ai2-xi_, + • • • + 1=1,2,..;,^,;V. ^(3).

where each Ajj is an mxm matrix. The initial values of the system, 
Xo, X_x, ..., X_(2n-i), should be given as inputs. The output of the systems are X; for

The n processors in Remps can be interconnected to form a macropipeline ring 
(Fig. 9a) for solving a recurrence system of order 2n 1. Note that n prpcessors are 
needed in the systolic ring for solving an order-(2n-l) recurrence system as shown in 
[31] The m PEs in each processor are configured into a linear systolic array (Fig. 9b) 
to carry out the component matrix-vector multiplications as characterized below:
D enlote XjM = ^ A; 2„ j * X- (2n j) f°r k =1> 2,... ,2 h" — 1 and X/2"""" M — Xj. Each linear sys-

. ■■ j=i v '
tolic array processor performs:

X<k + ,> = Aii2l._(* + 1)-XH2,,_t_,,+X?k) forl<k<2B-l (4)

The Xi<k| = (xjk>, x.jk!......xJM)T are from the outputs of the preceding processor and
Xfk + 1) are the outputs to the next processor in the ring. The constant matrix Aj^-j 
must be pf estored in the local memory of the working processor.

The interprocessor network is used to establish the interfaces between adjacent 
processors in the ring. The n processors can communicate with each other in a 
dataflow fashion, that is, a processor initiates a task whenever all required data inputs 
become available. The global controller generates semaphores to be used for interpro
cessor communications. The interprocessor activities are mainly for block data 
transfers of the intermediate vectors, X/k', between adjacent processors. These inter
mediate vectors are passed directly between .processors without accessing the shared 
memory. .
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(a) Macropipeline ring of n processors
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(b) The linear systolic array in each processor for computing Eq. 4

Figure 9. Multiprocessor macropipelining for solving linear recurrence system
(Example 2).
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In each processor, it takes mk+(m-l)/?+(m-4l) = (k +/?+l)m-(/3+l) clock 
periods to compute Eq. (4). The interprocessor network requires 0 + m-1 cycles to 
transfer the intermediate vector X/kl. It takes tj time to compute the first output vec
tor Xj, where tj = 7+ft + (2n-l)[(l+/3+I)m-(/3+l)]+(2n-2)0. The remaining vec- 
tors X; for i=2,3,...,7V, each can be produced in every 2m cycles. Thus, the total time 
needed to solve the recurrence system is:

Ttn.n - t| + 2m(iV-l)- 2miV + C,mn-C2m-C3n + C4 (5)

where C, =:2(kd-4-1), C2—/?+3y C3and C4=or + /?+qr20-T are all small con- 
stants, compared with the much larger values of N>tn >h. On the other hand, the 
same recurrence system requires Tj | time on a unprocessor, where

T^! '(2?i—ic.,k. v.’- -,j} ' '■

where the PE in the uniprocessor is a pipelined scalar unit with k stages. However, the 
inner product operation a+—a+bxc, takes 1 cycle to complete in this PE, once the pipe
line is full. The speedup is thus obtained by dividing (6) by (5):

m,n SmiV+Gitnn-^w-Cafi+C4 

■■ = mn, as N-*oo

In Fig. 10, we plotted the speedup Sm^ as a function of the problem size N, under 
various Remps sizes (m,n). This example demonstrates a worst-case study, because 
the critical path in the linear systolic array has the longest possible length, m. Foisys- 
tolic trees and hexagonal (or square) systolic arrays, the critical paths Would be respec
tively log2m and VwT; much shorter than this worst-case of m. Therefore, the perfor
mance of the Remps would be even better for those systolic arrays with higher dimen
sions.'

Example 3 (Multitasking for triangular matrix inversion)

The inversion of a nonsingular, triangular matrix can be done in a block- 
partitionmg fashion as suggested in [50]. Given an upper, triangular matrix U of order 
rN. Suppose U is proven nonsingular. The purpose is to find the inverse matrix 
U-1 ■=■ V The matrix U is being partitioned into jV(AT + l)/2 submatrices, each of 
which has a dimension rxr. The output matrix V can be partitioned accordingly as 
shown below: ;;
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Figure 10. The speedup performance for Example 2.
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t ■
A.' U,2 •• • VlN -i v„ V,2 ... Via/

u22 .. . U 2N
—•

V» ... V2A/

c)
■ UjViV. 0 • Va/jv;

where every Ujj and are rxr matrices for l<i<j<JV. The partitioned algorithm 
for systematically generating the output submatrices, V-, from input submatrices, VVp 
is specified below:

Fop i«—1 to N step 1 do

: v- = U”!v n '•'u
Repeat
For i«— 1 to (iV—1) step 1 do

Fop j<-l io 1) step 1 do

S^j,j+T*Vj + r,j + l (10)
r=i /O'

vi,i+i - —V- •W- ■ 4." ' ^VJJ J.J+1
Repeat

Repeat

The case of N =4 is shown in Fig. 11. The computing granularity of each node is 
specified in the submatrix level. All the submatrix computation tasks are listed in part 
(a). A precedence graph, showing the data dependence relations among these tasks, is 
given in part (b). From this graph, all the tasks belonging to the same level can be 
executed in parallel. There are i(i +1)/2 independent tasks parallelly executable at 
level 2i-l and i parallel tasks at level 2i for l<i<A-l In general, there are 
2(N~l) + l=2N—l levels in the graph. A sample nonpreemptive schedule is shown in 
Fig. 11c for a Remps with n =4 processors.

The submatrix inversions (Eq. 9) are performed only with the diagonal subma
trices A triangular systolic array of r(r + l)/2 PEs has been suggested [50], [53] for 
computing the inverse of a triangular matrix of order r, as depicted in Fig. 12a. The 
elements of the input matrix UB are initially distributed in the PEs. The diagonal PEs 
perform scalar division operations. The remaining PEs perform scalar inner-product 
operations. It is assumed that each division or each inner-product operation takes one 
time step, which equals k clock periods in the PE pipeline. Such a triangular systolic 
array requires 2r~l time steps to complete the inversion process. Detailed PE opera
tions in these steps can be found in [53]
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Tasks Submatrix Computations

T,~T4 Vji = Un1 for i=l,2,3,4
t5~t10 W |2 s Vij-Vjj, .Wjj = Ujj’Vjj,

W34 = u34-v44, w24 = u24-v44, w44 = u14-v44,

Tti ~ T|3 V,2 = -v„-w12. v.,3 - -v.,..- \va. v34 = -v33- w34

T14 ~T16 W13 = W13+U12*V23! W24 — W24'FU23V34, W|4 = Wi4 + U13‘V34

Tn ~ T18

<M

£•<n

*11

>•IICO

H CO

w14 = w14+u12-v24

t20 V14 = -Vn-w.4 :

(a) The partitioned computation tasks

t 1 2 ; .3 : 4 5 / e 7 ■'

Pi Ti t5 T9 T„. T17

P2 t2 t6 T,o t14 T,g Tig T2q

p3 t3 t7 t12 Tij

P4 t4 '% T,3 Tj6

(b) Precedence graph

Figure 11. Partitioned matrix inversion for Example 3 with N — 4
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(a) A triangular systolic array for matrix inversion 
(Preparata and Vuillemin 1980 [53])

(b) Multiple linear systolic arrays for matrix multiplication (C -♦ A x B + C) 
(Kulkarni and Yen 1982 [54])

Figure 12. Dynamically reconfigured systolic arrays used in Example 8.
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Using a dynamic systolic implementation, the total time, including network over
head, required to invert a triangular submatrix, U;j, equals a +12, where 
t2 = (r-l)/?+(2r-l)& = (,S+2k)r~(P+k) ==0+2k)r clock periods for large r. Note 
that the setup time a should be counted only once, if the array is to be used repeatedly 
for similar tasks. The N matrix inversions (Tasks Tj~T4 in Fig. 12a) can be performed 
by n processors in a+ AH2 cycles, where h —N/n is assumed an integer and only one 
triangular systolic array is implements!)le in each processor.

The remaining submatrix computations are for accumulative matrix-matrix multi
plications (Eq. 10). Even there are square or hexagonal static arrays suggested for 
matrix multiplication in linear time [22], [29], [51], we choose to implement r indepen
dent, linear systolic arrays in each processor (Fig. 12b), to carry out r matrix-matrix 
multiplications in parallel. This decision is made due to the detrimental delay effects of 
using larger networks. There are at most nr linear systolic arrays in the entire system. 
Each linear systolic array multiplies t\Vo matrices, and, if needed, simultaneously adds 
the product AxB to a third input matrix CTor accumulative operations. The detailed 
matrix-matrix multiplication steps in a linear array are described in [54]. The input 
matrix elements are flowing through the array, not the partial products. Every out
put element of the resulting matrix is computed (dot product operations) exclusively 
within, each PE.

Once a linear array is set up, it requires t3 = (k+/3)(r-l)+k+(r2-l) 
— r2 + (k + f3)r—(/3 + l) cycles to multiply a pair of r xr matrices. For large value of r, 
we can approximate t3^r2+(Ar +/?)r. Assuming the desired operand data are continu
ously supplied to the systolic processors without a memory latency problem, we can 
estimate the total matrix multiplication time as follows:

The execution of all tasks at the same level on the precedence graph (Fig. lib) 
must be completed before tasks at the successor level can be initiated. When N is very 
large, the number of matrix multiplications at each level may exceed the number, rn, 
of available systolic arrays. Consider i — 1,2,...,TV—T . At the odd level 2i—1,

p2i-1— iterations are needed to carry out the i(i+l)/2 pairs of multiplica-
rn

tion. At the even level 2i, q2i=fi/rn] iterations are needed to perform i matrix multipli-
': N-l ' . . . ■ /. ■ ;

cations. In total, M = V] [p2i_j + q2i] =;(Ar/6 + 5Ar/4)/rn iterations are needed. Each
i + 1

iteration requires t3 cycles to complete. Therefore, the total matrix multiplication time 
equals a +t3*M. The total time required to invert the entire matrix U is thus equal to:

Tm,n - (« + h •t2)+(«+t3>M)
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= (iV3/6 + 5iy2/4)(r + it +/3)/n + N{/3+2k)r/n + 2a

rN3
6n

as the matrix size rN—*oo

On the other hand, a uniprocessor PE can compute U 1 in: 

Tm = (*+rN-l)+{k + ^r2A^+3rAf-4)-l]

r3iV3 ; r2iV2
6

rN■+-^r- + — + 2k~2 
2 3 ■

The speedup performance is obtained by dividing (12) by

_ _
'm,n

m,n
= r2n — mn, as riV—*-oo. (33)

n

The above analysis ignores the memory latency problem associated with fetching 
or storing the large number of matrix elements through the memory hierarchy (register 
files, local memory, and global memory). The memory latency is caused by memory 
access delays and various network delays. If one adds these delays, then we should
modify the processing times t2 and t3 to t2 = t2 + Cr“ and t3 — t3+Cr3, respectively, 
where G is the average memory latency per matrix element. Depending on the hierarch
ical memory structure and technology involved, the value of the latency, 0, may range 
from a few tenths to tens of the processor clock period. The higher is the degree of 
memory interleaving and the faster is the memory technology, the smaller will be the 
value of C. The added terms Gr2 and Cr3 are the memory latencies associated With 
transferring r2 and r3 matrix elements in submatrix inversion- and in r submatrix mul
tiplications, respectively, in each processor. Substituting t2 and t3 by t2 and t3 respec- 
tivelyinEq.lljWeobtainadegradedprocessingtime:

2a+ h t' + Mt3 — , as rN^oo (14)m,n 6 n
Using Eq. 12 in Eq. 14, we obtain a reduced speedup with T-ym : Note that the 
memory latency does not pose a problem for the scalar uniprocessors. Thus, the time 
T1(1 does not change.

Jm,n
_ 11,1 _ mn _ n.
“ T' ~ Cr ~ ■■± m,n

as rN—>oo

The memory latency problem causes a degradation in processor performance, only 
when the processors are required to wait for the complete arrival of all the required 
data blocks for each task to be executed. This processor idling situation can be allevi
ated if context switching is allowed at the processor level. Whenever a dynamic systolic



processor becomes free but the desired data blocks are not resident in the processor, the 
processor is allowed to be switched (and the systolic array be reconfigured) to execute 
other ready-to-run tasks. Only after all the required operands have been loaded into 
the register file, the processor can be switched back to execute an old task, which was 
waiting to be initiated. However, once a task is initiated, it must be executed until 
completion.

Context switching reduces processor idle time (waiting for operands) and 
increases the processor utilization. However, additional switching overhead, 0, is intro
duced every time the processor switches to another executable task. This overhead is 
attributed to the time needed to perform context switching of all register contents and 
processor states [27]. The value of the overhead, fl, may vary from tens to hundreds of 
the processor clock periods, depending on the degree of multiprocessing being supported 
by the operating system. With context switching, the basic processing times t2 and t3 
should be changed to t2' = t2 + 0 and t3' = t3+0, respectively. The total compute 
time in Eq. 11 should be modified as follows:

: Tw,n ^ + + (« +t3)*M
rN* ,, , Q + a , 0+k v

= —*(i+—r"+ .6n rz r
as WV—►00 (16)

The speedup in Eq. 13 then becomes

„!> Til mn

m,n Q +a , fi+k
as riV—► 00

m y/m

The three speedups STO n, n, and are plotted in Fig. 13 under the assump
tion a = A:-10, C =2, 0=20, and /?=log23m. When the memory latency does not pose a 
serious problem, the speedup function, Sm n, increases rapidly to the maximum value of 
mn. The curve B shows a serious performance degradation caused by memory 
latency. The middle curve S” „ shows that context switching indeed helps improve the 
performance significantly, even the memory latency is long when processors must go to 
the shared global memory for exchange of large data blocks. If 0,a=0(m) and 
,3,k=0(y/m ), then the S” n declines only slightly, as the problem size N becomes large.

In Fig. 14, we show the detrimental effects on the speedup functions, Smn and 
S” n) by increasing the values of the memory latency C and the context switching over
head n, respectively. We conclude from these plots that the memory latency should be 
minimized in any multiprocessor system. If an appreciable memory latency does exist, 
then context switching is highly recommended to alleviate the problem. To support 
multitasking among multiple processors with shared memory, context switching is 
necessary to minimize the processor idle time and thus increase the system throughput.
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However, the switching overhead should be maintained as low as possible. The above 
two examples demonstrate that the speed improvement can be achieved by the same 
set of hardware PEs to perform different algorithmic computations at different times. 
For large problem size, jV, or large resource pool, (m,n), the speedups are rather 
impressive, plus the obvious gains in application flexibility.

7. Conclusions

The interprocessor network is used only to directly pass small and regular data 
sets between processors (as shown in Examples 1 and 2). The shared memory must be 
used, when large data sets are transferred among processors (as shown in Example 3). 
For reasonably large problems, the dynamic systolic arrays can perform as well as their 
static counterparts. The increased network overhead does not pose a serious problem 
when the problem size is sufficiently large and well partitioned for multitasking. When 
the problem size is small, frequent reconfiguration of the systolic processor may not be 
advantageous. Building dynamic, systolic/wavefront array processors demands exten
sive R/D efforts, before achieving cost-effectiveness in real machines.

The proposed reconfigurable multiprocessor system is designed at this stage pri
marily for supercomputing in scientific/engineering applications. Special design metho
dologies and operational features of the Remps are presented. The proposed MIMD 
system has a hierarchical structure which provides macro dataflowing at the interpro
cessor level and control flowing at the intraprocessor level. Reconfigurability of the sys
tem emphasizes application flexibility and fault tolerance [56].

Our continued efforts are being directed to performance analysis of Remps for 
large-scale, scientific/vector computations; such as for solving partial differential equa.- 
tions (PDE) problems [57], [58]. We are also extending the PE designs for implement
ing parallel-production systems in a multiprocessor environment [59], [60]. This 
explores the prospects of designing a supercomputer which is useful for both numerical 
analysis and Al-oriented applications [61], [62]. Our initial findings show that the 
dynamic systolic arrays may be more suitable for numeric processing, whereas the 
dynamic wavefront processors may be more attractive to symbolic manipulations.
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