Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
10-1-1984

Dynamic Systolization for Developing
Multiprocessor Supercomputers

Kai Hwang
Purdue University

Zhiwei Xu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Hwang, Kai and Xu, Zhiwei, "Dynamic Systolization for Developing Multiprocessor Supercomputers” (1984). Department of Electrical
and Computer Engineering Technical Reports. Paper 526.
https://docs.lib.purdue.edu/ecetr/526

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages

Developing Multlprocessor
SuPeI‘COmputers e

Kai Hwang-
| Zhiwe_‘i Xu

TR-EE 84-42
October 1984

School of Electrical Engineering
Purdue University
West Lafayette, Indlana 47907

Dynamic Systolization for

Dynamlc Systohzatlon for Developmg

Multlprocessor Supercomputers

- Kai Hwang, Senior Member, IEEE and Zhlwel Xu
Purdue Umversrty

Abstract: A dynamic network' approach 1is introduced for developing ,:reconﬁgl.lrable, '
systolic arrays or wavefront processors: - This allows one to design very .powerful and

flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant,

multiprocessor computer system. The concepts of macro-dataflow and multitasking can
be integrated to handle variable-resolution granularities in computationally intensive
algorithms. A multiprocessor architecture, Remps, is proposed based on these design
methodologies. The Remps: architecture is generalized from the’ Cedar, HEP, Cray X-
MP, Trac, NYU ultracomputer, S-1, Pumps, Chip, and SAM projects. Our goal is to

'prov1de a multiprocessor research model for developing design methodologies, multnpro- . o
cessing and multitasking supports,. ‘dynamic systohc/wavefront array processors inter-

connection networks, reconfiguration techniques, and performance analysis tools. “These -
system de51gn and operatlonal techniques should be useful to those who are developmg o
©or evaluatlng multiprocessor supercomputers ’ '

'Index Terms: Systolic arrays, wavefront arrays, tnterconnection networks, macro
dataflow, multitasking, reconfiguration techniques, supercomputer performances. .

1. Introduction

Multiprocessor supercomputers are . playing a vital role in modern civilization.
With fixed functional capability of the processors and fixed interconnection structures,
most existing supermachmes have very biased performances [28] A machine may per-
form very well for certain classes of algorithms, but very poorly for other classes It is
very desirable to develop a reconfigurable multiprocessor system, that can be dynaml-
cally tuned to match with the special requirements of different application domains at
different times. Such a general-purpose supercomputer may demand very costly

This research was supported in part, by research grant' AFOSR-84-0385 and in part by Fujitsu Limited. -
From January 1985, the authors will be with Computer Research Institute, Dept. of Electrical Engineer-
ing, University of Southern California, Los Angeles, Calif. 90089 All rights are reserved by the authors,
October 1984. A preliminary version of this paper was submitted for presentation at the 12th lnterna-

tzonalAnnual Symposzum on Computer Archztecture ‘Boston, Mass., June 17—19 1985. S

. \ °
hardwareand software. However its . apphcatlon ﬂex1b1hty and system performance :
will improve SIgnlﬁcantly ThlS Ppaper proposes a. dynamlc network approach. to

'developmg very flexible processors for use in a multiprocessor ‘ system. Two des1gn
methodologies are developed based on dynanuc systohzatton and macro dataﬂowmg

These two de51gn methodologles can be applied to many exploratory multlprocessor sys- .

- tems with prespeaﬁed performanCe levels. The Remps architecture is an 1ntegrated ,
. system consisting of multlple processors (each with multlple PEs) shared memory, and
fast I/O facilities. The system has absorbed many of the attractlve features from the
Cray X-MP [1], the Denelcor HEP (2], the S-1 pro_lect 3], “the Trac [4, 5], the NYU
ultracomputer [6, 7], the blue Chlp prOJect [8] the Prlngle 130], the SAM prOJect [9] :
the Pumps [10], the: Cedar [11] .and several dataflow projects [12- 16] |

_ The Remps archltecture is generahzed from the aforementloned systems as a mul- »
t1processor research model. for developing des1gn methodologles multlprocessmg and
multrtaskmg supports apphcatlon adaptablhty, and dynamlc reconﬁguratlon tech-
'nlques ‘We are aimed at achlevmg hlgh throughput with dynamic multlconﬁguratlons _
hlgh avallablhty by graceful degradatlon and hlgh performance w1th reduced develop- -
~ ment overhead.” o : : :

' The Remps explorts hlgh—level multltasklng among commumcatlng ‘tasks w1th :
crude granularlty based on:the macro dataﬂow concept [17-19]; and the intratask paral-
" lelism using “dynamic” systohc/wavefront array processors, which are extended from
their “static” counterparts [20-22]. The Remps differs from the Cedar in that hardware
. supports are provrded for multltasklng and intertask communlcatlons The dynamlc'

 systolization concept is 1nsp1red by the Chlp project [8], the PSC prOJect [23], the mul-

tipipeline charnlng in Cray X-MP [1] the restructurable computer [24], the express10n .
processor 23], and the Pringle [30]. - : :

Static systohc arrays [20] or static wavefront processors [22] are dedlcated for fixed
algorlthms For special-purpose apphcatlons such static hardware accelerators do per-
form very well, if the problems are compute—bound (rather I/O bound). Snyder s Chip
- project proposed to build dynamlc systolic arrays using programmable switch lattices
[8]. The reconfiguration capablhty of a switch lattice is limited by the capacity of the
" switch memory, the complexity of the lattice control, and the' overhead associated with -
| reconﬁguratlon The sw1tch lattice must maintain local connectivity among processing
elements (PEs) within short dlstance We propose a network approach to 1mplement1ng
dynarmc systollc arrays, which are not restricted by the local connectivities among PEs.

Such a multi-PE systohzatzon approach demands the use of a dynamlcally
.reconﬁgurable 1nterconnect10n network among the PEs. A reconfigurable, packet

. switched network will be used for a dynamlc wavefront processor. A dynamic systolic -

or wavefront processor should be able to execute different compound functions- and
| algorlthms with varlable granularlty [26] 1t is of fundamental importance to prov_1de

dynamic hardware supports for macro-dataflow multitasking computatiOns The 'ob.vi-, =

ous advantage lies in significantly increased flexibility and adaptablllty for general— -
" purpose, scientific apphcatlons However, the gain may be overshadowed by the
increased array reconfiguration overhead. We shall address these tradeoff issues and
prove that the dynamic systolic approach is indeed plausible with state—of—the—art
microelectronics technologies [55], [56], [59]. ' o

We present the Remps architecture and its reconﬁgurablllty in Section 2. The |
concept of dynamlc systolic arrays and dynamic wavefront processors are lntroduced m' _
Section 3. Then, we present in Section 4 -the systolization methods and networking |
~ requirements of multlple PEs in each processor. In Section 5, multltaskmg among mul-
~ tiprocessors for macro—dataﬂow in Remps is described. Illustratrve example algorithms
and performance analysis are given in Section 6. Flnally, ‘we indicate the future
research demand and the potential applications of Remps for numerical screntlﬁc com-
putations and/or for symbolic Al-oriented applrcatlons ‘

~ Our studies intend to complement many of the on-going multrprocessor research_
pro_]ects The proposed ‘design ‘methodologies, functional mechanisms, and communica-
~tion networks, once completely developed should be useful to computer designers, who
are developmg their own supercomputer systems or evaiuatlng commercrally acqulred
systems for specific apphcatrons

2.~ The RempsArehitecfu'ré and Reconfigurability

The Remps is an MIMD computer with a three-level hierarchical structure, as dep-
icted in Fig. 1. An nxm configuration of Remps has n identical processors which are
capable of. exp101t1ng high-level parallelisms among communicating tasks. Each proces-
~sor has m pipelined PEs, for executing low-level parallelisms among individual instruc- ,
tions. At the global level, the machine is an event-driven, data-flow computer with
token storage; while at the lower level, each processor is a multipipeline control-flow
system. The system uses several interconnection networks to achieve flexibility in
implementing a wide range of computatxon tasks. ’

System components of Remps are functlonally described below. The shared
memory. consists of multiple modules, each module can be used to store a number of
tasks for execution. A small portion of each module can implement an I-structure
~ storage [13],»where global data can be shared by several communicating tasks on
“different processors. A global network is used to interface the global memory with the
- processors. Tasks may be ‘assigned to muitlple processors for concurrent processing.
‘Each processor has a local memory, some local 1I/O devices, a large register file, and
multiple PES that can operate in parallel. Note that the PEs are identical, each being

_ _(.}vlobal Network : , 1".Glob$l
[Address
Mapping |

Local

/0~

-

- o Periph-erai and Frontend Syste'm‘

."yr
1P

R

" 1/O Subsystem

. ¥ Shared Memories

A
;-

" Global

" Global Network

{ Controller |

S ¥ rF————————4

Processors v

e i

-

- Irrl.t’erpi'ocessor Network

|

T

g

" Local

Instruction

Controller

Local
Memories

o

LM,

v

|- Stream

Processing Elements

C(ontrol,ler' -

Dynamic Systolié/ Wavef ront Prdéeﬁsﬁor

Y SN

Y
)

-

Y

LM, |

b |— = -

Yy

) AT

Yy

Alloca.tioii Nétwork

A

S ‘Network

Yy

Register File *

R

PE,

,‘:Routingi’NetWork‘. .

—t e e - = -

—

r

Interprocessor.

- (b) The detailed étruéturé of each _processbf

. Figur”ei 1. The sy'stem architecture of vth"e, Remps

multlfunctronal and they do not have to operate in a lock -step manner. Dllferent func- '

tions can be performed at different PEs at the same time, similar to those parallel func-

tional pipelines used in IBM 360/91 CDC 7600, or in Cray X-MP [27]

The 1/0 subsystem is connected to the shared memories for the 1nput/output of'

large programs, data sets, and result sets. For small jobs, these 1/O- activities can be - "

also dlrectly handled by the local I/O facilities attached to each processor.. The inter-
processor network provides direct communication paths and buffers between processors.
Shared data registers and special semaphore reglsters are contained in this network, so
“that interface buffers can be established to support multitasking in multlple processors.
This kind of 1nterprocessor network has been implemented in the Cray X-MP series for
~ the same- purposes The global controller is respons1ble for task scheduling, memory
, management multiprogramming, synchronlzatlon and other functlons at the global
level ' '

Each processor is itself a high-speed, reconﬁgurable computer of the control—ﬁow
type. The interior structure of the processor is illustrated in Fig. 1b. This structure is
generalized from Cray X-MP and NEC SX-2, among other multlplpelme supercomput-
ers [28].. Each PE is a functlonal pipeline which is capable of performing many
arlthmetlc/loglc operations of d1ﬂ’erent data formats.- The program codes and data sets
are stored in the local memory. The register files can be dynamlcally allocated to.the
PEs. Multiple data streams are allowed to flow between the local memory and the PEs
through an allocation network. The. PEs can be interconnected as a systolic array pro-
cessor Or as a wavefront processor via the routing network. Each processor has a local
controller, which must communicate with the global controller’ for multitask schedulmg.

Static and unifunction pipelines are implemented as PEs in most of today’s com-
puters with multlple functional units. Such fixed function ‘pipelines - have two major
. shortcommgs : '

(a) Low pipeline utilization may eXISt due to poor matchmg of resource demands :

and low PE availability.- '

(b) Every pipeline becomes a critical resource due to no dupl1catlons This renders
‘ the system to be prone to catastrophic failure. :

"By using homogeneous mult1functlonal pipelines as PEs, the above problems can be' '
greatly alleviated or eliminated. In the Remps, the PEs in each processor are identical

and universal in their functional capability. At most m independent operations can be -
‘exécuted by m PEs in each processor simultaneously, resulting-in a full utilization of
the functional resources. Since a failing PE can be replaced by other PEs, graceful
degradation is possible. By adding some handshaking mechanism into each PE, the
dynamic systolic array (the dash-line box in Fig. 1b) can be modified to become a
dynamic wavefront processor, extended from the static wavefront arrays suggested in
- Kung [22]. In this case, the routing network must be pipelined and packet switched as

suggested in [29] , _
In static systohc arrays only boundary PEs communlcate w1th the memory as I/O

interfaces In our dynamlc_ approach, different PEs may be used for,I/O in dlfferen_tly -

'connecte‘d topologies.: The alloCation network is responsible to interface’between_the :
local memory and the PE registers being assigned for I/O operations. Data can be also
manipulated on-the—ﬂy via the allocation network. The entire sequence of operations
from the memory to allocation network the register files, the input PEs, the routing
network, the interior PEs, the output PEs, the register file, the allocation network and

back to the local memory form a macropipeline. Masked memory accesses and masked o

PE operations are also p0551ble Different systohc or wavefront arrays can be lmple-
mented in different processors when the system is used 1n MIMD multltasklng mode or
in multlple SISD mode.

The Remps is being designed to realize data-drlven computations at ‘the task level.
A compller is needed to partition a large job into a number of communicating tasks to
be processed by multlple processors The task dependence graph, formed by crude
granularity at compile time, is transmltted to the global controller for use in schedul- '
ing. An executable task queue is established for each job, which contams all the exe-
cutable tasks. The global controller assigns an executable task to one or rnore proces—_
sors whenever the resource becomes avallable '

Once a task is aSSIgned to a processor, the processor assumes exclusive control of
the execution. After a task is executed, the bulk of the results is stored back to the _

shared memory Scalar results or semaphore messages can be passed dlrectly among o

the processors through the interprocessor network. In a multiprogramming environ-
ment, the execution queues of several jobs can be combined into a single queue. When-
ever there is an idle processor, the global controller w1ll check this queue to initiate a.
new task.

Difficulties may arise for macro dataflow, when two or more tasks must communi-
cate with each other before they ﬁnish_.-v The Remps overcomes this problem by
- employing the I-structure storages, low-level context switches, and the interprocessor
network. The shared data such as global variables can be stored in the I-structure
residing in the shared memory. Status tags are associated with each shared data item
~ in order to resolve conflicts. Special synchronization semaphores and interrupt 51gnals
are passed directly among the processors via the interprocessor network.

If the shared data are individual variables, each task will have a duplicated copy of
the variables in the local memory. When the task requests to access a shared variable,
it will check with the local copy. If the request is granted by the status tags, the tasks
will continue. In case the request is to write a shared variable in the global memory"
which is locked by another task, the requesting task will be suspended until the status

tags change ‘A processor level context switching is then performed and another ready- |

‘ ;_to—run task is 1n1t1ahzed for executlon Shared data in large blocks (such as ‘an array or'_'_'-p N .')
a tree) are only stored in the global memory. Any task accessmg these data blocks_,_-___:__'_.

must have exclus1ve control of the access untll completlon

' Reconﬁgurablhty is supported by the hlerarchlcal control and the extensrve use of - Co
 pipelines and 1nterconnectlon networks. ~This feature greatly enhances the system rella-‘ S

bility, - application ﬂexrblllty, and avallabllxty of the system ‘The system can be
reconfigured to meet different appllcatxon demands and env1ronmental changes Two
Remps reconﬁguratlons are shown in Frg 2 in order to emulate the Cray X—MP—4 and'f o
, the Denelcor HEP. ’ -

~In part (a) the shared memorles become the central memory 1n X—MP [l 28 46 S

DA 56). The Sohd—state Storage Device (SSD) in X-MP is connected to both the central SO

‘memory and the I/0 subsystem. The interprocessor network now serves the same func-: T
tion as the inter-CPU - communication and control unit in X-MP. Each CPU now has
m=13 functional pipelines (PEs) In part (b), the global network is combined with the S
1nterprocessor network to form a single packet-switched network between the proces—' o
sors.and the data memory modules in HEP [2 28] The I/O _and perrpheral de__v_nces_. are

connected to this. comblned network.

~The Remps c¢an be used to model & number of real supercomputers Our mtentlon'
is to prov1de a general model to help develop future supercomputers. The emula’tlon_; R

modeling can help detect the system bottlenecks, determine the major shortcomings in

:, existing machines, and predicate the performance of future machines. “Such high-level = -

emulation studies- will s1gn1ﬁcantly reduce the development overhead and, in many

cases, totally eliminate unnecessary wrong undertakings. In the context of performance .
scalability, the Remps shotld increase its computing power llnearly w1th the i lncrease of -

the processor. number (n) and the number of PEs (m) per processor..

3. Dynamic Systolic/WavefrOnt Ai-ray Processors

A network approach to performing dynamic, systolic or-wavefront comput_ation_s'is ‘

proposed for fast execution of compound functions or algorithms with crude granular-

~ity. - Different PEs are allowed to perform different functions at the same time. Multi-

ple PEs in each processor can be interconnected to form any systolic arrays or wave-

front arrays using a dynamically reconfigurable network as shown in Fig. 3a. This
approach allows the system to reconfigure the pool of PEs and the network resource

“into different systolic arrays at different times. The connectivity among the PEs is

governed by the interconnection provided by the routing network. Note that this
- approach is not restricted by local connectivity or uniform PE functions, as requnred In -
the static systollc arrays [20] [51], [52] or in the programmable sw1tch lattices [8] [30]

Front-

Di

.) ' .
~— O .

sks & Tapes

1-f

end <>

System

A A
ese.

Yy Ty

[sm

oo

SM

A ;
y s A

- Global Network

I

) PRI .

) e
'
T

PU,

|opui|

CPU,

A .
Y

X

1| Central -
N ,,Mem,ory;..

Processors -

Interprocessor NétWé;k v

-SM;

" (a) Emulating Cray X-MP-4

Shared Memories -

SM,
A

" 1/O & Peripheral

SM2¢ }‘

3

‘," |

- Devices

- (Combining Interprocessor Network) ‘b

" ‘Global Network

A

v
P,

T eee

A

P

Processors - -

U (b) E_mirlating HEP us'.'in'g-Remp‘s.‘_“ o

- Figﬁre 2. Th‘é_reconﬁgu"r"a.tions of .'Re'm‘p's for'e__mulating‘_.x;MP-.4 and HEP

» In general each PE has p lnputs and q outputs as speclﬁed in Flg 3a The srze of '
»the network in Flg 3b i 1s qm xpm where m-1s the. number of PEs in a processor For _
'.1llustrat1ve purposes, we can assume. p=q= =3 1n Flg 4 whlch shows how ‘to con- .
struct a systollc tree using 7 PEs and a crossbar network The SOlld llnes correspond to
top-doWn connections and dash lines for bottom—up connectlons Thls allows one to
. traverse the tree machlne 1n either direction. ' '

In Fig. 5 we show a hnearly-connected systollc rlng [31] for solvmg trrangular
‘ hnear system of equatlons ‘Each PE in this case has 3 1nputs and 2 outputs as specified
: ~in Fig. 5a." The 4 PEs can be 1nterconnected usrng a data manlpulator [32]. Another |
: example 1s shown in F1g 6 In this case, a hexagonal systohc array Is 1mplemented7- :
~using a Benes network 133]. ' ‘ '

R order to-implement. any array topology, the crossbar network offers the hlghest
connectivity. -Due to the. high cost of crossbar, one can also consider. a number of other“'; ‘
network classes such as the Omega network, blnary n-cube data manlpulators flip
network, regular S-W banyan Benes networks and baseline: networks and their derlva- o
tives [34]. In order to systolize an array of PEs, the cut-set theorem [22] and the local
" correctness criterion 31} ‘must be- satlsﬁed Furthermore ‘the - network must be -
desrgned to resolve conﬁlcts and to allow plpellned operatlons whlch must be synchron— .
ized with the PE operat1ons ' :

What we proposed here is to separate the 1nterconnectlons of PEs from the collec-
‘tIOIl of PEs. ~This approach is very dlﬂ'erent from most of the ex1st1ng systolrc
approaches Various systohc/wavefront array processors are summanzed in Table 1.
 The advantages of this dynamic-network-approach are llsted below
- (a) Many of the state-of-the—art research results on- 1nterconnectlon networks can

~ beé applied.. Instead of using multiple stat1c systollc arrays only a srngle: -
.. dynamic routing network is needed. , : o
(b) - Reconﬁgurable systolic arrays or wavefront processors can support w1der apph-

_cations and provide better match ‘between the memory bandwrdth and the .

E throughput of the array processor. o .

(¢) . The separation.of PEs from their 1nterconnectlons oﬂ'ers ‘some freedom in thelr’ =

o " 'VLSI/WSI implementations. Of course, the 1nterconnectlons between the two'
parts should be minimized. ‘ ' :

_ Of course, there are many other problems yet to be solved before we can claim
- ‘that thls network approach is more cost-effective for systollc/wavefront computrng
The major problems - include the network structures and control ‘'schemes; the
reconﬁguratlon ‘overhead, the 1/0 port’ multiplexing, and the plpelmed dataflow
- through the: network A thorough study is needed to determlne the PE funct1ona11ty
and to select ~an - efficient network, in order to cover a. wide range of
scientiﬁc/engmeermg applications.. =~ . ' '

- Table 1.

: 'variouo ._Sjstolic/'WavefrohoPr(',c s

| Systolic Arrays

(usmg synchronous PEs
with a common clock
control)

Wavefront Arrays
(using handshaking PEs =
with data—drlven '
operatlons)

| Static systolic arrays:' |

e Fixed interconnection

| ‘among PEs with fixed
function (Kung and
Leiserson [51])

e le ed array structure using ‘

~programmable PEs (the
 PSC project at CMU
_[52)).

Statzc wavefront arrays:

| @ Fixed array structure with

wavefront propagatlon
kdnven by data -
‘availability through , B
handshaking among PEs

~ (S.Y. Kung [22]).

Dynamic systoli ¢ arrays:
® Reconfigurable switch

lattice of programmable

~ PEs (The Chip project
by Snyder, et al 8],
[30)).

. Programmable systolic _
array using -
multifunctional PEs

“which are dynamically |

interconnected by a
- circuit-switched network

Dynamic wavefront arrays:

- ® A wavefront array of

- multifunction PEs,
- which are dynamically

interconnected by a = |
packet-switched network |

(Hwang and Xu [26]).
o Attractive for arbitrarily

‘structured parallelism in | R

~ user algorithms.

(Hwang and Xu [26]).

I

S 87 =X Xy -) 1xp) _)

Lyg = tnxg - x,)

o (a) A 'procéssingelement‘(funéti‘onal pipelines)

‘o
L

Dynamic, -

— . Inter-PE - |

. Routing |-
Network

I (qm x pm) |

) S
G-

. eee

Yo

(b) Multi-PE networking

'Figuré 3. The concept of multi-PE networking for the construction of dynamic sys-
~_tolic arrays (p and q refer to the numbers of 1/O ports per PE)

- External
Inputs

PE]

a

E

o Figu_ré 4.

:) \\ // \ .

I . (a) f'A S"yv,s':tvolicv tree. lhachihe for searchihg 'bﬁ’e;lfatlonS! ST

Feedback
Inputs

PE,[>

PE

PE3

PE,

PE,

PE,

o Outputs |

(b) The network in'tercon'néétions for the sysﬁolic vti'ée L

PE;

’._ Rou“t'ivhg‘ NetwOrk’:f‘,

Connections

Feedback

A sy»syolic' search tree and the multi-PE n"etuforl_c'_imp]e’mgntationf

vy

vy

Yy

PE; PE, [PE; "PE,

————— Output

() Asystolicringof 4PEs

_- Inputs Routing Né’itwvork;i o

PE,

|PE, SRS
e ©\| Feedback
L ¥ SRR IR NG| o Connections -
{PE,} . . :

Cotpets o L AL TN

.

R Inpu‘; :

'Oﬁiput
© . (b) The netwérk'iinpleméntation of :thé vsyStdlié 'fing - | o

’ Figurfé 5. A Systolic»riﬁg for soI'Vi'n:g triangular. Iineai' sjys'tﬁqe_m .

~Inputs r
— PE;=>>b

(a) A hexag

oh_al systolic afray "

4= > C

IR

9 —|

A

10—

12 ==

11— PE,}—>

'Exter'nal< ——»PE5 —T

——

v

- Inputs- :
S S 1T e
17— PE6

i

19—

>

2AK

22—
- . 23—{PEg

24—

___.5.
Y

Y

25— -

Y

(b) The network implemeniation of the hexagonal array

I 1
LT L—" k-

‘Routing Network

— 5.

—— | |
— 2

AL 19

N—22 |-
M 23
—»24

tL

Out'p.utsv

B e A A
+— 18

Feedback ,
Connections

B F.igure 5:- A-hexagonal systolic array for matrix multiplicétion

Two addltlonal overheads -are 1ntroduced w1th dynamlc systohzatron - the
B reconﬁguratzon setup time and. the networlc delays Whenever a systollc computation is -
to be performed; the routrng network must. be set up. to- create the. desued systolrc._-
array. - -This setup time in most cases is domlnated by. the control complexrty of the
- - routing network. The problem of matching the problem size with the. size of the sys-_f '
~tolic array is less severe in-a dynamlc processor. Multlple small arrays can coexrst in-

R one processor. In Remps several systohc arrays. in different processors can be mtercon— |
‘nected via the shared registers to form a larger systolic - computing: structure Our .
study 1s concentrated on multi-PE systolization within each processor: Only after we

. gain enough experlence with. 1ntraprocessor systollzatlon then we: shall challenge inter-

.processor systollzatlon - S AR e S
,_ Des1gn of the PE needs to cover the most frequently used sclentlﬁc operators -
‘Bes1des functlonal selectlon for - the - PEs, one ‘must be’ concerned about the PE

_ reconﬁguratron control ‘and' the I/O ports requlrements "The" construction of pro—
" grammable PEs is desired [22] [23]. ‘Design of packet-sw1tched networks is needed for

- inter-PE - .connections in a’ ‘dynamic - ‘wavefront array processor. Systohzatlon experl-

o - ‘ments on the routing network demand the simulation of the connectivities and assess- .
ing the network delays. Other studies include the dynamic PE allocation, the’ linkage L
across processor boundarles tlmmg analy51s overhead and performance analySIS on - ’

var1ous systohc arrays N

L .4 Systollzatlon and Networkmg Requlrements R

The de51gn of a dynamlc systohc/wavefront array processor mvolves three bas1c
' cons1deratlons the structure of the PEs the routing network, and the systohzatlon pro-
. cedures These design: ‘considerations are dlscussed below. Because all PEs are identi-
“cal, they must be’ multifun ctional and can handle varlable granularltles Reglster files
should be allocated to each PE. Besides the: prlmltlve arlthmetlc/loglc functions, each
PE may have such functions as dot product compare and exchange, and even butterﬁy, -

: operatlons used in FFT Rescalmg the clock rate is needed in order to match the PE

. processing rate with the network data transfer rate Interface reglsters (or - latches)

must be used between the PEs and I/O ports of various networks involved. This is o
necessary to: achieve p1pehn1ng with synchronous control i in a systolic- processor For a: -

| wavefront processor, the PEs should also have some handshakmg mechamsm to support

- the data flow operatlons (12, 22]

Systohzatron procedures include: (i) the transformation of a ldataﬂow" gra‘ph‘or a

: }srgnal flow graph to a systolic array; and (ii) the setup of a systollc array by speclfylng B

- the function of each PE and establishing the desired connection pattern in the routmg ,

_ network Systematlcally mappmg parallel algorxthms into systohc array structure 1s,3 " o

‘ ,very deslrable Up to now, many algorlthms have been proven systohzable [20] Sys-

- tematic synthesls procedures have been suggested in [35], [36]. However, the problem is

. still. open for general systolic arrays. With our dynamic systohc approach not only
~-regularly-structured arrays (such” as ring, tree, hexagonal square llnear trlangular o
.’arrays) but also irregular arrays (such as any partlally -ordered graphs) are lmplement-
~ able. Thus the array synthe51s procedures should be more generallzed and easwr to be' '
, automated ’

Although the dynamlc systohzatron removes the spatzal Iocalzty constramt whlch is
’ 1nherent with static systolic arrays, temporal Iocalzty is still required. for dynamlc sys- -
- tolic- arrays The local correctness property suggested in [31] is sufficient to guarantee
the global delay correctness in' static systohc arrays. Thls criterion also- holds for
_ dynamlc systohc arrays. Furthermore, if the dynamic array is feedback free, the systol- .
ization procedures (i.e., the cut-set rules) in [22] are directly appllcable Even if the
':i-dynamlc array has feedback connections, the procedures can stlll be effective after only
some mlnor modlﬁcatlons Programmable noncompute delays should be assomated with -
the routlng network in order to add necessary delays among PEs S0 that the local delay .

aE crzterwn s satisfied. The LINK ch1p reported in [21] is an lnterconnectlon Chlp, whlch '

can have up to 32 units of programmable delays between an 1nput and an output, ‘
,whlch covers most frequently-used computatlon structures : ' :

W1th respect to the dynamlc wavefront arrays, the above systollzatlon problems :
can be greatly allev1ated "This is due to the fact that both the spatial locality and the
temporal locahty are’ no longer needed. Theoretlcally, any dataflow graph or signal
flow graph can be dlrectly transformed into a wavefront array for execution, if enough
Vhandshaklng reglsters are assoclated with the PEs [22] Nevertheless, since the PEs:
cannot have infinite (or even large) number of handshaklng reglsters some workable
procedure is stlll needed to transl'orm the algorlthm structure into a practlcal wavefront :
array o _ ' SR ,
~ The inter-PE routlng network should oﬂ'er nonblockmg and a high degree of con-

- nect1v1ty with a low hardware complexity, 0(m log m), a short network delay, 0(log

'm), and simple control complexity, O(log m) or even 0(1), where m is the network size.
Of course, when m is not éxcessively large, the crossbar network offers the most ﬂexrbll-
ity in 1nterconnect1ng the PEs. Among all the candidate networks our initial ﬁndlng
shows that the modified Benes networks may be the most promising type for a large
scale system and the crossbar network is preferable for small systems. '

Other networks issues worthy of further study include: the dynamlc connect1v1ty,

B 'the control strategies, the localization of broadeast operations, the reconﬁguratron topo-
logies, and the modular construction of the networks. ‘The purpose is to reduce the

network delay and increase the bandwidth. Several inter-PE connection networks are. -
_ Vexamlned below for systolization purposes. These networks are characterlzed by their .~

=17

‘ connecthty, blockmg or nonblockzng, hardware demand network delay, and control com- - o

plexity. . Varlous network propertles are summarlzed in Table 2

_Crossbar Networks » , , ,
, Crossbar sw1tch1ng networks are nonblocklng and thus have full connectrvrty The

‘network delay may be either 0(m) or O(log m) depending on crossbar 1mplementatron o

schemes. The ma]or disadvantage of a crossbar network is its high hardware demand_
0(m?2), espec1ally when the PE number m 1s very large. For small systems with less
than 16 PEs per processor, crossbar switch is acceptable based on today s technology

In the LINK chip [21), an 8x8 crossbar network with a 4-bit wordlength was imple-

. mented. S1xty four such ch1ps can be 1nterconnected to form a 16x 16 crossba.r w1th a" o

64—b1t wordlength

| When m is large Franklm [37] has observed that a crossbar ora Banyan network
“can be 1mplemented w1th a VLSI Chlp in an area of O(m 2). For VLSI 1mplementatron, ‘
the gate complexity -is not so severe an obstacle as compared with the pinout. llmlta~ ‘

tion. The Snyders Chip. machlne [8] requires O(m 2) switches for implementing all

“planar graphs with an 0(m) lattice delay. Thus crossbar. should be at least as good as
the switch lattlces for general purpose apphcatlons as far as hardware demand and net- '
‘ work delay are concerned o

" Benes Networks , S R
The Benes network is rearrangeable and thus has full connect1v1ty However the

‘network is blockmg with a delay of O(log m) and a hardware demand of O(m log m)
" These are attractlve features for systolization. Unfortunately, the control complexrty

for Benes network is 0(m log m), which is not desirable. Nassimi and Sahm [38] have e

developed a ‘self-routing scheme with control complexity 0(1), which sets up the net-
work: on-the-fly for a large number of permutations. It is still an open problem to
determine whether Benes networks can provide all useful connection patterns in 0(1)

tiime.

Other Blockmg Networks : _
This class of networks are not rearrangeable and thus have hmlted connectnnty -
[34]. The modified data manipulator, ﬂ1p networks, Omega networks, indirect binary - |
- n-cute, regular SW Banyan, and baseline networks are all belonging to this class. The
network delay is O(log m). and the hardware demand is O(m log m). It is doubtful to
utilize the limited connectivity in providing arbitrary connections. The major advan-
“tage of using this class is its low network control complexity 0(1). IR

- 18-

- Table 2. Varlous mxm Networks for the Constructlon of Dynamlc |
- Systohc/Wavefront Arrays : '

‘Network Properties

K Network

- Class Con‘1‘1 hivit Hardware. | Control - ‘ _.Network
S ¢ 3 Demand | Complexity | Delay
~ B . S 0(m)
Crossbar , R . o N ol
‘Switch [21,37) Nonblocking | 0(m%))~ O1) | or
151,08 . | | ' O(logm)
e] (mlogm) |
Benes [33]; [38] | Rearrangeable O(mlogm) | or - “O(logm) |
| Blocking Not B - O(mlogm) |- 0(1) N - O(logm)
| Networks® [34] rearrangeable | ' R
Nonblocking T T SN EER
[Networks [34] (39) Nonblocking | 0(mlog"m) Oflogm) | Oflogm) | -
Packet ’ -
Switching - o . : L SR
Nonblocking | 0(mlogm) o) | Ologm)

Networks {29,43] -

*(Omega; flip, n-cube, data manipulator, Banyan and Baseline).

: I 19 - . ,.‘ -

| Other Nonblockmg Networks . o S : P
Bes1des crossbar, there are other nonblocklng networks W1th a hardware demand of -

(m log m) as assessed in [39] [40]. - Unfortunately, there is no systematlc method to

| ‘construct such. nonblocklng networks, let alone the concern of the network delay and .
control complexrty Cantor 41] constructed a nonblockmg network w1th hardware

. complexrty of O(m log m) and network delay of 0(log m) The control complexrty for o

- such network was determlned as 0(log m) [42]

Packet swztched Networks . , IR _ .
Thls class 1ncludes many of the buﬂ'ered multlstage networks such as the buﬂ'ered .

- Delta networks [43] and multipath packet sw1tch1ng networks [29] The 3-ported o

_ sw1tches used in-HEP network [2] are also an interesting desrgn ‘The multrpath mul-

‘ tlstage networks require a hardware demand, 0(m log m), a network delay of 0(log m).

- and a control complex1ty of O(l) When the traffic rate is moderate such buﬁ‘ered net-
) works become essentially nonblocklng Tl’llS class of networks is necessary for the con» R

o ”structlon of dynamlc wavefront array processors usmg the handshaklng Phs

Because of the 1ncreased overhead by network reconﬁguratron and transnussnon _'
’ delays a dynamlc systollc array processor cannot be faster than a statlc counterpart o
A tradeoff study between the increased appllcatron ﬂexrblhty and - the degraded array

_speed must be’ made: The performance degradatlon due - to these extra delays is

analyzed below. ‘Let k be the number of pipeline stages in each PE ¢ be the length of

' the critical dataﬂow path in a systollc array, and "N be the: problem size which is equal -
, to the number of operand blocks (or wavefronts) enterlng a systollc array Then the‘ o
- total tlme requrred to process the N operand blocks in a statlc array 1s equal to . '

o G =ke(et) N1 W
| "’where ke (c +1) clock perlods are needed to process the very ﬁrst block and the E

R remalnlng N-1. data blocks each takes one clock: period to come. out of the plpehne

Now con51der the ‘case of a dynamlc systohc array w1th the same parameters

k ¢, and N. Let a be the network. reconﬁguratlon overhead, whlch is prlmarlly deter-

- mlned by the network control complexrty ‘The routing network. has a size of mxm
- with 2 = 0(log, m) stages. If the routing network has a stage delay equal to one clock -

perlod of the PE plpehne the network then has a transmrssron delay of A clock perlods o

- This 1mplles the total delay through the dynamlc systohc array is equal to-c* B, because

" the critical path is the longest dataﬂow path in the array.. This leads to.the followrng)

'-‘total time requlred to process N operand blocks in a dynamlc systollc array R
| '» Ty=a+(k+fctk+N-1 @
o 'where (k + ,B)c + Ic is. the time for the ﬁrst operand block to pass through the entrre, o

- 20-

array and N-1 addltlonal clock - perlods are needed to process the remalnlng N—

" blocks. For crossbar network the overhead o equals a constant and ﬂ log2m and,-_'_'"_-'-'

| -for Benes network with self routlng control ais also a constant and ﬁ = 2log2m 1.

: The throughputs of the static and dynamlc systolrc arrays are 1/T; and l/TdL_r-‘
' respectlvely Thus. (1/T,)/(I/Td) T4/ T, represents the -performance. ratio of the

) dynamic versus static systolic arrays. By (1) and (2), we have Td/T < 1. This perfor-"

~mance ratlo is plotted in Fig. 7 under the assumption o = 10, k= 8, ¢ = =15, and an

array size 3m x3m (if each PE. has 3 1nputs and 3 outputs) “The. curves correspond to o

.-dynamlc systolic arrays using e1ther crossbar or. Benes networks. Part (a) shows the

performance ratio as a- function of the array size 3m and Part (b) of the problem s1ze o

N. When the problem size 1s small (say N = 64), both networks degrade w1th the-, l
increase of the array size. However the performance rat1os become fairly close to 1
~when the problem size becomes very large (say N = 2048), regardless of the array size.

-~ With fixed network size (say m = 1024 as in part b), the performance ratios approach o)
~to 1 with the increase of the problem size. ' In both- drawmgs the crossbar-structured_ R
systohc array always has better performance than the array built w1th a Benes net-_ SRS

work.

The dynamlc systollc array can perform equally - well as- the statlc arrays, 1f the
~ problem size is large. The smaller is the interconnection network the better will be theﬁ_". o
performance 1f the problem size is larger than the network size, then the dynamic sys-

tolic arrays can maintain 60~90% the performance of the static counterparts For
ﬂgeneral-purpose applications, the flexibility in 1mplement1ng any systohc algorlthms is

- far more 1mportant than a minor speed degradatron due to added network overhead. e
There is no doubt that static systolic arrays are still superlor for lmplementlng ﬁxed,'_', o
- algorithms. However, static arrays become useless when the appllcatlon algor_lthms are.

changed.

5. Multrtasklng for Macro—Dataﬂowmg

The potentlal problems -of 1nstructlon-level data—drlven machlnes have been drs--f-r .
cussed in [44]. The major drawback is the excessive p1pellne overhead per instruction. =
The task-level or macro dataflow will have much cruder granularities. It is fair to view =~
the Remps as a macro dataflow machine with token storage where a token represents a -

task and an operator corresponds to a processor. This archltecture combines the

advantages of ‘both macro. dataflowing at the global level and control-flowing at the TR

- processor level. Data-sharing among communlcatrng tasks is- 1mplemented either with
I-structure storage at the global memory or v1a the shared reg1sters between processors o

o

,.:,.o,_g_ L R . - ."'--'B:enes) ded,

U B — YN =2048

T Crossbar)

o4k R

Per_formancé Rétio, ‘Ts/Td..h . . ‘: :

o1f - - | |
B R T
~4 8 16 32 64 128 256 512

- 3m (Array Size) -

*(a) Performance vs. the size of systolic array -~

~ Benes

0.6

R

- Performance Rat'io,st/Td. -

o3k

" (b) Performance vs. problem size witha fixed array sizem = 1024

, | Figur?"?- ; 'ﬁ_ Revl%‘.lti\"'e‘ perfbrrhéhce of St»_a.t:ic vé‘r$ﬁ$ dynarhic.sy'stdljc.ar_‘ray’s‘-'_; "

M »(ro dataﬂow can l)o lmplemontod wnth macro. plpelmmg at two dllferent levels

' ','Tasks w1th crude granularlty are: handled at the global level. Tasks with refined granu- '

‘vlarlty are handled at. ‘the. processor level or even' at the PE level ‘Thus: varlable-_""

~ resolution tasks" can be executed at. different clusters of PEs and/or processors at the

“ ~same time. - This: macro. dataﬁowmg with wvariable task granularltles must be supportedl ' o
by the hlerarchlcal controls, the use of the multlfunctlon PEs and the 1nterconnect10n" -
capablllty provided by various networks in Remps - o :

Gaudlot and Ercegovac [18] have conducted ‘an experlmental performance evalua— ‘

L _tlon of dataﬁow computers usmg varlable-resolutlon actors. The machlne -model with

“whlch ‘they ‘have. s1mulated is s1mllar to. the Arvind’ s: dataﬁow machlne at MIT [13].

= They use a’ varlable number of processmg elements to handle varlous node granularltles S

- Arvmd s model does not have a hlerarchlcal control ‘as: ex1stent - the Remps "This o
,jshows the fundamental dlﬂ'erence between our approach and- that in. [18] The two".,-v:* B

"'approaches in fact complement each other 1n _many’ aspects

f:ExampleI (Multltasklng of A Do Loop w1th 1E statement)

ConSIder the dataﬂow graph in Flg 8 contalmng an IF statement and the vector‘ o

- ,merge operatlon through masklng After vectorlzatlon ﬁne operatlons in the graph can - :
~ be lumped together to y1eld the graph w1th crude granularlty If we use 3 PEs from S

' _.Processor Py and 5 PEs from Processor P,, two multlplpellne systohc arrays are formed -
' respectlvely The Boolean vector, X, generated by processor 1, can’be: transmltted to .
processor 2 through the shared reglsters in the mterprocessor network AR

, Note that plpellne chamlng in Cray X—MP 1mplements only lmear data ﬂowv :

A _graphs The proposed multztaskmg technlque ‘can 1mplement any.program graphs of
course, the communlcatlon of systollc arrays. from different” processors . must be. sup-
ported by the lnterprocessor network These networks should be de51gned to have hlgh[=
. bandwrdth low transmrssron delays and some data mampulatlon capablhtles = -

Advantages of the above approach to achleve macro dataﬁowmg among multlplpe- B

: hnes and multlprocessors are summarlzed below: . .
(i) ‘The appllcatlon ﬁex1b111ty will be greatly enhanced Memory latency problemjf"
i handhng mtermedlate results can be allev1ated by using shared reglsters and e

o -_»packet switched networks S AR ' S R
- (i) The schedulmg of vector instructions to- p1pelmes and multlple tasks to proces-"
o :sors is controlled at the local and the global levels respectlvely Thus hlgher_}'
resource utlllzatlon can be expected ' - '

| (iii) The system reconﬁguratlon is supported by the ﬂex1ble connect1v1t1es among -4"
- fhardware resources. Parallellsm can be explorted at both task and mstructlon.' S

- Fori=1 ton Do
SR If x; :"3-‘-_‘5;—'5;6; < 0)
f’l'-théh Yi ",:"3:@[?{.'*‘ iy |
| S yi + ab—ed;
(® ~ ®) = Repeat

"Sele"ctj_jvs S O3

. Forprocessor Py~ “. For processor Py - '

B (a) The'dat‘arﬂ'o'w_ graph 'a,ndtgrovuping‘ o{_ nodesformultxtaskmg |

A ?}vﬁi:? ? rf£B Dv: . :
Maltply = 5 Multiply

: ‘Siibstract‘_"'
~ PE

C Multiply <. - Multiply Add | |
. PE»{ B a 'PEY - o FI'PE‘

Substract [=

v. ﬂiE v1 ‘;H..>1: {- ,.1 ;: :vy:;u* H_éa®t§E ~
(withsign =Y o withMasking
detector) EJ - . K4 Control

.X‘(Boolean’ vector) - 5000

(b) 'Systblic arra‘y‘iiihplément‘éd in 'Plgi). -Sys'_tc_ilic arré,y 1mplementedm P2 o

: VIF‘i'.gure‘ 8 M.ulti’t'a,skiﬁg fan_d: systolizatfigl'iz.ftb)f_’ih_ﬁlti"p’l'e;PE_sl in two "proges'sofé" D

_(E:cam'pvlell)_b o

- 24-

levels _ _ ,

Multltasklng for macro dataﬁow demands the partltlonmg of program graphs
Thls can be done by users at algorrthm design time, using a language which can specify .
‘ parallehsm and indjcate data communications between separated tasks. The partition-
" ing can be also performed by compilers, such as the Parafrase [45]. Finally, the parti- '
tioning can be done at run time using sophisticated parallelism-detection schemes such |
as those for exp101t1ng multiple functional units in IBM 360/91 and for multltaskmg in
Cray X-MP [46]. Compile-time methods are needed for .estrmatlng the space and time
COm'plexities of . computing events. within a program The. purpose is to support
automatlc program partltlonlng subject only to constraints on ‘data dependency and
resource avallablhty These will include program restructurmg, partltlonlng cr1ter1a
language extensions, complle algorlthms, and heurlstlcs for granularlty complexrty
analysis of program sections.

Program analysis should be performed at comprle—tlme to yreld better resource util-
1zat10n and higher system ‘throughput -and at run—tlme to reveal concurrent
arrthmetlc/logrc activities. In a multlprocessor system the percentage of code that can
be vectorized ranges from ten' to ninety percent across a ‘broad range of sclentlﬁc appli-
cations. The nonvectorlzab]e code (scalar operatlons) tends to become the bottleneck.
Using a few very powerful Processors, we emphaswe crude- granularlty Therefore the
partitioning should be conducted at the highest poss1ble level. This must be linked to
the resource availability, time and space tradeoffs and the overhead problem associated
with fine granularity at the lower levels. Some language features and procedure calls ,
‘must be 1ncorporated to support the automatic partltronlng of programs. ‘ '

Analy51s of various ‘program graph. charactenstlcs 1s needed to determine’ depen-
dence propertles cr1t1cal paths, maximum resource demanded and tradeoffs between :
computation, memory and I/O activities for algor1thms with fine and crude granularl-
. ties in node primitives. Nested loop analysis and multitasking conditions need to be
revealed for various program graph types. - Vectorization will'support expression
evaluatlon Crude-granularlty partltlonlng must be performed to have low overhead.

Mult1p1pehne and “multiprocessor schedulmg policies have been suggested for a
 control-flow supercomputer [47], [48]. Run-time methods are needed for dynamlcally“
scheduling partltloned computing modules to multiprocessor hardware resources. Thes_e
~ will include special hardware and software extensions for detecting the executability of
computing modules. These extended functional mechanisms must meet the perfor-
“mance requirement and achieve better fault tolerance.

We are cons1der1ng several priority heuristic schemes [17] such as most successor
first and least processing time first, etc., for scheduhng multiple tasks to multlple pro-
cessors. The choice of a partlcular scheme depends on workload dlstnbutlons and
application demands. We have found some heurrstlc algorlthms even though the

. - 25 -

-~ underlying problem is probably of exponential complexity. Analytlcal and experimen-
tal results are needed to access the speed and quality of various schedullng algorlthms‘
including. data flow and heuristic optlmlzatlon :

» Synchronlzatlon is needed to execute parallel tasks, because dlﬂerent tasks may
~ require different amounts of time to finish. ‘Either control level or data—level synchroni-
‘zation methods can be used. In the control level, we use. directed synchromzatlon
"graphs. In the data-level, synchronization is implemented - through shared variables
The shared semaphore reglsters will facilitate interprocessor ‘communications. The .
~ memory latency problem must be overcome in order to support multi-PE systollzatlon

~The interconnection networks must be designed to have short delays. We prefer to use
- the pipelined multlstage networks. Program and data caches must be used in proces-
sors. In this case, the local register file forms the data caches Prefetch scheme is used
to shorten the effective 1nstructlon fetch delays S o &

| _6 Throughput Analysrs of the Remps

The throughput analys1s of any mult1processor system is often problem—dependent -
In this sense, any conclusion on- general machine performance must be biased and
_unrealistic. The performance of Remps is ‘assessed with benchmark algorlthms We
choose to prov1de two benchmark evaluatlons of the Remps ‘The first benchmark
shows how to use the multlple processors, ln Remps to form a large macroplpehne for
solvmg linear recurrence systems with vector unknowns. The second example shows
multitasking among multiple processors for finding the inverse of a large, triangular
matrix.- In both examples, multi-PE systolization within each processor is practiced.
To evaluate the performance of these dynamically formed systolic array processors,
various network delays and overheads are quantified to show their effects on the overall
performance. | ” '

- Let a and ~ be the setup times of the routing network in each processor and of the
interprocessor network respectively. Let A and 0 be the delays of these two networks,
respectively.. For general applications, we assume crossbar networks in both cases.
Thus the o and < are small constants, say each equal to tens of the clock periods of the
PE plpehne The two network delays are G = logym ‘and 0 =logyn, respectwely
~ With ‘the pro;ected growth in multiprocessor and network swes, we can assume
0(10) < n < 0(10%) and 0(10%) < m < 0(10%). Thus, we can estimate 0 < 8 < 0(10)
clock perlods The number of: pipeline stages, k, in each PE is usually also a small
-number, around. 0(10) The above discussions lead to the assumption that all the five
parameters, «, ,3, ~, 8, and k are small constants with an ‘order of tens of the PE clock:

periods.

-26-

" In the Remps with n processors and m'PEs per processor,’ the mazimum speedup is

"equal to m*n, as compared with a uniprocessor system with a smgle PE (n =1 and
m = =1). We shall denote the total compute times for a given algorithm executed on
the Remps as T, " and that on an uniprocessor as Ty ;. Then the speedup is defined as '
'S =T, 1/Tm o Again, the problem size, N, indicates the number of operand blocks
'(or wavefronts) to be processed in' the multiple systolic array processors. Whenever -
two—dlmenswnal array isi nvolved we use the shorthand notatlon \/—_ = ror r2"'m

E:rample 2 (Macropzpelmmg for solving lmear recurrence systems)

o As often performed in solvrng a, lmear block trldragonal system [49] a famlly of
linear recurrence systems ‘needs - to be solved for a sequence of vector unknowns‘

X = (Xip, Xigy o X;m)T for i=1,2,..,N, where each X; is an m- d1mens10nal column vec-
tor. The computatlons mvolved are matrix-vector- multlpllcatlons deﬁned by: |
X All X +A X + R +A12n 1X1_2n+1 4 f()r 1—12 N » (3)

where each A;; s an mxm matrlx The initial ~values of the ystem, -
Xo»)Ll, . X(% —1p should be glven as inpuls. The outputs of the systems are X forv‘_
1= 12 N - : : - '

The n processors in Remps can be 1nterconnected to form a macrop:pelme rimg

(Flg Qa) for solving -a recurrence system of order 2n—1. Note that n processors are
‘needed in the systohc ring for solving an order-(2n 1) recurrence system as shown in
[31]. The m PEs in each processor are configured into a linear systolic array (Fig. 9b)
to. carry out, the component matrix-vector multlphcatlons as characterized below:

Denote X EA,ZH_] i~(2n-j) for k=1 ,2,..,2n-1 and X(2")= X Each hnear sys— |

i=1
tohc array processor performs : , - ,
X&) = A on_k+1) Xl—(zn pop) X for 1<k<2m-1 (4

The X() = {k) xék) x(k)) are from the outputs of the preceding processor and
' X(kﬂ) are the outputs to the next processor in the ring. The constant matrlx Al 2n-j '
" ‘must be prestored in the local memory of the workmg processor. ' ‘
‘ The mterprocessor network is used to establish the interfaces between adjacent
processors in the ring. The n. processors can communicate with each other in a
dataflow fashion, that is, a processor initiates a task whenever. all requu'ed data inputs
become available. The global controller generates semaphores to be used for interpro-
cessor communications. The interprocessor - activities are mainly for block data
“transfers of the intermediate vectors, X(), between adjacent Processors.. These inter--
mediate vectors are passed d1rectly between processors w1thout accessrng the shared

memory.

—27 ~

Interprocessor
Network , ‘
Y . Processors: -
r'l - l"'i . f1 T)
N ! ' ol
> Py N =P2,—:—r—>m-——,lr—>,P,,~
i)
(I I.J| ‘ :.J.
r
1
- I . <
= - <
-4 '
LJ
(a) Macropipeline ring of n processors
o
From . s > ©
_processor | .. X
Py x$) l
o k)'
i)
A oo 312 211 —» PE; fe— X,)
a2m see 892 32] ——»t PEy fe—x9 .
Aj2n-(k +1) : Xiczn +(k-1)
‘ : (Processor P;)

...
g ¢ 0 ¢ i

Ay oee A2 2y — PEm j— X, J
To xék+l) ,
processor . > (k+1)
Pi4; s X
x{k“)
Y :

/

(b) The linear systolic array in each processor for computing Eq. 4

Figure 9. Multiprocessor macropipelining for solving linear recurrence system
(Ezample 2).

" In each processor it takes mk +(—1)ﬁ+(m—l) = (k +,B+1) (ﬂ+1) clock': .
-f"perlods to compute Eq (1) “The 1nterprocessor network requires §+m—1 cycles to
itransfer the lntermedlate vector: X(kl It takes tl time to compute the ﬁrst output vec-* o

‘tor Xl, where t; = '7+a+(2n 1 (03 +,6+l)m—(ﬂ+l]+ 2n-2)8. The remaining vec-
tors X; for i=2,3,...,N, each can be produced in every 2m cycles Thus the total tlme :

g l_needed to solve the recurrence system is:

: ¥ ‘i Tm "
where Cl—"(k +ﬂ+1) Co—ﬁ+3 Cg—ﬁ~0+1 and C4-—a+ﬁ+f7—2&-l are all small con—f'

=t + 2m(N—‘) = 2mN + Clmn Com C3n + C4 o e (5) o

- ;stants compared w1th the ‘much larger values of N >m>n On the- other hand the o |

same recurrence system requrres Tl i tlme on a unprocessor where e e
By = (2n- 1) INHE (8

- -twhere the PE in “the unlprocessor is a plpelmed scalar unit with: k stages However the

. b-lnner product operatlon a+a+bxc, takes 1 cycle to complete in thls PE, once the pxpe- S

hne is full The speedup is thus obtained by d1v1d1ng () by (5)

o S~ _ (2n—1)m2N +k) ,
. ”"" 2mN+C,mn C‘2m C3n +C4

o In Flg 10 ‘we' plotted the speedup Sm 2352 functlon of the: problem size N; under |
' vvarrous Remps sizes (m,n). Thls example demonstrates a worst-case study, because B
~ the critical path in the linear systollc array has the longest possrble length m. For.sys-

tolic trees and hexagonal (or square} systoltc arrays, the. critical paths would be respec-': N
'tlvely log2m and \/— much shorter than this worst-case of m. Therefore the perfor-' -
mance of the Remps would be even better for those systolrc arrays w1th hlgher dlmen-"f

‘ SlOIlS

' : Ezample 3 [Multztaslcmg j'or trtangular matrm: mverswn}

‘ The 1nvers10n of a nonsmgular trrangular matrlx can be done in. a block-'
'partltlonlng fashion as suggested in [50] Given an upper trrangular matrlx U of order.

rN. Suppose U is proven nonsingular. The purpose is to find the inverse matrix - o

Ul A"',V The matrix U is bemg partitioned into N(N+1j/2 submatrlces ‘each of

which has a dlmenswn rxr The output matrlx \'A can be partltloned accordmgly as - o
= shown below L IR v

T

"Z?f-

| "l -

4

| B |
64 128 256 512 1024
Problem Size

N=1024

N =64

f—
[=d
[\
'S
i

S 0
[y
(3]

L}

1 L S]
~ 8 16 32
Processor Number

N=1024

L 1 i

] 1
64 128

16 32
PE Number

Figure 10. The speedup performance for Ezample 2.

- 30-

where every Uj; and. V;; are rxr matrlces for l<1<_|<N The partitioned algorlthm
for systematlcally generatlng the output submatrlces Vi from mput submatrlces Uy, ‘

1s speclﬁed below |
: For i1 to N step 1 do S
. V - Uu1 g '
|) Repeat ‘
For i1 to (N-l) step 1 do
. For]4—1 to (N—l) step 1 dO

JJ'h ZUJJ+T J+r1+1 ‘,: o) (10)

: ,Vb)‘h p V Wu+1
'Repeat ‘. ’

Repeat

: The case of N “4 is-shown m Flg 11. The computlng granularlty of each node is
' speclﬁed in the submatrlx level All the submatrlx computa,tlon tasks are listed in part
(a). A precedence graph, showing the data dependence relatlons among these tasks is
given in part (b). From this graph, all the tasks belonging to the ‘same level can be.
executed in parallel. There are i(i+1)/2 independent tasks parallelly executable at
~level 2i-1 and i parallel tasks at level 2i for 1<i<N-1.In general, there are
2(N-1)+1=2N-1 levels in the graph. A sample nonpreemptlve schedule is shown in
Fig. 11c for a Remps with n =4 processors. _ E
The submatrix inversions (Eq. 9) are performed only wrth the diagonal subma-
trices. A triangular systolic array of r(r +1)/2 PEs has been suggested [50], [53] for
computing the inverse of a trlangula,r matrix of order r, as depicted in Fig. 12a. The
elements of the input matrix Uj; are initially distributed in the PEs. The dla,gonal PEs
perform scalar division operations. The remaining PEs perform scalar 1nner—product

' operatlons It is assumed that each d1v1s10n or each inner-product operation takes one.

tzme step, _whlch equals k clock periods 1 in the PE plpehne Such a triangular systohc
array requires 2r—1 time steps to complete the inversion process Detalled PE opera-
tions in these steps can be found in: [53]

-&3/"‘

Submat rix Computations

Tasks - .
T, ~Ty | Vi —Unl for i=1,2,3,4
Ts~ Ty Wiz = Upp'Vag, Wag = Upy'Vig, W13 = U13 V33:

o Wiy = Uy Vg, Woy = UgyVyy Wy = Ups'Vag:

Ty ~Tis | Viz = VW Vo = V22 Wog, Viy = —Vig* Wy, .
Ty ~Tis | Wis = Wig+Ups'Vys, W24 = W24+U23V34, Wy = W14+U13 Vi |
Ty ~Tig | Vis = Vi Wis, Vay = —Var'Woy 4

Ty Wy = =Wy, tUp “Vyy

To | Via = VWi

“(b). Precedence graph

Figure 11, Partitioned matrix inversion for Ezample 3 with N =4 o

~ (a) The partitioned computation tasks

(c) A samplé schedule among 4 processors |

[S

R L O A SN

2r-1 steps

>

By 312 313 Ay ' by by byg bia|
0 2 agy ag] _ |0 byy byy by,
0 0 ag ag 0 0 by by,
lo o 0 a, {0 0 0 b,

(a) A triangular systolic array for matrix inversion
. (Preparata and Vuillemin 1980 [53])

- r independent arrays A v)

(= PE [¢— —>{PE |+ - a3 239 33, | PE fe————— 31 00(‘320 G ¢33

PE |+— - e 0 0.0 Oy

PE h——- fPEv.i N\ 293 299 B9y

‘. ("2;”? PEs per prOcessor) T PR B = by; by, bg,b,zbz‘zbabwbzsba@ S

\ 213 312 21 \—> PE j=— ,’cuv0 0¢20 0cyg

(b) Multlple linear systolic arrays for matrix multlpllcatlon (C—»Ax B+ C)
(Kulkarnl and Yen 1982 [54]) . :

‘Figure 12. Dyi»)ar»nié,alrly breco‘nﬁg"’ured systolic arra}y»S’usé‘d).iri E':l:ampl_e 3.

-33-

Usmg a dynamlc systohc 1mplementat10n the total tlme 1nclud1ng network over-
head, required - ‘to invert a trlangular submatrlx Uj, equals atty, where

 ty=(r-1)f+@r-1)k = (3+2k)r~(8+k) S(8+2k)r clock periods for large r. Note

‘that the setup time o should be counted only once, lf the array is to be used repeatedly_ '
for similar tasks. The N matrix inversions (Tasks T1~T4 in Fig. 12a) can be performed .'
by n processors in a+h't2 cycles, where h=N/n is assumed an 1nteger and only one
_triangular systolic array is lmplementable in each processor

" The remaining submatrix computatlons are for. accumulatlve matnx matrlx multl- '
. ’phcatrons (Eq. 10). Even there are square or hexagonal statrc arrays suggested for

matrix multiplication in linear time [22], [29], [51], we choose to implement r indepen- -
dent, linear systolic arrays in each processor (Fig. 12b), to carry out r matrix-matrix
multiplications in parallel. This decision is made due to the detrimental delay effects of ‘
- using larger networks. There are at most nr linear systolic arrays in the entire system _
Each linear systolic array multlphes two matrlces and, if needed, 51multaneously adds
“the product AxB’ to a third input matrix C for accumulative operations. The detailed
matrix-matrix multiplication steps in a linear array are described in [54]. The input

‘matrix elements are flowing through the array, not the partial products. Every out- |

- put element of the resultlng matrlx is computed (dot product operatlons) exclusrvely‘
 within each PE. ‘ S , L e v .

Once a linear ‘array is set up, it ,reqUire‘s t3.= (k,+ﬂ)(r—l)+k +'(r2—1) }
= 2+ (k+B)r—(8+1) cycles to multiply a pair of rxr matrices. For large value Of"r,,.'_
we can approximate t3'=r2+(k +9)r. Assuming the desired operand data are continu-
ously supplied to the systolic processors without a memory latency problem we can
estimate the total matrix multiplication time as follows:

~The execution of all tasks at the same level on the precedence»graph (Fvig. 11b)
must be completed before tasks at the successor level can be initiated.” When N is very
large, the number of matrix multiplications at each level may exceed the number, rn,
of available systolic arrays. Consider 1=1,2,. ,N-1. At the odd level 2i-1,
P2i-1 n 4 |
tion. At the even level 21 q2,-—l1/ rn] iterations are needed to perform 1 matrlx multlpll-
catlons In total M= lezl— +qq5) - (N3/6+5N2/4)/rn iterations are needed. Each‘

i+l
iteration requires tg cycles to complete Therefore the total matrix multiplication time

v.equals a+ty M. The total time requ1red to mvert the entlre matrix U is thus equal’ to

T —(a‘-l-h t2)~ (a+t3 M)

m,n

= [{i+1)/2 i-terations are needed to' carry out the i(i+l)/2 pairs of multipli‘ca; e

. -‘3.4:-... -

= (N3/6+5N2/4) r+k+ﬂ)/n +N ,B+2lc)r/n +20 o

© == as the matrrx.srze rN.—»oo.-_. S (1)

o en | |
. On .th_e' other-hand’ a unipr‘ocess0r PE‘can 'compute U,"l;_in:'» L

o Tl 1= (k+rN“’1)+[k+?(2N2+3TN'_4)]

yd .

B f3N3 B r2N . rN

PR 6. _;2 3.
: 'The speedup performance is obtalned by dmdlng (12) by (ll)
 SpaE L1 N/6 r‘n = mn, as rN-—»oo S P ¢ &) I

The above analysrs 1gnores the memory latency problem a.ssocrated wrth fetchlngr |

~or storlng the large number of matrix elements through the memory hlerarchy (reglster E

files, local: memory, and global memory) The. memory latency is" caused by memory . “
access delays ‘and’ various network delays If one adds these delays then we should
modify the: processmg times t, and t; to t, = t2+Cr and t3 =t,+Cr? respectlvely,' '
- where C is the . average memory. latency per ‘matrix. element. Dependlng on the hierarch-
ical memory structure and technology mvolved the value of the latency, C, may range'

o | .vfrom a few tenths to tens of the processor clock period. The higher is the degree of

memory 1nterleav1ng and the faster is the memory technology, the smaller w111 be the -
“value of C. The added terms Cr? and Cr3 are the memory latencies associated with

transferrmg r2 and 3 matrix elements in. submatrlx inversion and in'r submatnx mul-
tiplications, respectively, in each processor Substltutmg to and t3 by t2 and t3 respec- i
tively 1 in Eq 11, we obtaln a degraded processing. time: - '
Crin® »
i 6n - .
Using Eq 12 in Eq 14 ‘we obtain - a reduced speedup wrth r= \/_ Note that the,;
o memory latency does not pose a problem for the scalar umprocessors Thus the time -

T :‘2a+ht + Mt =

m,n

‘ T“ does not change _

' Tyt _ mn _ avm. L o

"_as"rN’—>oo~ SR (14)

: The memory latency problem causes a degradatlon in processor performance only_ ;

i-when the processors are requlred to wait for the complete arrival of all the. required.
~ data blocks for each task to be executed. This processor ldllng situation can be allevi-
: :ated if contezt swztchmg is allowed at the processor level Whenever a dynamlc systollc N

_35-

processor becomes free but the desned data blocks are not re51dent in the processor, the
processor is allowed to be sw1tched (and the systolic array be reconﬁgured) to execute .
other ready-to—run tasks. Only after all the required operands have been loaded into
the register-file, the processor can be switched back to execute an old task, whlch was
waiting to be lnltlated ‘However, once a task is initiated, it must be executed until
. completlon :

‘ ‘Context sw1tch1ng reduces ~ processor idle time (waiting for operands’)‘ and

increases the processor utilization. However, additional switching overhead, (), is intro-
duced every time the processor switches to another executable task. This overhead is
~attributed to the time needed to perform context switching of all register contents and
processor states [27] The value of the overhead, {1, may vary from tens to hundreds of
~ the processor clock periods, dependlng on the degree of multrprocessrng belng supported
by the operating system Wlth context swrtchmg, the basic processing times t, and ts
should be changed to t2 = t2+Q and t3 v t3+Q respectlvely The total compute
time in Eq. 11 should be modrﬁed as follows :

i

- Thua (a+t2)b +(a+t3)M
= e\ (1+ Q+a ﬂ+kv), asriN—o0 . e (16) -
6n P2 . , S

The speedup in Eq. 13 then becomes

S.u : ': Tl,l — mn
il T;’:,n SR Qta -, Btk

, "The three speedups Sm s Sm ., and Sm . are plotted in Fig. 13 under the as's‘ump;
tion a=k=10, C=2, =20, and B=log3m. When the memory latency does not pose a
serious problem, the speedup function, S,; , n» IDCTeases rapidly to the maximum value of
mn. The curve Sm n Shows a serious performance degradation caused by memory .
latency The middle curve Sm n shows that context switching indeed helps improve the

CasiNow)

performance srgnlﬁcantly, even the memory latency is long when processors must go to
‘the shared global memory for exchange of large data blocks. If Q,a=0(m) ‘and

B,k= 0(\/—), then the Sm n declines only slightly, as the problem size N becomes large.

In Fig. 14, we show the detrimental eflects on the speedup functlons Sm n and
by increasing the values of the memory latency C and the context switching over-

S,

m,n?’

head 12, respectlvely We conclude from these plots that the memory latency should be . -

mlnrmlzed in any multlprocessor system. If an appreciable memory latency does exist,
* then context sw1tch1ng is highly recommended to alleviate the problem To support'

| _.multltaskmg among multiple processors with shared memory, context switching is

necessary to mlmmrze the processor 1dle trme and thus increase the system throughput

B Speedup

R ,m‘x‘-n} 206x16»(max)

{2048

1024}

sz
‘T;;256; _‘>_ ;:

Sm jo8)

mxn = 64x4 (max)

4' R Assumptlons 0—2

8 16 32 64 . 128 .

(Problem Size)

: Figure _1v3,7 Speedup performance for Example3 w1th SOlld curves for (m,‘nf)' =
S (28, 16) and dashed curves for (m n) = (64,4). SRS :

mxn =256x16

128 = 4096 (max)

sk mxnzeaxa N
SRR | .__256(maxf\

‘1 2 4 8 16 (clockperiods)

11
12 A
"~ (Averge memory latency) -

ek mxn = 25616 = 4096 (max)
) R

Speedup

".A_S',,',',,?, © gl mxn = 64x4 =256 (max) P

Sre R RIISTT T

l_g_-_‘ R S SRR LSRR b
4 200 100 500 (clock penods)

(Context sw1tchmg overhead)

Flgure 14 : Performance degradatlon of the Remps of two snzes due to melnoryl
latency and context sw1tch1ng overhea.d

»- However the sw1tch1ng overhead should be malntalned as low as possrble The above -

 two examples demonstrate that the speed’ 1mprovement can ‘be achieved by the same

set of hardware PEs to perform different algonthmlc computations at dlﬁ'erent times. =
For large problem size, "N, or large resource pool, (m n), the speedups are rather o
1mpressrve plus the obv1ous galns in apphcatlon ﬂexrblhty ' ’

7. Conclusrons o

The mterprocessor network is used only to drrectly pass small and regular data ‘

sets between processors (as shown in- Examples 1 and 2). The shared memory must be o

“used, when large data sets are transferred among processors (as shown in Example 3).
For reasonably large problems, the dynamlc systollc arrays can perform as ‘well as their
_statie’ counterparts “The 1ncreased network ‘overhead does not pose a serious: problem)
“when the problem size is sufﬁcrently large and: well partltloned for multrtasklng ‘When

- the. problem srze is small frequent reconﬁguratlon of the systollc processor may not be
: advantageous Burldmg ‘dynamic, systohc/wavefront array processors demands exten-

sive R /D eﬁorts, before achrevmg cost-eﬁ‘ectrveness in real machrnes o '

The. proposed reconﬁgurable multlprocessor system is desrgned at thls stage pl‘l- -

"'rnanly for supercomputing in. sclentlﬁc/englneenng applications. ‘Special de51gn metho-_

dologies . and operational features of the Remps are presented The proposed MIMD
' vsystem has a hierarchical structure which provides macro dataﬂowmg at the interpro-
cessor level and control ﬂowmg at the intraprocessor level. Reconﬁgurabllrty of the sys- -
‘ tem emphasrzes apphcatron ﬂexrblhty and fault tolerance [56] T S

Our continued eﬁorts are being directed to performance analysrs of Remps for
large—scale screntrﬁc/vector computations; such as for solving partral differential equa-
- tions (PDE) problems [57], [58]. We are also extendmg the PE: designs for implement-
ing parallel-production systems in a multiprocessor environment [59], [60]. -This
. explores the prospects of desrgnmg a supercomputer which is useful for both numerlcal -

: analysrs and AI-onented appllcatlons [e1], .[62]- Our initial ﬁndmgs show - that ‘the -
dynamic - systollc arrays may - be more suitable for numeric processing, whereas the
dynamlc wavefront Processors may be more attractive to symbollc mampulatlons

. References :
. s

Cray Research Inc “The Cray X—MP Serres of Computer Systems Techmcal_
Brochure, aneapohs Mrnnesota Aug 1984 -) L

; — 9.

Smlth B. J,; “Archrtecture and Apphcatlon of the HEP Multlprocessor Computer' :

- System » Real Time Signal Processmg IV, Vol. 298, August 1981.

10.
11.
12,

- 13,

14.

15.
16.
17.

18,
19.
20.

21.

' -Farmwald P. M. “The S-1 Mark IIA Supercomputer,” in High- Spe.ed Computa- |

tions (J. S, Kowalik ed.), Springer-Verlag, 1984. .

.LlpOVSkl G. J. and Tripathi, A., “A Reconfigurable Varlstructured Array Proces-

sor,” Proc. 1977 Int. Conf. on Parallel Processing, 1977, pp. 165-174.

Brown, J. C., “TRAC An Envrronment for Parallel Computlng,” COMPON pp. |
294-298, Sprlng 1984.

Schwartz J. T.; “Ultracomputers,” ACM Trans Programmmg Languages and Sys— B

tems, Vol. 2, No. 4, 1980, pp. 484- 521 ~ .
Gottlieb, A., Grishman, R., Kruskal, C. P., McAaliffe, K. P Randolph L. and‘
Snir, M., “The NYU Ultracomputer-Des1gn1ng an MIMD Shared "Memory Parallel

Computer > [EEE Trans. Computers, February 1983, pp. 175-189. ‘ '

“Snyder, L., “Introduction to the Conﬁgurable nghly Parallel Computer ” IEEE
- Computer, January 1982, pp. 47- 64 E

Kung, H. T., “Overview of Systolic Array PrOJects at CMU ” :nternal document

'Carnegre—Mellon Unlver51ty, September 1984.

.Briggs, F. A, Fu, K. S., Hwang, K., and Wah, B. W, “Pumps Architecture for-‘:'
- Pattern Analysrs and Image Database Management ” IEEE Trans. Computers, Vol

C-31, No. 10, October 1982, pp. 969-982.

"Gajskl D., Kuck, D., Lawrie, D., and Sameh, A., “Constructlon of aLarge Scale'_

Multlprocessor’ Rept No. 'UIUCDCS-B- 83—1123 Dept. of Computer Sc1ence'
University of Illinois, Urbana, February 1983.

Dennis, J. B, “Data Flow Supercomputers " IEEE C’omputer Magazme November_ '

1980, pp. 48-56.

~Arvind and Iannuem R. A, “A Cr1t1que of Multlprocessmg von Neumann Style,”

Proc. of 10th Ann. Symp C’omputerArchztecture June 1983, pp. 426-436.

‘Carlson, W. W., and Hwang, K., “On Structural Data Accessing in Dataflow Com-

puters, A Proc lst Int'l. C’onf C’omputers and Applications, Beijing, China, June
1984.. »

Keller, R. M., Patil, S. S, and Lmdstrom G “A Loosely Coupled Appllcatwe_. o
‘ Multlprocessrng System 7 Proc Nat'l C’omputer Conf AFIPS Press, 1979. e

Watson, I. and Gurd, J., “A Practical Data Flow Computer » IEEE Computer
Vol. 15, No. 2, 1982, pp. 51-57. ‘

Hwang, K. and Su, S. P., “Priority Scheduhng in Event-Drlven Dataﬂow Comput—
. TR-EFE 83- 36 School of E. E., Purdue University, 1983.

,Gaudlot J. L. and Ercegovac, M. D “Performance Analysis of a Data-Flow Com-

puter w1th Variable Resolution Actors ? 4th Int’l. Conf. on D:strzbuted Computtng. .

~ Systems, San Francisco, California, May 1984.

Gajski, D. and Pier, J. K., “Parallel Processing: Problems and Solutions,” Tech
Report, Univ. of Ilhnors Urbana Ill., 1984.

Kung, H. T, “Why Systolic Archltectures? K IEEE Computer January 1982 pp |
37-46. o
Hsu, F H., Kung, H. T., Nishizawa, T., and Sussman A, “LINC The Llnk and'

F'Interconnectlon Chip,” CMU internal document, Dept of Computer Smence
Carnegle-Mellon Umv May 1984. . :

22.

93,
A Programmable Systolic Chlp,”v 10th Ann Int’l. Symp on Computer Archztecture
- June 1984, pp. 48-53. - - v
_Reddi, S. S.; and Feustel E A YA Restructurable Computer System IE'EE S

I'Trans Comp Vol. C- 27, Jan 1978 pp- 1-20: - L

24.

96
S Supercomputers TR~EE 84 42 School of E. E,, Purdue Unlversxty, November o

. 27
.28,

29.

30.

392,

34,

.Kun S Y “On Supercomputmg w1th Systohc/Wavefront Array Processors
'-Proc of IE'E'E Vol. 72, No. 7, July 1984. ,

Flsher A. L., Kung, H T, Momer, L. M and DOhl Y v“Archltecture of the PSC

Vanaken, J. R., and Zick, G. L “The Expressmn Processor A Plpelmed

'Multlple-Processor Archltecture IE'EE Trans Comp, Vol C-30 Aug 1981 pp
525-536.

Hwang, K. and Xu, Z. “Dynamic Systohzatlon for Developlng Multlprocessor -

1984 -

McGraw-Hlll New York 1984

Hwang, K. (Editor), Supercomputers Deszgn and Applzcatzons IEEE Computer-' -

Society Press, August 1984.

Chin, C. Y. and Hwang, K., “Packet. Sw1tch1ng Networks for Multlprocessors and , i
Dataﬂow ‘Computers,” IEEE Trans on - Computers speclal issue on Parallel Pro-_

cessing, November 1984. _
Kapauan A., Field, J. T Gannon, D B., and L Snyder “The Prmgle Parallel

-~ Computer,” Proc of the 11th Int’l Symp on C’omputer Arch:tecture June 1984 PP
12-20.

- 31.

Kung, H T. and Lam M “Wafter-Scale Integratlon and Two—Level Plpellned '
Implementatlons of Systollc ‘Arrays,” Journal of Parallel and Dzstrzbuted Comput-

“ing, Vol. 1, No. 1, ‘September 1984, pp. 32-63.
Feng, T. Y., “Data Manlpulatlon Functions in Parallel Processors and Thelr

Implementatlons 7 IEEE Trans Computers Vol. C-23 No 3, ‘March 1974, pp

. 309-318. :
Benes, V. E Mathematzcal Theory of C’onnectron Networks and Telephone Traﬂic S

New. York, Academlc Press, Inc., 1965.

‘Wu, C.-L., and Feng, T. Y. (Edltors) Interconnectzon Networks for parallel and o

L Drstrzbuted Processing, IEEE Computer Society Press, August 1984.

36.

3.
38..
- tion Algorlthms » [EEE Trans. Computers ‘May 1981, pp. 332-340.
. 39.

40,

Moldovan, D. I, “On the Design of Algorlthms for VLSI Systohc Arrays; Proc of::‘

IEEE, Vol. 71, No 1, 1983, pp. 113-120.

‘Quinton, P., ‘“‘Automatic. Synthesis of Systollc Arrays from" Umform Recurrent" :
- Equations,” 11th Ann Int’l Symp on: C’omputer Archrtecture June 1984 pp 208-:' RS

214

Frankhn M. A “VLSI Performance Comparlson of Banyan and Crossbar Com—l
munlcatlon Networks IEEE Trans. Computers; April 1981, pp. 283-290. o

Nassimi, D., and Sahni, S., “A Self-Routing Benes Network and Parallel Permuta-

Cantor, D. G., “On Non-Blockmg Sw1tch1ng Networks Networks Wlnter 1971 ,‘
ppP- 367- 377. - .

_Bassalygo L. A and Pinsker, M. S “On the Complexrty of Optlma Non-' _—
. Blocking: Sw1tch1ng Networks ‘Without Rearrangement in Problems in Informa- o

tion Transmtsszon Plenum Pub Corp . New York 1973 pp 84-87

S~

Hwan K and Brlggs F A vC’omputer Archttecture and Parallel Processmg," o |

41.
42.
43.
44.
5.
46.
47,
48
49.
50.
51.
52.
53.
54,

55.
" VLSI Electronics: Mictro-structure Science, Vol 7 (Elnspruch Ed.), 1983,

- 56.

osT
58.

99.

v Zar

Cantor, D. G “On Constructlon of Nonblockmg Swrtchmg Networks i Proc
Symp. Computer-C’ommunzcatzon Networks and Teletraﬁc Polytechnic Instltute of
Brooklyn, 1972. :

Pippengen, N., “On Rearrangeable and Non—Blocklng Swrtchmg Networks J. oj’ -

- Compuler and System Science, September 1978, pp. 145-162.

Kumar, M. and Jump, J. R., “Performance Enhancement in Buffered Delta Net- .

works Usrng Crossbar Switches and Multiple Links,” Journal of ParalIeI and Distri-

buted Computing, Vol. 1, No. 1, August 1984, pp. 81-103.

“Gajski, D. D., Panda, D. A, Kuck, D. J., and Kuhn, R. H “A Second Oprmon on'

Dataflow Machmes and Languages » IEEE Computer February 1982, pp. 58-70.

Kuck, D. J., Kuhn, R. H., Leasure, B., and Wolf, M. J., “The Structure of An
Advanced Retargetable Vectorlzer ” in Supercomputers Des:gn and Applzcatzons :
(Ed. Hwang) IEEE Computer Soc1ety Press, August 1984. ‘
Larson, J., “Multltasklng on the Cray X—MP/2 Multrprocessor ” IEEE Computer
July 1984, pp. 62-60. | |
Su, S. P. and Hwang, K., “Multiple Prpelme Scheduhng in Vector Supercomput— ‘

“ers,” Proc. Int’l. Conf. on Parallel Processing, August 1982, pp. 226-234.

Sahni, S. “Scheduhng Multlprpelrne and Multiprocessor Computers » IEEE Trans
Computers July 1984, pp. 637-645.

Sameh, A. H.; “On Two Numerical Algorlthms for Multlprocessors Proc. NATO
Advanced Research Workshop on Hzgh Speed Computzng, Edited by Kowallk W
Germany, June 1983. :

Hwang, K. and Cheng, Y. H., “Partltloned Matrlx Algorithms for. VLSI Arrthmetlc-__v
Systems » IEEE Trans Computers Vol. C-31, No. 12, December 1982, pp. 1215—

1224.

Kung, H. T., and Leiserson, C. E., “Systolic Arrays (for VLSI),” Sparse. Matrza:
Proc (Duff, et al., eds.), SIAM Phlladelphla Penn., 1978, pp. 245-282. " B
Fisher, A. L., Kung, H. T., Monier, L. M., and Dohi, Y., “Architecture of the PQC _
A Programmable Systolic Chrp,” Proc. of the 10th Annual Int'l Symp on C’omputer_
Architecture, June 1983, pp. 48-53."

Preparata, F. P. and Vulllemln J “Optlmal Integrated -Circuit Implementatlon of
Triangular Matrix Inversion,” Proc. Int’I Conf. on Parallel Process:ng, August
1980, pp. 211-216.

Kulkarni, A. V. and Yen, D. W, “Systohc Processing.and an Implementatlon for
Signal and Image Processmg, IEEE Trans. Computers, Vol. C-31, No 10, Oct.
1982, pp. 1000-1009.

Hwang, K., “VLSI Computer Arlthmetrc for Real—Tlme Image Processmg, in

Academic Press, New York, pp. 303-331.
Hwang, K., “Multlprocessor Supercomputers for Screntlﬁc Appllcatlons > IEEE-
Computer, speclal issue on Multzprocesszng Technology and Systems July 1985 (to
appear).

Rice, J. R, “Very Large Least Square Problems and Supercomputers

»

Technical

'_,Report 46’4, Dept. of Computer Science, Purdue University, December 1983.
Ni. L. M. and Hwang, K., “Vector Reduction Methods for Arithmetic Plpellnes

IEEE Trans. Computers, accepted to appear early 1985.

McDonald, J. F., Rogers, E. H., Rose, K., and Steckl, A. J., “The Trials of Wafer |
Scale Integratlon 7 IEEE' Spectrum Oct 1984 pp- 32- 39

-¢z -

60. Stolfo S. J, eranker D. and Shaw, D. E. “Architecture and Applicétions of
DADO: A Large—Scale Parallel Computer for Artlﬁaal Intelllgence Pr0c. of Int 1
- Joint Conf. on Artificial Intelligence, 1983. :
~61. Ullman, J. D;, “Flux, Sorting and Supercomputer Organlzatlon for AI Appllca-
-~ tioms,”. Joumal of Parallel and Distributed Computmg, Vol. l No. 2, November
1984,
- 62. Zadeh L. A, “Makmg Computers Think lee People IEE'E' Spec_trum, August 1
1984, pp. 26-32. o -

	Purdue University
	Purdue e-Pubs
	10-1-1984

	Dynamic Systolization for Developing Multiprocessor Supercomputers
	Kai Hwang
	Zhiwei Xu

	tmp.1542052450.pdf.nIlGy

