
Structure Driven Multiprocessor Compilation
of Numeric Problems

by
G. N. Srinivasa Prasanna

B.Tech, Electrical Engineering
Indian Institute of Technology, Kanpur

(1983)

M.S., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1986)

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1991

© 1991 Massachusetts Institute of Technology

Signature of Author:
Department of Electrical Engineering and Computer Science

January 22, 1991

Certified by:

Professor o ical Engineerin and

Accented bvA c--c- -J.

3ruce. R. Musicus
Computer Science

Th i Sup visor

X. C. Smith
Chairman, Departmental Graduate Committee

MASSACHUSETTS 'Sr: Sl UTE
OF TECHItOLOGY

APR 0 3 1991
LIBRARIES

ARCHIVES

Structure Driven Multiprocessor Compilation
of Numeric Problems

by
G. N. Srinivasa Prasanna

Submitted to the Department of Electrical Engineering and Computer Science
on January 22, 1991 in partial fulfillment of the

requirements for the Degree of
Doctor of Philosophy

in Electrical Engineering and Computer Science

ABSTRACT

The optimal automatic compilation of computation intensive numeric problems onto mul-
tiprocessors is of great current interest. While optimal compilation is NP-Hard in general,
the extensive structure present in many numeric algorithms greatly facilitates their op-
timal compilation. This thesis explores the application of a hierarchical compilation
paradigm for such algorithms. These algorithms can be specified as matrix expressions
composed of matrix sums, products, and inverses, FFTs, etc. Good compilations for
these algorithms can be derived by composing together good routines for these basic
operators, thus yielding a hierarchical compilation strategy.

The first part of this thesis we explore the use of the extensive structure present in
matrix operations to derive close to optimal routines for them, thus creating a parallel
library. We show that these operator routines vary in a smooth fashion over a space of
parameterised architectures.

We then present a theoretical framework for optimally composing together good li-
brary routines to generate a good compilation for the entire matrix expression dataflow
graph. Classical scheduling theory is generalised for this purpose. Each operator in the
expression is identified with a dynamic system (task). The state of a task represents
the amount of computation completed. Computing the matrix expression is equivalent
to traversing the state space from the initial uncomputed state to the final computed
state, using the processor resources. This casts the problem in the framework of control
theory. Fundamental new insights into multiprocessor scheduling can be obtained from
this formulation.

Optimal control theory is applied to identify time-optimal control strategies with
optimal schedules. A number of powerful results can be derived under very general
assumptions. For certain types of (convex) task dynamics, it is shown that optimal
scheduling is equivalent to shortest path and flow problems. This leads to very simple
strategies for scheduling dataflow graphs composed of such tasks. These strategies have
been applied to scheduling matrix expressions. A compiler utilizing these techniques
has been written, generating MUL-T code for the MIT Alewife machine, and the theory
validated.

Thesis Supervisor: Bruce. R. Musicus
Title: Professor of Electrical Engineering and Computer Science

To Tata,
For all that you did for me.

_ .
__ ~_

Acknowledgments
The work described in this dissertation has benefited from a vast variety of friends.

Firstly, I must gratefully acknowledge my debt to my advisors, Prof. Bruce Musicus and
Prof. Ananth Agarwal. I thank Bruce for all the guidance and support I received from
him, and for tolerating my many faults. His extensive and deep knowledge and super
sharp reasoning power were most valuable to my thesis. I learned a great deal about
multiprocessors from Ananth. Without the Alewife Multiprocessor facilities I received
from Ananth, the experimental results would have been impossible to obtain. Next I
must thank my readers, Prof. Jonathan Allen and Prof. Arvind. Their feedback about
various portions of the thesis was most valuable.

Any research is a group activity, and mine is no exception. I have benefited extensively
from discussions with the entire MIT Alewife Group. My friends Dave Chaiken, Beng-
Hong Lim, Kirk Johnson, Dann Nussbaum, John Kubiatowicz, Dave Kranz, and many
others were critical to my work on the Alewife Machine. They were always ready to
answer my questions, simple or complex, stupid or deep. Without them the thesis would
have gone nowhere. I have also benefited extensively with discussion with members of
the MIT DSPG group, in particular Dennis Fogg and Michelle Covell. May their tribe
increase.

The quality of a person's work depends as much on personal support as on the profes-
sional environment. In this regard I have been extremely lucky to have a very supporting
family. Tata will always be a source of inspiration to me, and will forever remind me
of the value of true scholarship. Amma and Anna have displayed infinite patience in
waiting for their very lazy son to finish his studies, and finally start earning! Seema, you
have been so considerate in waiting for your useless husband to start work! Chacha, I do
wish I emulate you someday, and give some of my life to the poor and the downtrodden.
Without you all I would never have gone so far in life. I never want to lose you.

El

Contents

1 Structure Driven Compilation of Numeric Problems 10
1.1 Overview.................................... .. 10
1.2 Thesis Outline . 11
1.3 Multiprocessor Model 14
1.4 Design of the Parallel Operator Library 15

1.4.1 Characterization of basic matrix operators 15
1.4.2 Partitioning 15
1.4.3 Scheduling . 16
1.4.4 Exam ples . 16

1.5 Composing Parallel Operator Library routines 17
1.5.1 Characterization of the problem 17
1.5.2 Formal Specification 18
1.5.3 Control Theoretic Formulation of Scheduling 19
1.5.4 Results from Control Theory 20

1.6 Implementation and Experimental Validation 20
1.7 History of the Problem 21
1.8 Sum m ary 25

2 Optimal Matrix Operator Routines 26
2.1 O verview . 26
2.2 M ultiprocessor model 26
2.3 Optimal compilation 27
2.4 Exploiting Structure in Matrix Operator Dataflow Graphs 28

2.4.1 Polyhedral Representation of Matrix Operator Dataflow Graphs . 29
2.5 M atrix Sum s 32
2.6 M atrix Products 33

2.6.1 Continuous Approximation 34
2.6.2 Lower Bounds 35
2.6.3 Previous Work on Partitioning Techniques 42
2.6.4 Heuristics for Partitioning Matrix Products 43
2.6.5 Experimental results 53

2.7 Continuous processors and mode shifts 53

6

2.7.1 Extension of Lower Bounds 56
2.7.2 M ode Shifts 57

2.8 Special cases of Matrix Sums and Products 57

3 Generalised Scheduling 62
3.1 Introduction .. . 62
3.2 Model of the Parallel Task System 65
3.3 Setting up the Optimal Control Solution 68
3.4 Solution M ethod 71
3.5 Speedup Functionpa 73

3.5.1 Series Tasks 74
3.5.2 Parallel Tasks 75
3.5.3 Hom ogeneity 75

3.6 Simplified Scheduling Algorithm 77
3.6.1 Series and Parallel Decompositions 77
3.6.2 Examples of Optimal Schedules 81
3.6.3 Trees and Forests 81
3.6.4 General Directed Acyclic Graphs (DAG's) 83

3.7 pc Dynamics and Shortest Path Scheduling 85
3.8 Discussion and Summary 88

4 Experimental Results 89
4.1 Introduction .. . 89
4.2 Experimental Environment 90

4.2.1 Mul-T - a Parallel LISP 90
4.2.2 The MIT Alewife Machine90
4.2.3 Alewife Machine Model 92

4.3 General Issues in Compiling Static Dataflow Graphs 94
4.4 Parallel Operator Library 96

4.4.1 M atrix Sum s 96
4.4.2 M atrix Products 96
4.4.3 Other Operators 98

4.5 Composing Parallel Operator Library Routines 98
4.6 Compiler Implementation Details 102
4.7 Matrix Expression Examples 102

4.7.1 Matrix Product Parallel Library routine 102
4.7.2 gll - Filter Bank 106
4.7.3 g12 - Larger Filter Bank 110
4.7.4 g20, g21 - Matrix Polynomials 110
4.7.5 g22 - DFP Update 113

4.8 Discussion and Further Compiler Enhancements 113

-I _ I

7

5 Conclusion and Future Work 117
5.1 Sum m ary . 117
5.2 Contributions of the Thesis 121
5.3 Extension and Future Work 122

A Optimal Solution for Strictly Increasing Speedups 125

B Optimal Solution for p* Dynamics 129

C Proof of Homogeneity Theorem 133

Hierarchical Compilation Paradigm . 13
Processor M odel 14
Generalized Scheduling 17

Processor M odel 27
Dataflow Graphs for Matrix Addition and Matrix Product 30
Dataflow Graph for N x N2 Matrix Addition 33
Dataflow Graph for N1 x N2 x N3 Matrix Product 34
Processor Cluster Analysis for Matrix Product 36
Optimal Processor Cluster 39
Optimal Square Partitioning 42
Optimal Tiling solution compared with Kong's Approximation 44
Partition of an N x N x N cube into 14 chunks (a) 48
Partition of an N x N x N cube into 14 chunks (b) 49
Communication vs Processors for 20 x 20 x 20 Matrix Product 51
Communication vs T -te for 20 x 20 x 20 Matrix Product 52
Communication vs Processors for 10 x 40 x 20 Matrix Product 54
Communication vs T(-13) for 10 x 40 x 20 Matrix Product 55
Mode-Shifts for 1 < P(= 1 +) 2.. 58
Optimal partition of AA T 59
Optimally partitioned dataflow graph of AAT, P = 2 blocks 60

Example of a parallel task system 66
Optimal Tree Scheduling using series-parallel reductions 82
Optimal Inverted Tree Scheduling using series-parallel reductions 83
Optimal DAG Scheduling using series-parallel reductions 84
Scheduling and Shortest Path Problems 85

The MIT Alewife Machine 91
Implementation of Matrix Product 97
Generalised Scheduling Heuristics 101
Code for Matrix Product 103
Speedup Curve for 20 x 20 matrix product 105
Greedy Schedule for g11 106

U. ~ 111

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

U.^L

9

4.7 Code for gll 108
4.8 Speedup Curves - gll 109
4.9 Speedup Curves- g12 111
4.10 Speedup Curves- g20, g21 112
4.11 DFP Update 113
4.12 Speedup Curves- g22 114

Chapter 1

Structure Driven Compilation of

Numeric Problems

1.1 Overview

Numeric computation is critical to many branches of science and engineering. Appli-

cations are found in electrical engineering (signal processing, VLSI design, circuit and

device simulation), mechanical and civil engineering (mechanical parts design, finite ele-

ment analysis), weather prediction, simulation studies in the physical sciences, etc. These

problems are compute intensive, and hence their efficient multiprocessor execution is of

great current interest.

Efficient multiprocessor performance on a given problem depends on many interacting

factors, including architecture, operating systems, and efficient program compilation. In

this thesis, we explore the issues of effectively compiling numeric problems onto shared

memory multiprocessors.

11

1.2 Thesis Outline

Two issues have to be tackled for efficient multiprocessor compilation. First, the workload

of the program must be equitably distributed across all the available processors. The

distribution must be such that the communication between tasks is minimised. This is

the partitioning problem. Next, the set of tasks for each processor must be sequenced in

in a manner such that all precedence constraints are satisfied, and the processors are kept

busy as far as possible. This is the scheduling problem. Both partitioning and scheduling

are difficult, NP-Hard problems.

Clearly, general purpose graph partitioning and scheduling techniques can be used

for compilation [Sar87], but they are very time consuming in general. However, for

many important classes of numeric problems, the general techniques are unnecessary.

Hierarchical techniques can be used to greatly speed up the compilation.

In this thesis, we explore the application of a hierarchical compilation strategy, to an

important subclass of numeric problems, viz. those encountered in signal processing and

linear algebra. The architectures targeted are shared memory architectures like the MIT

Alewife machine [Aga90], the Encore Multimax, etc.

The basic paradigm is to exploit the structure in the dataflow graphs (also called

DFG's) of such numeric problems. These numeric problems can be conveniently repre-

sented as compositions of basic numeric operators. If good compilations for the basic

operators are known, and good techniques to compose these operator algorithms, then

a good compilation for the numeric problem can be derived. The strategy will be fast if

each of the two steps is fast.

The hierarchical compilation strategy is applicable if the problem domain naturally

lends itself to the two level specification. Many problems in signal processing and lin-

ear algebra fall in this class. Portions of a general purpose numeric program are also

well handled by this paradigm. A combination of the two-level hierarchical compilation

method, and the general purpose method ([Sar87]) is necessary for a complete general

purpose numeric program.

12

Most algorithms in signal processing and inner loops of linear algebra algorithms

can be expressed in terms of expressions composed of matrix operators. These matrix

operator dataflow graphs have regular data and control flow, and regular communication

structure. The nodes of the matrix expression dataflow graph are matrix operators

themselves (macro-nodes). The matrix expression dataflow graph (also called a macro

dataflow graph) in general exhibits little structure, but generally has data-independent

control. Some examples are shown below (all operators are matrix operators)

Y = A(B + CD) Simple Matrix Expression

Y = ao + aA + a2A 2 + a3A3 + ... + aNAN Matrix Polynomial

z 2rkl
Y = WX Fourier Transform, matrix W wkl = e- =

This thesis has two major parts. First, it shows that it is possible to analyse and derive

good algorithms for the basic matrix operators, thus deriving a parallel operator library.

Second it shows that one can quickly compose library routines to get good algorithms for

the complete matrix expression. This yields a speedy hierarchical compilation strategy

for such structured problems. Specifically,

* We demonstrate how the structure present in matrix operator dataflow graphs can

be used to derive close to optimal routines for them. Our techniques can be used

to develop a parallel library of routines for these operators. It is important to

note that our library routines are parameterised by the number of processors to run

them on. In other words, each library routine is characterised by the amount of

parallelism involved in its computation.

* We have developed theoretical insights into effectively composing matrix operator

algorithms to yield algorithms for the matrix expression. These insights have been

obtained by viewing scheduling from the perspective of optimal control theory.

13

2 2
Part. Part.

Partitions

(a) Matrix Expression (b) Single Level Partitioning, (c) Hierarchical Partitioning
Dataflowgraph. 4 Partitions. 4 Partitions.

Figure 1.1: Hierarchical Compilation Paradigm

Minimal time scheduling strategies can be identified with time optimal control

strategies. The approach has been used to derive simple heuristics for composing

matrix operator algorithms to form algorithms for the expression.

* We have implemented these ideas in the form of a prototype compiler producing

Multilisp code from a matrix expression in Lisp-like syntax. Timings statistics on

the MIT Alewife Machine have been obtained, roughly verifying our ideas.

An example of the hierarchical compilation paradigm is shown in Figure 1.1. Figure

1.1 (a) shows the dataflow graph for a sequence of three matrix operations, two multiplies

followed by an inverse. Figure 1.1 (b) shows a conventional compilation algorithm, which

expands the dataflow graph (partially or completely), and then performs a partitioning

and scheduling (on four processors). Figure 1.1 (c) shows the hierarchical paradigm,

where parallel library routines for each of the operators (two matrix products and an

inverse) are composed together to form a compilation for the complete expression. While

tackling the composition problem, we have to determine both the sequencing of the

library routines, as well as the number of processors each routine runs on (parallelism).

We have developed a theoretical foundation for this problem, using the theory of optimal

control. Several heuristics for determining parallelism as well as scheduling emerge from

this theory. A prototype compiler incorporating these ideas has been implemented.

The rest of the overview sketches these ideas in more detail. Section 1.3 describes

the multiprocessor model used in the thesis. Section 1.4 sketches the techniques used

14

INTERCONNECT

Proc Proc Proc
0 1 P-1

MEMORY

Figure 1.2: Processor Model

to design the parallel library. Chapter 2 describes these techniques in detail. Section

1.5 sketches the methods used to compose the library routines to form a routine for

the complete matrix expression. Chapter 3 describes these ideas in detail. Section 1.6

specifies some of the implementation details. Chapter 4 describes these ideas in detail.

Section 1.7 gives a historical perspective on the compilation problem. Section 1.8 sums

up.

1.3 Multiprocessor Model

We assume a fully connected MIMD multiprocessor with P processors, with global shared

memory (Figure 1.2).

The architecture is characterised by the operation times and the times to access data

in another processor or in global memory. We shall show (Chapter 2) that the optimal

algorithms vary smoothly as these architectural parameters vary, facilitating automatic

compilation.

We assume a uniform multiprocessor structure with equal access time to any other

processor. The time to access a datum in global memory is also invariant. Hence we have

ignored network conflicts, memory interleaving, etc. More details on the multiprocessor

model are in Chapter 2.

15

The MIT Alewife machine [Aga90] on which the simulation is performed is a cache

coherent shared memory (2-D or 3-D) mesh connected multiprocessor. While it does

not exactly match the processor abstraction, such a simple abstraction is necessary for

analysis of the performance of a given algorithm on the machine. We use a simple

performance metric for evaluating an algorithm, viz. the sum of communication and

computation times. These will be defined precisely in Chapter 2.

1.4 Design of the Parallel Operator Library

We describe below the methodology used in designing the routines in the parallel operator

library. The key idea is to exploit the structure of the operator dataflow graph to facilitate

partitioning and scheduling. The simple processor abstraction (Section 1.3) facilitates

analysing the performance of any given operator algorithm.

It is important to note that in general, each operator routine is parameterised by the

input and output data sizes, as well as the number of processors (parallelism) to be used

in its computation. These parameters are specified when these routines are composed

together to yield a complete matrix expression.

1.4.1 Characterization of basic matrix operators

The basic matrix operators have dataflow graphs which can be represented as simple

regular geometric figures (regular polyhedra) (Chapter 2). Their nodes are arranged at

lattice points, and communication takes place in a regular pattern. This regular geometry

makes the partitioning and scheduling task easy. Thus good algorithms for these basic

numeric operators can be easily derived.

1.4.2 Partitioning

Optimal partitioning of the operator dataflow graph for P processors is equivalent to

splitting up the regular geometric figure formed by the dataflow graph so as to minimise

16

the communication, keeping the computation balanced. In general, this necessitates

packing P equal sized compact node clusters into the regular geometric figure formed

by the dataflow graph. This is a difficult problem in general, for arbitrary P. But

the redeeming feature is that this partitioning problem needs to be solved only once

for each operator, and put in the compiler's knowledge base. It is important to note

that the optimal partitioning techniques can be devised to handle an arbitrary number

of partitions (parallelism). Thus one does not have to solve the partitioning problem

repeatedly for every possible parallelism.

1.4.3 Scheduling

Scheduling the above formed partitions is easily done by analysing the regular prece-

dence structure of the dataflow graph. In many cases, the computations at all nodes are

independent, so scheduling is very straightforward. Of course, the extensive bookkeeping

needed in all cases is best handled by an automatic compiler.

1.4.4 Examples

Chapter 2 shows how the structure present in many matrix operator dataflow graphs can

be exploited to develop a parallel library. Each library routine is parameterised by the

data sizes, the amount of parallelism (P), etc.

For example, in the case of a matrix product, the dataflow graph can be represented

as a cube. Optimal partitioning of the dataflow graph into P partitions is equivalent

to packing P compact partitions into a cube. The scheduling of the various partitions

is straightforward because all nodes in the dataflow graph are independent. Similarly,
the dataflow graph for a Fourier Transform forms a hypercube. Optimal partitioning is

equivalent to identifying small sub-FFT's. The scheduling follows FFT precedences.

Thus, by analysing the geometric structure of the dataflow graph, we can generate a

library of parallel routines, each parameterised by the amount of parallelism P.

17

Pro :essors Pro -essors

1 2 3 1 3
V%3 T 2 Tine

% 3 _3 Tme 2 Time

(a) Matrix Expression (b) Schedule 1 (c) Schedule 2
Dataflowgraph.

Figure 1.3: Generalized Scheduling

1.5 Composing Parallel Operator Library routines

1.5.1 Characterization of the problem

Given the parallel operator library, we have to compose the operator routines to generate

a complete algorithm (compilation) for the numeric problem. Note that the modules in

the operator library are parameterised by the (apriori unknown) number of processors

(parallelism) P. Thus the composition has to specify P for each operator, in addition

to sequencing the operators. Different assignment of processors P will result in differing

performances.

For example, Figure 1.3 shows two different schedules for a matrix expression com-

posed of two matrix multiplies followed by an inverse. We have specified each schedule

in terms of its Gantt chart. A Gantt chart shows the computations performed by each

processor (y-axis) over time (x-axis).

From the figure, we see that in Schedule 1, tasks (operator routines) 1 and 2 run on

more processors than in Schedule 2. Thus the overhead of parallel execution has to be

higher in Schedule 1. Thus Schedule 2 is expected to be faster than Schedule 1. Hence an

optimal operator parallelism has to be determined in addition to sequencing. Clearly, this

problem (to be called generalized scheduling) is more difficult than classical scheduling,

where only the sequencing is determined.

_____l___~sl~_~

18

1.5.2 Formal Specification

In this section, we present a formal specification of generalised scheduling. We must note

that the specification is simplified somewhat - a much more sophisticated model can be

found in Chapter 3. However, most of the essential aspects are presented below.

We have a system of N tasks i, with a set of precedence constraints

(a = {(i < j)

where i < j implies that task i precedes j.

The execution time for each task varies with the number of processors allocated to

it. Let the task i have an execution time ei(Pi) on pi processors. In general, as we

increase the number of processors allotted to any task, the overhead of parallel execution

increases. For a well designed operator routine, with low overhead, the time can decrease

almost linearly with the number of processors. For a poor routine, the time need not

decrease significantly even for many processors. Hence, in general it is true that

ei(pi) > e()

The generalised scheduling problem is to allocate processors to each of the tasks, and

sequence the tasks (ie. determine their starting times) in such a way that all precedence

constraints are satisfied, and the complete matrix expression is computed in minimum

time.

A generalised schedule S can hence be specified as a set

{< i,pi, ti >},i = 1. N

where pi is the number of processors allocated to the task i, and ti is the starting time

of task i. The precedence relations imply that

i < j --+ ti + e(pi) < tj

At any point of time t, the total number of processors allocated to all the running tasks

19

is less than the total number of processors available, P, ie.

E Pi <P

i Erunning tasks

The objective is to minimise the finishing time tF, where

tF = max (ti + ei(pi))

It is conceivable that a schedule, in which the number of processors allocated to a task

changes dynamically with time, is faster than a schedule in which it does not. Hence,

in our model in Chapter 3, we have allowed the processors pi allocated to a task i to be

time varying, ie. pi = pi(t).

It is relatively easy to think up simple heuristics to perform generalised scheduling.

For example, one should as far as possible minimise the number of processors assigned

to each task, since then one minimises the overhead. But one can explore this problem

at greater length, and derive very interesting insights into the problem of multiprocessor

scheduling itself. For this we take recourse to optimal control theory.

1.5.3 Control Theoretic Formulation of Scheduling

The fundamental paradigm is to view tasks as dynamic systems, whose state represents

the amount of computation completed at any point of time. The matrix expression is

then viewed as a composite task system - the operator routine tasks being its subsystems.

At each instant, state changes can be brought about by assigning (possibly varying)

amounts of processing power to the tasks. Computing the composite system of tasks

is equivalent to traversing a trajectory of the task system from the initial (all zero)

uncomputed state to the final fully computed state, satisfying constraints on precedence,

and total processing power available. The processors have to be allocated to the tasks in

such a way that the computation is finished in the minimum time.

This is a classical optimal control problem. The task system has to be controlled to

traverse the trajectory from start to finish. The resources available to achieve this control

20

are the processors. A valid control strategy never uses more processors than available,

and ensures that no task is started before its predecessors are completed. A minimal time

schedule is equivalent to a time-optimal control strategy (optimal processor-assignment).

1.5.4 Results from Control Theory

The results of time-optimal control theory (Chapter 3) can be invoked to yield funda-

mental insights into generalised scheduling. The results include

* Powerful general theorems regarding task starting and finishing times.

* Elegant rules for simplifying the scheduling problem in special cases. Equivalence

of the generalised scheduling problem to constrained shortest path problems in such

cases.

* General purpose heuristics for scheduling, provably optimal in special cases.

1.6 Implementation and Experimental Validation

We have written a prototype compiler which takes a matrix expression and automati-

cally generates parallelised Multilisp code. The input language allows arbitrary matrix

expressions to be specified, both trees and general DAGS. The compiler operates by first

calling the generalised scheduling heuristics (Section 1.5.3, and Chapter 3) to determine

the parallelism for each particular operator. The object code is formed by appropriately

sequencing the calls to the library routines for each operator, with the parallelism speci-

fied above. Intermediate memory allocation is currently done within the library routines

themselves. The results from the prototype compiler are in rough verification with the-

ory, with correct and relatively efficient code being produced. A much more powerful

compiler is currently in development, and should show even better results.

21

1.7 History of the Problem

Multiprocessor compilation has been extensively researched to date [PW86, Cof76, Kuc78,

Sar87, Sch85]. The research can be grouped into two categories.

The first category attempts to compile a given, fixed dataflow graph onto a given, pos-

sibly parameterised architecture. The second category attempts to perform algorithmic

changes to the dataflow graph itself, to improve performance.

Various techniques have been developed for compiling fixed dataflow graphs onto

a given, possibly parameterised architecture. Firstly, techniques have been developed

for vectorising and parallelising FORTRAN programs onto vector and parallel machines

[Kuc78]. In conjunction with this, several code optimisation techniques for uniprocessors

were also developed. Second, for the subclass of programs whose dataflow graphs are reg-

ular, retiming techniques [Lei83] exist for efficiently mapping them onto regular processor

architectures. Lastly, general purpose graph partitioning and scheduling techniques have

been applied [Sar87] to compile general programs onto a wide class of parameterised

architectures.

These compilation techniques are not hierarchical in general. The techniques for

parallelising FORTRAN [Kuc78] are primarily local, low level optimizations. The prime

examples of local optimizations are the techniques to vectorise and parallelise loops. The

retiming techniques [Lei83] can be viewed as methods to develop the parallel library

routines, since the dataflow graphs for the library routines are regular. The general

purpose partitioning and scheduling techniques [Sar87] do not have a notion of hierarchy,

as the entire program dataflow graph is treated as a unit. The hierarchical compilation

paradigm explored in this thesis builds on these low level optimization techniques, and

incorporates composition paradigms on top. Below we describe some of the historical

work in more detail.

The early studies of [Kuc78] dealt with various issues in automatic compilation, both

on single processor machines, and multiprocessors. The goal was to effectively compile

FORTRAN programs onto vector machines like the Cray. Both scalar and vector/parallel

optimizations were developed.

The scalar optimizations include constant and copy propagation, induction variable

recognition, code reordering, etc. The parallelising optimizations dealt with various kinds

of arithmetic expressions, especially recurrences. Lower bounds of various kinds on the

parallel time taken to compute arithmetic expressions exploiting all allowed commuta-

tivity and associativity were derived. Many methods to vectorise and parallelise loop

recurrences on vector machines were developed. Generally all these methods involved

analysis of the dependency structure of the recurrence, to find an appropriate unrolling

and reordering. Various tests [Ban79] to determine when loop unrolling is feasible were

developed. Many of these techniques have been applied to compiling FORTRAN pro-

grams for vector and parallel machines like the Cray [PW86], Convex [Mer88], Ardent

[A1188], etc. Related work in the context of VLIW architectures was done by [Fis84], and

applied in the Bulldog compiler.

A very general approach to the multiprocessor compilation problem was taken by

([Sar87]), to compile programs written in a single assignment language SISAL. A very

large class of parameterised architectures, with varying processor and interconnect char-

acteristics can be handled.

A dataflow graph is created for the problem, with each node representing a collection

(possibly only one) of operations in the program. Execution profile information is used to

derive compile time estimates of module execution times and data sizes in the program.

Then, an explicit graph partitioning of the dataflow graph of the problem is performed, to

determine the tasks for different processors. Finally, either a run-time scheduling system

is invoked to automatically schedule the tasks, or a static scheduling of these tasks is

determined at compile time. Trace driven simulation was used to obtain experimental

results. Speedups of the order of 20 % to 50 % were observed for important numeric

programs like SIMPLE, SLAB, FFT, etc.

These graph partitioning and scheduling techniques are time consuming in general, as

they involve the NP-hard problems of partitioning and scheduling. We show in our thesis

23

that for a large class of important numeric programs, the general purpose partitioning

and scheduling methods are unnecessary, and can be replaced by simpler hierarchical

compilation techniques.

[Lei83] and others have developed retiming techniques for effectively scheduling prob-

lems with regular dataflow graphs - eg. matrix operators. These dataflow graphs are

characterised by the existence of a large number of similar nodes, arranged in a multidi-

mensional lattice. All nodes perform the same operation, on different data. Communi-

cation of data between nodes is regular, and generally between adjacent nodes. Flow of

control at each node is relatively data independent.

The retiming technique maps the lattice of dataflow graph nodes into a lower dimen-

sional processor lattice (a lattice whose points represent processors). A linear modulo

map is generally used. In general, multiple dataflow graph nodes will map to the same

processor. Hence this implicitly yields a partition of the dataflow graph nodes into sets

handled by different processors. The communication structure of the dataflow graph

lattice determines the communication structure of the processor lattice. Retiming tech-

niques in general result in systolic computation methods for the dataflow graph.

In the domain of signal processing [BS83, Sch85] have extended such retiming tech-

niques for effective compilation of the recurrences commonly found in signal processing

systems. The class of cyclo-static periodic schedules was developed. Basically, these

schedules tile the dataflow graph lattice in an optimal fashion. A basic tiling pattern

specifies the distribution of computation of a single iteration across all the processors.

The distribution of work changes periodically with time, as specified by the lattice vector

of the schedule. These schedules exhibit various forms of optimality - with respect to

throughput, delay, and number of processors.

Retiming techniques appear quite attractive for compiling regular dataflow graphs.

Indeed compilers for systolic architectures have been developed. For example, [Lam87]

has developed an optimising compiler for the 10 processor Warp Machine. The Warp

Machine is a linear systolic array of high performance programmable processors. Soft-

ware pipelining and hierarchical reduction (of basic blocks to a macro-instruction) are

extensively used for code optimization.

However, in general it is not possible to map arbitrary compositions of regular dataflow

graphs using retiming techniques. Even for regular dataflow graphs, it is not easy to find

linear modulo maps to map arbitrary sized problems on arbitrary number of processors.

The techniques developed so far do not incorporate prespecified processor interconnectiv-

ity, except in the CRYSTAL compiler, [Che85, Che86]. Also, important code reordering

techniques exploiting arithmetic properties like associativity and commutativity are not

incorporated in this framework.

The work described above tackles the problem of compiling a given dataflow graph

onto a given architecture, and as such falls in the first category of compilation techniques.

Further major gains can be obtained by changing the dataflow graph itself (algorithm

restructuring) - the second category. In the context of matrix expressions, this would

mean transforming the matrix expression into equivalent forms, using the rules of matrix

algebra.

[Mye86, Cov89] at the MIT DSP group have explored algorithm restructuring in the

domain of signal processing. SPLICE and ESPLICE [Mye86, Cov89] apply a variety of

knowledge based methods to transform signal processing systems into equivalent forms,

with varying computational cost.

SPLICE and ESPLICE provide symbolic signal/system representation and manipu-

lation methods to facilitate the design and analysis of signal processing systems. Signal

and System objects can be defined in an implementation independent manner. Vari-

ous properties like extent, symmetry, periodicity, real/complex, etc. can be associated

with signals. Similarly, properties like additivity, homogeneity, linearity, shift-invariance,

computational costs, etc. can be defined for systems.

ESPLICE provides rules for the derivation of properties of a composite signal/system.

Of direct relevance here are rules for the derivation of equivalent forms (simplification,

rearrangements, etc) of signal processing expressions. As of now, this portion of ESPLICE

25

is very crude. Essentially enumerative derivation strategies are used, without much search

guidance. A very large number of equivalent forms of a given signal processing expression

are generated, and those with low computational costs selected. Unfortunately, SPLICE

and ESPLICE do not have realistic architectural knowledge built into them, and neither

are the computational cost metrics suitable for multiprocessors. Hence an equivalent form

deemed good according to ESPLICE may not necessarily be good for a multiprocessor.

However, ESPLICE can in principle be modified to do this job.

MACSYMA [Mat83] is a system for symbolically differentiating and integrating alge-

braic expressions, factoring polynomials, etc. It has the capability of performing matrix

manipulations algebraically, and thus would be of use in transforming matrix expressions

into each other. Unfortunately, there is no notion of architectures, nor cost criteria.

1.8 Summary

In this thesis we will explore the hierarchical compilation paradigm in the context of

matrix expressions.

This thesis shows that it is possible to derive good algorithms for the basic matrix

operators (matrix sums and products), and quickly compose them to get good algorithms

for the complete expression. This yields a speedy and efficient hierarchical compilation

strategy for such structured problems.

We will develop theoretical insights into effectively composing matrix operator algo-

rithms to yield algorithms for the complete matrix expression.

We will demonstrate simple experimental verification of our ideas, using a prototype

compiler producing Multilisp code for a matrix expression in Lisp like syntax.

---------- - ---

Chapter 2

Optimal Matrix Operator Routines

2.1 Overview

In this chapter we shall discuss creating a parallel library for two basic matrix operations,

matrix addition and multiplication. Composing together these library routines to gener-

ate a good compilation for the complete dataflow graph will be dealt with in succeeding

chapters. The basic idea is to exploit the structure of the operator dataflow graph, to

devise a good partitioning and scheduling technique.

Before we discuss the partitioning and scheduling technique, we have to discuss the

multiprocessor model used in some detail.

2.2 Multiprocessor model

We assume a fully connected multiprocessor with P processors, with global shared mem-

ory (Figure 2.1).

Additions take time Ta, and multiplies take time T,,. The access time for data from

another processor is T, and that from global memory is T. Since an interprocessor data

transfer can be performed via main memory also, we must have T, < 2T. We assume

that upto P such accesses can occur simultaneously, so the network bandwidth is P

_~ ___i~_

27

INTERCONNECT

Proc Proc Proc
0 1 P-i

MEMORY

Figure 2.1: Processor Model

accesses per cycle. We shall show that the optimal algorithms vary smoothly as these

architectural parameters vary, facilitating automatic compilation.

We have assumed a uniform multiprocessor structure with equal access time to any

other processor. The time to access a datum in global memory is also invariant. Hence

we have ignored network conflicts, memory interleaving, etc.. We have grouped the local

memory access time into the compute time.

2.3 Optimal compilation

Optimal compilation of a dataflow graph means determining a sequence of operations for

each processor (schedule), which minimises the execution time. Accurately determining

the execution time for a schedule is a difficult problem. We approximate the execution

time as follows.

Assume that Na additions and Nm multiplies are performed by the most heavily

loaded processor, with N memory accesses and N, interprocessor data transfers in all.

The total execution time T, can be approximated by the sum of the computation time

Tcompute and communication time Tcomm. We are ignoring possibilities of overlapping

communication and computation, as well as data dependencies.

Te = Tcompute + Tcomm

__ _

28

The compute time can be expressed as

Tcompute = TaNa + TmNm

The communication time is difficult to estimate accurately. We approximate it by the

total communication load NT divided by the total number of processors, assuming P

transfers can be scheduled on each clock cycle. The total communication load is the

weighted sum of the number of memory accesses and the number of interprocessor trans-

fers,

NT = N T1 + N,T.

Hence
NT N yT + N,T,

Tomm = - P

and

Te = Tcompute + Tcomm = TaNa + TmNm + N PT + NT (2.1)
P

This equation will be extensively used.

We shall see below that optimal compilation on P processors means trying to partition

up the dataflow graph into P roughly equal sized chunks, while choosing the shape of the

chunks so as to minimise the communication. Keeping the chunks equal in size minimises

Tcompute, while appropriately shaped chunks minimise Tcomm.

Clearly, the location of the input and output data elements (matrices) influences the

memory accesses, and hence the optimal algorithm. In all that follows, we shall by default

assume that the inputs are located in global memory to begin with, and the outputs are

assumed to be finally dumped in global memory also.

2.4 Exploiting Structure in Matrix Operator Dataflow

Graphs

We shall illustrate below how the structure in matrix operator dataflow graphs can be ex-

ploited to generate good parallel library modules. We stress that the specific algorithms

derived are not crucial. The method of partitioning, viz. viewing the dataflow graph

as a regular geometric polyhedral figure to be partitioned up into compact chunks, is

crucial (see below). In general, other operator specific information besides the geometric

structure of the dataflow graph can also be used. For example, in the case of the Fourier

Transform, knowledge of the row-column algorithm (derived from Thompson's analysis)

is essential to obtain the optimal algorithms. An ordinary compiler, using general pur-

pose partitioning and scheduling heuristics, will not be able to guess at these structural

properties and will produce suboptimal algorithms.

2.4.1 Polyhedral Representation of Matrix Operator Dataflow

Graphs

We need to represent the matrix operator dataflow graph in a manner such that the

regular polyhedral nature is evident. This can be achieved by representing the dataflow

graph as a lattice, with each dataflow graph node corresponding to some lattice point.

The locality behaviour of the dataflow graph is reflected in the geometric locality of

the lattice points. Nodes corresponding to adjacent lattice points generally have some

common inputs or contribute to common outputs. We illustrate the representation using

matrix multiplication as an example.

The standard algorithm for an N1 x N2 x N3 matrix multiply

Cik = aijbjk

has N1N 2N3 multiplications, and N1N 3(N 2 - 1) additions. The corresponding dataflow

graph can be represented by an N1 x N 2 x N 3 lattice of multiply-add nodes (Figure 2.2

(a)). Each node (i,j, k) represents the computation

Cik " Cik + aijbjk

An element of A, aij is broadcast to the N multiply-add nodes having the same value

of ij. These nodes are arranged in a line parallel to k axis. Thus the computation on

Bjk

N1i

N2

Xl

oi !
- Cijk

Multiplication Node

3=D lattice of Nodes

(a) Dataflowgraph lattice for matrix product

N2
(c) Dataflowgraph locality and geometric locality

Figure 2.2: Dataflow Graphs for Matrix Addition and Matrix Product

Aij

7N3
Ibk

31

all nodes in this line exhibits locality with respect to the element aij. This broadcast

of aij is represented by a solid line in Figure 2.2 (b). Similarly, nodes having the same

value of jk share bjk. This broadcast of bjk is also represented by the solid vertical line

in Figure 2.2 (b). Nodes having the same value of ik all sum together to yield the same

output element of C, cik. This accumulation is denoted by the dotted horizontal line in

Figure 2.2 (b). Note that the existence of associativity and commutativity means that

the partial products can be summed in any order whatsoever. Thus the accumulates do

not impose any precedence constraints. Clearly, in the diagram, nodes connected by a

solid line share input matrix elements, and those connected by dotted lines contribute to

output matrix elements.

It is important to note that the (solid or dotted) lines representing (broadcast or ac-

cumulation) locality do not change if two parallel planes of the lattices are interchanged.

This corresponds to various permutations of the computation, possibly exploiting asso-

ciativity or commutativity. For example, interchanging two planes parallel to the B face

(ie. planes which differ in the index i) corresponds to permuting the rows of A and

C. Similarly, interchanging planes parallel to the A face corresponds to permuting the

columns of B and C. Interchanging planes parallel to the C face corresponds to permut-

ing the columns of A, the rows of B, and adding the partial products aijbjk in a different

manner, exploiting associativity and commutativity. Thus every possibly ordering of the

computation can be represented by the geometric lattice.

Now, consider the cluster of nodes shown in (Figure 2.2 (c)). The total number of

input elements of A (B) accessed from global memory by this cluster can be measured by

the projected area of the cluster PAi (PBi) on the A (B) face of the dataflow graph. Thus

PAi and PBi measure the total number of memory accesses due to this cluster. Similarly,

the total number of output elements of C the cluster contributes to is measured by the

projection on the C face of the dataflow graph (PCi). Partial sums for each element in

PCi are formed inside this cluster, and shipped to possibly another processor for further

accumulation. Thus PCi measures the interprocessor data transfer due to this cluster.

32

Hence the communication of this cluster with the outside world can be minimised

(locality maximised) by minimising the projected surface area on the three faces, which

can be handled by geometry techniques. Hence a cluster which exhibits geometric locality

(in terms of minimal projected surface area), exhibits dataflow graph locality. Thus the

locality behaviour of the dataflow graph is reflected in the geometric locality of the lattice.

To summarise, the dataflow graph of a matrix multiply can be represented by a

3-dimensional polyhedral lattice, each lattice point representing a computation in the

dataflow graph. Adjacent lattice points share some common broadcast inputs or are

accumulated to common outputs. Dataflow Graph locality is equivalent to geometric

locality.

We next demonstrate how this geometric dataflow graph representation can be used

to simplify the partitioning and scheduling.

2.5 Matrix Sums

Optimal compilation of matrix sums is very easy. Assume we have to compute the sum

C = A + B on P processors, where all matrices are of size N1 x N 2. The dataflow graph

for the matrix addition (Figure 2.3) can be represented as an N x N 2 lattice of addition

nodes. Each node (i, j) represents the computation

cij = aij + bij

Clearly, each element of A and B is used exactly once in computing C, and there is no

sharing. However, in this case, dataflow graph locality can be interpreted as locality in

element indices. Nodes adjacent in the i or j dimensions access adjacent elements of A,

B, and contribute to adjacent elements of C.

Each output datum cij is computed by reading the elements aij and bij from global

memory, adding, and writing back the result cij to global memory. Hence two reads

and a write are necessary per output datum, yielding a total communication of 3NIN 2

I N2

S0000
2-D lattice of nodes

Bij

Aij

Cij

Addition Node

Figure 2.3: Dataflow Graph for N1 x N 2 Matrix Addition

elements, all of which are memory accesses. Here we assume that the matrices A and B

do not share common elements.

This communication is readily achieved by chunking up the dataflow graph into P

(equal) chunks. The shape of the chunks can be arbitrary. In practice it is preferable

to use very simple chunk shapes, for reducing indexing overhead. For example, the rows

can be divided into P equal sized groups, with each processor getting one group.

2.6 Matrix Products

Optimally compiling matrix-products and matrix-inverses is much more difficult, as data

is extensively reused in the former case, and the dataflow graph exhibits varying paral-

lelism in the latter. A good partition of the dataflow graph would permit extensive data

reuse by each processor. We shall discuss the matrix-product in the rest of this chapter.

IN1

:Ti:
it

N2

7 X Bjk
X k Aij

Cijk

Multiplication Node

3=D lattice of Nodes

Figure 2.4: Dataflow Graph for N1 x N2 x N 3 Matrix Product

2.6.1 Continuous Approximation

The dataflow graph for the standard algorithm for multiplying an N1 x N2 matrix, A, by

an N 2 x N3 matrix, B,

Cik = Z aijbjk

is a N1 x N 2 x N3 lattice of multiply-accumulate nodes (Figure 2.4), as per Section 2.4.

Node (i, j, k) is responsible for computing aij bjk. Elements of A are broadcast along

one axial direction (N3 or k), B along a second (N1 or i), and the result, C = A x B,

accumulated along the third (N 2 or j).

Optimal compilation of this graph on P processors involves partitioning the lattice

into P roughly equal sized chunks, while minimising total communication. Once a par-

titioning has been performed, the scheduling is simple, because all computations except

additions can be carried out independently. However, associativity and commutativity

remove any precedence constraints due to ordering that the additions may impose. The

scheduling is thus a trivial problem - the computations can be carried out in any order

whatsoever.

We show below that determining the optimal partition is equivalent to partitioning

the lattice into P roughly cubical equal sized chunks, which is a special case of bin

._I

packing. The discreteness of the lattice makes this problem very difficult in general.

Our approach is to approximate the discrete dataflow graph lattice by a continuous

Nx x N2 x N3 cube, and perform partitioning in the continuous domain. The chunks

so obtained are mapped to the discrete lattice using simple techniques. This continuous

approximation allows us to derive lower bounds on the communication, and develop

several heuristics which come close to the bound.

2.6.2 Lower Bounds

Here we derive the lower bound on communication for a variety of sizes of A and B.

We shall show that the optimal algorithm and lower bound are parameterised by the

architectural parameters (memory access time T and data transfer time T,), and vary

in a smooth fashion as these parameters vary.

The lower bounds are derived by analysis of the ideal shape of a cluster of nodes

handled by a processor. The continuous approximation to the dataflow graph allows the

use of continuous mathematics for the analysis, which is a great simplification.

Consider the cluster of nodes Ci handled by processor Pi, as shown in Figure 2.5. The

processor which computes the nodes in this cluster will need some elements of A, some

elements of B, and some interprocessor transfers or memory writes of partial sums of C

(for completing the sum).

We first calculate the total number of A elements accessed from main memory. This

is the projection PAi of the cluster Ci on the N x N 2 face (the "A" face) of the dataflow

graph. Here we are assuming that once an element of A has been read from main memory,

it is stored in high speed local memory, and need not be accessed from main memory

again. Similarly PBi, the projection of the cluster Ci on the B face, is the number of

elements of B needed.

Estimating the number of data transfers or memory accesses of C is more complex.

Any partial sum of C in the cluster Ci either has to be shifted to another processor for

further accumulation, or finally written back to main memory. PCi, the projection on

B

Memory Read

PB Interproc. Transfers/
Memory Write

N1F 11 111

N3 PAi

N2 Memory Read
A

Figure 2.5: Processor Cluster Analysis for Matrix Product

the C face, is the number of partial sums of C being accumulated in this cluster. Thus

PCi measures the total number of data transfers or memory writes of C necessary.

The communication load for this cluster Ci, NT, is the sum of loads due to accessing

PA, PBi, and PCi respectively. A case analysis has to be performed depending on

whether the time to fetch an item from memory, Tf, is smaller or greater than the time

to shift a datum between processors, T,. Note that by assumption T, < 2T (Section

2.2).

If T < T., then the fastest strategy is for each processor to read its sections of the A

and B matrices, compute the products and partial sums, then shift them to a selected

processor which will sum them and write them to global memory. The communication

load, NT,, is the sum of loads PAi and PBi, weighted by the memory access time Tf and

the time it takes to move the partial sums for summation or final write back to main

memory. This last is PCiT, if the partial sums are moved to another processor, and

PCiTf if the sum is written back to main memory.

Hence, if the partial sums are moved to another processor for final summation,

NT, = Tf(PAi + PB,) + TsPC,

If the ith processor finishes the partial sums, and writes the finished sum back to memory,

we have

NT. = Tf(PA + PB;) + TfPC

The total communication load NT is the sum of all NT.

NT = T Z(PA, + PB,) + T, > PCt + (Tf - T,)N 1 N3 , (2.2)
i 1

If T, < T1 , then the fastest strategy is for processors to share the burden of reading the

A and B matrices into local memory once, then shift the various sections to the processors

who need them. Products and partial sums are formed, shifted to the processors which

will combine them, and then written back to memory. We can amortize the cost of

accessing A and B from memory over all P processors.

Hence, if the partial sums are moved to another processor for final summation,

NT, = (NN 2 + N2N3) + T(PA, + PB) + T,PCt

If the ith processor writes the finished sum back to memory, we have

NT, = p(NN 2 + N2N3) + Ts(PA, + PB) + Tf PC

Hence the total communication load is

NT = T9 E(PA, + PBj) + (Tf - T,)(NIN 2 + N 2N3) + T, PCi + (Tf - Ts)N 1 N 3 (2.3)
i i

Equations 2.2 and 2.3 can be combined to yield

NT = min(T, T,) E(PA2 + PBi) +

max(O, (Tf - T,))(NxN 2 + N 2N3) + T, PC + (Tf - T,)N 1 N 3 (2.4)
i

_1

38

The total communication load NT can be minimised by a good choice of the projections

PAi, PB;, and PCi.

The part of Equation 2.4 that depends on the design of cluster i can be written in a

symmetric form as

Tcomm, = a 3PAi + crPBi + a 2PCi (2.5)

where

Ca = oa3 = min(Tf, T,) a 2 = T,

ai is the cost of transmitting (interprocessor data transfer or memory access) a datum

along the axis Ni. This form makes mathematical manipulations easier.

Thus the communication becomes the (weighted) sum of the projections of the cluster

Ci on the three faces of the cubical dataflow graph. If Tf = T,, the communication is

exactly the projection sum.

Optimal compilation means minimising the total communication, keeping all clusters

the same size (B- (Volume of dataflow graph)). The minimum total communication is

attained (if possible), when the communication for each cluster is the minimum possible,

ie. each cluster is ideal in shape.

Neglecting the constraint that the dataflow graph box has to be exactly filled by all

clusters, an ideal cluster minimises the (weighted) projection sum keeping the cluster

volume fixed (- (Volume of dataflow graph)). The ideal cluster shape then turns

out to be a rectangular block in general, with its aspect ratio depending on T and T,.

(Figure 2.6).

Let the sides of the rectangular processor cluster be L 1, L 2, and L3 (L. oriented along

axis Nj) (Figure 2.6). If all clusters have the same volume V (ideal load balancing), we

have
N 1N2 N3

V = L 1L2 L3 =
P

PAi = L 1L2 , PBi = L2L3 , PC, = L3 L 1

7 -k

i

(b) Tf = 1/2 Ts(a) Tf = Ts

Figure 2.6: Optimal Processor Cluster

Since the ideal cluster has to fit inside the dataflow graph, we have the constraint

Lj < Nj

The communication load for the ith cluster can then be written as

NT, = 0 3 L 1L2 + alL2L 3 + a 2L3L 1

We use Lagrange multipliers to incorporate the constraints on cluster volume and maxi-

mum dimension. We form a Lagrangian,

S= NT + A(L 1L2L3 P N1N 2N3
P

3

+ E j(Nj - Lj)
j=1

S2acj
Lj = min(,

with A chosen so that

N1 N2 N3
LIL 2L3 = NNN

P

If Lj < NjVj, then this simplifies to

L1 = a V

* I,

we get

Nj), j = 1...3

40

L2 = (2.6)

L3 2
a1 a 2

We also have
Li a;
Lj a,

This set of equations shows that the aspect ratio (Li/Lj) is proportional to the als, or

equivalently T, and Tf. This demonstrates the smooth behaviour of the shape of the

optimal cluster with respect to the architectural parameters.

If Tf = T,, then a1 = a2 = a 3 = Tf, and we have

L1 = L2 = L 3 = 7 = N1N 2 N 3

P

The aspect ratio is unity in this case, and the clusters are ideally cubes.

The minimum communication load for each cluster comes out to be

NT, 2 3~/aloa 2 3V
2 /3 (2.7)

These equations make it clear that the lower bound varies smoothly with the ai, and

hence with respect to the architectural parameters T, and Tf. Rewriting Equation 2.7 in

terms of T, and T1 , we get,

NT, > 3(min(T, T)2T) V (2.8)

= 3T V if Tf= T

Assuming that all clusters are ideal in shape, we can derive a lower bound on the com-

munication time as

1 N N2 N3 3
Tomm,,, 3(min(Tf,T,) 2T) (P) (2.9)

3Tf N2
- 2 if N = N2 = N3 = N, and Tf = T,

P3

41

The key thing to note is that the minimum communication time decreases as p 2 /3,

less than linearly with the number of processors. This happens because as we increase

the number of processors, the communication bandwidth increases linearly, but the total

number of data transfers and memory accesses (number of transmissions) only increases

as p1/ 3 .

Assuming perfect load balancing, the lower bound on the compute time is clearly

NI N2 N3
Tcompute > (Ta + Tm) NN (2.10)

Assuming that load balancing is perfect, and all clusters are ideal in shape, we can

derive the lower bound on the total execution time T as

NN 2 N3 1 NjN2N3T, = Tcompute + Tcomm > (To + Tm) P + 3(min(T, T,)2T,)((2.11)

If Ni = N2 = N 3 = N and Tf = T,

N3 3T N 2

Te > (T + Tm) +
P Ps

The speedup S(P), which is the ratio of the execution time on 1 processor to the

execution time on P processors, then becomes

S(P) - (Ta + Tm)N 3 + 3T f N 2

(T, + Tm)N3 + -3T 2

(TaP

Thus the lower bound on the total time has a linearly decreasing and a less than linearly

decreasing component. The linearly decreasing component is O(N 3), while the less than

linearly varying component is O(N 2). Thus for large matrices (coarse granularity), the

model predicts close to linear speedup. This is intuitive, since all overheads (even those

not modeled in the multiprocessor model) decrease at coarse granularity. Similar results

hold for special cases of the matrix product like the dot product (communication is O(N)

and computation O(N)) and the matrix times vector multiply (communication is O(N 2),

and computation O(N 2)).

In practice, bin packing algorithms can be used to partition the computation so that

this lower bound is nearly achieved. These packing algorithms are presented below.

42

Nsqrt(3) N/2 N/2

N/sqrt(3) 0 1 2N/3 0 1

2 N/3 2

(a) Chunks before distortion (b) Chunks after distortion

Figure 2.7: Optimal Square Partitioning

2.6.3 Previous Work on Partitioning Techniques

Previous work in the area of partitioning N x N 2 x N3 lattices into P equal sized chunks

to minimise the projection sum has concentrated on the 2-D problem of chunking up an

N1 x N2 rectangle into P equal sized chunks so as to minimise the sum of projections.

All projections are weighted equally (T, = Tf) so the exact projection sum is being

minimised. Simple algorithms are shown to be optimal.

[AK86, AK, KW87, KR89] have dealt with the 2-D problem in a continuous domain.

[KR89] have applied these results as approximations to discrete 2-D lattices. We shall

describe the continuous algorithms, as they are much simpler.

The 2-D N1 x N 2 rectangle partitioning algorithms [AK86, AK, KW87, KR89] ba-

sically work as follows. Since all P chunks are equal in size, the area of each chunk is

fixed. To minimise the projection sum, the projection sum of each chunk should ideally

be minimised, keeping its area fixed. This implies that each chunk should ideally be a

square. In general, however, P equal area squares cannot be exactly fitted into an N1 x N2

rectangle. The 2-D partitioning algorithms fix this by distorting the ideal square chunks

so as to fit inside the N1 x N2 rectangle.

For example, a partition of an N1 x N1 square into 3 pieces is shown in Figure 2.7.

Figure 2.7 (a) shows the ideal 3 square pieces. Figure 2.7 (b) shows the optimal partition

obtained after distorting the pieces to fit. Since small changes in aspect ratio of any piece

43

does not change its projection sum very much, the projection sum in Figure 2.7 (b) is

close to that in 2.7 (a).

We have applied this idea to the problem of chunking up a 3-D N1 x N2 x N 3 lattice.

Before we describe our algorithms, we shall make some remarks about the discrete

problem.

Tiling solutions to partitioning

For the 2-D problem of partitioning a rectangular lattice, we have found an interesting

tiling method which can achieve the optimal computationally balanced, minimal com-

munication schedule in certain special cases. Again, for simplicity, assume that T, = Tf

in what goes below, so we need to minimise the exact projection sum (all weights are

unity).

Suppose the matrix is N x N, the vector has N elements, and there are P = N

processors. Let n be an integer such that n2 < N < (n + 1)2. Then we can carve the

dataflow graph into tiles shaped as an n x n or (n + 1) x n rectangle with the last row

possibly incomplete. These tiles can be fitted into the square dataflow graph, with the kth

tile's upper left hand corner at node (kn mod N, k) in the lattice. Figure 2.8 shows this

optimal partitioning for N = P = 5, and compares it with the sub-optimal partitioning

suggested by [KR89]. (Our tiling method must be optimal because each tile is as "close"

to square as possible.)

Unfortunately, for arbitrary rectangular or 3-D dataflow graph's, an optimal tiling

solution may not necessarily exist. General purpose heuristics are needed.

2.6.4 Heuristics for Partitioning Matrix Products

Our heuristics depend on representing the dataflow graph as a continuous box, ignoring

the discrete lattice structure inside. The heuristics attempt to find a partition of this

box into P equal volume chunks with minimal (weighted) projected surface area. Ideally

all chunks should be rectangular with the correct aspect ratio (Equation 2.6). After the

-I - ------ - -

44

0 0 3 4 4 0 0 0 1 1

0 0 1 1 4 0 0 1 1 1

2 0 1 1 2 2 3 3 3 4
2 3 3 1 2 Block handled 2 2 3 4 4

2 3 3 4 4 by Processor 2 2 3 4 4

(a) Optimal Tiling, Max Projn = 5 (b) Approx. method of Kong,
Sum of Projn = 25 Max Projn = 6; Sum of Projn = 26.

Figure 2.8: Optimal Tiling solution compared with Kong's Approximation

partition is found, we quantize the chunk boundaries so that each processor is assigned

specific multiply-adds.

The theoretical lower bound on communication cost suggests that the bound is

achieved when each chunk is as close as possible to being rectangular (cubical if Tf = T,).

It is important to note, however, that the projected surface area of a cube does not in-

crease greatly when that cube is distorted into a rectilinear form. In fact, boxes whose

aspect ratio is no worse than a factor of two (or three) have a projected surface area no

more than 6% (or 15%) larger than that of a cube with the same volume. Good par-

titions, therefore, can be built with chunks which deviate quite strongly from a perfect

cube.

This observation suggests several possible heuristics for partitioning the dataflow

graph. The simplest approach partitions the matrix C into P approximately square

chunks, and assigns responsibility for computing each section of the matrix product to

a separate processor. This corresponds to partitioning the dataflow graph into P long

columns, each oriented in the direction of the N 2 axis. Though simple, this heuristic is

often far from optimal, since the chunks are so far from cubical.

Another heuristic method is a generalization of the 2-D rectangular partition algo-

rithm in [AK86, AK, KR89], which is proven to be optimal in 2-D. Start by arranging

P ideal chunks to fill a volume shaped similarly to that of the dataflow graph. The

chunks will form the shape of a rectangular box, possibly with one face incomplete, and

45

heavily overlapping the form of the dataflow graph. Now distort all the P chunks in such

a manner that they are all distorted by about the same amount, and so that the final

arrangement exactly fills the dataflow graph. In practice, the initial arrangement of the

cubes is critical to success, while the distortion technique used does not appear to matter

as much, since the projected surface area does not increase greatly with distortion.

The boundaries may be translated into the discrete domain by simply rounding the

chunk boundaries to the nearest lattice points. This makes the sizes of chunks unequal in

general, but the relative error is small for large matrices (large N1 , N2, and N3). Using

planar surfaces for the chunks also simplifies the real-time programming and reduces loop

overhead. The computational balance can be improved by reallocating lattice points from

one chunk to another while trying to keep the projected surface area the same. If the

projections of the chunk boundaries in the summing (N2) direction are irregular, however,

this approach has the disadvantage of requiring element-level synchronization between

processors at the chunk boundaries. Irregular chunk boundaries also complicate the loop

control in the real-time program.

Our heuristics follow this general principle of first laying out the processor clusters

approximately filling the dataflow graph, distorting them for filling the dataflow graph

(while keeping loads balanced), and finally discretising. Below we present one of our

heuristics.

Partitioning Heuristic

In this heuristic, the first phase consists of choosing an initial arrangement of processor

clusters to approximately cover the dataflow graph. The initial arrangement is chosen to

closely match the ideal arrangement of clusters predicted by Equation 2.6. The second

phase consists of distorting the initial arrangement to exactly fill the dataflow graph.

The third and final phase does the discretising.

The heuristic exploits the shape of the ideal processor cluster, viz. a rectangular box

of the correct aspect ratio, as proved in Section 2.6.2 (Equation 2.6). In general boxes

46

of this aspect ratio will not fit exactly in the dataflow graph. The three sides of the

ideal rectangular cluster (L1,L 2, L3) (Figure 2.6), will not in general divide the sides

(N1, N2, N3) of the dataflow graph exactly. If we let

N, N2 N3pa N1 pb = and pc= (2.12)
L L 2 L3

then along the N1 axis pa ideal boxes, along N2 axis pb ideal boxes, and along the N3

axis pc ideal boxes will fit, where pa, pb, and pc are not in general integers. If they were

integers, then the lower bound on communication could be exactly met (ignoring the

discrete nature of the problem) by laying out the boxes (processor clusters) in the form

of a pa x pb x pc lattice. This arrangement would be optimal, and no distortion would be

necessary. The boxes have to be distorted if pa, pb and pc are not integral, and heuristics

are needed for this purpose. Below we describe each of the three phases of Heuristic 1

in turn, in the context of partitioning up an N x N x N dataflow graph using P = 14

processors (Figures 2.9 and 2.10).

The first phase first computes pa, pb, and pc (Equation 2.12). Then a search is per-

formed (integral-value-search) for integral values (pi, P2, p3) close to the tuple (pa, pb, pc),

satisfying the constraints that at least P processor clusters must fit inside the corre-

sponding pi x p2 x p3 lattice (i.e. P < p1p2P3). All possible allowed 3-tuples (pl, P2, P3) in

the search space are examined, and the best selected. In general the lattice will contain

more than P processor clusters, and hence some lattice points will not be occupied.

The search space (for the integral-value-search) is limited as follows. pi is varied over

all integers from the greatest factor of N lower than pa to the lowest factor of N1 greater

than pa. The rationale for this choice comes from the discreteness of the dataflow graph.

Error in discretizing can be eliminated if the number of boxes along each axis (pl, p2, p3)

exactly divides (N1 , N2, N3). Hence it is reasonable to look for the factors of N nearest

p. Similarly, P2 is varied from the greatest factor of N 2 lower than pb to the lowest factor

of N 2 greater than pb. p3 is varied from the greatest factor of N 3 lower than pc to the

lowest factor of N 3 greater than pc.

Selection amongst the various candidate (pl, P2, p3), is done by estimating the resulting

47

communication relatively crudely. In the example, we assume that the search has resulted

in a 3 x 3 x 2 lattice, housing upto 18 processor clusters, but being filled with only 14.

Having completed the integral-value-search, we need to (partially) fill the pl x p2 X p3

lattice with P processor clusters. A raster scan scheme is used. The lattice in general

is incompletely filled, with a single plane lacking some processors. For example, Figure

2.9 shows a possible layout for our example. The 3 x 3 x 2 lattice ABCDEFGH has a

complete 3 x 3 plane ABCD, and an incomplete plane EFGH with 5 processor clusters.

If the processors available cannot fill the pi x p2 x p3 lattice, P < p1P2P3, then the

second phase applies a distortion heuristic to the processor clusters to exactly fill the

dataflow graph. The incomplete plane introduces complications. We tackle this problem

by splitting the incomplete pl x p2 x p3 lattice into four complete sublattices, and also

splitting the dataflow graph into four corresponding blocks. Each complete sublattice is

assigned one dataflow graph block. The distortion heuristic appears in determining the

boundaries of each of the four blocks.

With reference to Figure 2.10, the incomplete 3 x 3 x 2 lattice is separated into 4

complete sublattices by the planes XX', YY', and ZZ'. Sublattice SL 1 contains the clus-

ters corresponding to processors 0,1,3,4,9,10,12, and 13. Sublattice SL2 contains clusters

corresponding to processors 2 and 11. SL3 has clusters corresponding to processors 6

and 7, while SL4 has clusters of processors 5 and 8. The dataflow graph is also split into

four corresponding blocks. The block boundaries are determined by load balancing - first

we determine the position of the plane XX', then that of YY' and ZZ'.

The result is shown in Figure 2.10, where the N x N x N cube is chopped into four

cubical blocks. The 8 processors 0,1,3,4,9,10,12, and 13 in SL 1 handle the (8N/10) x N x

(10N/14) top left block, taking time N 3/14 in all. Similarly the two processors 5 and 8

in SL 4 handle the (N/2) x N x (4N/14) bottom right block, and so on. The cluster sizes

are all tabulated in Table 2.1.

Finally, the boundaries in the continuous domain have to be translated to the discrete

domain. This translation in our case is to the best (in terms of load balancing) adjacent

Plane ABCD

Initial
Arrangement

of Procs

Split along
XX', YY', ZZ'

Four
Complete

Sublattices

Map sublattices
to DFG Blocks

Figure 2.9: Partition of an N x N x N cube into 14 chunks (a)

Plane EFGH

DFG lattice
before
partition.

DFG lattice
after

partition into
blocks

Split along
XX', YY', ZZ'

N 4Nk-Z -

Figure 2.10: Partition of an N x N x N cube into 14 chunks (b)

1 ON/ 4

------- -----

N/2

N/2
7

8N/10

2 W10

--

SL 1 0,1,3,4,9,10,12,13 4N/10 x N/2 x 5N/14
SL 2 2,11 N/2 x N/2 x 4N/14
SL 3 6,7 2N/10 x N x 5N/14
SL 4 5,8 N/4 x N x 4N/14

Table 2.1: Cluster sizes - Partition of N x N x N cube into 14 chunks

integer value, and in general causes additional error. The error can be reduced by reallo-

cating nodes from one cluster to adjacent ones till the load is sufficiently balanced (within

5 percent of optimal). This increases communication somewhat, but our simulations did

not result in dramatic increase in most cases.

The node reallocation produces irregular clusters in general. This necessitates element

level synchronization during accumulates, causing overhead. As the size of the matrices

increases, discretization error becomes less significant, and hence this undesirable effect

is reduced.

Figure 2.11 and Figure 2.12 show the performance of this algorithm, for a 20 x 20 x

20 dataflow graph, as we vary the number of processors P from 1 to 100. The total

communication was plotted by measuring cluster size. Processor reallocation has been

used until the compute time is within 5 % of the lower bound.

The architectural parameters are Ta + T, = 1.0, T1 = 1.0, and T, = 2.0. Thus upto

P multiply-adds and memory accesses can take place in a single cycle. Exchanging data

between two processors takes two cycles. This very roughly models a single bus based

shared memory multiprocessor like the Encore, where processors have to communicate

through the global memory.

Communication load NT and its lower bound with respect to P is plotted in Figure

2.11. Figure 2.12 shows NT scatter plotted against Tcomp,,t,- 1/ 3 , which should ideally be

a straight line. This result can be seen as follows.

NT = PTcomm cC pp-2/3 = p1/ 3 CC Tcompute-1/3 (2.13)

The communication load in Figure 2.11 shows a somewhat random variation around

~ __

51

S10000 - - 20x20x20 MATRIX PRODUCT

0
.J
z
0

z
8000-

0

6000 -

S COMMUNICATION LOAD
LOWERBOUND

4000-

2000

1 21 41 61 81 101

PROCESSORS

COMMUNICATION LOAD VS. NO OF PROCESSORS

Figure 2.11: Communication vs Processors for 20 x 20 x 20 Matrix Product

10000 -

SI I I I _ _I

0.080 0.120 0.160 0.200

COMMUNICATION LOAD VS. TIME^(-1/3)

Figure 2.12: Communication vs T - e for 20 x 20 x 20 Matrix Product

20x20x20 MATRIX PRODUCT

...... COMMUNICATION LOAD
- LOWERBOUND

8000 -

60001-

40001-

2000 +-

0.00I0 0.040 0.240 0.280
TIME^(-1/3)

..

53

the lower bound. It is generally within 20 % of the lower bound. For certain matched

number of processors, the lower bound is exactly met. This is the case for P = 4, and

P = 32. For these values of P, the dataflow graph dimensions fit well with the number of

processors. The ideal clusters can be exactly packed into the dataflow graph without any

distortion or discretization error, and the lower bound on the communication is exactly

met. For other values of P, distortion and or discretization is in general needed, leading

to some increase in communication load.

The results in Figure 2.11 and Figure 2.12 show that it is possible to devise reasonable

partitioning heuristics, with computation time being within 5 % of the lower bound (by

design), and communication load within about 20 % of the lower bound.

The relative behaviour of compute time and communication load (Equation 2.13) is

also roughly verified in (b).

Figure 2.13 and Figure 2.14 show the performance of the algorithm on the product

of a 10 x 40 matrix, with a 40 x 20 matrix. We have changed the aspect ratio of the

dataflow graph, while keeping the same number of nodes as the previous example. Again

the results are close to optimal, with the communication being within 20 % of lower

bound, and the computation time being within 5 % of the lower bound.

2.6.5 Experimental results

Experimental results on the MIT Alewife machine will be described later on, in Chapter

4.

2.7 Continuous processors and mode shifts

It is convenient, at least for theoretical purposes, to allow the number of processors P to

be a continuous variable. We interpret this as having int(P) processors working full time

on the problem, and one more processor being time shared, with a fraction frac(P) of its

time devoted to this problem. An application of this concept will be illustrated below in

I

54

O 10000 - - 10x40x20 MATRIX PRODUCT

0
-J
Z
0

S8000-

0

6000

-- COMMUNICATION LOAD
-- LOWERBOUND

4000-

2000

1 21 41 61 81 101
PROCESSORS

COMMUNICATION LOAD VS. NO OF PROCESSORS

Figure 2.13: Communication vs Processors for 10 x 40 x 20 Matrix Product

10x40x20 MATRIX PRODUCT

COMMUNICATION LOAD
LOWERBOUND

SI I I I I
0.080 0.120 0.160

COMMUNICATION LOAD VS. TIME(-1/3)

Figure 2.14: Communication vs To3, for 10 x 40 x 20 Matrix Product

10000-

8000+-

I .

1**.

* I.

60001-

4000 -

2000 -

0.0(0.040 0.200 0.240 0.280

TIME^(-1/3)

!
#.'

~ .

1
...

'5 (

)0

56

the context of computing matrix products.

If M identical matrix products are to be performed on P processors, P > M, load

balancing needs Z processors to be allocated to each operation. P is in general not an

integer. An allocation of P processors means that int(Z) processors are working full

time on the operation, and one processor is working frac(P) of the time. Hence the last

processor handles fewer nodes than the rest. Thus the sizes of the clusters handled by

each processor are different, with the size of the last cluster being

frac(P) (2.14)
M

of the others.

If P < M, then only one processor is working part time on the operation.

2.7.1 Extension of Lower Bounds

The extensive structure present in the matrix-product dataflow graph allows us to ex-

tend the lower bound in Equation 2.9 and devise good heuristics to perform non-integer

processor allocation. Let P be between successive integers K and K + 1.

K<P<K+l

K+1 processors cooperate to compute the matrix product. The first K processors handle

clusters of size

NIN 2N3

P

The (K + 1)th processor handles a cluster of size

VK+1 = eV1 whereE = frac(P) = P - K

which is smaller than the others.

The communication load is minimised when all clusters are ideal in shape. If T, = Tf,

the clusters are ideally cubes, and

NT Tf (3K + 3e 2/3) (N1N 2 N 3) 2/ 3 (2.15)
p (.5

57

e increases continuously from e = 0 to E = 1 as P increases continuously from K to

K + 1. The communication load increases as E2/ 3, which is very steep near e = 0. Hence

the communication increases very steeply as P changes between successive integers.

2.7.2 Mode Shifts

In general, for non-integer P, either heuristics or a search must be used to find a good

partition of the dataflow graph. The use of non-integer P introduces an interesting mode

shift behavior in the structure of the optimal solution, with communication cost rising

steeply as P varies from an integer value K to its successor K +1. This can be illustrated

by the case of an N x N dataflow graph for a matrix-vector product, with P = 1 + e

processors, where 0 < e < 1. The optimal partition of the dataflow graph is shown in

figure 2.15(a) for 1 < P < 4/3, and switches to the form shown in figure 2.15(b) for

4/3 < P < 2. Optimal communication cost is:

2N + N + 2N for 1<P<4/3
2N+N 2 + N for 4/3 P 2 (2.16)

Note that the communication cost for using P = 4/3 processors is identical to that for

P = 2 processors; adding fractional processor power is thus quite costly. This mode shift

behavior of the optimal partition, and the steeply rising cost for fractional processors,

are characteristic of the general matrix multiplication scheduling problem.

2.8 Special cases of Matrix Sums and Products

The bounds on communication derived previously assumed that the matrices A and B

share no common elements. Tight bounds for special cases like A 2, AAT, A and/or B

symmetric, are much more difficult to derive. In general for these problems, the optimal

processor clusters are not cubical. We shall discuss optimal scheduling of AAT in this

section. For simplicity we assume that T, = T.

58

Comm.

e

1 4/3 2
(a) 0 < e < 1/3 (b) 1/3 < e < 1 (c) Comm. vs. P

Figure 2.15: Mode-Shifts for 1 < P(= 1 + E) < 2.

Since C = AAT is symmetric, only one half of the output C need be computed (above

or below the main diagonal). Figure 2.16 shows the dataflow graph in (a), together

with the optimal shape of a processor cluster in (b) and (c). The dataflow graph is a

N1 x N 2 x N1 triangular prism, with its axis along the N 2 or j direction (Figure 2.16

(a)). Elements of A are broadcast from one of the two rectangular faces of the triangular

prism (along the k axis), and elements of AT from the other (along the i axis).

The projection of the dataflow graph prism on the N 2 or j direction in shown in

Figure 2.16 (b). Because the two matrices are transposes of each other, accessing aij is

equivalent to accessing ajT, for k = i. Since C is symmetric, only its portion on and

below the main diagonal need be computed.

It can then be seen that the processor cluster with the lowest communication for a

given volume is itself a triangular prism (apart from row permutations), (Figure 2.16 (c)).

The diagonal face of the prism is aligned along the long diagonal face of the dataflow

graph. Then, accesses of elements of A, aij, are identical to accesses of the corresponding

elements of AT, aT , and the communication is halved. In this case both the shape and

location of the optimal processor cluster are constrained. This is unlike the ordinary

matrix product case, in which the location of the processor cluster was arbitrary.

We denote the sides of the optimal triangular prism by L 1, L2 , and L3 , with L 1 = L3

(Figure 2.16 (c)). Assume that the optimal solution manages somehow to make the

AT

N1

I I

**

".. , __C=AA
N1 '.AAT

AAT(a) DFG for

AT

- N1

Optimal
Processor
Cluster

(b) Optimal Processor Cluster

L 3= L1

(c) Optimal Cluster Shape

Figure 2.16: Optimal partition of AAT

k

'4

60

AT

C

Figure 2.17: Optimally partitioned dataflow graph of AAT, P = 2 blocks

clusters into triangular prisms, positioned flush against the diagonal face of the dataflow

graph. Computing all the nodes in the optimal processor cluster necessitates reading

elements of either A or AT, not both. Thus only one face L1L2 or L3L 2 contributes to

memory accesses. The L1L3 face contributes to interprocessor data transfers for com-

puting partial sums of C. Thus the communication load for the ideal (say ith) processor

cluster is given by
1 V 1

NT, = T1 (L1L 2 + -L 1L3) = Tf(-I + L2)

with

N12 2L1L 2L 3 = LIL 2 = V- NJN 2
P

being twice the volume of the triangular dataflow graph prism.

Minimising with respect to L 1 yields

L1 = L2 = L3 = V(1 / 3)

The minimum communication load for the ideal cluster (ideal in shape and position) is

NT 1.5T V (2/ 3)

The total communication load is bounded by

NT > 1.5PT V (2/ 3) = 1.5Tf(Nj2N 2)(2/ 3)P(1/3)

61

Assuming ideal-load balancing, the execution time becomes

N 2N2 N 2 N2
Te = Tcompute + Tomm, > (Ta + Tm)N + 1. 5 T() (2.17)

2P P

If A is square (N1 = N 2 = N)

N 3 1.5T1 N 2

Te > (Ta + Tm)- + 2
2P P'

Hitting the lower bound in this case is significantly more difficult, since the optimal

processor clusters are no longer rectangular in shape, and have to be positioned along

the diagonal face of the dataflow graph (apart from row permutations). However, if we

have a long thin dataflow graph of aspect ratio P (N 2 = PN 1), then the lower bound

can be met by slicing up the triangular dataflow graph prism along the N 2 or j direction

into P pieces (Figure 2.17).

A similar analysis can be attempted for the case where A or B are symmetric, or have

special properties like bandedness, etc. The basic paradigm is having compact processor

clusters to minimise communication. Dealing with A 2 is much more complex, and we

don't discuss it here.

Chapter 3

Generalised Scheduling

3.1 Introduction

Chapter 2 demonstrated how parallel library routines for each matrix operator could

be devised. The basic paradigm was to exploit the polyhedral geometric structure of

the dataflow graph of the operator, to devise a good parallel library routine for it. The

complex discrete behaviour of the parallel library routine can be simply summarised by a

speedup curve. This speedup curve can be derived by either algorithmic analysis (Section

2.6.2) or explicit measurement.

The next step in compiling a matrix expression is to compose together the library

routines for each operator, to get a good compilation for the complete expression. This

step involves determining the optimal parallelism for each particular library routine, as

well as an optimal sequencing of these routines. Classical scheduling theory does not

deal with this problem, since it does not determine the optimal parallelism of the graph.

Theoretical insights for this generalised multiprocessor scheduling problem are hence of

great value. This is presented below. The speedup curve derived for each library routine

in Chapter 2 finds extensive use in the theoretical formulation.

This chapter presents a novel approach to generalised multiprocessor scheduling using

the theory of optimal control. We treat each task as a dynamic system, whose state can

63

be changed by applying processing power to it. We allow parallelism in tasks by allowing

more than one processor to be simultaneously applied to it. We characterise each task

by a speedup function specifying the rate at which computation of the task proceeds

as a (continuous and differentiable) function of the amount of processor power applied.

Precedence constraints on the order of task execution are incorporated in the speedup

function itself. Total processing power applied at any one time is bounded above by the

available capacity of the multiprocessor system. With this simple model of task dynamic

behavior, applicable to many problems such as matrix expression evaluation, a number

of elegant theorems can be derived. In certain cases, the scheduling problem is shown

to be equivalent to a shortest path problem, which permits very efficient solutions which

are provably optimal. Task graphs formed by series and parallel combinations of tasks

are particularly easy to schedule, and the algorithm is similar to the computation of

current flow through series and parallel resistors. Previous approaches [DL89, HL89,

BW86, Cof76] to the multiprocessor scheduling problem have assumed that tasks can

be performed on several processors simultaneously, if needed, but have required that

an integer number of processors must be applied to any task. Unfortunately, optimal

scheduling then requires solving an NP-hard problem. We avoid this by allowing time-

sharing of processors, and by assuming that the speedup of any task is independent of

the state of that task.

The chapter first presents the scheduling model in Section 3.2. Section 3.3 formulates

the optimal scheduling problem in the framework of optimal control theory. Standard

methods of optimal control theory are then applied to yield the solution in Section 3.4.

A theorem is proven showing that the optimal solution adjusts the processor allocations

until the marginal speedups in tasks running in parallel matches a fixed ratio. When a

particular speedup function is assumed (pa), we are able to derive an extremely powerful

pair of theorems in Section 3.5. The processing power assigned to each task is a fixed

fraction of the total power available throughout the running of the task. As the task

completes, the fraction of power assigned to that task is redistributed to those successors

64

of the task which are enabled to run at the moment the task completes. We also show

that the structure of the optimal schedule does not depend on the total processing power

available; adding more processing power only makes the optimal schedule run faster.

Simplifying the results slightly yields a simple scheduling algorithm in Section 3.6.1, based

on recursively clustering the tasks into series and parallel sets. Examples are presented

in Section 3.6.2. Remaining issues are discussed in Section 3.8 Readers unfamiliar with

optimal control theory can skip Section 3.4, and the proofs in the appendices.

65

3.2 MQdel of the Parallel Task System

We start with a formal model of a parallel task system. Let Q = {1,..., N} be a set of N

tasks to be executed on a system with P(t) processors available at each time t. Suppose

task i has length Li. Also suppose there are precedence constraints among the tasks so

that task i cannot start until after all preceding tasks in the set Q2 have finished. Let Qi

be the set of tasks which in turn depend on task i finishing before they can start. We

will assume that the tasks are partially ordered with no feedback loops.

It is convenient to define the state xi(t) of task i at time t to be the amount of

work done so far on the task, 0 < x,(t) _ Li. Let ti be the earliest time at which all

predecessors of i (if any) have finished, so that i can begin running. Thus xi(t) = 0 for

t < ti, and xz(ti) = Lj for all of i's predecessor tasks, j E 2Di. If task i has no predecessors,

ti = 0.

Let pi(t) be the processing power (number of processors) applied to task i at time

t, and let P(t) be the total processing power available at time t. The pi(t) are all non-

negative, and must sum to less than P(t). In effect, we assume that multiprocessor

versions of all tasks are available so that any number of processor could be assigned to

any task at any time. Furthermore, we will not constrain the pi(t) to be integers, but will

assume that zero-overhead time-sharing of processors can be used to achieve fractional

processor allocations.

Finally, assume that once a task's predecessors have finished, the rate at which a task

proceeds, dxi(t)/dt, depends in some nonlinear fashion on the amount of processor power

applied, pi(t), but not on the state sx(t) of the task, nor explicitly on the time t. We call

this the assumption of space-time invariant dynamics. Thus we can write:

dxi(t) 0 for t < t (3.1)
dt fi(pi(t)) for t > t

where f2 (pi(t)) will be called the processing rate function, or the speedup function. With

no processing power applied, the task state should not change, fi(O) = 0. With processing

66

3 4

5

Figure 3.1: Example of a parallel task system

power applied, the task should proceed at some non-zero rate, fi(p) > 0 for p > 0. We

further assume that fi(p) is non-decreasing, so that adding more processors can only

make the task run faster. Also, to ensure mathematical tractability, we will assume that

fi(p) is differentiable, with non-negative derivative for p > 0. Also, note that we have

allowed the processing rate function to be non-zero even after the task is finished, ie.

xi > Li. However, this creates no problems, since the optimal solution will not waste

processing resources on a finished task (pi = 0 if xi > Li).

In effect, this form of the speedup function implies that tasks can be dynamically con-

figured into arbitrary numbers of parallel modules for execution on separate processors.

Processors can be added or removed at any time, and so that the processors assigned to

the task can all do useful work. Although many general purpose computations can not

be easily fit into this model, there are a number of problems in signal processing and

numerical calculation, particularly for matrix expression evaluation, which are suitable.

Furthermore, as we will see later, for certain special speedup functions, the number of

processors assigned to a task in the optimal solution is actually constant.

Our goal is to finish all tasks in the minimum amount of time tF, by properly allocating

processor resources pi(t).

An example should clarify our notation. Consider the task system in Figure 3.1. Let

task i have processing rate function fi(pi), and total length Li. Then the predecessor

mm /_ ^

67

task sets are:. -

Q1 = 2 = 4 = 3 = (1,2) Q5 = (3,4)

The successor task sets are:

Q1 = f2 = (3) il = f4 = (5) S

The system equations are:

i, = fi(pi(t))

2 = f 2 (p 2 (t))

f3(p3 (t)) for t > t 3

1 0 for t < t 3

i4 f4(p4 (t))

f5(p5(t)) for t > t5

0 for t < t5

68

3.3 Setting up the Optimal Control Solution

We can state the scheduling problem in Section 3.2 in a form appropriate for applying

standard control theoretic approaches [BH75]. We must specify the state variables and

their constraints, the control variables and their constraints, the system dynamics, and

the objective function.

State Variables and Terminal Constraints

The state variables are the xzi(t)'s. Clearly they satisfy the terminal constraints

xi(O) = 0, xi(tF) = Li, for i = 1,..., N (3.2)

In vector notation

£(0) = 0, x(tF) = ,

Control Variables and Constraints

The control variables are the processor powers allocated to each task over time, pi(t) (in

vector notation g(t).) Each pi(t) is clearly non-negative. Also, the total processing power

at any time t is at most P(t). These two constraints can be written as

C(, t) 5 0, where C(f, t) = pi (t) - P(t) (3.3)

Di(, t) < 6, where Di(f,t) = -pi(t), for i = 1,... , N (3.4)

System Dynamics

An approximation is required in order to write the state dynamics in a form suitable for

control theory. First, write (3.1) in the form:

dxi(t)- = fA ((t),i9(t),t) (3.5)dt

69

where we define:

(0 for t < ti
f;((t),p-(t),t) =

fi(pi(t)) for t > ti

We now replace this definition with an approximation which is differentiable everywhere:

f;((t), p(t) = g() fi(Pi(t))

where

giY) = I (J(xj(t) - Lj)
jEfi

where U(x) is a differentiable approximation to a step function, U(t) = 0 for t < -e, = 1

for t > 0, and rises monotonically from 0 to 1 over the range -E < t < 0. Let 6(t) be the

derivative of U(t); note that 6(t) is a finite approximation to an impulse function with

width c, and which is non-zero (positive) only for -E < t < 0. Thus gi(5) is a function

which is zero until the predecessors of task i are all within e of finishing, at which point

it smoothly increases up to a final value of 1 when all predecessors completely finish. For

E much smaller than the task lengths, this form of the state dynamics will be nearly the

same as our original model (3.1).

For our previous example in figure 3.1, we would approximate the dynamics of tasks

3 and 5 as follows:

ia(t) = f 3 (P3 (t))(X 1 (t) - L1)U(x 2 (t) - L 2)

i 5s(t) = f5 (P5 (t))U(x3 (t) - L3)U(x 4 (t) - L 4)

Because of this "soft" start for each task, we need to carefully define the starting and

finishing times of the tasks. Let ti be the earliest time that all predecessors of task i

reach to within e of completion, so that:

SO(xk(t) - Lk) > 0
kEni

for all t > ti. We call ti the start time for task i. Similarly, let tf be the time at which

task i first reaches to within c of the end, zx(t) = Li - E, and let t' be the finish time,

when task i first reaches the end, x(t) = Li.

70

Objective Function

Our goal is to minimize the final task completion time tF = max, t, when all tasks have

reached their end, x (tF) - Li for all i E Q, subject to constraints (3.2), (3.3), (3.4),

and (3.5). Typical optimal control problems minimize an objective function formed of a

penalty on the final state, 0((tF), tF) plus an integrated penalty on the state trajectory

and control values L((t), f(t), t). We can state our objective in this form as follows:

min ((t), tF) + L(,f, t)dt (3.6)

if we define:

0((tF), tF) 0 O, L(£, p, t) 1

- --------- -

3.4 Solution Method

The problem we have defined can be solved by standard methods of optimal control. To

apply these, introduce Lagrange multipliers ("influence functions") Ai(t), U(t) and i;(t)

associated with constraints (3.5), (3.3) and (3.4) respectively. Then form the Lagrangian:

J = ((t-),tF) + L(,pt)dt + A,(5) A [(t) [f(,(,t) - ,] t (3.7)

+ jtF [(t)c(f t) + Z (,(t)D (p, t) dt

It is also convenient to define the Hamiltonian

H(I, p, t) = L(-, f, t) + E Ai(t)fi(, p, t) + 1 (t)C(pt) + Zi(t)Di(f, t) (3.8)
i i

Necessary conditions for an optimal scheduling solution for f(t) and XF(t) can now be

derived (c.f. [BH75, Chap 2,3]). For our problem, this optimal solution must not only

satisfy all the constraints (3.2), (3.3), (3.4), and (3.5), but also the states xi (t), con-

trols pi(t), and Lagrange multipliers Ai(t), y(t), and b,(t) must satisfy the following

constraints:
dA,(t) aH(i(t), (t),t)

dt x (3.9)

0 -= H ((t)I (t),t)
0 = (3.10)api

where { p(t) > 0 if E;pi(t) = P(t)

p(t) = 0 if Eipi(t) < P(t){ (t)> 0 if p(t)=0 (3.12)

0(t)=0 if pi(t)>0

and also there is a terminal constraint:

H(£(t), f(t), t),tF = 0 (3.13)

Appendix A uses this basic result to prove the following theorem. A key quantity, we

will see, is the marginal speedup, which we define as the partial derivative of the speedup

function with respect to the processing power, 8 fi(pi)/pj.

72

Theorem 3.4.1 (Strictly Increasing Speedups) Suppose that all fi(pi) are strictly

increasing, 8 ,P) > 6 > 0, for all pi > 0, where 6 is an arbitrary small positive constant.

Then the optimal solution always uses all processors, i.e.,

pi(t) = P(t)

Furthermore, if two tasks i and j are scheduled to run in parallel, with non-zero processor

power pi(t) > 0, pj(t) > 0 at time t, and neither is within e of completion, and if all

predecessors of both i and j have finished, so that gi(£x) = gj (i) = 1, then the ratio of

marginal speedups is fixed:

A fi(pi) Ofj(pj)
api ' ap

where Ai = Ai(0) and Aj = Aj(O) are the initial values of the Lagrange multipliers.

In other words, if more processing power becomes available during execution, it is applied

to the runnable tasks in such a way that the marginal speedups of the running tasks

maintain their fixed ratios.

73

3.5 Speedup Function pa

The optimal control solution takes a particularly elegant form when the speedup function

is:

xi(t) = gj(£)p(t) where 0 < a < 1 (3.14)

Note that the exponent a has to be identical for all tasks. It is true that this function

is not physically realizable for 0 < pi(t) < 1, since p?(t) is supralinear in this range.

Furthermore, 9fj(F, p t)/pi --- oo as pi(t) --+ 0, so the marginal speedup with pi(t) , 0

is asymptotically infinite. Nevertheless, this is an interesting function to study, as it is

not unreasonable for pi(t) > 1, and the solution is comparatively simple yet interesting.

Appendix B proves the following.

Theorem 3.5.1 (pa Dynamics) With fi(,p' , t) given by (3.14), the optimal scheduling

solution satisfies:

1. Ai(t) = 0 for t > tF .

2. Once a process is runnable, it is assigned non-zero processor power until it finishes,
pi(t) > 0 for all ti < t < tF . Otherwise, pi(t) = 0 for t < ti and t > t F .

p3.

(t)

= f

[P(t) J

P(t)

- Pit) P(tF)P[-P(tF)A (t)gi(4(t))l/-a)

5. d (t) - E i(t) + i+ i(t) where vij(t) can be interpreted as a flow ofd P P() jE i kEfi

processing power from task i to a successor task j, with vi (t) = 0 except when i

and every other predecessor of j are within e of finishing.

6. When task i finishes, either tf = tF and the entire graph is finished, or else all the

processing power originally allocated to i is reallocated to the successors of i which

begin at the same time that i ends.

Although the formulas in this theorem look obscure, they are extremely powerful. In

particular, with pa dynamics, we can treat processing power as if it were electric charge

and precedence constraints as if they were wires. Nodes with no predecessors are initially

allocated a given amount of processor "charge"; nodes with predecessors are given no

initial processor power. The processing power allocated to an initial node does not

change until the node is within E of finishing. At this time, the processor "charge" flows

out of the node, along the "wires" leading out of the node, and into successors of the node.

Not all successors of the node get this processor charge - only the ones which become

enabled to run at this time because all of their predecessors are finishing. As these tasks

finish, their processor power is released and pours into their enabled successors. This

continues until finally the tasks with no successors are all running and they all complete

at the same moment, tF.

A simple consequence is that whenever any task i completes, either all tasks are

finished, t f = tF, or else at least one successor is enabled to run. Another consequence

is that the optimal schedule is non-preemptive. The fraction of the available processing

power assigned to a task can only change at the beginning and the end of the task.

3.5.1 Series Tasks

This analogy of scheduling to electrical networks allows us to quickly derive optimal

schedules without solving explicitly for all the Lagrange multipliers, and without having

to compute the precise behavior during the transitional periods as one task finishes and

another begins. To illustrate the power of this theorem, consider tasks which are in

"series". We define tasks 1,..., K to be in series if the only successor of k is k + 1 for

k = 1,...,K - 1, and the only predecessor of k is k-1 for k = 2,...,K. By the

theorem above, all processing power allocated to task k is reallocated to task k + 1 when

k finishes. Task k + 1 starts execution immediately after k finishes.

Let q 1 represent the total fraction of processing power poured into 1. If 1 has no

predecessors, then q 1 is just the initial fraction of processing power allocated to the task,

75

01 = pi(O)/P(O). Otherwise, we define

01 = t Z vji(t)dt
jE2i

as the total fraction of processing power poured into 1 from its predecessors. The theorem

implies that $k = 01 for all k = 1,..., K.

3.5.2 Parallel Tasks

Another special situation which is simplified by this theorem is when tasks are in "par-

allel". We define tasks 1,..., K to be in parallel if they all have the same predecessors

and the same successors, Qk = 1 and Qk = Q1 for k = 1,..., K. We can easily show

that all these tasks in the parallel set must begin at exactly the same time, and must

complete at about the same time. To do this, suppose task 1 is enabled to begin at time

t1 . Then either 1 has no predecessors, in which case tl = 0, or else the last predecessor

in the set Q1 is within e of completion at time tl. But in either case, all the other tasks

2,..., K in the parallel set must be enabled to run at the same time, tk = tl, since they

all have the same predecessors.

Similarly, suppose task 1 finishes at time t f . Either 1 has no successors, in which

case tFl = tF , or else at least one of its successors has become enabled to run. But if 1

has no successors, then neither do 2,..., K, and so all must finish together at time tF. If

1 has a successor and that successor is enabled to run when 1 finishes, then this implies

that all the predecessors of that successor must be finishing at this time. In particular,

tasks 2,..., K must be finishing. Thus all tasks in the parallel task set must finish at

approximately the same time. (More precisely, t, < t f for all k, m = 1,..., K.)

3.5.3 Homogeneity

An important property of systems with p' dynamics is one which relates to the homo-

geneity of the speedup function. Appendix C proves the following theorem:

76

Theorem 3.5.2 (Homogeneity) Assume the speedup functions are p?. Suppose that

P(t) total processing power is available, and that the optimal scheduling solution to a

graph is pi(t), with resulting states xi(t). Now suppose that P(t) total processing power

were available instead. Then the optimal scheduling solution 1i(t) for the new situation

is given by:

P(t)

for all i, with resulting states:

ii(t) = xi(t)

where i is a new time variable which is a monotonically increasing function of t, t = ¢(t),

defined by:

dt = (t)d = 0
Pa(t) =

In other words, the available processing power P(t) does not affect the structure of the

optimal scheduling solution. Tasks start and complete in exactly the same order, the

same fraction of processing power is allocated to the tasks, and the states evolve along

the same trajectory, regardless of the power P(t). The only effect of changing P(t) is to

effectively warp the time axis, speeding up or slowing down the optimal schedule.

77

3.6 Simplified Scheduling Algorithm

If we are willing to simplify the treatment of the startup and ending transients of the

tasks, then very simple rules can be devised for computing the optimal schedule. In

particular, let us approximate e as extremely small, so that for all practical purposes

tasks start up and wind down in a negligible amount of time. This implies that

gi((0for t < t
1 for t > ti

This in turn implies that the optimal schedule for the processing assignments assigns an

approximately constant fraction €i of the available processing power to task i while it

runs:

(P(t) for ti < t < tF

0 else

where

i= (-AiPa(tF))' / L -)

Furthermore, the optimal state trajectory is:

O for t < ti

rxi(t) = ~, ft P~(r)dr for ti < t < tF

Li for t > t f

Specifying an optimal schedule is thus equivalent to specifying the fractions qi of pro-

cessing power to be allocated to each task while it runs. Our previous theorem implies

that when task i completes at time tF , its fractional power Oi is redistributed to the

successors of i which start at this time t f . We will see that this property leads to some

interesting interpretations of the optimal solution under pc dynamics.

3.6.1 Series and Parallel Decompositions

If the task graph can be recursively decomposed into parallel and series tasks, then we

will show that there is a very simple solution for the optimal schedule under pa dynamics.

78

Suppose tasks 1,..., K are a series task set. We will replace this task set with a single

composite task, which we refer to as 1 : K. This task will have the same predecessors as

1, 1:K = 21, the same successors as K, f1:K = K, and its state will summarize the

state of all the tasks in the series set. To do this, define:

K

X1:K(t)= > Xk(t)
k=1

The initial and terminal values of the state are:

X1:K(O) = 0, X1:K(t F) = L1:K

where we define the length of the composite series task to be:

K

L1:K = E Lk
k=1

Let pl:K(t) represent the total amount of processing power allocated at time t to all

subtasks of the composite task:

K

pl:K(t) = Pk (t)
k=1

Then because the tasks in the series run sequentially, and because all are assigned the

same fractional power, we have:

P1:K(t) = 1:KP(t) for tl:K < tF:K

0 else

where we define tl:K = tl as the time the first task in the series starts, and define tFK = t

as the time the last task in the series finishes, and where

€1:K = €1 = '''= O

It is easy to show that the composite state obeys dynamics:

:K) K for tl:K < t < tFK

0 else

p-A

79

Thus the state of this composite task obeys exactly the same dynamics as the state of

the original subtasks. It is clear that an optimal schedule for the original graph maps

exactly into an optimal schedule for a new graph with the series set replaced by this single

composite task. Thus we can solve the simpler scheduling problem with the composite

task, then derive the optimal schedule for the original graph by allocating the composite

power Pl:K(t) to the individual tasks, pi(t).

Parallel task sets can be dealt with in a similar manner. Let 1,..., K be a parallel

task set; each task has the same predecessors and the same successors. As discussed

before, all tasks must begin and end at the same time in the optimal schedule:

t, =-- = tK, t =.= tK

But since each task is allocated a fixed fraction qi of the available power, this implies

that:

Li= (;iP(t))* dt

or

where we define

A(t,, t -F) = Pa(t)dt

Now let us replace the parallel task set 1,..., K with a single compositestask 1 : K.

This composite task will have the same predecessors and the same successors as the

subtasks, and it will start and stop at the same time:

tl:K = t = tK, tpK = t =

The processing power allocate to the composite task is just the sum of the power allocated

to the individual tasks:
K

Pl:K(t) = pk(t) = l:KP(t)
k=1

where
K

k=1

80

Now we define the state of the composite task as X1:K(t), and give it dynamics:

p::K(t) for tl:K < t < tFK
i l: g(t)

1

0 else

with boundary conditions

Zl:K(O) = 0, X1:K(tF) = L1:K

where the length of the composite task, L1:K, is the 1/a norm of the lengths of the

subtasks:

L1:K = t 1/a(L 1 ,... , LK)

where we define:

£1o(LI,..., LK) L /
k=1

It is straightforward to show that with this composite processor assignment, the state of

the composite task satisfies:

LI:K
X1:K(t) = K xk(t) for k = 1,..., K

The composite task satisfies the same dynamics as the original subtasks. If we replace

the parallel task set with composite task 1 : K, therefore, an optimal scheduling solution

for the original graph maps exactly into an optimal scheduling solution for the simplified

graph, and vice versa. In particular, if we solve for the optimal solution for the simplified

graph, then the solution for the processing power to be assigned to the individual subtasks

can be computed in terms of the fraction O1:K of power assigned to the parallel set:

tk = tl:K, t F = tFK

L1/apk(t) = qkP(t) where qk = €1:K '

1:K

The fraction of power allocated to the parallel task set is thus split up among the subtasks

according to the length of each subtask, in such a way that all the subtasks will start

and finish simultaneously.

__

81

Because the composite series or parallel task has the same p* dynamics as the original

tasks, we can apply this grouping technique recursively. If the graph can be expressed

entirely in terms of parallel and series configurations of tasks, then we eventually reduce

the entire graph to a single task with pa dynamics. Now the run time of the graph is

easily computed. Undoing the recursion, we allocate the processing power to each of the

series and parallel components according to their lengths, and determine their start and

stop times. Continuing recursively, we eventually derive the optimal processing schedule

for each individual task.

Typical graph structures that can be recursively decomposed into parallel and series

components include trees, inverted trees, and forests of trees or inverted trees. Most

matrix expression computations, for example, have the form of an inverted tree, and

thus if we are willing to approximate the speedup of the individual matrix operations as

pa, then the expression can be optimally scheduled by this simple parallel/series trick.

3.6.2 Examples of Optimal Schedules

In this section several examples will be presented to illustrate the power of the ideas

above. All graphs will be assumed to obey pa dynamics. Under pa dynamics, optimal

schedules are non-preemptive in nature, and both the series and the parallel reductions

of Section 3.6.1 can be applied.

3.6.3 Trees and Forests

Trees and forests (also inverted trees and forests) of tasks are uniquely decomposable into

series-parallel combinations. Hence optimal schedules can be written down by inspection.

Two examples are given below.

Tree Schedule

82

Proc

2 3

4

_.me
(a) Tree Recursive Decomposition (b) Optimal Tree Schedule

Figure 3.2: Optimal Tree Scheduling using series-parallel reductions

Figure 3.2 (a) shows a tree-structured task system, together with the unique recursive

series-parallel decomposition. The equivalent task has length

L = e1l/ (,11/ (L1, L, L3) + Ls, L4) + L6

and the optimal time tF is such that

1 P"(t)dt = L

The optimal schedule is shown in Figure 3.2 (b), and mimics the decomposition.

Inverted Tree Schedule

Figure 3.3 shows an inverted tree-structured task system, together with the unique re-

cursive series-parallel decomposition. The equivalent task has length

L = fil/ (il/a (L4, L 5) + L 2 , L 3) + L 1

and the optimal time is such that

0tF Pa(t)dt = L

:~ ~~-1- ~'------1-~---~-~111i-~' '~i~~ -- ~~"

Urn 1___

Figure 3.3: Optimal Inverted Tree Scheduling using series-parallel reductions

3.6.4 General Directed Acyclic Graphs (DAG's)

In general, DAG's cannot be uniquely decomposed into series-parallel graphs. A strategy

which will work in all cases is to try all possible decompositions, and take the decompo-

sition which yields the minimum time.

Figure 3.4 shows a task system structured as a DAG, together with three possible

recursive series-parallel decompositions. The equivalent tasks have length

1 = f1/, [(L1 + L3) , (e1, (L4, L) + L2)

L2 = 1f, (LjL2) t1/a(L3,L4,L5)

3 = e1 /a [(L 2 + L5), , (L 3 , L 4) + L)

and the optimal time is such that

tF P" (t)dt = min(l 1 , 2 , 3)

Which of the three decompositions is optimal depends on relative task sizes. These

determine whether task 1 finishes ahead, simultaneously with, or after, task 2. Since

under pa dynamics a successor has to start as soon as a task finishes, the relative finishing

time of tasks 1 and 2 determines which of tasks 3 and 4 "pairs" with task 1 to form a

(2

3 4 5()

(c)

Figure 3.4: Optimal DAG Scheduling using series-parallel reductions

series combination. In general, all possible decompositions may not yield self-consistent

results; the relative finishing times computed from the decomposition may be different

from those assumed for the decomposition. Such decompositions have to be dropped

from consideration.

(a)

s_

85

X(tF)

dS dX2

X(tO)
dX1

(a) (b)

Figure 3.5: Scheduling and Shortest Path Problems

3.7 p" Dynamics and Shortest Path Scheduling

The optimal control formulation of the scheduling problem derives the control functions

(the processing powers pi(t)) which drive the state trajectory along a path which goes

from the initial to the terminal states as quickly as possible, subject to the precedence

constraints. We will show that under pa dynamics, the time-optimal state trajectory is

the path with the shortest length, as measured by an £1/ norm.

Theorem 3.7.1 (Scheduling and Shortest Path Problems) Approximate e as very

small, so that transients during the start and finish of tasks can be neglected. Suppose

f1 (pi) = py for 0 < a < 1. Then the scheduling problem is equivalent to a shortest path

problem with l£/, norms.

Proof: We demonstrate this result by explicitly computing the time taken by a sched-

ule specified by a trajectory in task space. It is convenient to switch to a normalized

time variable. Let i be a monotonically increasing function of t, i = 0(t), defined by:

di = Pa(t)dt, with it= = 0

Because t is a monotonically increasing function of t, the schedule which completes in

minimal time t must also complete in minimal time 1. If the total processing power is

constant, P(t) = P, then t" is simple a scaled version of time t.

86

With reference to Figure 3.5 (a), the time (measured in the i frame) taken for a

schedule specified by the state trajectory S is

Isd s dti dti dtdi= - dS= - -dS

where dS is the path element. The time taken for moving along dS can be computed as

follows. Let

dS = [dxl, dx 2, dxN]

(Figure 3.5 (b)). Then a motion along dS is equivalent to processing dxl of the first task,

dx2 of the second, and so on, simultaneously. Thus the elapsed time dt is the same for

all of them. If the number of processors allocated to the ith task is pi(t), then we have

dxl dx2 dxN

or

dt
Since

N

~p 1 (t) = P(t)
i=1

we can simplify this to

dt - (EZi dx/)Q _ efl,(dxi, dx 2 , ., dxN)
PV(t) PC(t)

or

dt = P"(t)dt = e, 1 (dx1, dx2 , ... , dxN)

which is the eia norm of the path increment in task space. Thus the normalized elapsed

time t is a metric in task space. A time-optimal state-trajectory (optimal schedule) must

be time-optimal even if time is measured with our normalized time variable t. Thus the

time-optimal path must also be the shortest path in task space, as measured by the £1/l

norm, subject to precedence constraints between tasks. If a = 1/2, the time optimal

schedule minimises the Euclidean Distance.

87

The precedence constraints behave like obstacles to the trajectory, forcing the path

to reach certain hyperplanes (i.e. having a task finish, xi = Li) before it can veer off in

certain directions (by having one or more successor tasks begin.)

Theorem 3.7.2 (Limiting Cases of Pc) For any system of tasks with fi(p) = pa dy-

namics, the time for an optimal schedule with P(t) processors total satisfies the following

relations.

lim tF = CP
Co--+O

where CP is the critical path length of the precedence graph of the task system.

tF N

lim 0 P(t)dt= Li

Proof: As a tends to 0, p9 tends to 1. This implies that the rate of processing for

each task is always unity, regardless of its processor allocation (even if it is infinitesimal).

Hence the time taken for the ith task is Li. Hence the optimal time taken for the complete

task system, tF is clearly the longest chain of tasks in the precedence graph, viz. CP.

As a tends to 1, p9 tends to pi. Hence each task exhibits linear speedup. Since all

available processing power is used with perfect efficiency, the total work done by all the

processors over the time tF, f0F P(t)dt, must simply equal the total work for the graph,

E Li.

88

3.8 Discussion and Summary

In this chapter we have discussed multiprocessor scheduling theory from the viewpoint

of optimal control theory. Each task is treated as as dynamic system, whose state can

be changed by applying processing power to it. We assumed that each task could be

decomposed into an arbitrary number of modules to be executed in parallel on multiple

processors, and that the number of processors allocated could be a continuous variable.

Under these assumptions, the scheduling problem was formulated as a time-optimal con-

trol problem. Under general conditions, the formulation yielded a number of powerful and

elegant theorems. In the special case of p' dynamics, the scheduling problem was shown

to be equivalent to a shortest path with obstacles problem with ei/, norms. Moreover, in

this special case, non-preemptive schedules were shown to be optimal over the entire class

of preemptive schedules. These results greatly simplify the scheduling problem. Closed

form optimal solutions for trees and forests have been derived. The results can also be

extended to guide the scheduling of general Directed Acyclic Graphs (DAG's).

In conclusion, our approach to optimal scheduling provides fundamental insights into

scheduling theory. Our approach has revealed deep connections between scheduling and

shortest path problems. The methodology is particularly appropriate for applications

such as matrix expression computation where tasks can be systematically decomposed

into arbitrary numbers of parallel modules. For these applications, our theorems are

quite powerful and the optimal algorithms are practical and easily applied. Furthermore,

we believe that these scheduling approaches should be near optimal for systems whose

dynamics are similar to, but not exactly pa.

Chapter 4

Experimental Results

4.1 Introduction

In this chapter we present experimental results obtained from a prototype compiler,

the Structure Driven Compiler (SDC), which was written to test the ideas of the thesis.

The compiler uses the two level hierarchical compilation paradigm for matrix expressions.

The prototype demonstrates that hierarchical compilation is a fast strategy, and produces

relatively efficient code.

To recapitulate, the hierarchical compilation strategy works as follows. Efficient par-

allel library routines for the basic matrix operators are efficiently spliced together to

form good routines for the complete matrix expression. The parallel library routines for

the matrix operators exploit the geometric structure of the operator dataflow graphs, as

explained in Chapter 2. The routines are spliced together using techniques explained in

Chapter 3.

In this chapter, compilation of a variety of matrix expressions is illustrated, varying

in complexity from simple matrix operators to complex inner loops of linear algebra

routines. First, in Section 4.2, we describe the experimental facilities used to obtain our

results. Section 4.3 discusses some general issues in compiling static dataflow graphs like

those encountered in matrix expressions. Then the design of the parallel operator library,

90

(Section 4.4) and the generalised scheduling heuristics (Section 4.5) is described. The

implementation details of the compiler SDC follow (Section 4.6). Finally, a variety of

matrix expression examples (Section 4.7) are illustrated. Future compiler enhancements

are described in Section 4.8.

4.2 Experimental Environment

The input to SDC is a matrix expression in a LISP like prefix language, with data

independent control. SDC produces Mul-T output code, which is compiled and run on

the MIT Alewife Machine simulator.

4.2.1 Mul-T - a Parallel LISP

Mul-T is a parallel version of LISP (SCHEME to be precise). A task T is created using a

(future T) call. A future call specifies a task which can be run at some unspecified (later)

time. A task T can be forced to finish using a (touch T) call. A touch call returns only

when the touched task completes. The future-touch mechanism enables parallel tasks to

be created and completed as necessary. No explicit control is provided to the programmer

to schedule tasks at specific times. Tasks are scheduled at times when processor resources

are available (lazy futures). However, a task T can be assigned to a specific processor P,

using the (future-on P T) call.

The Mul-T library provides various forms of task synchronization. The touch call is

one such. Other forms include semaphores, barriers, readers-writers locks, etc.

Mul-T provides a shared memory abstraction for handling interprocess communica-

tion.

4.2.2 The MIT Alewife Machine

The MIT Alewife Machine [Aga90] (Figure 4.1) is a 2-D / 3-D mesh connected coarse

threaded multiprocessor, with strongly coherent caches. The basic system paradigm is

91

Alewife machine

Figure 4.1: The MIT Alewife Machine

high performance through simple hardware being controlled by sophisticated software -

operating systems and compilers.

The processors are connected to each other via a 2-D or 3-D mesh connected intercon-

nection network. Each processor has associated local memory. There is no explicit global

memory. As such this is a strictly distributed memory system. Processors have associated

caches for fast access to frequently used data. The existence of this distributed memory

hierarchy implies that locality issues are critical in determining program performance.

At the time of writing, only a simulator ASIM is available for Alewife.

Extensive software instrumentation is available for ALEWIFE. The primary source

language is Mul-T [KHM89]. A Mul-T program can be compiled, linked, loaded, and

run on the simulator. Extensive software exists [Alent] for collecting program statistics,

like total run time, the parallelism profile, memory access patterns, cache coherency

transactions, etc. This software is critically important to evaluate program performance.

At an early state of the research, an Encore Multimax was used for the simulations.

However, the almost complete lack of instrumentation makes the results obtained on it

almost worthless.

4.2.3 Alewife Machine Model

The MIT Alewife machine (Figure 4.1) is being developed to investigate issues of program

locality in multiprocessors. There are many aspects in which the model differs from the

simple multiprocessor model in Chapter 2.

Firstly, the processor at each node (SPARCLE) of the machine is more complex

than the simple model we have assumed, with a diverse instruction set. It is a load-

store architecture, however. So, our assumption that the arithmetic operations (+,*)

are characterised by execution times, ignoring pipelining, latency, etc., is reasonably

accurate.

Next, the interconnection network is quite different from the simple fully connected

network assumed in the model. The mesh connectivity implies processor locality. Com-

munication times from one processor to another depend on the distances between the

processors. They are no longer uniform, as assumed in the model.

Task placement provides a means of overcoming the nonuniform communication time.

Macro tasks which share data should be preferably placed on a set of processors near each

other. Then most communication becomes local, and communication times are roughly

constant.

We have assumed a 3-D mesh connected interconnection network, for all our simula-

tions, because its higher connectivity makes it closer to the fully connected network in

the model.

However, the statistical nature of the network is another source of mismatch. The

communication times between the same two processors can vary widely depending on

network loading conditions, hotspotting, etc. This has not been modeled in any manner

in our simple model. The network will have to be operated at a relatively low loading

for our model to be valid.

The ALEWIFE machine provides hardware support for cache coherency. Full-map,

LimitLESS, and Chained directory schemes [Alent] are available for hardware coherency.

The Full-map directory scheme maintains a complete set of hardware pointers to each

processor currently caching a particular datum. These pointers are needed for coherence

transactions like cache invalidates, data messages, etc. In the LimitLESS protocol, only

a few (5) pointers are maintained by hardware, and software emulation accounts for

the rest. LimitLESS behaves like Full-map when the sharing is limited, as in most

important application programs. The Chained directory scheme (the default) maintains

all pointers in hardware, in the form of a linked list distributed across processors. The

Chained directory scheme behaves in some ways like LimitLESS.

Hardware caching support is not modeled in our model. In all the simulations, we have

used the default Chained directory caching scheme. While the absolute timings using

the other caching schemes do differ, the relative performance of our compiled programs

is expected to be similar.

94

When a set of tasks start, considerable overhead is incurred on the Alewife machine.

This includes time to spawn all the tasks in a tree like fashion, argument access, etc.

This task startup overhead is completely ignored in our model. This overhead can be

minimised by minimising the number of tasks which are spawned, a point to which we

return later.

It is clear that the MIMD general purpose nature of the MIT Alewife Machine in-

troduces complications which are not modeled adequately in our model. But the model

can still be used, since it is simple enough for analysis, and under ideal conditions does

represent the Alewife Machine reasonably well. It is not too inaccurate in modeling

the processor. Communication in programs with good locality can also be reasonably

modeled, especially under conditions of low network load. For programs which do not

repeatedly spawn many tasks, the task startup overhead is relatively small.

4.3 General Issues in Compiling Static Dataflow

Graphs

The purpose of writing the compiler SDC was to test the issues involved in parallelizing

matrix expression code, and to test whether the ideas raised in the thesis were applicable

to compiler writers. Before we do this, it is important to specify what the task of every

compiler is.

The task of any compiler is two fold - accurate translation and efficient translation.

The first task is accurate translation of the source language into object code. This

is a correctness issue. In the case of matrix expressions, this manifests itself as accurate

translation from the matrix expression input language to the target language, in our

case Mul-T. This involving developing correct parallel library routines to implement the

various matrix operations. Generating correct code for the matrix expression is done by

generating Mul-T code containing a sequence of calls to these parallel library routines,

respecting all precedence constraints.

95

The second task is to produce efficient code. This is a performance issue. This task

can be viewed as an exercise in resource optimisation. The compiler has to allocate the

limited computation resources, viz. processors, memory, network etc., to optimise some

criterion, eg. minimization of finishing time. In general, the more expressive the source

language, the harder it is to compile efficiently. In the particular domain of compiling

matrix expressions, the parameters of each parallel library routine - viz. the parallelism,

various blocking parameters, etc. - have to be specified in an optimal manner.

Optimal processor allocation is typically in the domain of scheduling theory. Since

the dataflow graphs in the case of matrix expressions are all static, static scheduling

techniques are applicable. Chapter 3 presented a generalisation of (static) scheduling

theory to determine both parallelism and sequencing of tasks. Parallelising heuristics

arising out of this theory are incorporated in the compiler (Section 4.5).

Memory is needed to hold intermediate results during computation of matrix ex-

pressions. Since the dataflow graphs are all static, this memory can be preallocated at

compile time. A piece of memory can oftentimes be reused for holding many intermediate

results. Optimal memory reuse can be handled by graph colouring techniques. In our

prototype compiler, memory allocation is performed dynamically, at run time, by the

parallel library routines themselves. This induces unnecessary overhead, which should

be removed in later versions.

Optimal allocation of network resources (communication) is a difficult task, as it

involves scheduling of essentially random memory requests through the communications

network. But the communication needs can be greatly reduced by appropriate task

placement. Tasks which share data should preferably be allocated on the same processor,

to minimise the communication requirements. Our prototype compiler completely ignores

this issue.

Other forms of resource optimization include classical uniprocessor compiler optimiza-

tions like loop unrolling, induction variable recognition, code reordering, etc. None of

this is handled by the prototype compiler.

To reiterate, the only optimization that the prototype compiler performs is to deter-

mine the parallelism of each particular parallel library routine. Memory allocation for

each library routine is currently performed dynamically, by the parallel library routines

itself. Task placement is completely ignored. All this should be incorporated in future

versions of the compiler.

4.4 Parallel Operator Library

Here we discuss the design of the parallel operator library routines. The routines are

derived from the structure driven compilation ideas in Chapter 2.

4.4.1 Matrix Sums

To compute C = A+B on P processors, the matrices A and B are divided into rectangular

blocks, and a block is handed to each processor. Assume that P can be factored into two

roughly equal factors P1 and P2. Then our blocking scheme choses to split the rows into

P1 groups, and splits each group into P 2 blocks, yielding P = P1 P2 blocks in all. Since

there is very little sharing in a matrix addition (Chapter 2), the performance is relatively

insensitive to the exact blocking scheme chosen. Also, the matrix addition has much

fewer computations compared to matrix multiplication, hence optimising it is much less

important for most of the examples we tried.

4.4.2 Matrix Products

The rectangular bin-packing ideas of Chapter 2 have been incorporated in the matrix

product routines.

Assume that the matrix product C = A x B is being performed. The bin-packing

algorithms essentially specify the dataflow graph block handled by each processor. The

task spawned for each processor computes all the partial products inside its block, and

sums them. This yields a partially computed block of C, which can be accumulated with

1_1__

97

B face

C face.

N1

N3 N2

A face

Block handled by a
processor

Matrix Product Dataflowgraph lattice

Figure 4.2: Implementation of Matrix Product

other corresponding partially computed blocks of C to form a completely computed block

of C.

This accumulation necessitates synchronization between the tasks in general. On the

Alewife machine this incurs excessive overhead. For the purposes of this prototype, we

have eliminated this source of overhead by computing each of the N 2 dot products com-

pletely on a single processor. Thus the dataflow graph is chopped into long rectangular

blocks, parallel to the summing (j) axis. (Figure 4.2). Clearly, this introduces more

communication, but the increase is not much, if the aspect ratio of the blocks is not very

far from ideal.

Specifying that each block has length N2 along the j axis leaves the block sizes along

each of the other dimensions i (Ni) and k (N3) free to be specified. The sizes along each

98

of the other dimensions are chosen in a manner analogous to the matrix addition routine.

Specifically, the total number of processors P is factored into two roughly equal factors

P1 and P3 . P1 is chosen to be the higher factor. If P is a perfect square, P1 = P2 = VPT.

If P is prime, P1 = P, and P2 = 1. Cases when the number of rows of C (columns of C)

is less than P1 (P3) are handled specially - then a refactorization is attempted. We try

to factor P - 1 instead of P, on the assumption that P itself is a large prime.

A even better factorization strategy would have been to use the optimal rectangle

partitioning strategies of Chapter 2 (Section 2.6.2). The two strategies differ significantly

only if C is very far from square, or if P does not factor well (a large prime for example).

After the factorization, rows of the output matrix C are partitioned into P1 sets.

Each set is further partitioned into P3 blocks, yielding P1 P3 blocks in all. Each block of

C is computed on one processor.

The scheme is a compromise between the optimal blocking schemes of Chapter 2, and

ease of implementation. The general ideas of Chapter 2, about chunking up the dataflow

graph into compact equal sized clusters is used. Only the shapes of the clusters are not

the most compact possible, to avoid excessive synchronization overhead.

Speedup curves for the matrix product will be shown later, in Section 4.7.

4.4.3 Other Operators

Various other matrix expression operators have been implemented, following the same

basic idea of minimising communication by choosing good block sizes. These operators

include dot products, outer products, matrix scaling, transposes, etc. The details are

omitted.

4.5 Composing Parallel Operator Library Routines

Once good parallel library routines are developed, algorithms have to be developed for

composing them together to yield a good compilation for the matrix expression. This

Operation Workload
Scalar Operation 1

N1 x N 2 Addition NN 2

N point Dot Product N
N1 x N 2 Outer Product N1N 2
N1 x N 2 Matrix Scale N1N2

N1 x N 2 Matrix Transpose N1N2
N1 x N 2 x N 3 Matrix Product N1N2 N3

Table 4.1: Workloads of various operators

needs methods to determine the parallelism of each particular routine, viz. the techniques

of generalised scheduling outlined in Chapter 3.

The generalised scheduling theory of Chapter 3 yields a number of heuristics to de-

termine the parallelism and scheduling order of each macro-node (task). Under PC

dynamics, several optimal scheduling techniques were obtained. If the dynamics are not

P", these techniques can be employed as heuristics. These techniques, together with two

other similar heuristic techniques, were experimented with. The heuristics are enumer-

ated below:

* The Naive heuristic computes each macro-node using all the available processors,

in some sequence satisfying the precedence constraints. Since each node is run at

the finest granularity (maximum parallelism) possible, this method is clearly slow.

But it is included because of its simplicity.

* The Greedy heuristic operates in cycles. In each cycle, all the nodes which can

be executed (upto a maximum equal to the number of processors), are fired. The

processing resource is distributed in a manner so as to equalise the finishing times

of all fired nodes. In the next cycle, the set of successor nodes is fired, and so on.

To equalize the finishing times of all nodes fired in a cycle, the processors are

distributed among them in proportion to their workloads. The workloads are es-

timated crudely, by a simple operation count. The workloads for each particular

operation are specified in Table 4.1.

___~

100

* The Tree heuristic, used for tree-structured matrix expressions, is derived from

the optimal tree scheduling heuristic for P" dynamics (Chapter 3). The processor

resource is partitioned among sibling subtrees in proportion to their workloads.

If all the nodes of each subtree have the same a, the workload of each subtree

is the l/,,, norm of its children, plus the workload of the root (Chapter 3). But

for this technique to be useful, a must be known. Also, in general fractional

processor allocations result. In this version of the compiler, a is assumed to be

unity. The total workload of each subtree is simply the sum of workloads of all

its constituent nodes. The processor allocations have also been quantised to avoid

fractional processor allocations.

The overall dataflow graph execution time estimates are clearly extremely erroneous

if we assume that a = 1, as each task is assumed to have linear speedup. However,

in practice this assumption does not cause much error in the processor allocations.

Succeeding versions of the compiler will attempt to partition the processor resource

much more accurately, using actual measured operator execution times (Section 4.8).

Figure 4.3 illustrates the operation of the three heuristics on a tree structured dataflow

graph. The naive heuristic (Figure 4.3 (a)) runs each macro node on all the available

processors. Nodes 1, 2, 3, 4, and 5 are run in sequence. The Greedy heuristic (Figure

4.3 (b)) runs nodes 1, 2, and 4 in parallel, distributing the processor resources among

them. Subsequently nodes 3 and 5 are computed, each using all available processors.

The Tree heuristic (Figure 4.3 (c)) does a slightly better job of partitioning the processor

resource by recognizing the fact that nodes 1, 2, and 3 form a subtree, which can be run

in parallel with node 4, by splitting the available processors. Finally node 5 is run on

all the available processors. The Tree heuristic outperforms Greedy, since it reduces the

parallelism of node 3. The two subtrees, one comprising nodes 1, 2, and 3, and the other

comprising the lone node 4 are computed in a "balanced" manner by the Tree heuristic.

101

Macro DFG

Proc

Time
I I II A,

'Proc

4 1 I I Time

(a) Naive Heuristic (b) Greedy Heuristic

Proc

5

Time

(c) Tree Heuristic

Figure 4.3: Generalised Scheduling Heuristics

102

4.6 Compiler Implementation Details

The compiler has a standard structure, comprising of a front end converting the ma-

trix expression dataflow graph into an intermediate language representation, and a back

end generating code. The intermediate language representation is used for most of the

analysis.

The compiler performs a two level partitioning and scheduling. In the first stage the

parallelism (number of processors P) of each particular macro operator is determined

by using the generalised scheduling heuristics enumerated above. The workload for each

particular operator/sub-tree is estimated as specified in Table 4.1. Then, the blocking

parameters for each particular operator are determined as described in Section 4.4. Fi-

nally, code consisting of a sequence of calls to the parallel library routines with all the

parameters specified is generated.

The Tree heuristic can be applied only to trees. There are several algorithms for

determining whether a graph is a tree or not. However, in the current version of our

compiler, we explicitly specify whether an expression graph is a tree or not.

4.7 Matrix Expression Examples

The various matrix expressions are tabulated in Table 4.2. The default matrix size is

20 x 20. The compiler produces correct and relative high speed code automatically.

Unless otherwise specified, the runs have been done using the chained directory caching

scheme.

We present results for the the matrix product library routine first. Other library

routines are written in an analogous manner, and are not described. Finally, we present

results for complete expressions.

4.7.1 Matrix Product Parallel Library routine

103

;COMPUTES ONE BLOCK OF MATRIX PRODUCT
(define (fastmul_block_single id arg_list)

(destructure*
(((mat_a mat_b mat_c lock_c nl n2 n3 pl p3) arglist)

;INDEX MANIPULATION
(nproc (* pl p3))
(l_m (quotient nl nproc))
(r_m (mod nl nproc))
(start m (+ (* 1 m id) (min r m id)))
(end_m (+ start m (cond ((< id r m) (1+ 1_m)) (t 1_m))))
(i (quotient id p3))
(k (mod id p3))
(li (quotient nl pl))
(ri (mod nl pl))
(startl (+ (* li i) (min ri i)))
(el (+ startl (cond ((< i ri) (1+ li)) (t li))))
(start2 0)
(e2 n2)
(lk (quotient n3 p3))
(rk (mod n3 p3))
(start3 (+ (* Ik k) (min rk k)))
(e3 (+ start3 (cond ((< k rk) (1+ Ik)) (t Ik)))))

;MEMORY ALLOCATION
(do ((i start m (1+ i)))

((= i end m))
(set (vref mat c i) (make-vector n3))
(semaphore-v (vref lockc i))

;INNER LOOP
(do ((i startl (1+ i)))

((= i el))

;SYNCHONIZATION FOR MEMORY ALLOCATION
(semaphore-p (vref lock c i))
(semaphore-v (vref lock c i))
(do ((k start3 (1+ k)))

((= k e3))
(set (vref (vref mat c i) k)

(do ((j start2 (1+ j))
(sum 0 (+ sum

(vref (vref mat a i) j)
(vref (vref mat b j) k)))))

((= j e2) sum)))))))

--

;TOP LEVEL ROUTINE
(define (fastmul block

mat_a mat_b lenl len2 len3 pl p3 startproc)
(let* ((ntask (* pl p3))

(mat_c (make-vector-on (mod startproc * NUMBER OF PROC*) lenl))
(lock_c (make-vector-on (mod startproc *_NUMBER OFPROC*) lenl))

(do ((i 0 (1+ i)))
((= i lenl))

(set (vref lock_c i) (make-semaphore))
(semaphore-v (vref lock c i))
(semaphore-p (vref lock-c i))

(spawn startproc ntask
fastmul_blocksingle

(list mat_a mat_b mat_c lock_c lenl len2 len3 pl p
3))

mat c
))

Figure 4.4: Code for Matrix Product

:~i_~lllll__i_____Il~~i___._^___... ~._i..~~_.._._^. _-.___-.___ ___

104

gO AB
g11l AB + (EF)(GH)
g12 A 1B 1 + (E1 F1)(GH 1) + A 2B 2 + (E 2F2)(G2H2)
g20 I+2A+3A2 +- + 9A 8

g21 I+2A+3A2 + .. + 17A 16

g22 DFP Update (see later)

Table 4.2: Various Matrix Expressions

The parallel library routine for a matrix product FASTMULBLOCK, is shown in

Figure 4.4. The parameters to the library routine are the input matrices mata and

maLb, the number of rows of maLa, lenl, the number of rows of matb, len2, and the

number of columns of matb, len3. Also specified are the blocking parameters pl and p3

(Section 4.4). The compiler determines pl and p3 by factoring the number of processors

P into roughly equal factors, as explained in Section 4.4 (P itself is determined using the

generalised scheduling heuristics). startproc refers to the lowest numbered processor on

which this routine will run. It is necessary to specify this for static scheduling purposes.

FASTMULJBLOCK works by spawning P threads (FASTMUL-BLOCKSINGLE),

each of which handles a different block of the matrix product dataflow graph. Ex-

tensive bookkeeping is necessary in FASTMUL-BLOCKSINGLE to determine the

block boundaries, for arbitrary sized matrix products on arbitrary number of processors.

Memory to hold the output matrix is allocated by the threads in parallel. A thread

cannot write to an output element, before it has been allocated by a possibly differ-

ent thread. This memory allocation needs synchronization in the form of semaphores

in FASTMUL-LOCKSINGLE. In fact, the matrix product inner loop is a rela-

tively small fraction of the code. A compiler and associated library which automatically

manages all this bookkeeping is itself of great value. High speed is an added benefit.

The speedup curve is shown in Figure 4.5. The speedups fall dramatically after about

8 processors. Excessive task startup and communication overhead are the causes of this

behaviour. There is an anomalous concave region, with the speedup first decreasing

from 4 for 8 processors, to 2.9 for 16 processors, then slightly increasing to 3.2 for 35

7--
105

10 NxNxN Mesh
Matrix Product, 20x20x20 matrices
expr: (* a b)
Time on I processor: 270645 cycles

8

6

0-0 Speedup

1 10 19 28 37 46 55 64 73

PROCESSORS

Speedup Curves

Figure 4.5: Speedup Curve for 20 x 20 matrix product

-I-I

106

Proc

4 9 Proc

2 22 Proc 3
35

1 4 Proc Proc Time

(a) Expression gll (b) Greedy Schedule

Figure 4.6: Greedy Schedule for gll

processors. The speedup falls dramatically to 2.3 for 64 processors.

While the speedup function is clearly not Pc, it can be approximated as a convex

function, and much of the generalised scheduling theory of Chapter 3 holds. In particular,

the insight that tasks have to be run in parallel if possible is critical. This will be

demonstrated in the succeeding examples.

4.7.2 gll - Filter Bank

Expression gll (Figure 4.6 (a)) is prototypical of systems typically encountered in signal

processing and linear algebra. It could represent the iteration of an inner loop, or a filter

bank.

A and B are 20 x 20 matrices, E is a 20 x 9 matrix, F is a 9 x 20 matrix, G is

a 20 x 43 matrix, while H is a 43 x 20 matrix. These strange data sizes have been

deliberately chosen to illustrate size-matching (bin-packing) problems encountered in

parallelising compilers. Each scheduling heuristic produces different parallelisms for each

of the macro-operators. Writing code by hand for each problem size, and each number

of processors, is a very tedious job, which should be automated. This is indeed done by

__

107

the SDC.

For example, Figure 4.6 (b) shows a Gantt chart for a schedule for 35 processors using

the Greedy Heuristic. The matrix products A x B, E x F, and G x H are computed

together. Then, after at least E x F and G x H are completed, their outputs are

multiplied. Finally, the addition is performed. The matrix multiply A x B is assigned

9 processors, the matrix multiply E x F is assigned 4 processors, the matrix multiply

G x H is assigned 22 processors.

The code generated by the compiler is shown in Figure 4.7. Calls to FASTMULBLOCK

are generated, with the data sizes, parallelism, blocking, and other parameters specified.

Parallel tasks are spawned and completed using the future-touch mechanism in Mul-T.

Static scheduling is used, since the dataflow graph is completely static. The extensive

bookkeeping needed is evident.

The speedup curves show the relative performance of the scheduling heuristics. Two

factors contribute to the high speed obtained. One is the speed obtained using the

parallel matrix operator library routines. Well designed matrix operator routines can be

1-2 orders of magnitude faster than poorly designed routines, which needlessly spawn

tasks for each particular arithmetic operation (add, multiply) in the matrix operator.

The second factor accounting for speed is exploitation of parallelism by the Greedy and

Tree scheduling heuristics.

The speedup curves (Figure 4.8) show two distinct regimes, one upto 8 processors,

and one beyond. All three heuristics perform roughly equally well till about 8 processors.

Beyond this, the Greedy and the Tree heuristic outperform the naive heuristic (by a factor

of 1.5 for the Tree heuristic on 35 processors). This agrees with the considerable drop of

speedup evidenced in the basic matrix product beyond 8 processors. The Tree heuristic

is slightly better than the Greedy heuristic, vindicating the theory. The drop off of

the curves at 64 processors probably reflects excessive task startup and communication

overhead due to improper placement of tasks on processors.

The absolute speedups obtained are relatively low, around 10 for 35 processors, for

__ 111

108

(herald
(DEFINE

(LET

SELECT ALL
(SELECTALL

((T.500
(FUTURE-ON

(T. 501
(FUTURE-ON

(T.502
(FUTURE-ON

(TOUCH T.502)
(TOUCH T.501)
(LET ((T.503

(FUTURE-O

(TOUCH T.503)
(TOUCH T.500)
(LET ((T.504

(FUTURE

(env tsys const a int_op_a))
ABCDE F G H)

(LET ((TEMP 1 A)
(TEMP 2 B))

(FASTMUL BLOCK TEMP 1 TEMP 2 20

(LET ((TEMP 1 E)
(TEMP 2 F))

(FASTMUL BLOCK TEMP 1

(LET ((TEMP 1 G)
(TEMP 2 H)

(FASTMUL BLOCK

N 0
(LET ((TEMP 1

(TEMP 2
(FASTMUL BLOC

-ON

TEMP_2 20

20 20 3 3 0))))

9 20 2 2 9))))

TEMP 1 TEMP 2 20 43 20 11 2

T.501)
T.502))
K TEMP 1 TEMP 2 20 20 20 7 5

13)))))

0)))))

(LET ((TEMP 1 T.500)
(TEMP 2 T.503))

(FASTADD TEMP 1 _TEMP_2 20 20 7 5 0)))))
(TOUCH T.504)))))

Figure 4.7: Code for gll

--- -- --

109

NxNxN Mesh
expr gl 1, various sized matrices (20x43, 43x20, 20x9, 9x20, 20x20)
Sgll : (+ (* a b) (*(e f) (*g h)))))

w 14 Time on 1 Processor: 1219211 cycles
w
0.

0- 0 Naive
I- 0 Greedy

12 0--- 0 Tree

10

8

6

4-

2

1 10 19 28 37 46 55 64 73
PROCESSORS

Speedup Curves

Figure 4.8: Speedup Curves - gll

110

the Tree heuristic. While various forms of overhead like task startup, communication,

and memory allocation undoubtedly play a role, it is important to note that the speedups

shown are close to the "true" speedups for the expression. The programs for each number

of processors are different. The uniprocessor program is optimised for a single processor,

that for 8 processors is optimised for 8 processors, and so on. Thus it is expected that

the speedups shown will be less than linear. The speedups shown will improve as both

the problem size and parallelism increase. This will be illustrated in the next example.

4.7.3 g12 - Larger Filter Bank

g12 is essentially two copies of g 1 performed together in parallel. This could be obtained

from unrolling two iterations of an inner loop involving gll. Or, if gll represented a filter

bank, this could represent a larger filter bank formed by running two banks in parallel.

The increased parallelism in g12 enables tasks to be run at coarser granularity. Again

two regimes are evident in the speedup curves (Figure 4.9), with a break around 8 pro-

cessors. The substantial improvement in absolute speedups is evident, with the speedup

at 64 processors being close to 15 (25 %) for the Tree heuristic. The Greedy and Tree

heuristics outperform the naive heuristic by factors of 2 to 3. The gain is substantially

more than in the case of gll. The Tree heuristic is also substantially better than the

Greedy heuristic in this case. This example well illustrate the gains in performance by

exploiting parallelism in the macro dataflow graph.

4.7.4 g20, g21 - Matrix Polynomials

These matrix polynomials are prototypical non-trees, since the powers of the matrices

are generated in a recursive doubling fashion. Hence the Tree heuristic is not relevant in

this case.

g20 is an 8th degree polynomial, while g21 is a 16th degree polynomial. The speedup

curves (Figure 4.10), again exhibit a break around 8 processors. The Greedy heuristic

outperforms the naive heuristic by a factor of 2 for g20, and a factor of 3 to 4 for g21.

111

O- 0 Naive
0----0 Greedy
0 ----- 0 Tree

NxNxN Mesh
expr gl2, gll unrolled twice.
g12 :(+ ((* al bl) (* (el fl) (' gl hi)))))

(+ (* a2 b2) ((*e2 f2) (* g2 h2)))))

Time on 1 Processor: 2456674 cycles

55 64 73

PROCESSORS

Speedup Curves

Figure 4.9: Speedup Curves - g12

~--~----~~-

112

S- 0 Naive_8
0.-l Greedy_8
0- 0 Naive_16

W O- 0 Greedy_16
n 18
co

NxNxN Mesh
Matrix Polynomial (Degree 8 and 16)

A
AA^2
AA3,AA4
AA5,AA6,A 7,A 8
AA9,AA10,A I,A A12,A 13,A A14,AA15,A16

(I + 2A + 3AA2 + 4AA3 + 5AA4 + 6AA5 + 7A 6 + 8A7 7+ 9AA8)

(I + 2A + 3AA2+4AA3 + 5AA4 + 6AA5 + 7AA6 + 8AA7+ 9AA8 +
10AA9 + 11A 10 + 12A 11 + 13AA 12+ 14A 13 + 15A A14 A 15 + 17AA16)

Time on 1 Processor:
Degree 8 - 2304870 cyc
Degree 16- 48864 ces

9-

6

3

1 10 19 28 37 46 55 64 73

PROCESSORS

Speedup Curves

Figure 4.10: Speedup Curves - g20, g21

113

AX = Xi+ - X

AG = Vf i+l - Vf,

HAG = H, x AG

AXAG = AX.AG

AGHAG = AG.HAG
AX 0 AX HAG ® HAG

Hi+l = Hi+
AXAG AGHAG

Figure 4.11: DFP Update

The gains encountered in exploiting increased parallelism (in g21) are evident.

Independent of the high speed obtained from the Greedy heuristics, it must be pointed

out that the complexity of the expressions is such that writing code by hand, would be

an impossibly tedious task. Thus just the fact that the compiler automatically produced

correct code, itself makes it useful.

4.7.5 g22 - DFP Update

g22 (Figure 4.11) is one iteration of the inner loop of a DFP (Davidon-Fletcher-Powell)

update. This example includes many basic matrix operators like inner products, outer

products, transposes, matrix sums and products, etc.. 100 element vectors have been used

to get the workload in the DFP update comparable to those in the previous examples.

Again the compiler produces correct and relatively fast code. The mere correctness of

the code is enough to make the compiler of value. The speedup curves (Figure 4.12) again

shows a break beyond 8 processors. The drop-off of the speedup beyond 35 processors is

probably due to communication overhead caused by incorrect task placement.

4.8 Discussion and Further Compiler Enhancements

The compiler SDC has provided preliminary experimental validation of the ideas of Chap-

ter 2, and Chapter 3. Developing the parallel library routines has followed the general

114

W 14

co0- 0 Naive
0---- Greedy

12 NxNxN Mesh
DFP Update
Time on 1 Processor: 3171571 cycles

10

8

6

4-

2

1 10 19 28 37 46 55 64 73

PROCESSORS

Speedup Curves

Figure 4.12: Speedup Curves - g22

115

style of forming compact node clusters, as per Chapter 2. The generalised scheduling

heuristics have been implemented in a preliminary form. However, more work has to be

done to obtain more thorough experimental results.

Firstly, the multiprocessor model needs to be refined. The processor model needs to

be enhanced to reflect the complexities of instruction sets of real processors. This is a

relatively simple issue. Much more critical is improving the network model. The fully

interconnected, constant access time network assumed is totally unrealistic for modern

multiprocessors. The parallel library algorithms should be rederived using the intercon-

nectivity patterns of real networks (eg meshes).

The compiler algorithms need to improved greatly in all respects - determining par-

allelism, memory allocation, and optimizing communication.

Firstly, the implementation of the generalised scheduling heuristics used by the com-

piler to determine the parallelism of each particular library routine can be greatly im-

proved. The best strategy would be to use a measured speedup function for each particular

operator. Processors would be distributed among a set of operator tasks not in propor-

tion to their workloads (Table 4.1), but on the basis of their measured speedup. This

enables task finishing times to match more accurately, thus improving both the Greedy

and Tree heuristics.

Memory allocation is currently handled dynamically, and introduces some additional

overhead, most likely in the form of increased unnecessary network traffic, which leads

to hotspotting. Since the matrix expression dataflow graph is static, it is pertinent to

allocate memory at compile time itself. Future compiler versions should do this.

The compiler currently ignores task placement issues almost completely. Thus a

processor may be asked to compute a block of one matrix product, a totally unrelated

block of a successor, and so on. While communication within each operator is minimised

by the blocking operator algorithms, communication between two operators is ignored.

This communication needs to be minimised in future compiler versions, by proper task

placement.

__~I_ ______l~i 11_1_1111_~

116

Several other compile time optimizations are also necessary. We have organised

the software as a sequence of parallel library calls, with varying parallelism. Each li-

brary call spawns, executes, and shuts down a number of threads equal to its paral-

lelism. Further the parameters of the tasks spawned by each library operator (the block

boundaries, specifically) are determined at run time (eg. the bookkeeping overhead in

FASTMUL.BLOCKSINGLE in Section 4.7). The repeated thread spawning, param-

eter computation and thread completion introduces unnecessary overhead. The overhead

can be minimised by creating a thread for each processor, and specifying the entire se-

quence of tasks handled by it over time. Explicit synchronization code would be embed-

ded in the code for each thread. All this can be done at compile time. In essence, we

create a process shell for each processor at compile time.

Many of the optimizations alluded to above, especially memory allocation and pro-

cess shell creation are relatively insignificant for very large size problems. But they are

significant for the matrix sizes (20 x 20) used in the thesis, which are not atypical of

signal processing systems, and linear algebra calculations.

The prototype compiler, inspite of all its deficiencies, produces correct and relatively

efficient code. Future versions of the compiler, incorporating the changes mentioned

above, should yield even better performance.

1 _111 _

Chapter 5

Conclusion and Future Work

5.1 Summary

Effective multiprocessor compilation is a critical issue in parallel processing. It is one of

the three main issues influencing the performance of a multiprocessor on any algorithm

of interest, architecture and operating systems support accounting for the other two.

Efficient multiprocessor compilation is a difficult discrete NP-hard optimization problem,

as it involves the twin tasks of partitioning and scheduling.

However, for algorithms which have a natural hierarchical structure, the compila-

tion can be greatly simplified, by exploiting the hierarchy. The hierarchical compilation

paradigm proceeds by effectively compiling the basic building blocks of the hierarchy first,

then composing together routines for the basic building blocks to form a compilation for

the complete algorithm.

In this thesis we explored the hierarchical compilation paradigm in the context of

matrix expressions. Matrix expressions are an important class of numeric algorithms,

as they can represent most signal processing systems, basic linear algebra algorithms,

etc. The basic building blocks of matrix expressions are clearly matrix operators. We

have developed techniques for compiling operators effectively, thus developing a parallel

operator library. Techniques have also been devised to compose together library routines

117

1__111

118

for compiling the complete matrix expression.

The techniques for compiling parallel library routines for matrix operators (Chapter 2)

all rely on using as much apriori knowledge of the structure of the operators, as possible.

They exploit the regular geometric lattice structure of the operator dataflow graphs, to

greatly simplify the partitioning and scheduling. Continuous polyhedral approximations

to the dataflow graph lattice permit continuous polyhedral partitioning techniques to be

used in place of expensive discrete graph partitioning techniques.

Optimal compilation needs the dataflow graph to be partitioned into equal sized clus-

ters, and choosing the shape of the clusters to minimise communication. The polyhedral

representation shows that communication is proportional to the surface area of the clus-

ters. Hence an optimal partition tries to choose clusters with minimum surface area, for

a fixed volume. This is a classic bin packing problem, which can be handled by geome-

try techniques. The surface area does not increase greatly if clusters are distorted from

their optimal shapes. Hence optimal run-times are possible even with large deviations

in cluster shapes. This implies that relatively simple, easy to implement heuristics work

well in practice. For example, long skinny clusters (assigning each processor to a fixed

set of C elements in an C = A x B matrix multiply) have slightly more communication,

but have vastly simpler loop structure, and reduced synchronization overhead.

The parallel library composition techniques (Chapter 3) determine both the par-

allelism and sequencing of each of the matrix operators (macro nodes) of the matrix

expression dataflow graph. A framework using the theory of optimal control has been

developed for this purpose.

The fundamental paradigm is to view tasks as dynamic systems, whose state repre-

sents the amount of computation completed at any point of time. The matrix expression

is then viewed as a composite task system - the operator routine tasks being its subsys-

tems.

At each instant, state changes can be brought about by assigning (possibly varying)

amounts of processing power to the tasks. Computing the composite system of tasks

119

is equivalent to traversing a trajectory of the task system from the initial (all zero)

uncomputed state to the final fully computed state, satisfying constraints on precedence,

and total processing power available. The processors have to be allocated to the tasks in

such a way that the computation is finished in the minimum time.

This is a classical optimal control problem. The task system has to be controlled to

traverse the trajectory from start to finish. The resources available to achieve this control

are the processors. A valid control strategy never uses more processors than available,

and ensures that no task is started before its predecessors are completed. A minimal time

schedule is equivalent to a time-optimal control strategy (optimal processor-assignment).

The optimal control theoretic formulation allows some extremely general and powerful

theorems to be derived. For example, if all tasks exhibit monotonically increasing speedup

as more processors are added, the optimal schedule always uses all processors. If the rate

of processing of every task i, on P processors varies as P' (Pc dynamics), the theorems

can be greatly strengthened. The scheduling problem can be shown to be equivalent

to shortest path and network flow problems. Using this, very simple optimal schedules

can be derived for tree structured matrix expressions. We split the available processor

resources among the subtrees in proportion to the effective workloads. This technique

(Tree), together with two other heuristics (Naive and Greedy) has been incorporated in

the compiler.

It is important to note that both Chapter 2 and Chapter 3 succeed by approximating

the discrete, complicated structure of realistic library routines, with simple speedup func-

tions characterized by a single continuous parameter (processing power applied). The

analysis of Chapter 2 yields some insights into the form of the speedup functions, while

Chapter 3 makes use of the speedup functions to determine both the parallelism and

sequencing of macro tasks. The simple speedup model enables continuous mathematics

to be used for making strong general statements about optimality of schedules.

The results are exact only when all the assumptions about the multiprocessor (Chap-

ter 2), and task dynamic behaviour (PO dynamics in Chapter 3) are valid. However, even

120

if all the assumptions are not exactly satisfied, the results are not too bad. The reasons

are enumerated below.

Firstly, in the case of the parallel library operator routines, the basic paradigm is

to minimise communication while keeping computation balanced, by choosing compact

low surface area clusters for each task. The exact cluster shape depends on the spe-

cific architecture. However, since the surface area does not vary very strongly as the

cluster shape changes, clusters which are close to optimal do not have much greater com-

munication. This implies that routines which are optimal for one specific architectural

model, are close to optimal for many other models. Thus routines based on the simple

multiprocessor model are not too bad for realistic machines.

In the case of the generalised scheduling heuristics, the optimal techniques (eg. Tree)

need accurate knowledge of the speedup functions. However, as Chapter 4 shows, even if

the speedup functions are quite different from the assumptions, the optimal scheduling

techniques yield good performance. This is because the optimal scheduling techniques

try to maximize the granularity of tasks being computed. The coarse task granularity

minimises overhead for a very wide range of multiprocessors. Thus knowledge of the exact

speedup function and the exact machine model, is not critical to good performance.

A prototype matrix expression compiler incorporating these ideas has been developed

(Chapter 4). A parallel library has been developed, composed of routines for each partic-

ular matrix operator. The compiler uses the parallel library routines, and the generalised

scheduling heuristics, to generate correct and fast code for the matrix expression. A

major gain is the compiler's ability to automatically parallelize code in an environment

where writing correct tightly coupled parallel code is quite difficult. The high speed

provided is an additional win. A wide variety of examples, have been tested on the MIT

Alewife Machine. The results from the prototype provide preliminary verification of the

theory.

121

5.2 Contributions of the Thesis

The major contributions of the thesis have been in the theoretical framework for gen-

eralised multiprocessor scheduling. Tasks have been treated as dynamic systems, whose

state can be changed by applying processing power. The problem of finding a minimum

time schedule can then be equated to the problem of finding a time optimal control

strategy. The powerful framework of optimal control can then be applied. The approach

adopted is very novel, as it tackles a discrete optimization problem, using approximations

based on continuous mathematics.

Previous work in the area [DL89, HL89, BW86, Cof76] generally tackles the discrete

problem directly, and confines itself to proving NP-completeness results. Several approx-

imation algorithms, albeit in the discrete domain, have also previously been investigated

[HL89].

The continuous approximation has enabled us to derive powerful scheduling theorems,

making very few assumptions about task dynamic behaviour. Such theorems cannot

be derived in the discrete domain. In the special case of Po dynamics, the theorems

have been greatly strengthened. Connections between scheduling, shortest path and flow

problems have been demonstrated.

The continuous approximations used in our work have the flavour of interior point

methods, since the constraint that the number of processors is discrete is relaxed. With

some more work, it is conceivable that our solution could be used as a first approximation

for deriving a schedule wherein all processors are restricted to be integers, thus yielding

an interior point scheduling algorithm.

The generalised scheduling theory is of great use in writing good parallelising com-

pilers for macro dataflow graphs. Once the dynamic behaviour of tasks (macro nodes) is

characterised by speedup functions, the processor resource can be effectively partitioned

to balance the workload. If the tasks have exactly the same Pa dynamics, the optimal

partitioning techniques are extremely trivial. Even if the dynamics differ much from

P", with possible state varying speedups, task interference, etc., the optimal control

._____

122

problem can be solved numerically to yield an optimal processor assignment. Even in

the absence of accurate knowledge of task dynamics, the Greedy and Tree generalised

scheduling heuristics do not perform too badly, since they maximise task granularity,

thus decreasing various forms of overhead.

A secondary contribution of this thesis is the approach to developing the parallel

matrix operator library routines. The regular polyhedral nature of their dataflow graphs

has been exploited to derive good partitions and schedules for them, on an arbitrary

number of processors. Again, the continuous approximation allows us to bypass the

complexities of partitioning the discrete dataflow graph lattice.

Finally, preliminary experimental evidence vindicating the ideas of the thesis has been

obtained on the MIT Alewife machine. It indicates that the combination of the parallel

operator library routines, and the generalised scheduling heuristics works well in most

cases.

5.3 Extension and Future Work

The main contribution of the thesis has been in the theoretical framework for generalised

scheduling. There is an enormous amount of work which still remains to be done in this

area - the thesis having barely scratched the surface. Some of the more interesting and

important areas for future research are mentioned below.

* The generalised scheduling theory (Chapter 3) should be extended with more results

for tasks satisfying general realistic speedup functions. A characterisation of the

dynamics of real tasks should be carried out, to determine properties of real speedup

functions. In general one may have to model interactions between tasks.

* The theorems under the special assumption of tasks satisfying P" dynamics can be

strengthened greatly. In particular, much more work is necessary to elucidate the

relations between scheduling, shortest path, and network flow problems. Very deep

insights between these problems could emerge from this effort. Good algorithms

__IIII-..I.~1I -L-~__-_li_~il.-__l__111___-__

123

for one problem, say shortest path, could be used to yield good algorithms for the

other two.

* The results on generalised scheduling ignore the discreteness of the processor vari-

ables. It is of great interest to explore what happens in the case where the processors

assigned to a task are assumed to be discrete. This could conceivably lead to an

interior point scheduling algorithm, as mentioned in Section 5.2 (Contributions).

More directly, once the discreteness of the processor variables is incorporated, the

results can be directly compared and contrasted with those of classical schedul-

ing theory. This would potentially yield new insights into the classical scheduling

problem itself.

* Another very interesting and useful area of research would be to include computa-

tion resources other than processors in the task dynamic model. Thus the dynamic

behaviour of a task would be a function not only of the processing power applied

to it, but also a function of memory and network resources assigned to it. A mul-

tidimensional optimization would have to be performed.

The most important piece of empirical work which needs to be done is to develop the

next version of the compiler, incorporating better parallelization algorithms including ac-

curate (measured) operation execution times, more compile time optimisations including

static memory allocation, good processor placement, etc. This would enable much more

complete experimental evidence to be obtained.

The research as it stands enables a parallelising compiler for signal processing to be

developed with some more effort. More work is necessary in developing good parallel

library routines for the many special operators encountered in signal processing, like

convolutions, Fourier transforms and its variants, subsamplers, etc. Once the speedup

functions for these operators are determined, the hierarchical compilation technique can

be applied.

124

The hierarchical compilation paradigm assumes that the dataflow graph of the prob-

lem is already known. Great gains can be made by applying algorithm transformations to

generate different variants of the dataflow graph. SPLICE and ESPLICE [Cov89, Mye86]

are signal processing algorithm transformation packages developed at the MIT DSPG

group. These packages could serve as front ends to our compiler, yielding a very sophis-

ticated multiprocessor compilation system for signal processing.

From a global point of view, the whole hierarchical compilation paradigm explored in

the thesis has been in the realm of compiling a very restricted subset of static dataflow

graphs. The static hierarchical nature of these dataflow graphs enabled a hierarchical

partitioning and scheduling strategy to be applied, at compile time. The static nature

of the dataflow graphs also enables compile time optimization of other computation

resources, eg. memory, network, etc. It is very interesting to note how far these compile

time optimization techniques can be exploited for general dataflow graphs, which have a

mixture of static and dynamic elements.

The generalized scheduling theory can certainly be extended to handle dynamic

dataflow graphs. Many on-line classical scheduling algorithms can be extended to deter-

mine both parallelism and sequencing on-line. Dynamic versions of the Greedy and Tree

heuristics can certainly be envisaged. Insights from this theory can be applied to write

a compiler handling general dataflow graphs. Of course, the same ideas could also be

applied to optimally allocating memory and network resources at run-time.

To sum up, this thesis has shown that hierarchical compilation paradigm is an effective

and fast compilation technique for matrix expressions. The technique is capable of being

extended for much more general dataflowgraphs, static as well as dynamic. The work has

provided very promising insights into generalised scheduling. All in all, the thesis has

opened new vistas in the domain of parallel compiling and multiprocessor scheduling.

Appendix A

Optimal Solution for Strictly

Increasing Speedups

In this appendix we use the basic formulas for the necessary solution to the minimum-

time problem to derive specific formulas for the states, controls, and Lagrange multipliers.

First, let t be the earliest moment that xi(t) = Li - e, and let t f be the earliest moment

that the task fully completes, xi(t F) = Li. Also, we will say that a task is enabled to

run at the earliest time ti that all of its predecessors j E Qi are within e of completing,

ti = maxj3 ic t . We now prove the following lemma:

Lemma A.0.1 (A,(t), 1 (t) characteristics) The Lagrange multipliers Ai(t), Y(t) have

the following properties. For t < t , the multiplier Ai(t) is constant:

,A(t) = A, < 0

For t < t < tF , Ai(t) is monotonically increasing and strictly negative:

A> o, Ai(t) < 0
dt -

The derivative is non-zero only if a successor task starts during this period. Finally, for

t > tF, Ai(t) is constant again:

Aj(t)= At <0

125

~~_i___~~_ _ __ILI______LIII__~_

126

The Lagrange multiplier y(t) > 0 is strictly positive.

To prove this, substitute the definition of the Hamiltonian (3.8) into (3.9), giving

1(t) = --Z j(t)afj(x(t)'p(t)'t)
j 9xi

= - (xi(t) - Li) E j (t)fj(pj(t)) XI k (xk(t)- Lk) (A.1)
jEf2' kEn

k96i

Since S(x(t) - Li) = 0 for all xi(t) < Li - e and xi(t) > Li, then Ai(t) must have zero

derivative at all times except between t and tF . Furthermore, between tf and t F , the

right hand side of (A.1) is positive, so Ai(t) is monotonically increasing. Note that Ai(t)

will have zero derivative even during this interval between t and tF unless there is at

least one successor task j of i such that j becomes enabled to run during the last e of

task i, t < tj < tF , and non-zero processing power pj(t) is allocated to task j before t f .

Thus if i has no successors, or if no successor of i can begin when i finishes, then Ai(t) is

constant for all time, Ai(t) = Ai.

Now substituting (3.8) into equation (3.10) gives:

P(t)-Oi(t) = -Aj(t)a}((t)'At)t)
api

= -A(t) Of(p(t)) I 0 (xj(t) - Lj) (A.2)
Opi(t) jEa,

If one or more predecessors of i have not finished so that i can not yet run, t < ti, then

the right hand side is zero, and so ';i(t) = a(t) > 0. After time ti, non-zero processing

power will have to be applied to task i for some period of time to complete the task.

Thus for some t in this interval, pi(t) > 0 and also by (3.12), Oi(t) = 0. Since y(t) > 0

always by (3.11), (A.2) implies that A(t) 5 0 during any period during which task i runs.

Equation (A.2) thus implies that A1 < 0 and also Ai(t) < 0 even during the time that task

i is finishing, t < t < t f . Since Ai(t) is differentiable, we also have that A(t) =At < 0

for t > tE.

Now we prove that M(t) > 0. Note that the terminal constraint (3.13) implies that

0 = 1 + Ai(tF)f(p(tF))

I____~___ __ _

-d1- - I -

127

This can only be true if there is at least one task, say io, with no successors, which

is allocated non-zero processing power at the very end of the schedule, and which has

A 0o(tF) < 0. But a task with no successors has A 0o(t) = Ai0 for all t. Therefore Aio < 0.

But during the entire time that task io is runnable, equation (A.2) implies that

-AoOf i°((t,ft),p t) - 0b0(t)

apio

For all ti < t < tF, the left hand side is strictly positive. This can only be true, however,

if p(t) is strictly positive throughout the interval ti through tF.

Now to apply the argument recursively. If io has no predecessors, then ti = 0 and we

have shown that y(t) > 0 for all t. Otherwise, let il be the predecessor of io which is the

last to get within E of finishing, xi, (tio) = Li - E. Thus there must be some period of

time between ti, and tF when non-zero processing power must be applied to il in order

to finish the last E of work. During this time, pi, (t) > 0 and O, (t) = 0. But (A.2) implies

that during this time:
aOf i ('4(t),9(t),t) =-Ail(t) p

Since y(t) > 0 for all time t > tio, the left hand side must be strictly positive during the

time that task ii completes, which is only possible if Ai, (t) < 0 throughout this interval.

Since Ai, (t) is monotonically increasing, Ai, (t) < 0 for all t < tF . But by equation (A.2),

-Ail (t) f' = -

For ti, < t < tF , the left hand side is strictly positive. This can only be possible, however,

if p(t) > 0 for all the time that it is enabled to run, ti, < t < t f . Since this time interval

overlaps ti 0 < t < tF, we conclude j(t) > 0 for all t > tix.

If ii has any predecessors, then apply this argument recursively to the last predecessor

of i1 to get within c of completion. Ultimately, we reach a task with no predecessors, we

prove that its Lagrange multiplier Ai(t) is strictly negative until the task finishes, and

that pu(t) > 0 for all time t > 0.

Now consider any task i at a moment in time when it has not yet completed, and

when non-zero processing power is being applied, pi(t) > 0. During this time Oi(t) = 0,

128

and thus by equation (A.2)

- A (t) Of,(t),01At),t)

Since j(t) > 0, we must have Ai(t) < 0 for all time t < tF .

This completes the proof of all the points in the lemma. To prove the theorem, note

that the strict positivity of p(t) implies, by (3.11), that all available processing power

must be used at all times, EC pi(t) = P(t). Also, once all the predecessors of task i have

completed, g;(i(t)) = 1, and if the task is not within E of finishing, t < t then (A.2)

implies that:

A dfi(pi)
dpi

If non-zero processing power is allocated to task i at time t, pi(t) > 0, then ;i(t) = 0,

and
dfi(pi)pi = 'U(t)

This must hold for all tasks which are running at this moment in time, which are not

within E of finishing, and whose predecessors are completely finished. Thus the marginal

speedups of all such tasks are fixed to a constant ratio, regardless of the amount of

processing power available.

__

Appendix B

Optimal Solution for pa Dynamics

We start by deriving a formula for y(t). At the optimal solution, the Hamiltonian H

in (3.8) will have the value:

H(i'(t),p(t),t) = 1+j- A(t)i(t)f((t),p(t),t)

= 1 + A(t)gi('(t))p9(t)

= 1 + C [Ai(t)gi(x(t))P!(-1)(t)] pi(t)/a

= 1 - E [(t) - i(t)]p(t)/

= 1 (t)P(t) + 1 ipi

= 1 (t)P(t)-1-
a

where we used (A.2), the fact that all processors must be used at all times since p9 is a

strictly increasing speedup, and where the last line follows because i(t) = 0 whenever

pi(t) Z 0. From the terminal constraint (3.13), we get:

0 = HIt = 1 - (tF)p(tF)
a

so that:

(tF(t) a (B.1)

129

130

Now take the derivative of H:

dH 1 (t)P(t) + P(t)P(t)
dt a (B.2)

But from Bryson and Ho we know that:

dH
dt

OH Oxi
= Ox t

OH Opi
Opi at

OH OA

OH
at

= -(t)P(t)

Combining this with (B.2) gives:

OH
at

OH Ob,
+E t

OH+

= (a - 1)
P(t)

dlog j(t) (a
dt

d log P(t)
- 1 dtdt

Integrating from t to tF:

log p(tF) - log p(t) = (a - 1) [log P(tF) - log P(t)]

Solving for p(t), and combining with (B.1) gives:

a=
(t)- (tF)

P(t")
(B.3)

P(t) I

Now let us look at equation (A.2) for the fi(pi) = p9' speedup function:

- Ai(t)gi(x)ap!a-1)(t) = #(t)- i(t) (B.4)

Consider times t < t1 before task i is enabled to run. gi(£(t)) = 0 during this period,

so the left hand side is zero. Thus i;(t) = u(t) > 0, and we must have pi(t) = 0. No

processors are allocated to the task until it is enabled to run.

131

For times ti < t < tF, we have gi((t)) > 0. Also A(t) < 0. If pi(t) were zero at any

time during this interval, then the left hand side would be infinite. However, the right

hand side cannot be infinite since u(t) is clearly finite for finite P(t). Thus pi(t) > 0

during this period. Thus, throughout the time that task i is enabled to run, it must be

assigned non-zero processor power. Note that after task i gets to within e of finishing,

tf < t < tF , then Ai(t) will start increasing (towards zero) and pi(t) will decrease as

processing resources are withdrawn from the finishing task.

After time tF , either the entire graph is finished executing, tF = tF, or else all

processing power is withdrawn from task i, pi(t) = 0, so that this task state does not

advance beyond Li. To prevent the left hand side of (B.4) from going to infinity, we will

need Ai(t) = 0 for t > t F .

Now let's solve (B.4) for pi(t). During the time that task i runs, tj < t < tF , we have

0i(t) = 0 and

A[MAj(t)gj(X'(t))
, i / ,-

Substituting the formula (B.3) for /(t) gives:

Pi P(t) [-P(t')Ai(t)gi((t))] (B.5)

Note that since Ai(t) = 0 for t > tF and gj(i'(t)) = 0 for t < ti, this formula is actually

valid for all time t. Also note that Ai(t) = Ai is constant until task i is within E of

finishing, and that gj(£(t)) = 1 once all the predecessors of i have finished. Thus pi(t)

is a fixed fraction of P(t) throughout the running of task i, except for transients at the

beginning and end of the task.

Next to derive the dynamics of the processor assignments. Take the derivative

of (B.5):

d (pi(t)\ __ 1 ([P(t -(t)]7
Sk(t)) (tF) 1 -) -)(t)g(

[-t) (tF) (t)g(£(t))- (tF (t)g t))

l_) p(t) A i(t) gj(Z(t))-u (-6I~i

132

(Care must be used in interpreting this for t < ti and t > tf.) Substituting the derivative

Ai(t) from (A.1), and using chain rule on gi((t)) = Ej dgd(t))dx we get:dxj dt

d pi(t)\ -(_ 1 Pi(t) i z;9 i k

dt P(t) ,-JP(t) A(t) g(())

This can be simplified. Multiply equation (B.4) by pi(t), and note that Oi(t)Pi(t) = 0

for all t, since ?i(t) = 0 whenever pi(t) 0.

-Aj(t)gj(i,(t))ap'(t) = Iy(t)pi(t)

for all t. Replacing i with k and dividing by Ak(t)a gives:

9k OW M P (t)pk(t)
gk(=(t))(t) = Ak(t)a

Similarly, replacing i with j and dividing by gj(x,(t))a,

Aj(t)pj'(t) = l(t)pj(t)

Substituting these two equations into (B.6) and simplifying gives:

d (pi(t) E Vii(t)+ EVki(t)
-t IP(t)) ja)+ kEQi

where

(i = AM(t g1 P(t)a if Ai(t) O, gj((t)) $ 0vj(t) = P(t) A (t)gj(£(t))a

0 else

Note that vij(t) is proportional to Ogj(,)/Oxj. Therefore, vij(t) = 0 for t < t and

t > t F . We can interpret vij(t) as a "processor flow" from task i to its successor j.

As task i completes, the fraction of processing power d (pi(t)/P(t)) dedicated to task i

decreases, with amounts vij(t) pouring out of task i and into each successor j for which

agj (£x(t))/xi > 0 at this moment. Thus the processing power allocated to i is released

to those successors of i which are enabled to run at the moment that i completes.

~~I~__~_ ~ ~_

Appendix C

Proof of Homogeneity Theorem

First compute the dynamics of the warped state &i(t):

di(t_) dxi(t) dt

dt dt dt

g i ('(pc,(t)

= g,(;(i))

Thus Ei() satisfies the correct dynamics as a function of t. The only remaining issue is

to show that the corresponding schedule finishes all the tasks in the minimum amount of

time, iF = f(tF). Suppose there were another schedule with P(t) total processing power

which could finish the tasks in time less than ~F. But then we could apply the inverse

time warp, t = f-1(1) to produce a processor schedule for the system with power P(t)

which would finish earlier than tF. This, however, contradicts the assumption that our

original schedule were optimal. We conclude that an optimal schedule for one processor

function P(t) maps directly into an optimal schedule for any other processor function

P(t).

133

------- --- ------

Bibliography

[Aga90] Anant Agarwal. Overview of the Alewife Project. July 1990. Alewife Systems

Memo #10.

[AK] N. Alon and D.J. Kleitman. Partitioning a Rectangle into Small Perimeter

Rectangles.

[AK86] N. Alon and D.J. Kleitman. Covering a Square by Small Perimeter Rectangles.

Discrete and Computational Geometry, 1:1-7, 1986.

[Alent] Alewife Systems Group. Alewife Systems Memos. 1989-present.

[A1188] Allen, R. Unifying Vectorization, Parallelization, and Optimization: The Ar-

dent Compiler. In Third International Supercomputing Conference, Vol II,
pages 176-185, 1988.

[Ban79] U. Banerjee. Speedup of Ordinary Programs. PhD thesis, Dept. of Computer

Science, Univ. of Illinois at Urbana-Champaign, 1979.

[BH75] Bryson and Ho. Applied Optimal Control. Halstead Press, 1975.

[BS83] T.P. Barnwell and D.A. Schwartz. Optimal Implementation of Flow Graphs

on Synchronous Multiprocessors. In 1983 Asilomar Conf. on Circuits and

Systems, Pacific Grove, CA, Nov 1983.

134

I

135

[BW86] M. Blazewicz, J. Drabowski and J. Welgarz. Scheduling multiprocessor tasks to

minimise schedule length. IEEE Transactions on Computers, C-35(5):389-393,

1986.

[Che85] M.C. Chen. A Parallel Language and its Compilation to Multiprocessor Ma-

chines or VLSI. Technical Report YALEU/DCS/RR-412, Yale Univ., August

1985.

[Che86] M.C. Chen. Transformations of Parallel Programs in Crystal. In Proc. of the

IFIP's 86, Sept 1986.

[Cof76] Coffman E.F., Jr., editor. Computer and Job Shop Scheduling Theory. John

Wiley and Sons, N.Y., 1976.

[Cov89] M.M Covell. An Algorithm Design Environment for Signal Processing. PhD

thesis, Dept of Electrical Engineering, MIT, Sept 1989.

[DL89] J. Du and J.Y.T Leung. Complexity of Scheduling Parallel Task Systems.

SIAM J. Discrete Math., 2(4):473-487, Nov 1989.

[Fis84] Fisher, J.A., et al. Parallel Processing: A Smart Compiler and a Dumb Ma-

chine. SIGPLAN Notices, 19-6, June 1984.

[HL89] C.C Han and K.J. Lin. Scheduling Parallelizable Jobs on Multiprocessors. In

IEEE Conf. on Real-Time Systems, pages 59-67, 1989.

[KHM89] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance Parallel

Lisp. In Proceedings of SIGPLAN '89, Symposium on Programming Languages

Design and Implementation, June 1989.

[KR89] T.Y. Mount D.M. Kong and A.W. Roscoe. The decomposition of a rectangle

into rectangles of minimal perimeter. SIAM Journal of Computing, 1215-1231,

1989.

136

[Kuc78] D.J. Kuck. The Structure of Computers and Computations. John Wiley and

Sons, Inc, 1978.

[KW87] T.Y. Mount D.M. Kong and M. Werman. The decomposition of a square into

rectangles of minimal perimeter. Discrete Applied Mathematics, 16:239-243,

1987.

[Lam87] M.S.L. Lam. A Systolic Array Optimizing Compiler. PhD thesis, Dept. of

Computer Science, Carnegie Mellon University, 1987.

[Lei83] C.E. Leiserson. Optimising Sychronous Circuitry by Retiming. In Third Cal-

tech Conf. on VLSI, pages 87-116, 1983.

[Mat83] Mathlab Group. MACSYMA Reference Manual. The Mathlab Group, LCS,

MIT, 1983.

[Mer88] R. Mercer. The CONVEX FORTRAN 5.0 compiler. In Third International

Supercomputing Conference, pages 164-175, 1988.

[Mye86] C.M. Myers. Signal Representation for Symbolic and Numerical Processing.

PhD thesis, Dept. of Electrical Engineering, MIT, August 1986.

[PW86] D.A. Padua and M.J. Wolfe. Advanced Compiler Optimizations for Supercom-

puters. Communications of the ACM, Dec 1986.

[Sar87] V. Sarkar. Partitioning and Scheduling Programs for Multiprocessors. Techni-

cal Report, Computer Systems Laboratory, Stanford University, 1987.

[Sch85] D.A. Schwartz. Synchronous Multiprocessor Realizations of Shift-Invariant

Flow Graphs. PhD thesis, Georgia Institute of Tech., Electrical Engineering,

1985.

