142 research outputs found

    Routing on the Visibility Graph

    Full text link
    We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let PP be a set of nn points in the plane and let SS be a set of non-crossing line segments whose endpoints are in PP. We present two deterministic 1-local O(1)O(1)-memory routing algorithms that are guaranteed to find a path of at most linear size between any pair of vertices of the \emph{visibility graph} of PP with respect to a set of constraints SS (i.e., the algorithms never look beyond the direct neighbours of the current location and store only a constant amount of additional information). Contrary to {\em all} existing deterministic local routing algorithms, our routing algorithms do not route on a plane subgraph of the visibility graph. Additionally, we provide lower bounds on the routing ratio of any deterministic local routing algorithm on the visibility graph.Comment: An extended abstract of this paper appeared in the proceedings of the 28th International Symposium on Algorithms and Computation (ISAAC 2017). Final version appeared in the Journal of Computational Geometr

    There are Plane Spanners of Maximum Degree 4

    Full text link
    Let E be the complete Euclidean graph on a set of points embedded in the plane. Given a constant t >= 1, a spanning subgraph G of E is said to be a t-spanner, or simply a spanner, if for any pair of vertices u,v in E the distance between u and v in G is at most t times their distance in E. A spanner is plane if its edges do not cross. This paper considers the question: "What is the smallest maximum degree that can always be achieved for a plane spanner of E?" Without the planarity constraint, it is known that the answer is 3 which is thus the best known lower bound on the degree of any plane spanner. With the planarity requirement, the best known upper bound on the maximum degree is 6, the last in a long sequence of results improving the upper bound. In this paper we show that the complete Euclidean graph always contains a plane spanner of maximum degree at most 4 and make a big step toward closing the question. Our construction leads to an efficient algorithm for obtaining the spanner from Chew's L1-Delaunay triangulation

    Competitive Local Routing with Constraints

    Full text link
    Let PP be a set of nn vertices in the plane and SS a set of non-crossing line segments between vertices in PP, called constraints. Two vertices are visible if the straight line segment connecting them does not properly intersect any constraints. The constrained Θm\Theta_m-graph is constructed by partitioning the plane around each vertex into mm disjoint cones, each with aperture θ=2π/m\theta = 2 \pi/m, and adding an edge to the `closest' visible vertex in each cone. We consider how to route on the constrained Θ6\Theta_6-graph. We first show that no deterministic 1-local routing algorithm is o(n)o(\sqrt{n})-competitive on all pairs of vertices of the constrained Θ6\Theta_6-graph. After that, we show how to route between any two visible vertices of the constrained Θ6\Theta_6-graph using only 1-local information. Our routing algorithm guarantees that the returned path is 2-competitive. Additionally, we provide a 1-local 18-competitive routing algorithm for visible vertices in the constrained half-Θ6\Theta_6-graph, a subgraph of the constrained Θ6\Theta_6-graph that is equivalent to the Delaunay graph where the empty region is an equilateral triangle. To the best of our knowledge, these are the first local routing algorithms in the constrained setting with guarantees on the length of the returned path

    09451 Abstracts Collection -- Geometric Networks, Metric Space Embeddings and Spatial Data Mining

    Get PDF
    From November 1 to 6, 2009, the Dagstuhl Seminar 09451 ``Geometric Networks, Metric Space Embeddings and Spatial Data Mining\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Competitive online routing in geometric graphs

    Get PDF
    AbstractWe consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. (Internat. J. Comput. Geom. 12(4) (2002) 283) that there exists no competitive routing scheme that works on all triangulations, we show that there exists a simple online O(1)-memory c-competitive routing strategy that approximates the shortest path in triangulations possessing the diamond property, i.e., the total distance travelled by the algorithm to route a message between two vertices is at most a constant c times the shortest path. Our results imply a competitive routing strategy for certain classical triangulations such as the Delaunay, greedy, or minimum-weight triangulation, since they all possess the diamond property. We then generalize our results to show that the O(1)-memory c-competitive routing strategy works for all plane graphs possessing both the diamond property and the good convex polygon property
    • …
    corecore