slides

Competitive Local Routing with Constraints

Abstract

Let PP be a set of nn vertices in the plane and SS a set of non-crossing line segments between vertices in PP, called constraints. Two vertices are visible if the straight line segment connecting them does not properly intersect any constraints. The constrained Θm\Theta_m-graph is constructed by partitioning the plane around each vertex into mm disjoint cones, each with aperture θ=2π/m\theta = 2 \pi/m, and adding an edge to the `closest' visible vertex in each cone. We consider how to route on the constrained Θ6\Theta_6-graph. We first show that no deterministic 1-local routing algorithm is o(n)o(\sqrt{n})-competitive on all pairs of vertices of the constrained Θ6\Theta_6-graph. After that, we show how to route between any two visible vertices of the constrained Θ6\Theta_6-graph using only 1-local information. Our routing algorithm guarantees that the returned path is 2-competitive. Additionally, we provide a 1-local 18-competitive routing algorithm for visible vertices in the constrained half-Θ6\Theta_6-graph, a subgraph of the constrained Θ6\Theta_6-graph that is equivalent to the Delaunay graph where the empty region is an equilateral triangle. To the best of our knowledge, these are the first local routing algorithms in the constrained setting with guarantees on the length of the returned path

    Similar works