23 research outputs found

    SOM-Guided Evolutionary Search for Solving MinMax Multiple-TSP

    Full text link
    Multiple-TSP, also abbreviated in the literature as mTSP, is an extension of the Traveling Salesman Problem that lies at the core of many variants of the Vehicle Routing problem of great practical importance. The current paper develops and experiments with Self Organizing Maps, Evolutionary Algorithms and Ant Colony Systems to tackle the MinMax formulation of the Single-Depot Multiple-TSP. Hybridization between the neural network approach and the two meta-heuristics shows to bring significant improvements, outperforming results reported in the literature on a set of problem instances taken from TSPLIB.Comment: 8 pages, 12 figures, 2 tables, CEC 201

    An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    Get PDF
    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots’ workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning

    An open close multiple travelling salesman problem with single depot

    Get PDF
    This paper introduces a novel practical variant, namely an open close multiple travelling salesmen problem with single depot (OCMTSP) that concerns the generalization of classical travelling salesman problem (TSP). In OCMTSP, the overall salesmen can be categorized into internal/permanent and external/outsourcing ones, where all the salesmen are positioned at the depot city. The primary objective of this problem is to design the optimal route such that all salesmen start from the depot/base city, and then visit a given set of cities. Each city is to be visited precisely once by exactly one salesman, and only the internal salesmen have to return to the depot city whereas the external ones need not return. To find optimal solutions, an exact pattern recognition technique based Lexi-search algorithm (LSA) is developed which has been subjected in Matlab. Comparative computational results of the LSA have been made with the existing methods for general multiple travelling salesman problem (MTSP). Further, to test the performance of LSA, computational experiments have been carried out on some benchmark as well as randomly generated test instances for OCMTSP, and results are reported. The overall computational results demonstrate that the proposed LSA is efficient in providing optimal and sub-optimal solutions within the considerable CPU times

    A Special Case of the Multiple Traveling Salesmen Problem in End-of-Aisle Picking Systems

    Get PDF
    This study focuses on the problem of sequencing requests for an end-of-aisle automated storage and retrieval system in which each retrieved load must be returned to its earlier storage location after a worker has picked some products from the load. At the picking station, a buffer is maintained to absorb any fluctuations in speed between the worker and the storage/retrieval machine. We show that, under conditions, the problem of optimally sequencing the requests in this system with a buffer size of m loads forms a special case of the multiple traveling salesmen problem in which each salesman visits the same number of cities. Several interesting structural properties for the problem are mathematically shown. In addition, a branch-and-cut method and heuristics are proposed. Experimental results show that the proposed simulated annealing-based heuristic performs well in all circumstances and significantly outperforms benchmark heuristics. For instances with negligible picking times for the worker, we show that this heuristic provides solutions that are, on average, within 1.8% from the optimal value

    GPU accelerated Hungarian algorithm for traveling salesman problem

    Get PDF
    In this thesis, we present a model of the Traveling Salesman Problem (TSP) cast in a quadratic assignment problem framework with linearized objective function and constraints. This is referred to as Reformulation Linearization Technique at Level 2 (or RLT2). We apply dual ascent procedure for obtaining lower bounds that employs Linear Assignment Problem (LAP) solver recently developed by Date(2016). The solver is a parallelized Hungarian Algorithm that uses Compute Unified Device Architecture (CUDA) enabled NVIDIA Graphics Processing Units (GPU) as the parallel programming architecture. The aim of this thesis is to make use of a modified version of the Dual Ascent-LAP solver to solve the TSP. Though this procedure is computational expensive, the bounds obtained are tight and our experimental results confirm that the gap is within 2% for most problems. However, due to limitations in computational resources, we could only test problem sizes N < 30. Further work can be directed at theoretical and computational analysis to test the efficiency of our approach for larger problem instances

    Multi-robot path planning for budgeted active perception with self-organising maps

    Full text link
    © 2016 IEEE. We propose a self-organising map (SOM) algorithm as a solution to a new multi-goal path planning problem for active perception and data collection tasks. We optimise paths for a multi-robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting associated viewpoint regions defined by a sensor model. The key problem characteristics are that the viewpoint regions are overlapping polygonal continuous regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes to the robots and finds favourable sequences of sensing locations. The algorithm has polynomial-bounded runtime independent of the number of robots. We demonstrate feasibility for the active perception task of observing a set of 3D objects. The viewpoint regions consider sensing ranges and self-occlusions, and the rewards are measured as discriminability in the ensemble of shape functions feature space. Simulations were performed using a 3D point cloud dataset from a real robot in a large outdoor environment. Our results show the proposed methods enable multi-robot planning for budgeted active perception tasks with continuous sets of candidate viewpoints and long planning horizons

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Online planning for multi-robot active perception with self-organising maps

    Full text link
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. We propose a self-organising map (SOM) algorithm as a solution to a new multi-goal path planning problem for active perception and data collection tasks. We optimise paths for a multi-robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting associated viewpoint regions defined by a sensor model. The key problem characteristics are that the viewpoint regions are overlapping polygonal continuous regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes to the robots and finds favourable sequences of sensing locations. The algorithm has a runtime complexity that is polynomial in the number of nodes to be observed and the magnitude of the relative weighting of rewards. We show empirically the runtime is sublinear in the number of robots. We demonstrate feasibility for the active perception task of observing a set of 3D objects. The viewpoint regions consider sensing ranges and self-occlusions, and the rewards are measured as discriminability in the ensemble of shape functions feature space. Exploration objectives for online tasks where the environment is only partially known in advance are modelled by introducing goal regions in unexplored space. Online replanning is performed efficiently by adapting previous solutions as new information becomes available. Simulations were performed using a 3D point-cloud dataset from a real robot in a large outdoor environment. Our results show the proposed methods enable multi-robot planning for online active perception tasks with continuous sets of candidate viewpoints and long planning horizons
    corecore