

 University of Groningen

A Special Case of the Multiple Traveling Salesmen Problem in End-of-Aisle Picking Systems
Baardman, Lennart; Roodbergen, Kees Jan; Carlo, Héctor J.; Schrotenboer, Albert H.

Published in:
Transportation Science

DOI:
10.1287/trsc.2021.1075

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Baardman, L., Roodbergen, K. J., Carlo, H. J., & Schrotenboer, A. H. (2021). A Special Case of the Multiple
Traveling Salesmen Problem in End-of-Aisle Picking Systems. Transportation Science, 55(5), 1151-1169.
https://doi.org/10.1287/trsc.2021.1075

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1287/trsc.2021.1075
https://research.rug.nl/en/publications/eebaaada-af3a-4e0d-b893-68d1e541777f
https://doi.org/10.1287/trsc.2021.1075

A Special Case of the Multiple Traveling Salesmen
Problem in End-of-aisle Picking Systems

Lennart Baardman
Stephen M. Ross School of Business, University of Michigan, Ann Arbor, MI 48109, United States, baardman@umich.edu

Kees Jan Roodbergen
Faculty of Economics and Business, Department of Operations, University of Groningen, 9700 AV Groningen, the

Netherlands, k.j.roodbergen@rug.nl

Héctor J. Carlo
Industrial Engineering Department, University of Puerto Rico – Mayagüez, Mayagüez, 00680, Puerto Rico,

hector.carlo@upr.edu

Albert H. Schrotenboer
School of Engineering, Operations, Planning, Accounting, and Control Group, Eindhoven University of Technology, 5600 MB

Eindhoven, the Netherlands, a.h.schrotenboer@tue.nl

This study focuses on the problem of sequencing requests for an end-of-aisle automated storage and

retrieval system (AS/RS), where each retrieved load must be returned to its earlier storage location after a

worker has picked some products from the load. At the picking station, a buffer is maintained to absorb any

fluctuations in speed between the worker and the storage/retrieval machine. We show that, under conditions,

the problem of optimally sequencing the requests in this system with a buffer size of m loads forms a special

case of the multiple Traveling Salesmen Problem (mTSP) where each salesman visits the same number of

cities. Several interesting structural properties for the problem are mathematically shown. In addition, a

branch-and-cut method and heuristics are proposed. Experimental results show that the proposed simu-

lated annealing-based heuristic performs well in all circumstances, and significantly outperforms benchmark

heuristics. For instances with negligible picking times for the worker, we show that this heuristic provides

solutions that are on average within 1.8% from the optimal value.

Key words : Automated Storage/Retrieval Systems; Multiple Traveling Salesmen Problem; Scheduling;

Warehousing

1. Introduction

The percentage of products being sold in the business-to-consumer e-commerce market is ever-

increasing, which in turn is impacting the requirements for the design and operation of the ware-

houses involved. Fast response times and minimal picking effort are fundamental for performing

1

Cite as:
Baardman, L., Roodbergen, K.J., Carlo, H.J., Schrotenboer, A.H., A Special Case of the Multiple Traveling Salesmen
Problem in End-of-aisle Picking Systems, Transportation Science, to appear.

2

customer-centric operations at high service levels against low costs (Xu, Allgor, and Graves 2009,

Boysen, de Koster, and Weidinger 2019). Especially during peak hours, which result from cut-off

times for same-day or next-day delivery, performance requirements are high. It is therefore essential

to design warehouse systems with this peak performance in mind. As order picking is the most

time-critical process in warehouse operations, automation of the order-picking process is often con-

sidered (Guardian 2013, Azadeh, De Koster, and Roy 2019). Such automation typically focuses on

reducing or eliminating walking and driving time by workers, since this is known to be the most

time-consuming part of manual order-picking systems (Tompkins et al. 2010). The actual handling

of products remains a task for workers in most implementations due to the difficulties in automat-

ing the handling of products in varying shapes and sizes. Many automated systems exist, with a

wide variety of conceptual designs. We study the end-of-aisle picking system, which is significant

due to its long existence and wide adoption. The system is a serious contender for automation

projects in the context of e-commerce, also when compared to newer conceptual designs such as

the KIVA system (Bozer and Aldarondo 2018).

An end-of-aisle picking system consists of a number of aisles with storage racks along both

sides of each aisle, where products are stored in loads. Here, load refers to any product carrier,

which, depending on the exact system at hand, can be a plastic bin or a pallet. We consider an

aisle-captive system, where each aisle is served by one automated storage/retrieval machine (S/R),

which moves on rails through the aisle to store loads in and retrieve loads from the storage racks.

The S/R machine, aisle, and racks together are generally referred to as an Automated Storage and

Retrieval System (AS/RS) (Weidinger, Boysen, and Briskorn 2018, Azadeh, De Koster, and Roy

2019). When plastic bins are used for storing products, it is also referred to as miniload system, or

miniload AS/RS system (Park et al. 2003, Park, Foley, and Frazelle 2006, Jaghbeer, Hanson, and

Johansson 2020). At the end of each aisle, there is a picking station where a worker takes products

from the retrieved load based on customer orders. After the worker has picked the products, the

load with the remainder of the products is returned to its storage location. A schematic drawing

of an end-of-aisle picking system (top view) can be found in Figure 1.

The sequence of retrieving loads from the AS/RS dictates the sequence in which the worker

processes the loads, which in turn dictates the sequence in which loads are returned to the AS/RS.

The throughput of the entire system is therefore directly dependent on the proper sequencing of

requests. Notably, the S/R and the worker do not work on the same load at the same time. There-

fore, differences are likely to occur between the worker’s processing time and the S/R machine’s

cycle time, which may cause the S/R to wait for the worker or vice versa. The picking station is

equipped with a buffer to reduce such waiting times and consequential adverse effects on through-

put. This buffer allows the S/R (worker) to continue with the next load independently of the worker

3

Figure 1 Schematic drawing of an end-of-aisle picking system, consisting of a picking station and an Automated

Storage and Retrieval System. Note that this figure gives a top view only, while the model also considers

the second dimension (height) of the Automated Storage and Retrieval System.

(S/R). Evidently, the limited capacity of the buffer sets bound to this, and waiting may still occur,

albeit at a lower rate.

In this paper, we study the sequencing of requests in an end-of-aisle picking system. Specifically,

we aim to maximize performance of this system during peak hours, by minimizing the makespan

for handling all loads to be retrieved and stored. Therefore, we assume the warehouse management

system regulates the overall process such that replenishments and prepositioning of loads are

performed outside peak hours.

We study both the setting in which the S/R incurs no waiting time and the setting in which

waiting times may occur. The setting without waiting times for the S/R may represent situations

in which the buffer is sufficiently large or in which the worker’s processing times are consistently

lower than the cycle times of the S/R. For this setting, we prove that our end-of-aisle AS/RS

request sequencing problem is mathematically equivalent to a special case of the multiple Traveling

Salesmen Problem, mTSP (Bektas 2006). This equivalence is interesting for several reasons. First,

it concerns a special case of the mTSP in which each salesman has to visit the same number

of cities. This variant has not been studied before in literature, and we derive various structural

properties for this problem. Second, we show that the number of salesmen in the mTSP formulation

corresponds with the buffer size in the end-of-aisle picking system. The logic of this correspondence

is best explained by defining and comparing the graphs of the two problems, which we describe in

Section 4. A formal proof of the equivalence is provided in Appendix A.

The problem without waiting times is modeled as an integer program with a polynomial num-

ber of variables and constraints, which becomes computationally intractable for larger instances.

Alternatively, we model it as an integer program with exponentially many constraints using a for-

mulation inspired by the capacitated vehicle routing problem (Toth and Vigo 2002). The latter

4

approach combined with a branch-and-cut algorithm appears to be effective in solving instances

to optimality within a three-hour time limit. Furthermore, we present several heuristics. Our sim-

ulated annealing heuristic provides near-optimal solutions in short computation times.

For the problem including waiting times, we define a recursive way to calculate the makespan

for a given sequence of requests. We adapted all heuristics to cope with this nonlinear element,

and we show that for varying pick times our heuristics outperform the heuristic that is based

on the approach by Bozer and White (1996). Besides, we also test our heuristics’ performance

under a block-sequencing approach (Han et al. 1987), in which requests arrive dynamically. In this

setting, our simulated annealing heuristic performs within 3% of the practically unattainable full

information solution.

The remainder of this paper is structured as follows. First, a literature review is given in Section

2. Section 3 gives a description of the picking system studied. The equivalence of our end-of-

aisle AS/RS request sequencing problem to the mTSPEV is shown in Section 4. Then, Section 5

presents the compact integer programming formulation for the mTSPEV, Section 6 presents several

structural properties of the problem under consideration, and Section 7 describes a branch-and-cut

method and four heuristics among which the simulated annealing heuristic. Lastly, Sections 8 and

9 present the experimental results and the conclusions, respectively.

2. Literature Review

The literature on AS/RS is extensive; Roodbergen and Vis (2009), Gagliardi, Renaud, and Ruiz

(2012), and Boysen and Stephan (2016) give comprehensive literature reviews on the topic. Research

focuses on the design and optimization of various aspects of warehouse systems including: (1)

rack and aisle layout (Cardona and Gue 2020), (2) estimating performance measures by means

of closed-form expressions or otherwise (Bozer and White 1996), (3) developing and evaluating

storage assignment rules (Weidinger, Boysen, and Briskorn 2018, Weidinger and Boysen 2018),

(4) finding a suitable dwell-point for the S/R (Van den Berg 2002), and (5) optimizing request

sequencing (Gharehgozli et al. 2017).

In this paper, we specifically look at the problem of optimizing request sequences. This problem

has also been studied in various other contexts. For example, Vis and Roodbergen (2009) consider

the problem of scheduling container storages and retrievals in a container terminal. This problem is

a special case of the directed Rural Postman Problem, and can be reformulated as an asymmetric

Steiner Traveling Salesman Problem. Even though the general Steiner Traveling Salesman Problem

is NP-hard, the special case considered in their paper can be solved in polynomial time. More

recently, Yuan and Tang (2017) and Galle, Barnhart, and Jaillet (2018) also incorporate the aspect

of relocation, next to the retrieval and storage, of containers or loads.

5

In the context of warehousing systems, Lee and Schaefer (1997) consider an AS/RS in a single

aisle with one depot, where the lists of retrievals and storages are independent, and the order of the

storages is pre-determined. Due to the problem’s structural properties, both optimal and heuristic

policies are developed and shown to reduce the travel time of the S/R significantly. In Gharehgozli

et al. (2017), an AS/RS with two depots is considered. The authors establish properties of the

problem that allow them to develop a polynomial-time algorithm. Dooly and Lee (2008), Popović,

Vidović, and Bjelić (2014), Wauters et al. (2016), and Yang et al. (2017) consider the case where the

S/R can carry multiple products. In Dooly and Lee (2008), an efficient polynomial-time algorithm

can be developed due to the use of shift-sequencing, while NP-hardness forces Popović, Vidović,

and Bjelić (2014) to resort to a nearest neighborhood heuristic and genetic algorithm. Wauters

et al. (2016) develop an effective branch-and-bound procedure and propose a fast metaheuristic for

larger instances. Due to NP-hardness, Yang et al. (2017) develop heuristics to simultaneously decide

on the location of a load and the sequencing of orders. In another setting, Yu and De Koster (2012)

study a multi-deep AS/RS, in which the S/R picks from a rack where loads are stored multiple

layers deep. As the problem is NP-hard, they develop new heuristics to achieve near-optimal order

sequencing. Recently, several papers propose heuristics for order sequencing in puzzle-based storage

systems (Gue et al. 2014, Mirzaei, De Koster, and Zaerpour 2017, Yalcin, Koberstein, and Schocke

2019), which are compact systems in which each load can be retrieved independently without the

use of an aisle. The AS/RS request sequencing problem that we study is equivalent to a special

type of multiple Traveling Salesman Problem (mTSP), which is also NP-hard (see Section 4). We

characterize several properties that make our problem distinctive from the standard mTSP (see

Section 6). In line with literature for related problems, which are NP-hard like our problem, we

use heuristics, metaheuristics, and branch-and-cut to solve our problem.

The type of end-of-aisle picking system that we study has been considered by several papers

before. For example, Bozer and White (1990) and Foley, Hackman, and Park (2004) developed

performance estimates for similar systems. Bozer and White (1996) give methods to determine

the required number of pickers, whereas Park, Frazelle, and White (1999) develop methods to

determine an appropriate buffer size. However, to the best of our knowledge, only two papers

studied the sequencing of requests in our setting. In Mahajan, Rao, and Peters (1998) a nearest

neighbor heuristic is presented for sequencing requests in an end-of-aisle picking system where

loads must be returned to their original location. Bozer and White (1996) also present heuristics

for this problem. Both articles, however, only study systems with a buffer size of 2. Modern systems

provide more flexibility for handling loads at the picking station, facilitating the accommodation

of more loads in the buffer. Therefore, we study systems where the buffer can have any size. For

6

Table 1 Overview of related work on AS/RS request sequencing.

system characteristics Solution methods

system type waiting buffer re- NP- greedy meta- exact
times size stock hard heuristic heuristic method

Tanaka and Araki (2009) [E|IO2,open|Cmax] - - - - - - -
Yu and De Koster (2012) [F|IO2,open,FCFS|Cmax|] - - - X X - -
Popović, Vidović, and Bjelić (2014) [F,3|IO2, class|Cmax] - - - - X X -
Yang et al. (2015) [F,k|IO2,open|Cmax] - - - X X X -
Wauters et al. (2016) [B,2|M2, zone,prec|

∑
wi(Ti)] - - - - X X -

Nia, Haleh, and Saghaei (2017) [F|IO2,dy,FCFS|∗] - - - X - X -

Man et al. (2021) [Efree|IO2|Cmax,
∑

wi(Ti)] - - - - - X -

Lee and Schaefer (1997) [F|IO2|Cmax] - - - p X - X
Van Den Berg and Gademann (1999) [E|IO2,FCFS|Cmax] - - - p X - X
Dooly and Lee (2008) [F,2|IO2|Cmax] - - - p X - X
Gharehgozli et al. (2017) [Efree|IO2|Cmax] - - - p X - X

Bozer and White (1996) [F|IO2|Cmax] X 2 X - X - -
Mahajan, Rao, and Peters (1998) [F|IO2|Cmax] - 2 X X X - -
This Paper [F|IO2|Cmax] X m X X X X X

benchmarking purposes, we compare our solution methods to generalized versions of heuristics

presented by Bozer and White (1996) and Mahajan, Rao, and Peters (1998).

In Table 1, we present an overview of AS/RS request sequencing literature. Here we use the clas-

sification of Boysen and Stephan (2016) to indicate the system configuration in the column “system

type”. Note that since Boysen and Stephan (2016, Section 5) consider our setting an “unexplored

case”, their classification scheme does not capture all relevant aspects for the system we study.

Hence we add three columns with system characteristics to this table to capture properties of mod-

els that also encompass the picking activity. The system characteristic “waiting times” indicates

whether waiting times for the crane and the picker are taken into account in the scheduling algo-

rithm, “buffer size” indicates the number of retrieved loads that can reside outside the aisle of the

AS/RS to wait for the worker or to undergo picking, “restock” indicates that the storage location of

a load is dedicated and equals the location from which the load was retrieved in an earlier cycle. In

terms of solution approaches, “NP-hard” indicates whether the problem studied is NP-hard (‘p’ a

polynomial-time algorithm is provided, ‘X’ NP-hardness is asserted in the paper, ’-’ paper does not

specify computational complexity), “greedy heuristic” indicates whether constructive heuristic(s)

without backtracking have been presented, “metaheuristic” indicates whether heuristic constructs

have been used that allow for reconsidering earlier decisions, and “exact method” indicates whether

an algorithm is presented (beyond off-the-shelf/commercial solvers) for solving the problem to

optimality.

In Section 4, we show that the end-of-aisle AS/RS request sequencing problem is a special case of

the multiple Traveling Salesmen Problem (mTSP) where each salesman visits the same number of

7

cities. The standard Traveling Salesman Problem (TSP), as described in Laporte (1992), concerns

the sequencing of visits to a set of locations (or cities) such that the total travel distance incurred

in visiting all locations exactly once and returning to the departing location is minimized. The

TSP can be generalized into the multiple Traveling Salesmen Problem (mTSP), as described in

Bektas (2006), by sharing the work between m salesmen instead of a single salesman. Bellmore

and Hong (1974) describe how the standard mTSP can be mathematically transformed into the

standard TSP. It should also be noted that the standard mTSP can be considered as a relaxation

of the Vehicle Routing Problem with the capacity restrictions removed (Bektas 2006).

The literature includes several optimal algorithms for the mTSP (Gavish and Srikanth 1986,

Gromicho, Paixão, and Branco 1992, Laporte and Norbert 1980, Svestka and Huckfeldt 1973, Uit

het Broek et al. 2020) and multiple mathematical formulations (see Sarin et al. (2014) for a com-

parison of 32 formulations.) There are some heuristic solutions for the mTSP, mainly based on

partitioning a TSP tour into m subtours (Russell 1977, Potvin, Lapalme, and Rousseau 1989,

Frederickson, Hecht, and Kim 1978). However, the majority of the mTSP literature uses meta-

heuristics to solve the problem. Carter and Ragsdale (2006), Yuan et al. (2013), Singh and Baghel

(2009), Sedighpour and Yousefikhoshbakht (2012), Tang et al. (2000), and Yu et al. (1997) use

Genetic Algorithm-based heuristics. Larki and Yousefikhoshbakht (2014) propose an Evolution-

ary Algorithm-based heuristic. Other heuristics used for the mTSP include Artificial Bee Colony

(Venkatesh and Singh 2015); Ant Colony (Liu et al. 2009, Yousefikhoshbakht, Didehvar, and Rah-

mati 2013, Ghafurian and Javadian 2011), General Variable Neighborhood Search (Soylu 2015),

Neural Networks (Hsu, Tsai, and Chen 1991, Modares, Somhom, and Enkawa 1999, Somhom,

Modares, and Enkawa 1999, Wacholder, Han, and Mann 1989), Simulated Annealing (Song, Lee,

and Lee 2003), Tabu Search (Golden, Laporte, and Taillard 1997), and Gravitational Emulation

(Rostami et al. 2015). Since the problem discussed in this paper is a special case of the mTSP

(where each salesman visiting the same number of cities) we expect the existing mTSP heuristics

to be ineffective for our problem as they would generate mostly infeasible solutions. In Section 7

we describe the method of Soylu (2015) for mTSP, which we adapted to ensure feasible solutions.

We compare our proposed simulated annealing-based heuristic with results from the heuristic of

Soylu (2015) to demonstrate our method’s effectiveness

3. System Description

As introduced above, we are studying an Automated Storage and Retrieval System (AS/RS) with

a picking station at the end of the aisle. A schematic drawing of the system, including the main

terminology of system components, is given in Figure 1. Orders of customers arrive during the day.

Each order may generate one or more requests for loads to be retrieved from the system. A retrieval

8

request results in a specific load being moved by the storage/retrieval machine (S/R) from its rack

position to the picking station. At the picking station, a worker takes the required products from

the load. After picking from the load, a storage request is issued for the load, where the S/R picks

up the load from the picking station and puts it back in the rack.

AS/RSs are said to operate either in single-command or dual-command mode. In single-command

mode, the S/R performs only a storage request or a retrieval request at each time. In dual-command

mode, the S/R starts at the I/O-point, picks up a storage request, puts the load at its designated

storage location, moves to the load that must be retrieved, and brings it to the I/O-point. The I/O-

point of the AS/RS is where the S/R picks up and drops off the loads, i.e., it is located at the picking

station. Typically, the single-command mode is used when there are either only storage requests

or only retrieval requests available. Notice that when operating in single-command mode, the total

completion time to handle all requests is the same regardless of the sequence in which the loads

are handled. However, if operating in dual-command mode, the total completion time to handle all

requests depends on the storage and retrieval sequence. For the dual-command mode, in the base

case when storage and retrieval requests are known and independent, the problem of sequencing all

requests can be written as a linear assignment problem, which is solvable in polynomial time (Lee

and Schaefer 1997). In addition, Ascheuer, Grötschel, and Abdel-Hamid (1999) considers online

sequencing of independent storage and retrieval requests.

A buffer is placed at the picking station to accommodate differences in speed between the S/R

and the worker. Several configurations for the buffer exist, including the ones studied in Bozer

and White (1990) and Park, Frazelle, and White (1999). A typical configuration is the horse-shoe

configuration, which has a small conveyor system at the picking station in the shape of a horse

shoe. Loads are dropped off by the S/R at one end of the conveyor and picked up from the other

end. In-between, the worker retrieves products from the retrieved loads. From a modeling point

of view, the essence is that these systems have a buffer at the picking station, and that loads go

through the buffer in a strict First-In-First-Out manner. We assume the number of loads in the

buffer to be constant. This is true by default when performing dual-command cycles since a new

retrieval request accompanies every storage request. Consequently, for a buffer size of m loads,

any retrieved load will appear as a storage request exactly m cycles after it was retrieved. This is

consistent with the assumptions in Bozer and White (1996) and Mahajan, Rao, and Peters (1998),

who studied a setting with a fixed buffer size of 2.

We are interested in the performance of the system during peak hours. In systems with a fairly

constant utilization, storage location assignments of loads can be improved on the fly by returning

retrieved loads to another location than the one it was originally retrieved from (Han et al. 1987),

which may be beneficial in some situations (Carlo and Giraldo 2012). In contrast, we assume that

9

the warehouse management system has made the best possible effort to prepare the system for peak

hours during the off-peak period. This implies that during peak hours, there is no need to reposition

loads to better locations. All loads are assumed to be already stored at their respective best possible

locations, based on information about the upcoming retrieval requests or a forecast thereof, see

Chen, Langevin, and Riopel (2011) or Gu, Goetschalckx, and McGinnis (2007). Therefore, retrieved

loads are best returned to their original storage location from which they were earlier retrieved.

This assumption is consistent with Bozer and White (1996) and Mahajan, Rao, and Peters (1998).

We further work from the base assumption that the buffer starts and ends empty. This assumption

is realistic in practice for environments where completion times of sets of requests are formed

such that they coincide with break times. The assumption of empty buffers is also helpful in the

mathematical exposition. However, it is not essential to our solution approach. In Section 5 we

indicate how the model can be easily adapted to include non-empty starting or ending conditions. In

Section 8.4, we perform a block sequencing experiment that incorporates these conditions explicitly.

For any scheduling method, we need a set of requests that can be scheduled. However, requests do

not arrive in sets but rather arrive dynamically one-by-one during the day. The general method for

addressing this discrepancy is the block sequencing approach (Han et al. 1987). In block sequenc-

ing, all incoming requests are initially queued in the computer system until a condition is met,

for example, based on a time stamp, a specified maximum number of unscheduled requests, or

(approaching) completion of the current set of requests. Then, a set of requests is released from

the queue for scheduling. Based on this, except for the block sequencing experiment in Section 7.5,

we assume that we have a known set of requests that need to be executed.

Our paper’s main objective is to minimize the makespan for handling all requested loads during

peak hours. Indirectly, this also translates into a new system’s purchase price because the required

maximum achievable throughput of a system is an essential factor in the system’s price. Essentially,

this objective is the same as maximizing worker utilization as used in Bozer and White (1996)

since worker utilization can be determined as total picking time divided by makespan. Firstly,

makespan is influenced by total travel time or distance (Roodbergen and Vis 2009). S/R machines

can simultaneously travel horizontally and vertically as they use two independent motors. There-

fore, S/R travel is best described as Chebyshev travel (or infinity norm), where travel distance

(or time) is determined as the maximum of the horizontal and the vertical distance (or time).

Secondly, makespan is influenced by waiting times. These waiting times occur in situations where

the buffer is full and the worker has not finished picking from any of the loads in the buffer. Since

the S/R cannot complete its assigned work until the worker has retrieved products from all loads,

minimizing the S/R’s makespan also minimizes the worker’s makespan.

10

Summarizing, we study the problem of minimizing makespan by sequencing requests for an S/R

in an end-of-aisle picking system with a picking station buffer of a given size, where each retrieved

load is to be put back at the same location from which it was retrieved. In the next section, we

first show the relation of our AS/RS request sequencing problem to the mTSP.

4. A Special Case of the mTSP

This section shows that the end-of-aisle AS/RS request sequencing problem is equivalent to a

special case of the multiple Traveling Salesmen Problem (mTSP). The mTSP extends the well-

known Traveling Salesman Problem by considering multiple salesmen that each have a lower and

upper bound on the number of visits in the tour. The special case of the mTSP that we consider

in this paper is obtained by adding the additional constraint that each salesman must visit the

same number of cities as the other salesmen. The intuition why the end-of-aisle AS/RS request

sequencing problem is equivalent to this mTSP variant comes from the fact that -in a sense- each

position in the buffer can be considered to be replenished by another salesman in an alternating

fashion. So, for example, in a system with a buffer size of 3, ‘salesman 1’ delivers the first, fourth,

seventh, ... load, while ‘salesman 2’ delivers the second, fifth, eighth, ... load, and ‘salesman 3’

delivers the third, sixth, ninth, ... load. When ‘salesman 1’ delivers the fourth load, this load

replaces the buffer’s first load. This first load is then returned to storage by ‘salesman 1’, who also

originally had retrieved this load. Thus, each ‘salesman’ continuously updates one position of the

buffer. In the actual system, there is only one S/R that transports all loads. However, the resulting

travel path of this S/R can be mathematically decomposed into these separate paths of multiple

salesmen, as we demonstrate in the remainder of this section.

It must be noted that the equivalence only holds if the S/R does not incur any waiting times.

Otherwise, the special case of the mTSP provides a lower bound to the end-of-aisle AS/RS request

sequencing problem. The probability of incurring waiting times depends on the interplay between

several factors, such as the speed of the S/R, the worker’s speed, the set of requests, the request

scheduling, and the size of the buffer. Mathematically, zero waiting times for the S/R are obtained

only with absolute certainty if picking times are set to zero. However, it is possible to mitigate S/R

waiting times by increasing the buffer size. In the next section, we introduce a general formulation

for the makespan that includes waiting times, and both formulations with and without waiting

times are considered in the results section.

For the remainder of this section, we assume zero waiting time of the S/R so that the makespan of

the S/R equals its total travel time. We first formalize descriptions of both problems and then show

the correspondence between the two systems. We use the following notation for the end-of-aisle

AS/RS request sequencing problem:

11

m: Size of the buffer at the picking station,

n: Number of loads to retrieve (and store),

vri : Location in the rack for the retrieval request of load i= 1, ..., n,

vsi : Location in the rack for the storage request of load i= 1, ..., n,

v0: Location of the I/O-point.

Notice that each load i will be handled twice; once to retrieve the load and once to store the

load after picking has occurred at the picking station. These two events occur at different times

but correspond to the same load and the same physical storage location in the system. Notice that

a storage request of load i means that load i needs to be put back at the location from where it

was retrieved earlier as retrieval request i. Nevertheless, when we construct the network, vri and vsi

will have different arcs incident to them, so we need to separate notation.

We can see our problem as an arc routing problem on a digraph G = (V,A). The vertex set is

given by V = {v0, vr1, ..., vrn, vs1, ..., vsn}. The arc set A consists of required arcs for retrievals, (vri , v0),

i = 1, ..., n, required arcs for storages, (v0, v
s
i), i = 1, ..., n, and all remaining arcs that make a

complete graph serve as non-required arcs. A route will make numerous visits to the I/O-point to

pick up or drop off loads; it is required to visit the I/O-point before every storage to pick up the

load that needs to be stored, and to visit the I/O-point after every retrieval to drop off the load

that was retrieved.

We now first define the special case of the mTSP, before showing the correspondence between the

two problems. We define the multiple Traveling Salesmen Problem with Equal Visits (mTSPEV)

as the problem of finding a solution of minimum summed travel distance (or time) for routes of m

salesmen, who all start and end at the depot, such that each city is visited exactly once, and such

that each salesman visits exactly the same number of cities. We use the following notation for the

mTSPEV:

m: Number of salesmen,

n: Number of cities to visit,

vi: Vertex for city i= 1, ..., n,

v0: The depot.

It is assumed that the number of cities is a multiple of the number of salesmen, i.e., n= bm, for

some b ∈N+. If violated, we can add dn/mem− n dummy cities (located at the depot) to satisfy

this assumption without loss of generality. We use parameter m in the request sequencing problem

for the size of the buffer, and we use the same m in the mTSPEV formulation for the number of

salesmen. This is intentional, since these will be shown to correspond.

We note that the mTSPEV is an NP-hard problem, as it is a generalization of the TSP, because

any TSP can be written as it by simply taking m= 1. Additionally, the mTSPEV is equivalent to

12

the capacitated vehicle routing problem (CVRP) with the demand in each of the n cities equal to

1, and the capacity of each of the m vehicles equal to n/m.

Theorem 1. The end-of-aisle AS/RS request sequencing problem without waiting times is equiv-

alent to the mTSPEV.

Proof. See Appendix A.

In Section 7 of Bozer and White (1996) an explanation can be found that suggests the validity

of the theorem for the case with m= 2. A formal proof for the general case is given in Appendix A.

Here we show the validity of the theorem on an intuitive level and provide an example as illustration.

Consider any given retrieval sequence for the S/R. For our example we use the following sequence

of retrieving loads: 1-5-2-6-3-7-4-8. For the picker to receive loads in that order the S/R machine

must perform a series of storage and retrieval requests. We denote the movements of the S/R

machine by a set of tuples, with each tuple corresponding to a cycle of the S/R. We define a cycle

as the combined movements of the S/R from leaving the I/O-point until the S/R’s first following

return to the I/O-point. Adjacent occurrences of v0 are technically superfluous, however, they will

ease the explanation. For our example, the tuple notation that describes the S/R movements for a

system with a buffer capacity of 2 is as follows:

(v0, v
r
1, v0)(v0, v

r
5, v0)(v0, v

s
1, v

r
2, v0)(v0, v

s
5, v

r
6, v0)(v0, v

s
2, v

r
3, v0)...

...(v0, v
s
6, v

r
7, v0)(v0, v

s
3, v

r
4, v0)(v0, v

s
7, v

r
8, v0)(v0, v

s
4, v0)(v0, v

s
8, v0).

Figure 2(a) gives a graphical representation of the actual moves of the S/R machine for the

example. The S/R starts at the I/O-point, moves to the storage location of load 1, picks up the

load and brings it to the I/O-point, where the load enters the buffer. Next, the worker can take

products from the load, after which the load is ready to leave the buffer and needs to await pickup

by the S/R. While the worker is picking products from load 1, the S/R travels to retrieve load 5

from its location. After dropping off load 5 at the I/O-point, load 5 enters the buffer. Next, the S/R

takes load 1 from the buffer and puts it back in its original storage location in the rack, the S/R

moves empty to the location of load 2, and brings load 2 to the I/O-point. The retrievals of loads 1

and 5 are single-command cycles; the storage of load 1 together with the retrieval of load 2 forms

a dual-command cycle. We assume the system to start and end with an empty buffer, however,

this assumption is not restrictive as is shown in Section 5. Now, the following two observations

illustrate the equivalence with the mTSPEV:

1. All required arcs are present in all feasible solutions, which implies that their combined length

merely adds a constant to the objective value. Therefore we can remove the required arcs without

affecting optimality. Figure 2(b) shows the resulting graph for the example situation. All arcs to or

13

from the I/O-point are required arcs, except for the first m arcs from the I/O-point to retrievals,

and the last m arcs from storages to the I/O-point. In the example these are (v0, v
r
1), (v0, v

r
5),

(vs4, v0), and (vs8, v0).

2. We can now merge each pair of vertices vri , vsi into a single vertex vi. This is permissible as

they are physically at the same location at a distance of zero. This gives us m routes. Figure 2(c)

depicts the result for our example.

Clearly, from Figure 2 we can see that an mTSPEV solution was obtained from an end-of-aisle

AS/RS solution by applying the two steps above, neither of which alters optimality. This outline

suggests, that there is a one-to-one correspondence between the two problems. The formal proof is

given in Appendix A. That is, assuming no waiting times for the S/R, any solution to the end-of-

aisle AS/RS request sequencing problem has an equivalent solution in the mTSPEV problem (and

vice versa), and the objective values between the two solutions differ only by a constant. A notable

consequence of this equivalence is that the request sequencing problem can be formulated without

the use of precedence constraints. In its base description, the request sequencing problem requires

each location vi to be revisited exactly m moves after the first visit to that location. However, due

to the reformulation to the mTSPEV, we can now see that the two visits to the same location

are merged into a single node, with the intermediate visits contained in the routes of the other

salesmen. Since the two visits are merged into a single node, it thus follows that it is not necessary

to model the precedence relations explicitly.

5. Formulation

Given the results from the previous section, one can mathematically formulate the end-of-aisle

AS/RS request sequencing problem without waiting times for the S/R as an integer linear program

for a standard mTSP with an additional constraint for the number of visits. Similarly, one may

adapt the mTSP formulation in Kara and Bektas (2006) by equaling the minimum and maximum

number of cities to be visited by each salesman. Instead, we opt to present a mathematical for-

mulation based on the operation of the end-of-aisle AS/RS request sequencing problem and then

show how it may be interpreted for the mTSPEV. We first provide the integer linear programming

model for the situation without waiting times. After that, we introduce formulations for waiting

times of the S/R and the worker, as well as provide a formulation for the makespan.

The indices, parameters, and decision variables used in the model are defined as follows:

m: Size of the buffer at the picking station,

n: Number of loads to retrieve (and store),

i, j: Indices for the requested loads, i, j = 1, . . . , n+m,

k: Index for cycles, k = 1, . . . , n+m,

14

Figure 2 Routing of the end-of-aisle AS/RS request sequencing problem, (a) all arcs traveled by the S/R, (b)

excluding those arcs that the S/R is always required to travel, (c) merging the nodes that equate to

retrieval and storage of the same load.

dij: Distance (or time) traveled between the storage locations of loads i and j,

xk
ij:

{
1 if load i is stored and load j is retrieved in cycle k
0 otherwise

.

To explain the variable xk
ij in our earlier graph notation, we can see xk

ij = 1 to be equivalent to

performing the tuple (v0, vi, vj, v0) in cycle k. Now, the model for the end-of-aisle AS/RS request

sequencing problem without waiting times is given by:

min
n+m∑
i=1

n+m∑
j=1

n+m∑
k=1

dijx
k
ij (1)

such that
n+m∑
j=1

n+m∑
k=1

xk
ij = 1 i= 1, . . . , n+m (2)

15

n+m∑
i=1

n+m∑
k=1

xk
ij = 1 j = 1, . . . , n+m (3)

n+m∑
i=n+1

n∑
j=1

xk
ij = 1 k = 1, . . . ,m (4)

n∑
i=1

n∑
j=1

xk
ij = 1 k =m+ 1, . . . , n (5)

n∑
i=1

n+m∑
j=n+1

xk
ij = 1 k = n+ 1, . . . , n+m (6)

n+m∑
i=1

xk
i` =

n+m∑
j=1

xk+m
`j k, `= 1, . . . , n (7)

xk
ij ∈ {0,1} i, j, k = 1, ..., n+m (8)

The Objective Function (1) is to minimize the makespan, i.e., the total travel distance (or time)

incurred to retrieve and store the requests. Equations (2) and (3) guarantee that each load is

stored and retrieved exactly once, respectively. Equation (4) ensures that the first m retrievals are

performed under single-command during the first m cycles (i.e., until the buffer is full). Note that

Equation (4) is written in the same format as the “normal” dual-command cycles in Equation (5).

However, in Equation (4), the storage requests are replaced by dummy jobs n + 1, ..., n + m due

to which essentially only single-command retrievals remain. Equation (5) ensures that the n−m

retrievals and storages under dual command are performed during the subsequent n−m cycles.

Equation (6) ensures that the last m storages are performed under single-command. Equation (7)

guarantees that the load retrieved at cycle k should be stored at cycle k+m. Equation (8) defines

the decision variables to be binary. Note that there are m dummy requests that also have to be

“retrieved” and “stored”, which act as I/O points. These dummy request are labeled with indices

i, j = n+ 1, ..., n+m, and are assumed to be located at the I/O-point.

Besides, consider the mTSPEV by having salesmen move in turns. During the first m turns,

each salesman moves from the depot to its first destination. Then, during the next m turns, each

salesman moves from its first destination to its second destination, and so on. Given this strategy

for modeling the mTSPEV, the formulation of the end-of-aisle AS/RS request sequencing problem

may be reinterpreted as follows. The objective function of the model (Equation 1) is to minimize

the total travel distance (or time) incurred to travel to all cities. Equations (2) and (3) guarantee

that each city is departed and visited exactly once, respectively. Equation (4) ensures that during

the first m turns, each salesman moves from the depot towards its first destination (i.e., until all

salesmen are at their first destination). Equation (5) ensures that during the subsequent n−m

turns each of the n−m moves between cities are performed. Equation (6) ensures that during

16

the last m turns, each salesman moves from its last destination towards the depot (i.e., until all

salesmen are at the depot). Equation (7) guarantees that the city visited by a salesman in turn k

is left by the same salesman in turn k +m. Equation (8) defines the decision variables as binary.

In this model description, we assume the buffer to be empty at the start and at the end of a

request sequence. As previously discussed, this may not be appropriate under a block sequencing

approach. Nevertheless, this assumption may be easily relaxed. The loads that already reside in the

buffer beforehand or the loads that remain in the buffer afterwards, simply replace the dummy jobs.

Distances are adjusted as follows. Define dij for i = n + 1, . . . , n + m, j = 1, . . . , n as the distance

from the storage location of load i that currently resides in the buffer to storage location j. And

define dij = 0 for i= 1, . . . , n, j = n+ 1, . . . , n+m since the last m retrievals will stay in the buffer.

5.1. Makespan with waiting times

The Objective Function (1), which is based on the mTSP, minimizes the makespan based on travel

distances but does not consider S/R waiting (i.e., idle) times. S/R waiting times occur when the

S/R becomes idle after delivering a load, but the picker has not finished picking the S/R’s next

load. In this subsection, we extend the Objective Function (1) to consider waiting times.

For ease of notation, we start by defining a permutation of the retrieval requests. The first

retrieval of S/R is at the first position of the permutation, and the second retrieval is on the second

position, and so on. When we use this permutation instead of the original indices, brackets are put

around the appropriate indices. Based on this permutation, we define the following new variables

and parameters. First, W c
(k) represents the waiting time of the S/R before it can perform the k’th

cycle in the request sequence. Second, W p
(k) denotes the waiting time of the worker before being

able to start picking from the load retrieved in the k’th cycle. The parameter p(k) represents the

picking time associated with the load retrieved in the k’th cycle. Finally, we define travel times

d(k) as the travel time involved in performing the k’th cycle. Now, for a given retrieval sequence,

the S/R’s waiting time before being able to start request cycle k = 1, . . . , n+m is given by:

W c
(k) = max

{
k−m∑
t=1

(W p
(t) + p(t))−

k−1∑
t=1

(d(t) +W c
(t)),0

}
.

The first summation gives the total time spent by the worker waiting for the S/R and picking

from the first k−m loads (if k−m≤ 0, the summation is assumed to return a value of zero). The

second term gives the total time spent by the S/R to perform cycles 1, ..., k − 1. Note that the

S/R has to wait only if the S/R was faster at performing cycles 1, ..., k− 1 than the worker was at

picking from loads 1, ..., k−m.

17

Similarly, for a given retrieval sequence, the worker’s waiting time for retrieval k = 1, . . . , n is

given by:

W p
(k) = max

{
k∑

t=1

(d(t) +W c
(t))−

k−1∑
t=1

(W p
(t) + p(t)),0

}
.

The makespan with inclusion of waiting times can now be written as:

n+m∑
k=1

(
d(k) +W c

(k)

)
, (9)

where the first term indicates the travel times of the S/R and the second term the cumulative

waiting times of the S/R. The original objective function (Equation 1) without waiting times is

straightforwardly obtained from Equation (9) by setting W c
(k) = 0 for all k. Due to the fact that

Equation (9) is a non-linear function, it cannot serve as an objective in a Mixed Integer Linear

Programming formulation. However, it can be used in heuristics (see Section 7).

In order to illustrate these formulas, we revisit the example from Section 4. The request sequence

of the example started with the cycles (v0, v
r
1, v0)(v0, v

r
5, v0)(v0, v

s
1, v

r
2, v0)(v0, v

s
5, v

r
6, v0). For the first

cycle (v0, v
r
1, v0) the S/R clearly does not need to wait before starting, so W c

(1) = 0. The worker will

have to wait for the S/R to retrieve the first load, hence W p
(1) = d(1). After dropping off the first

load at the I/O-point, the S/R can continue instantly with the second cycle, (v0, v
r
5, v0), since the

buffer capacity is 2. So, there is no waiting time, W c
(2) = max{−d(1),0}= 0. The worker only has

to wait for the second load if it takes longer for the S/R to retrieve the second load than it takes

for the worker to pick from the first load, W p
(2) = max{d(2)−p(1),0}. Next, the S/R should start on

the third cycle, (v0, v
s
1, v

r
2, v0). This cycle can only start if the worker has finished picking from load

1. Hence, the S/R has to wait if the finish time of the worker (consisting of the worker’s waiting

time to start on load 1 plus the picking time for load 1) is later than the finish time of the S/R

itself (consisting of the cycle times for loads 1 and 2), so W c
(3) = max{W p

(1) +p(1)−d(1)−d(2),0}. In

the end, this process of interchangeably calculating the waiting times for the S/R and the worker

continues for all cycles in the request sequence.

6. Structural Properties

This section elaborates on several interesting structural properties of the mTSPEV and its link with

the mTSP. These properties emphasize the importance of theory development for the mTSPEV,

since we demonstrate that solutions of the mTSPEV exhibit significantly different behavior from

the solutions of the general mTSP. Before progressing, we introduce the following notation: let

LTSP
m (I(V)) and LTSPEV

m (I(V)) denote the length of an optimal mTSP and mTSPEV route, respec-

tively, for instance I with vertex set V and m salesmen. Furthermore, we assume that the distances

(or times) between locations satisfy the triangle inequality.

18

First, we present a property that shows an important difference between the mTSP and

mTSPEV. Whereas in the mTSP the length of an optimal route increases when the number of

cities (n) increases, this is not necessarily true for the mTSPEV. The first property shows when

the length of an optimal route of the mTSPEV can be decreased by adding a set of cities.

Property 1.

LTSP
m (I(V))<LTSPEV

m (I(V))⇔∃U with LTSPEV
m (I(V ∪U))<LTSPEV

m (I(V)).

Proof. See Appendix B.

Thus, assuming that the triangle inequality holds and that the optimal mTSP route is shorter

than the mTSPEV route through the set V , there exists a set of vertices U such that the length

of the optimal mTSPEV route through the union of sets V and U is strictly shorter than through

the set V alone.

The following corollary presents a case in which one can be assured that the optimal route length

of an mTSPEV route reduces by increasing the number of vertices with a certain amount. This is

the case when the optimal mTSP and mTSPEV route are not the same for a certain instance I

with a vertex set V .

Corollary 1. Assume LTSP
m (I(V)) < LTSPEV

m (I(V)). For k = 1, . . . ,m, let Sk be the set of

vertices visited by salesman k in an optimal mTSP solution for instance I(V). Define s(k) =

maxi |Si|− |Sk|. Then, the vertex set U = {v11, . . . , v1s(1)}∪{v21, . . . , v2s(2)}∪· · ·∪{vm1 , . . . , vms(m)} fulfills

the requirements of Property 1, if there exist vertices x, y ∈ Sk for which d(x, y) = d(x, vki)+d(vki , y),

for all k = 1, . . . ,m and i= 1, . . . , s(k).

Similarly, there is a difference in the behavior the mTSP and mTSPEV show in response to a

change in the number of salesmen (m). This difference is formalized in the following property.

Property 2.

LTSP
m (I(V))≤LTSP

m+1(I(V)) for all V and m∈N+.

LTSPEV
m (I(V))>LTSPEV

m+1 (I(V)) for some V and m∈N+.

Proof. See Appendix C.

Hence, assuming the triangle inequality holds, the length of an optimal mTSP route always

becomes longer or remains equal if the number of salesmen is increased. On the other hand, the

length of an optimal mTSPEV route could reduce when the number of salesmen is increased.

The following property shows in which situations one can be assured that the optimal route

length of an mTSPEV route strictly decreases for a decrease in the number of salesmen.

19

Property 3. Assume the strict triangle inequality holds, then

LTSPEV
a (I(V))<LTSPEV

ba (I(V)) for all V and a, b∈N+, b≥ 2.

Proof. See Appendix D.

For the first problem, the number of salesmen equals a, while for the second problem they are

a multiple of a. Intuitively, a move between two vertices should be shorter than moving from

the depot to both vertices and thus when merging several salesmen’s routes, the result should be

shorter. This leads to the following corollary comparing the TSP and mTSPEV.

Corollary 2. Assume the strict triangle inequality holds, then

LTSP
1 (I(V)) =LTSPEV

1 (I(V))<LTSPEV
m (I(V)) for all V and m∈N+,m≥ 2.

Combining these results, we observe that the mTSPEV behaves substantially different from the

mTSP or TSP. In fact, these properties illustrate that it is difficult to find structural patterns that

could be exploited to develop a heuristic for the problem.

Finally, we deal with theoretical lower bounds of the mTSPEV. The formulation of the mTSPEV

in Section 4 shows that it is a constrained Linear Assignment Problem (LAP). Therefore, the LAP

is a lower bound to the mTSPEV, which can easily be solved in polynomial time. Another lower

bound to the mTSPEV is the relaxed version of the mTSPEV formulation, where the values of

the decision variables xk
ij are not constrained to be binary, but to lie anywhere between 0 and 1.

In Section 8 we will elaborate further on the latter lower bound.

7. Solution Methods

The model for the mTSPEV as presented in Section 5 can be solved via (commercial) MIP solvers

such as Gurobi or CPLEX. However, our initial experiments demonstrated that a large percentage

of instances with n= 40 could not be solved to optimality within 7.5 hours this way. To overcome

this, we first discuss in this section an effective branch-and-cut algorithm to solve the MTSPEV

to optimality.

Furthermore, since the mTSPEV has been shown to be NP-hard in Section 4, we present four

heuristic approaches to generate solutions for our end-of-aisle AS/RS request sequencing problem,

both with and without waiting times. First, in Section 7.2, we present a nearest neighbor heuristic,

which is a rule-of-thumb heuristic originally developed for the TSP and mTSP (Johnson and

McGeoch 1997), and adapted for end-of-aisle AS/RS request sequencing by Mahajan, Rao, and

Peters (1998). In Section 7.3, we present the second heuristic coming from Bozer and White (1996)

20

which is similar in nature to the first, but specifically accounts for waiting times. Both heuristics,

from Mahajan, Rao, and Peters (1998) and Bozer and White (1996), are designed for sequencing

requests in an end-of-aisle system with a buffer size of 2. Thus, we made minor adaptations to the

heuristics so that they can handle any buffer size. The third approach, presented in Section 7.4, is

a general variable neighborhood search heuristic based on the method of Soylu (2015) for solving

the mTSP. This heuristic represents a state-of-the-art heuristic for solving the standard mTSP,

which meant that some adaptations had to be made to the heuristic so that it would guarantee

to provide feasible solutions for the mTSPEV. Finally, in Section 7.5, we propose a simulated

annealing heuristic. As is demonstrated in Section 8, our simulated annealing heuristic provides

high-quality solutions.

7.1. Branch-and-cut Algorithm

As is readily shown, the mTSPEV can be formulated as an mTSP with m routes with an equal

number of visits. Suppose sufficient dummy nodes are included to ensure that n is an integer

multiple of m. In that case, we can solve this problem as a capacitated vehicle routing problem

where each city i has weight 1, the vehicle has capacity n/m, and where we set the number of

outgoing arcs from the depot {n+ 1} equal to m. That is,

min
n+1∑
i=1

n+1∑
j=1

dijyij (10)

s.t.
n+1∑
i=1

yij =
n+1∑
i=1

yji = 1 ∀j ∈ {1, . . . , n} (11)

n∑
i=1

yn+1,i =
n∑

i=1

yi,n+1 =m (12)∑
i,j∈S

yij ≤ |S| − k(S) ∀S ⊆ {1, . . . , n} (13)

Here, Objective (10) minimizes the total travel distance, constraints (11) ensure each city is

visited once, and constraints (12) ensure exactly m tours should be considered. Constraints (13)

are subtour elimination constraints, where k(S) = 1 + b|S|/(n/m)c. We solve this formulation by

adding the subtour elimination constraints dynamically throughout the branch-and-bound search,

both for integer LP relaxations and for fractional LP relaxations.

7.2. Nearest Neighbor Heuristic

We generalize the Nearest Neighbor (NN) heuristic of Mahajan, Rao, and Peters (1998) to handle

larger buffer sizes than 2. Firstly, we select the m request locations for which the distance to the

I/O point is the smallest. These m requests are the first to be retrieved, i.e., serve as r1, . . . , rm in

21

the retrieval sequence. Then, for i = m+ 1, ..., n−m, the selection process finds the non-handled

request that is located the closest to request ri (0 < i< n−m) and adds it as request ri+m in the

request sequence. If we continue from a previous set of requests (in a block sequencing approach),

the first step that selects the m retrievals closest to the I/O-point is to be skipped. Due to the

simple structure of this heuristic, based solely on the proximity of storage locations, the resulting

retrieval sequence is the same for both objectives, i.e., the makespan with waiting times and the

makespan without waiting times.

7.3. BW Heuristic

For the case of minimizing makespan with waiting times, Bozer and White (1996) present a heuristic

procedure called Heuristic A in the original paper. However, for clarity, we will refer to it by the

first letters of the paper’s authors (BW). This heuristic was designed for a buffer size of 2 and is

presented here with a minor adaptation to make it functional for any buffer size. Define t(i)j as

the time needed by the S/R to store load ri and retrieve load j, define p(i) as the time the worker

requires to pick from the load of retrieval ri, and define C(i)j = max{0, t(i)j − p(i)} as a measure for

worker idle time. The heuristic starts by randomly selecting m requests that serve as r1, . . . , rm

in the retrieval sequence. Then, the remaining requests are selected by sequentially finding for

i= 1, ..., n−m the non-handled request j that minimizes C(i)j and adds j to the retrieval sequence

as request ri+m. As with the NN heuristic, in a block sequencing approach, the first step that

selects the first m retrievals is to be skipped.

7.4. General Variable Neighborhood Search Heuristic

As the mTSPEV is a specific case of the mTSP, we adapt a recent heuristic for the mTSP to

compare the performance of our simulated annealing heuristic with the latest mTSP heuristics. To

this end, we modify the General Variable Neighborhood Search (GVNS) heuristic introduced in

Soylu (2015). Mainly, GVNS heuristics are built upon the idea that while it might not be possible

to find a better solution in one neighborhood of the current solution, there might be another

neighborhood structure in which a better solution can be found. Different neighborhoods of the

current solution can be obtained by applying different operators (simple procedures that create

new solutions). Altogether, at a current solution, the GVNS heuristic searches for a better solution

in one neighborhood. If no better solution is found, another neighborhood structure is investigated,

and so on until no improvement can be found in any specified neighborhood structure.

To generate new candidate solutions, the GVNS heuristic of Soylu (2015) uses six neighborhood

structures that are valid for the mTSP. However, only two of these structures are valid for the

mTSPEV. The two valid neighborhoods are those obtained by applying either an inter-tour city

swap or a intra-tour city swap, referred to as two-point move and 2-opt move, respectively. The

22

other four neighborhood structures proposed in Soylu (2015) are invalid for the mTSPEV as they

do not preserve an equal number of visits per salesman, a necessity in the mTSPEV. With regards

to the objective function, the heuristic can minimize both the makespan without waiting times

(i.e., Equation 1) and the makespan with waiting times (Equation 9). For initializing the heuristic,

we use the NN solution for faster convergence. As for the rest of the heuristic, we use the same

heuristic as presented in Soylu (2015).

7.5. Simulated Annealing

Our Simulated Annealing (SA) heuristic uses permutations of the retrieved loads as the encoding

scheme. Each encoded candidate solution represents the retrieval sequence r = (r1, . . . , rn), where

r1 is the first item to be retrieved and stored, and rn is the last item to be retrieved and stored.

The retrieval sequence may also be seen as the order in which the picker receives loads. Figure 3

presents the encoded solution of the example from Figure 2 which has n = 8 loads, buffer size of

m= 2, and an S/R travel sequence of

(v0, v
r
1, v0)(v0, v

r
5, v0)(v0, v

s
1, v

r
2, v0)(v0, v

s
5, v

r
6, v0)(v0, v

s
2, v

r
3, v0)...

...(v0, v
s
6, v

r
7, v0)(v0, v

s
3, v

r
4, v0)(v0, v

s
7, v

r
8, v0)(v0, v

s
4, v0)(v0, v

s
8, v0).

Notice that the encoded solution corresponds to the retrieval sequence (vri) in the S/R work

sequence. As explained in Section 4, this S/R travel sequence corresponds to the mTSPEV

sequences (v0, v1, v2, v3, v4, v0) and (v0, v5, v6, v7, v8, v0) and vice versa.

The SA heuristic generates new candidate solutions r by using standard pairwise exchanges

between requests. Notice, however, that by performing pairwise exchanges to our encoded solution

we either swap vertices between two mTSPEV routes or swap the order in which two vertices are

visited within a salesman’s route. The latter happens when the pairwise exchange happens between

positions that are separated by exactly m positions, whereas the former occurs otherwise. For

example, if in the encoded solution in Figure 3 one exchanges position 1 with position 3 (represented

by loads 1 and 2, respectively), so that the candidate solution becomes (2,5,1,6,3,7,4,8), then the

corresponding mTSPEV solution becomes (v0, v2, v1, v3, v4, v0) and (v0, v5, v6, v7, v8, v0). That is, the

visiting sequence for salesman 1 changed. On the other hand, switching positions 1 and 2 (i.e.,

loads 1 and 5) in the original encoded solution creates the mTSPEV solution (v0, v5, v2, v3, v4, v0)

and (v0, v1, v6, v7, v8, v0). That is, the salesmen swap cities.

With regards to the objective function, we can use either the makespan without waiting times

(i.e., Equation 1) or the makespan with waiting times (Equation 9). The newly generated candidate

solution r is automatically accepted as the incumbent solution if its makespan, M(r), is smaller

than the last registered makespan, M(r∗). If this is not the case, the new solution is accepted with

the Boltzmann acceptance probability exp[−(M(r)−M(r∗))/T (t)], where T (t) is the temperature

23

Figure 3 Encoded solution for example in Figure 2.

annealing schedule in the t’th iteration of the SA heuristic. If the new solution is accepted, we set

r to become the new r∗. In our heuristic, the initial temperature and annealing schedule are set to

the sigmoid-like function T (t) = n5/(1+e50t/n
5−5), along with the termination criterion of n5 candi-

date solutions considered. These SA parameters were methodically fine-tuned through preliminary

experimentation. Although SA is designed to converge irrespective of its initial solution, we opted

to use the NN solution as initialization for SA to improve its convergence speed. Concerning the

remaining details of the SA, we apply the traditional SA scheme in Eglese (1990).

8. Results

In this section, we compare heuristic and optimal solutions in terms of their average, best-case,

and worst-case performance and numerically study system characteristics. The heuristics have

been described in Section 7. Optimal solutions are obtained using the branch-and-cut algorithm

(see Section 7). Optimal solutions and LP relaxations are obtained using CPLEX 12.8 and its

associated callbacks coded in C++, based on the library provided by Uit het Broek et al. (2020).

The heuristics are programmed and executed in Java SE 7 on a group of computers with 2.30GHz

processors and 4GB of RAM.

In these computations, we analyze the results of the various solution methods in a multitude of

settings by varying the number of products to be retrieved (n) and the buffer size of the system

(m). For n we consider the values 20, 30, and 40, whereas for m we consider 2, 3, 4, and 5. In

line with Bozer and White (1996), we assume locations of requests in the rack to be distributed

continuously and uniformly. Rack dimensions are set to 20× 20 in most experiments. The effects

of rack dimensions on performance are evaluated in Section 8.3.

8.1. Experiments without waiting times

Tables 2, 3, and 4 show the performance of the Nearest Neighbor (NN), General Variable Neigh-

borhood Search (GVNS), and Simulated Annealing (SA) heuristics with the optimal solution,

respectively. The SA and GVNS heuristics are repeated ten times on each instance to account for

the procedures’ uncertainty. All instances are solved to optimality using the branch-and-cut algo-

rithm. The NN heuristic originates from Mahajan, Rao, and Peters (1998) with minor adaptations

to make it functional for any buffer size. The GVNS heuristic is an adapted version of the mTSP

heuristic proposed in Soylu (2015), while the SA heuristic is newly proposed for this application.

The first two columns describe the number of products n and the buffer size m. For each such

combination, we considered 500 instances for n= 20 and 100 instances for n> 20.

24

For the NN heuristic, depicted in Table 2, we provide its average difference to optimality (∆opt
avg),

its average solution time in seconds (time(s)), and the fraction of instances solved to optimality

(#opt). For the optimal solution we provide its average time as well as the maximum time among

the instances being solved (max time(s)). For the GVNS and SA heuristics, depicted in Tables 3

and 4, we provide the average over all instances of the best-case, mean, and worst-case solution

found in the 10 runs of the heuristic. We depict these results in the columns ∆opt
best, ∆opt

avg, and

∆opt
worst.

Table 2 Average percent difference between optimal solution and NN.

NN OPT

n m ∆opt
avg % time (s) #opt time (s) max time(s)

20 2 22.41 0.00 0.00 29.05 228.80
3 24.95 0.00 0.00 23.31 265.23
4 25.30 0.00 0.00 23.07 218.10
5 25.03 0.00 0.00 23.32 237.69

30 2 27.26 0.00 0.00 27.05 117.95
3 28.68 0.00 0.00 30.53 121.04
4 31.13 0.00 0.00 21.28 118.77
5 28.66 0.00 0.00 33.15 187.93

40 2 29.93 0.00 0.00 77.99 305.42
3 32.31 0.00 0.00 48.05 435.30
4 33.21 0.00 0.00 257.08 10419.40
5 29.91 0.00 0.00 247.08 10800.00?

Table 3 Average percent difference between optimal solution and GVNS.

GVNS (10 replications) OPT

n m ∆opt
best % ∆opt

worst % ∆opt
avg % Time (s) #opt Time (s) Max Time(s)

20 2 2.55 6.38 4.35 0.40 0.32 29.05 228.80
3 2.15 6.83 4.28 0.40 0.23 23.31 265.23
4 0.49 3.81 1.85 0.40 0.62 23.07 218.10
5 0.19 2.45 1.07 0.40 0.77 23.32 237.69

30 2 3.65 8.16 5.91 3.21 0.12 27.05 117.95
3 4.16 9.21 6.61 3.22 0.10 30.53 121.04
4 3.84 9.67 6.67 3.22 0.00 21.28 118.77
5 1.17 6.56 3.54 3.17 0.18 33.15 187.93

40 2 5.28 10.04 7.67 19.32 0.02 77.99 305.42
3 6.96 11.99 9.43 19.17 0.01 48.05 435.30
4 4.51 10.70 7.75 19.54 0.02 257.08 10419.40
5 3.44 9.13 6.26 19.56 0.00 247.08 10800.00?

? one instance terminated at 10800 s before closing optimality gap.

25

Table 4 Average percent difference between optimal solution and SA.

SA (10 replications) OPT

n m ∆opt
best % ∆opt

worst % ∆opt
avg % Time (s) #opt Time (s) Max Time(s)

20 2 0.00 1.66 0.48 0.64 0.99 29.05 228.80
3 0.02 1.71 0.58 0.64 0.97 23.31 265.23
4 0.00 0.23 0.05 0.64 1.00 23.07 218.10
5 0.00 0.04 0.01 0.64 1.00 23.32 237.69

30 2 0.07 2.92 1.06 5.68 0.83 27.05 117.95
3 0.07 1.48 0.62 5.70 0.81 30.53 121.04
4 0.99 2.93 1.80 5.73 0.07 21.28 118.77
5 0.01 0.52 0.17 5.74 0.96 33.15 187.93

40 2 0.25 3.98 1.72 27.57 0.51 77.99 305.42
3 0.62 3.07 1.56 27.51 0.21 48.05 435.30
4 0.17 1.70 0.78 27.83 0.62 257.08 10419.40
5 0.05 1.16 0.52 28.35 0.81 247.08 10800.00?

? one instance terminated at 10800 s before closing optimality gap.

From Table 2 we observe that the average percent difference for NN lies between 20 and 35

percent from optimality. Moreover, the performance of NN seems to deteriorate when n increases.

Table 3 shows that the GVNS heuristic performs consistently better than NN, with an average

optimality gap between 2 and 12 percent. The average best-case performance, i.e., the average of

the minimum over ten runs for each instance, lies within 7% of optimality, with better performance

for larger buffer sizes due to the more restricted solution space. The average worst-case performance

of up to 12% also shows this heuristic may not be reliable enough for practical use.

On the other hand, the performance of the SA heuristic in Table 4 shows that the average percent

difference between the SA and optimal solution is about 1.80% or less. Looking to the best-case

performance, we find high-quality solutions with optimality gaps within 1%. The run times for the

GVNS and SA heuristics are significantly lower than for the branch-and-cut algorithm, as can be

seen from Tables 3 and 4. Average run times for the branch-and-cut algorithm exceed 4 minutes

per instance for the larger instances, while this is at most 30 seconds for the heuristics. Moreover,

as is common with branch-and-cut algorithms, also here we observe that run times for generating

optimal solutions vary strongly. For some instances, finding an optimal solution required several

hours. Considering solutions would need to be calculated in practice while the operation is ongoing,

the shorter and more predictable run times of the heuristics appear preferable.

8.2. Experiments with waiting times

Next, we perform a number of experiments to analyze the effects of waiting times on makespan and

performance of the heuristics. To benchmark, we include the BW heuristic from Bozer and White

(1996), which was developed explicitly to mitigate waiting times. We conduct our comparisons

in three different scenarios, namely the picking time is (1) low, (2) medium, or (3) high, when

26

compared to the expected dual-command cycle time of the S/R. In particular, for scenario (1):

p = 0.5 · E[DC], for scenario (2): p = E[DC], and for scenario (3): p = 1.5 · E[DC], where E[DC]

denotes the expected dual-command cycle time. Derivations for E[DC] can be found in Bozer and

White (1984). The other settings are taken the same as in the previous experiments.

The results of all three scenarios are provided in Table 5. The columns present similar information

as in Tables 2-4, but we now compare the fraction of times a particular heuristic outperforms the

BW heuristic (#bw) instead comparing it with the branch-and-cut method. Note that inclusion of

waiting times results in a non-linear optimization problem that our branch-and-cut method cannot

solve. We omit the average best-case and worst-case performance of the SA and GVNS, because

these statistics are similar to the average performance and do not provide additional information.

From this table, we observe that the average performance of NN, GVNS, and SA is considerably

better than BW for relatively small pick times. However, whereas the GVNS and the SA always

outperform the BW heuristic, the NN fails to do so even for the smallest instances with low picking

times. Comparing GVNS and SA, we observe that again the SA heuristic finds better solutions

than the GVNS heuristic. However, with waiting times the gaps are smaller than without waiting

times.

Zooming in on the differences in performance for varying picking times, we observe a similar

pattern across all heuristics. For increasing waiting times, the average percent differences between

the heuristics have decreased, as well as its improvement over the BW heuristic. A likely explanation

for this trend is that the relative contribution of travel time to the total makespan is diminishing,

and hence request scheduling is less impactful. Or put reversely, the smaller S/R waiting times are,

the more useful request sequencing is.

8.3. Experiments with varying rack dimensions

In all previous experiments, we assumed that the rack dimensions are 20×20. Here, we investigate

the effects of varying rack dimensions by comparing dimensions of 40×10, 20×20, and 10×40. We

take n= 20 for the number of requests and p= 1 for the worker’s picking time. Table 6 presents the

results by listing the average improvement over BW over 100 instances and the fraction of times a

better solution is found, in terms of the makespan including waiting times, of NN, GVNS, and SA.

As before, SA continues to outperform NN, BW, and GVNS on the average performance. Fur-

thermore, we recognize that both the GVNS and SA heuristics are not impacted by the change

in rack dimensions, as the average differences with BW remain roughly the same. It should be

noted this also holds for the average best and worst-case results, but they were omitted from the

table as the values were very close to the average results. On the other hand, the rack dimensions

have a significant impact on the performance of NN. Especially, the worst-case results deteriorate

27

Table 5 Average percent difference in performance between BW and NN/GVNS/SA for low, medium, and high
picking times.

NN GVNS (10 rep.) SA (10 rep.)

n m p ∆bw
avg % Time (s) #BW ∆bw

avg % Time (s) #BW ∆bw
avg % Time (s) #BW

20 2 0.5 -4.73 0.00 0.90 -8.26 8.29 1.00 -8.90 7.03 1.00
1 -0.69 0.00 0.63 -5.61 8.61 1.00 -5.69 7.34 1.00
1.5 -1.20 0.00 0.77 -2.95 8.56 1.00 -2.95 7.24 1.00

3 0.5 -3.37 0.00 0.87 -7.48 8.40 1.00 -8.08 7.10 1.00
1 0.87 0.00 0.40 -5.82 8.79 1.00 -5.83 7.50 1.00
1.5 -1.47 0.00 0.90 -3.50 8.78 1.00 -3.50 7.45 1.00

4 0.5 -2.30 0.00 0.80 -6.99 8.67 1.00 -7.37 7.37 1.00
1 0.42 0.00 0.43 -6.09 8.82 1.00 -6.14 7.54 1.00
1.5 -1.73 0.00 0.87 -3.87 9.04 1.00 -3.87 7.72 1.00

5 0.5 -1.67 0.00 0.67 -6.42 8.92 1.00 -6.71 7.57 1.00
1 -0.17 0.00 0.53 -5.65 8.86 1.00 -5.80 7.56 1.00
1.5 -1.25 0.00 0.80 -3.45 9.24 1.00 -3.45 7.85 1.00

30 2 0.5 -7.28 0.00 1.00 -10.03 91.78 1.00 -10.43 101.79 1.00
1 -1.53 0.00 0.87 -4.90 97.23 1.00 -4.92 108.72 1.00
1.5 -1.49 0.00 0.93 -2.75 94.84 1.00 -2.75 105.24 1.00

3 0.5 -5.40 0.00 0.97 -8.47 86.33 1.00 -9.10 95.62 1.00
1 -0.32 0.00 0.50 -4.90 99.04 1.00 -4.90 110.83 1.00
1.5 -1.25 0.00 0.90 -2.58 97.74 1.00 -2.58 108.58 1.00

4 0.5 -4.56 0.00 0.93 -7.84 98.62 1.00 -8.51 109.05 1.00
1 0.69 0.00 0.47 -4.41 100.81 1.00 -4.42 112.28 1.00
1.5 -0.69 0.00 0.80 -2.24 102.43 1.00 -2.24 113.92 1.00

5 0.5 -3.92 0.00 0.90 -8.27 100.54 1.00 -8.85 111.53 1.00
1 1.09 0.00 0.30 -4.21 101.26 1.00 -4.23 112.53 1.00
1.5 -0.64 0.00 0.83 -2.26 101.28 1.00 -2.26 112.16 1.00

40 2 0.5 -7.74 0.00 1.00 -10.13 796.82 1.00 -10.69 783.54 1.00
1 -0.68 0.00 0.67 -3.45 775.92 1.00 -3.46 771.91 1.00
1.5 -0.55 0.00 0.77 -1.62 770.88 1.00 -1.62 762.93 1.00

3 0.5 -5.37 0.00 0.90 -9.19 808.08 1.00 -10.01 794.17 1.00
1 -0.26 0.00 0.57 -3.80 834.13 1.00 -3.80 829.69 1.00
1.5 -0.67 0.00 0.80 -1.73 778.24 1.00 -1.73 771.22 1.00

4 0.5 -6.79 0.00 1.00 -10.46 830.84 1.00 -11.08 816.18 1.00
1 0.39 0.00 0.47 -3.97 823.97 1.00 -3.97 811.69 1.00
1.5 -0.75 0.00 0.90 -1.90 799.29 1.00 -1.90 792.33 1.00

5 0.5 -6.24 0.00 1.00 -9.36 828.29 1.00 -10.18 813.43 1.00
1 0.64 0.00 0.43 -3.43 825.19 1.00 -3.43 809.93 1.00
1.5 -0.47 0.00 0.77 -1.73 807.88 1.00 -1.73 797.74 1.00

Aggregated Averages

p = 0.5 -4.95 0.00 0.91 -8.58 306.30 1.00 -9.16 304.53 1.00
p = 1 0.04 0.00 0.52 -4.69 307.72 1.00 -4.72 308.12 1.00
p = 1.5 -1.01 0.00 0.84 -2.55 299.02 1.00 -2.55 299.53 1.00

m = 2 -2.88 0.00 0.84 -5.52 294.77 1.00 -5.71 295.08 1.00
m = 3 -1.92 0.00 0.76 -5.28 303.28 1.00 -5.50 303.57 1.00
m = 4 -1.70 0.00 0.74 -5.31 309.17 1.00 -5.50 308.67 1.00
m = 5 -1.40 0.00 0.69 -4.97 310.16 1.00 -5.18 308.92 1.00

n = 20 -1.44 0.00 0.71 -5.51 8.75 1.00 -5.69 7.44 1.00
n = 30 -2.11 0.00 0.78 -5.24 97.66 1.00 -5.43 108.52 1.00
n = 40 -2.38 0.00 0.77 -5.06 806.63 1.00 -5.30 796.23 1.00

28

Table 6 Average percent difference in performance (100 instances) between BW and NN/GVNS/SA for varying
rack dimensions with n=20 and p=1.

NN GVNS (10 rep.) SA (10 rep.)

m Dimension ∆bw
avg % Time (s) #BW ∆bw

avg % Time (s) #BW ∆bw
avg % Time (s) #BW

2 10 × 40 -0.52 0.00 0.61 -5.05 8.19 1.00 -5.13 7.03 1.00
20 × 20 -1.46 0.00 0.88 -3.30 8.21 1.00 -3.30 6.97 1.00
40 × 10 -1.38 0.00 0.69 -5.80 8.17 1.00 -5.87 7.03 1.00

3 10 × 40 5.40 0.00 0.21 -8.52 8.48 1.00 -8.56 7.28 1.00
20 × 20 -1.80 0.00 0.92 -3.89 8.38 1.00 -3.89 7.12 1.00
40 × 10 6.83 0.00 0.02 -8.61 8.48 1.00 -8.69 7.27 1.00

4 10 × 40 5.30 0.00 0.19 -8.34 8.75 1.00 -8.41 7.53 1.00
20 × 20 -1.53 0.00 0.83 -3.62 8.75 1.00 -3.62 7.47 1.00
40 × 10 7.31 0.00 0.05 -7.51 8.72 1.00 -7.57 7.51 1.00

5 10 × 40 7.09 0.00 0.14 -6.76 8.96 1.00 -6.84 7.66 1.00
20 × 20 -1.13 0.00 0.75 -3.31 8.98 1.00 -3.31 7.66 1.00
40 × 10 6.95 0.00 0.11 -6.40 8.91 1.00 -6.55 7.65 1.00

considerably if the dimension becomes either 40× 10 or 10× 40. This could be caused by the fact

that the maximum possible distance increases as the rack becomes either wider or taller, which in

turn could lead to much larger errors as NN schedules the final requests that can be far away from

the I/O point.

8.4. Experiments on block sequencing

Finally, we analyze the performance of NN, BW, GVNS, and SA under a block sequencing approach,

as explained in Section 3. For this experiment we consider a setting in which a set of 120 requests

in a 20 × 20 rack needs to be handled, while starting and ending with an empty buffer of size 2.

First, the heuristics are run on the full set of 120 requests to determine their performance in a

setting of full information. Next, we consider several settings of the block sequencing approach: 2

batches of size 60, 3 batches of size 40, 4 batches of size 30, 6 batches of size 20, and 12 batches

of size 10. For every setting, we separately run our heuristics on each of the batches, and then

compute the total makespan including waiting times if all batches were handled sequentially. This

yields the actual makespan for all 120 loads when we apply the block sequencing approach. The

results of our experiments are presented in Figure 4.

In Figure 4, the performance of each heuristic is normalized with respect to the case where SA

is given full information, as it yields the smallest makespan. In other words, the curves show each

heuristic’s makespan divided by the makespan of the SA solution at a batch size of 120. As seen

before, we observe that SA also performs best under a block sequencing approach. It is interesting

to notice that smaller batch sizes yield efficiency losses of only a few percent in the cases studied

here. For batch sizes larger than 20, SA under a block sequencing approach achieves makespans

that are within 1% of its makespan under full information of all 120 requests. In addition, we note

29

Figure 4 Comparison of the performance of NN, BW, GVNS, and SA under a block sequencing approach

(Batchsizes: 10, 20, 30, 40, 60) with the performance of SA under full information (Batchsize: 120).

that the total running time of the SA for four batches of size 30 is only 375 seconds, whereas

computation for the full batch of size 120 takes on average 9218 seconds. Hence, by running SA on

smaller batches, which is computationally favorable, the efficiency losses appear limited.

9. Conclusions

In this paper, we studied an end-of-aisle automated storage/retrieval system (AS/RS). The problem

under consideration consists of scheduling a given list of storage and retrieval requests for this

system; this is based on a scenario faced by warehouses that retrieve loads from an automated

warehouse to fulfill a list of orders within a given time period. After a load is retrieved, a worker

gathers products from the load, before requesting the AS/RS to return the load to storage. The

objective is to minimize the total makespan for serving all requests.

The problem is shown to be mathematically equivalent to a problem we termed the multiple

Traveling Salesmen Problem with an equal number of visits (mTSPEV) if the S/R incurs no

waiting times. The mTSPEV is a constrained version of the multiple Traveling Salesmen Problem

(mTSP) where the salesmen must visit an equal number of cities. It is argued that the mTSPEV

is an NP-hard problem as it may be seen as a generalization of the Traveling Salesman Problem

(TSP). Several interesting structural properties for the mTSPEV are presented, which show that

30

the problem is unusual. For example, it is shown that unlike in the general mTSP, the length of

the optimal route for the mTSPEV may actually strictly decrease when the number of cities is

increased.

This paper also presents a branch-and-cut method and several heuristics for the problem. Exper-

imental results suggest that the proposed simulated annealing heuristic consistently outperforms

the nearest neighbor heuristic by 20% as well as the generalized variable neighborhood search

heuristic of Soylu (2015) by more than 2%, on instances without waiting times. On average, the

simulated annealing heuristic performs within 1.8% from the optimal solution on instances without

waiting times. On instances with waiting times, our heuristic is around 5% better than the nearest

neighbor and Bozer and White (1996) heuristics, while being slightly better than the generalized

variable neighborhood search heuristic of Soylu (2015).

In practice, an AS/RS typically exhibits multiple storage and retrieval (S/R) machines that work

independently in aisles. Whereas the focus of this paper is on the fundamental understanding of a

single end-of-aisle AS/RS, a customer order may require products from multiple aisles in practice.

Several options exist in practice to connect multiple aisles and pick stations. Particularly in the

current age of fast response times and high customer service, it might be of interest to study this

scheduling process jointly with the sequencing of each S/R machine. We especially advocate fast

heuristic solutions for such systems, as this will consist of 10,000’s or more loads to be scheduled.

Decomposition approaches, in which single end-of-aisle AS/RS request sequencing problems are

identified, can however, still benefit from the approaches presented in this paper.

Another avenue for further research is to study linear approximations of the end-of-aisle AS/RS

request sequencing problem with waiting times. Especially approximation guarantees or lowerbound

approximations would be useful, as it improves assessment of heuristics’ solution quality.

Acknowledgments

This work was partially supported by TKI Dinalog, the Dutch Institute for Advanced Logistics.

31

Appendix A: Proof of Theorem 1

For the first part of this proof, we will lift the requirement that loads leave the buffer based on the First-

In-First-Out rule. That is, loads can be retrieved in any sequence once they are in the buffer. We will show

that the end-of-aisle AS/RS request sequencing problem then is equivalent to the regular mTSP.

Take the end-of-aisle AS/RS request sequencing problem. We transform this arc routing problem into a

vertex routing problem. We do this by replacing the required arcs by vertices and adjusting the distances

accordingly.

vr
i is the node that replaces the arc (vr

i , v0)

vs
i is the node that replaces the arc (v0, v

s
i)

We denote the length of an arc (x, y) in the original arc routing problem as d(x, y), which simply equals

the physical distance between the vertices x and y. In transforming the arc routing problem into a vertex

routing problem, the distances must be adjusted. Since required arcs must be traversed anyway, their total

length simply forms a constant in the problem’s objective function, so we can ignore their length in the new

formulation. However, some of the other distances are impacted. Our new distances are as follows, for any

indices i, j ∈ {1,2, ..., n}.

d(vs
i , v

s
j) = d(vs

i , v0)

d(vr
i , v

s
j) = 0

d(vs
i , v

r
j) = d(vs

i , v
r
j)

d(vr
i , v

r
j) = d(v0, v

r
j)

d(v0, v
s
j) = 0

d(vs
i , v0) = d(vs

i , v0)

d(v0, v
r
j) = d(v0, v

r
j)

d(vr
i , v0) = 0

d(v0, v0) = 0.

These distances have the following four properties:

(1) d(vr
j , v

r
i) = d(vr

k, v
r
i) for all i 6= j 6= k

(2) d(vr
i , x) = d(vr

j , x) for all i 6= j and for all vertices x

(3) d(vs
i , v

s
j) = d(vs

i , v
s
k) for all i 6= j 6= k

(4) d(x, vs
i) = d(x, vs

j) for all i 6= j and for all vertices x

In our new formulation, we no longer need to explicitly add the I/O-point in the route tuple for every

storage and retrieval request, since all distances are accounted for by the new distance definition. Therefore

vertex v0 will only appear twice, at the beginning and at the end. Due to properties (1) and (2), for a given

route, we can remove any vr
i that follows a retrieval request vr

j and put it after any other retrieval vr
k at no

additional cost. For example, the routes (v0, v
r
1, v

r
2, v

s
1, v

s
2, v

r
3, v

r
4, v

s
3, v

s
4, v0) and (v0, v

r
1, v

r
4, v

r
2, v

s
1, v

s
2, v

r
3, v

s
3, v

s
4, v0)

have equal length. This will also maintain the requirement that loads must be picked up before they can

be stored. Similarly, due to properties (3) and (4) a storage request vs
i that is followed by another storage

request vs
j can be moved at no cost to precede any other storage request vs

k. We use this property to move

appropriate retrievals to the front, and appropriate storages to the end of the route as much as possible. Thus

32

our example turns to (v0, v
r
1, v

r
4, v

r
2, v

s
2, v

r
3, v

s
3, v

s
1, v

s
4, v0). Doing so consistently with all concerned occurrences,

results in a route tuple with the following structure:

(v0, v
r
(1), v

r
(2), ..., v

r
(m))(v

s
(1), v

r
(m+1))(v

s
(2), v

r
(m+2))......(v

s
(n−m), v

r
(n))(v

s
(n−m+1), ..., v

s
(n−1), v

s
(n), v0).

That is, a series of only retrievals, followed by a perfectly alternating sequence of storages and retrievals,

and finally a series of only storages. With vr
(i) denoting the first retrieval that occurs in the route. We have

added additional brackets at places in the tuple to indicate where the distance between two adjacent nodes

is zero. We add occurrences of v0 at no cost between each pair of adjacent storages and each pair of adjacent

retrievals. For our example:

(v0, v
r
1, v

r
4, v

r
2)(vs

2, v
r
3)(vs

3, v
s
1, v

s
4, v0) then turns into (v0, v

r
1)(v0, v

r
4)(v0, v

r
2)(vs

2, v
r
3)(vs

3, v0)(vs
1, v0)(vs

4, v0)

Next we sort the tuple at no cost like in the game of dominoes, so for example after (vs
7, v

r
9) we put (vs

9, v
r
12).

This results in m sequences starting and ending in v0 In the example:

(v0, v
r
2)(vs

2, v
r
3)(vs

3, v0) and (v0, v
r
1)(vs

1, v0) and (v0, v
r
4)(vs

4, v0)

It is fairly straightforward to see that this provides the routes for a solution of an mTSP problem, by

leaving the distances unchanged and merging vr
i and vs

i to a single node for each i = 1, ..., n. Such merging

of nodes does not impact the objective function value for any solution, since the distance between each pair

of nodes is zero and each pair is always visited immediately one after the other.

This shows that any solution to the end-of-aisle AS/RS request sequencing problem has a corresponding

solution in an mTSP with the same nodes (we now merged nodes back that we had split earlier) and the

same distance matrix (in the solutions, we only have distances that remained unchanged in the redefinition

of distances). This holds under the assumption that requests can be removed from the buffer in any sequence.

To show the reverse, i.e., that any solution to an mTSP problem has a corresponding solution in an end-of-

aisle AS/RS request sequencing problem with the same nodes and the same distance matrix, a similar, yet

reversed, reasoning can be made.

Finally, we observe that we now have two problem formulations with a one-to-one correspondence in their

solutions. If we impose any additional constraints on two equivalent problems, the resulting problems must

also be equivalent. What remains to be proven therefore is that imposing equal visits to an mTSP problem

is equivalent to imposing First-In-First-Out sequencing for a buffer of fixed size in the request sequencing

problem. We start with a feasible solution to the mTSPEV, i.e., a solution to the mTSP with the additional

restriction that all salesmen visit an equal number of cities. We write the solution in a tuple as:

(v0, v1,(1), v1,(2), ..., v1,(n/m), v0)(v0, v2,(1), v2,(2), ..., v2,(n/m), v0)...(v0, vm,(1), vm,(2), ..., vm,(n/m), v0)

where vk,(i) denotes the ith city visited by salesman k in the particular solution. We split vertices vk,(i) into

vs
k,(i) and vr

k,(i), where vr
k,(i) represents the salesman’s arrival at city (i) and vs

k,(i) the salesman’s departure

from city (i) This gives:

(v0, v
r
1,(1), v

s
1,(1), v

r
1,(2), v

s
1,(2), ..., v

r
1,(n/m), v

s
1,(n/m), v0)...

...(v0, v
r
m,(1), v

s
m,(1), v

r
m,(2), v

s
m,(2), ..., v

r
m,(n/m), v

s
m,(n/m), v0).

We observe that for the mTSPEV there is no requirement concerning timing of visiting cities across

salesmen. So, we can assume that while salesman k is at a given city, all others must move to their next

city, before salesman k is again allowed to move (i.e., they move in turns). Rewriting our tuple to reflect this

timing, gives:

33

(v0, v
r
1,(1), v

r
2,(1), ..., v

r
m,(1))(v

s
1,(1), v

r
1,(2))(v

s
2,(1), v

r
2,(2))...(v

s
m,(1), v

r
m,(2))...

..., (vs
1,(n/m−1), v

r
1,(n/m))(v

s
2,(n/m−1), v

r
2,(n/m))...(v

s
m,(n/m−1), v

r
m,(n/m))(v

s
1,(n/m), ..., v

s
m,(n/m), v0).

Now observe that in this tuple any vs
k,(i)follows the corresponding vr

k,(i) exactly after m positions in the

tuple. It can be verified that the above sequence does provide a feasible sequence for the S/R in the end-

of-aisle AS/RS sequencing problem, at a length that differs only by the summed length of all required arcs

(which is a constant) from the length of the solution we started with in the mTSPEV. This shows that m

salesman taking turns, is equivalent to doing m− 1 other jobs between the retrieval and storage of any load

in the end-of-aisle system, which is the same as that there is a buffer of size m with a First-In-First-Out rule.

Appendix B: Proof of Property 1

First, assume LTSP
m (I(V))<LTSPEV

m (I(V)), and consider the vertex set U = {vn+1, . . . , vnm} with all vertices

of U located at the origin. Then, trivially, the mTSPEV route on V ∪U will consist of one route following

the TSP route on V and m− 1 routes on U, in which the latter routes all have length zero. This implies:

LTSPEV
m (I(V ∪U)) = LTSP (I(V ∪U)) = LTSP (I(V))≤LTSP

m (I(V))<LTSPEV
m (I(V)).

To prove the reverse, assume ∃U with LTSPEV
m (I(V ∪U))<LTSPEV

m (I(V)). Then, since the solution space

of the mTSPEV is a subset of the solution space of the mTSP,

LTSPEV
m (I(V))>LTSPEV

m (I(V ∪U))≥LTSP
m (I(V ∪U))≥LTSP

m (I(V)).

Appendix C: Proof of Property 2

First property: Let tk = (v0, v
k
(1), v

k
(2), ..., v

k
(w(k)), v0) denote the route taken by salesman k in an optimal

solution, where w(k) denotes the number of cities in the route for salesman k, v0 denotes the depot, and vk
(i)

denotes the ith vertex visited by salesman k. Denote by tk∪` the simple concatenation of the routes of salesmen

k and `, omitting the middle visit to the depot. So, tk∪` = (v0, v
k
(1), v

k
(2), ..., v

k
(w(k)), v

`
(1), v

`
(2), ..., v

`
(w(`)), v0).

Then since the triangle inequality implies d(vk
(w(k)), v

`
(1))≤ d(vk

(w(k)), v0)+d(v0, v
`
(1)) it follows that the length

of tk∪` is no longer than the sum of the lengths of tk and t`. Using this fact for any two salesmen’s routes,

will suffice to reduce an (m+1)TSP to an mTSP with the stated property.

Second property: Consider the graph G= (V,A) with |V |= n= 6, shown in Figure 5 (each point indicates

two vertices located at the exact same location), and let m = 2. The optimal solution for m = 2 is given by

(v0, v1, v2, v3, v0)(v0, v4, v5, v6, v0) and its length is,

LTSPEV
2 (I(V)) = 8 + 4

√
2

The optimal solution for m= 3 is given by (v0, v1, v2, v0)(v0, v3, v4, v0)(v0, v5, v6, v0) and its length is,

LTSPEV
3 (I(V)) = 12

Hence, this demonstrates LTSPEV
2 (I(V)) = 8 + 4

√
2 > 12 = LTSPEV

3 (I(V)).

34

Figure 5 Graph used in the proof of property 2.

Appendix D: Proof of Property 3

Let tk = (v0, v
k
(1), v

k
(2), . . . , v

k
(n/m), v(0)) denote the route taken by salesman k in an optimal solution, where

v0 denotes the depot, and vk
(i) denotes the ith vertex visited by salesman k, and n/m denotes the number

of cities visited by salesman k. Denote by tk∪` the simple concatenation of the routes of salesmen k and `,

omitting the middle visit to the depot. So, tk∪` = (v0, v
k
(1), v

k
(2), . . . , v

k
(n/m), v

`
(1), v

`
(2), . . . , v

`
(n/m), v0).

Then since the strict triangle inequality implies d(vk
(n/m), v

`
(1)) <d(vk

(n/m), v0) +d(v0, v
`
(1)) − provided that

the vertices do not have identical coordinates − it follows that the length of tk∪` is shorter than the sum of

the lengths of tk and t`. A (not necessarily optimal) solution to the mTSPEV for I(V) with a salesmen can

be found by repeated concatenation of routes found in an optimal solution to the mTSPEV for I(V) with

ba salesmen. An optimal solution to mTSPEV for I(V) with a salesmen will be no longer than the solution

obtained by concatenation. Hence, the property follows.

35

References

Ascheuer N, Grötschel M, Abdel-Hamid AAA, 1999 Order picking in an automatic warehouse: Solving online

asymmetric TSPs. Mathematical Methods of Operations Research 49(3):501–515.

Azadeh K, De Koster R, Roy D, 2019 Robotized and automated warehouse systems: Review and recent

developments. Transportation Science 53(4):917–945.

Bektas T, 2006 The multiple traveling salesman problem: an overview of formulations and solution procedures.

Omega: The International Journal of Management Science 34(3):209–219.

Bellmore M, Hong S, 1974 Transformation of multisalesmen problem to the standard traveling salesman

problem. Journal of the Association for Computing Machinery 21(3):500–504.

Boysen N, de Koster R, Weidinger F, 2019 Warehousing in the e-commerce era: A survey. European Journal

of Operational Research 277(2):396–411.

Boysen N, Stephan K, 2016 A survey on single crane scheduling in automated storage/retrieval systems.

European Journal of Operational Research 254(3):691–704.

Bozer YA, Aldarondo FJ, 2018 A simulation-based comparison of two goods-to-person order picking systems

in an online retail setting. International Journal of Production Research 56(11):3838–3858.

Bozer YA, White JA, 1984 Travel-time models for automated storage/retrieval systems. IIE Transactions

16(4):329–338.

Bozer YA, White JA, 1990 Design and performance models for end-of-aisle order picking systems. Manage-

ment Science 36(7):852–866.

Bozer YA, White JA, 1996 A generalized design and performance analysis model for end-of-aisle order-picking

systems. IIE Transactions 28(4):271–280.

Cardona LF, Gue KR, 2020 Layouts of unit-load warehouses with multiple slot heights. Transportation Science

54(5):1332–1350.

Carlo HJ, Giraldo GE, 2012 Toward perpetually organized unit-load warehouses. Computers & Industrial

Engineering 64(4):1003–1012.

Carter AE, Ragsdale CT, 2006 A new approach to solving the multiple traveling salesperson problem using

genetic algorithms. European Journal of Operational Research 175(1):246–257.

Chen L, Langevin A, Riopel D, 2011 A tabu search algorithm for the relocation problem in a warehousing

system. International Journal of Production Economics 129(1):147–156.

Dooly DR, Lee HF, 2008 A shift-based sequencing method for twin-shuttle automated storage and retrieval

systems. IIE Transactions 40(6):586–594.

Eglese RW, 1990 Simulated annealing: A tool for operational research. European Journal of Operational

Research 46(3):271–281.

36

Foley RD, Hackman ST, Park BC, 2004 Back-of-the-envelope miniload throughput bounds and approxima-

tions. IIE Transactions 36(3):279–285.

Frederickson G, Hecht M, Kim C, 1978 Approximation algorithms for some routing problems. SIAM Journal

on Computing 7:178–193.

Gagliardi JP, Renaud J, Ruiz A, 2012 Models for automated storage and retrieval systems: a literature review.

International Journal of Production Research 50(24):7110–7125.

Galle V, Barnhart C, Jaillet P, 2018 Yard crane scheduling for container storage, retrieval, and relocation.

European Journal of Operational Research 271(1):288–316.

Gavish B, Srikanth K, 1986 An optimal solution method for large-scale multiple traveling salesmen problems.

Operations Research 35(4):698–717.

Ghafurian S, Javadian N, 2011 An ant colony algorithm for solving fixed destination multi-depot multiple

traveling salesmen problems. Applied Soft Computing 11(1):1256–1262.

Gharehgozli AH, Yu Y, Zhang X, Koster Rd, 2017 Polynomial time algorithms to minimize total travel time

in a two-depot automated storage/retrieval system. Transportation Science 51(1):19–33.

Golden BL, Laporte G, Taillard ED, 1997 An adaptive memory heuristic for a class of vehicle routing

problems with minmax objective. Computers & Operations Research 24(5):445–452.

Gromicho J, Paixão J, Branco I, 1992 Exact solution of multiple traveling salesman problems. Akgül M,

Hamacher H, Tüfekçi S, eds., Combinatorial optimization, 291–292, NATO ASI Series (Springer,

Berlin).

Gu J, Goetschalckx M, McGinnis LF, 2007 Research on warehouse operation: a comprehensive review. Euro-

pean Journal of Operational Research 177(1):1–21.

Guardian, 2013 Marks & spencer opens automated warehouse for online sales. URL http://www.guardian.

co.uk/business/2013/may/08/marks-spencer-online-warehouse.

Gue KR, Furmans K, Seibold Z, Uludag O, 2014 Gridstore: A puzzle-based storage system with decentralized

control. IEEE Trans. Automation Science and Engineering 11(2):429–438.

Han MH, McGinnis LF, Shieh JS, White JA, 1987 On sequencing retrievals in an automated storage/retrieval

system. IIE Transactions 19(1):56–66.

Hsu CY, Tsai MH, Chen WM, 1991 A study of feature-mapped approach to the multiple travelling salesmen

problem. IEEE international symposium on circuits and systems, 1991, 1589–1592.

Jaghbeer Y, Hanson R, Johansson MI, 2020 Automated order picking systems and the links between design and

performance: a systematic literature review. International Journal of Production Research 58(15):4489–

4505.

Johnson DS, McGeoch LA, 1997 The traveling salesman problem: A case study in local optimization. Aarts

E, Lenstra J, eds., Local Search in Combinatorial Optimization, 215–310 (John Wiley & Sons, London).

37

Kara I, Bektas T, 2006 Integer linear programming formulations of multiple salesman problems and its

variations. European Journal of Operational Research 174(3):1449–1458.

Laporte G, 1992 The traveling salesman problem: An overview of exact and approximate algorithms. European

Journal of Operations Research 59(2):231–247.

Laporte G, Norbert Y, 1980 A cutting plane algorithm for the m-salesmen problem. Journal of the Operational

Research Society 31(11):1017–1023.

Larki H, Yousefikhoshbakht M, 2014 Solving the multiple traveling salesman problem by a novel meta-heuristic

algorithm. Journal of Optimization in Industrial Engineering 16:55–63.

Lee HF, Schaefer SK, 1997 Sequencing methods for automated storage and retrieval systems with dedicated

storage. Computers & Industrial Engineering 32(2):351–362.

Liu W, Li S, Zhao F, Zheng A, 2009 An ant colony optimization algorithm for the multiple traveling salesmen

problem. 4th IEEE conference on industrial electronics and applications, 2009, 1533–1537.

Mahajan S, Rao BV, Peters BA, 1998 A retrieval sequencing heuristic for miniload end-of-aisle automated

storage/retrieval systems. International Journal of Production Research 36(6):1715–1731.

Man X, Zheng F, Chu F, Liu M, Xu Y, 2021 Bi-objective optimization for a two-depot automated stor-

age/retrieval system. Annals of Operations Research 296:243–262.

Mirzaei M, De Koster RBM, Zaerpour N, 2017 Modelling load retrievals in puzzle-based storage systems.

International Journal of Production Research 55(21):6423–6435.

Modares A, Somhom S, Enkawa T, 1999 A self organizing neural network approach for multiple traveling

salesman and vehicle routing problems. International Transactions in Operational Research 6(6):591–

606.

Nia AR, Haleh H, Saghaei A, 2017 Dual command cycle dynamic sequencing method to consider ghg efficiency

in unit-load multiple-rack automated storage and retrieval systems. Computers & Industrial Engineering

111:89–108.

Park BC, Foley RD, Frazelle EH, 2006 Performance of miniload systems with two-class storage. European

Journal of Operational Research 170(1):144–155.

Park BC, Foley RD, White JA, Frazelle EH, 2003 Dual command travel times and miniload system throughput

with turnover-based storage. IIE Transactions 35(4):343–355.

Park BC, Frazelle EH, White JA, 1999 Buffer sizing models for end-of-aisle order picking systems. IIE

Transactions 31(1):31–38.

Popović D, Vidović M, Bjelić N, 2014 Application of genetic algorithms for sequencing of as/rs with a triple-

shuttle module in class-based storage. Flexible Services and Manufacturing Journal 26(3):432–453.

Potvin JY, Lapalme G, Rousseau JM, 1989 A generalized k-opt exchange procedure for the mtsp. INFOR

27(4):474–481.

38

Roodbergen KJ, Vis IFA, 2009 A survey of literature on automated storage and retrieval systems. European

Journal of Operational Research 194(2):343–362.

Rostami AS, Mohanna F, Keshavarz H, Hosseinabadi AAR, 2015 Solving multiple traveling salesman problem

using the gravitational emulation local search algorithm. Applied Mathematics & Information Sciences

9(2):699–709.

Russell RA, 1977 Technical note - an effective heuristic for the m-tour traveling salesman problem with some

side conditions. Operations Research 25(2):517–524.

Sarin SC, Sherali HD, Judd JD, Tsai PFJ, 2014 Multiple asymmetric traveling salesmen problem with

and without precedence constraints: Performance comparison of alternative formulations. Computers &

Operations Research 51:64–89.

Sedighpour M, Yousefikhoshbakht M, 2012 An effective genetic algorithm for solving the multiple traveling

salesman problem. Journal of Optimization in Industrial Engineering 8(1):73–79.

Singh A, Baghel AS, 2009 A new grouping genetic algorithm approach to the multiple traveling salesperson

problem. Soft Computing 13(1):95–101.

Somhom S, Modares A, Enkawa T, 1999 Competition-based neural network for the multiple travelling sales-

men problem with minmax objective. Computers & Operations Research 26(4):395–407.

Song CH, Lee K, Lee WD, 2003 Extended simulated annealing for augmented tsp and multi-salesmen tsp.

Proceedings of the international joint conference on neural networks, 2003, volume 3, 2340–2343.

Soylu B, 2015 A general variable neighborhood search heuristic for multiple traveling salesmen problem.

Computers & Industrial Engineering 90:390–401.

Svestka JA, Huckfeldt VE, 1973 Computational experience with an m-salesman traveling salesman algorithm.

Management Science 19(7):790–799.

Tanaka S, Araki M, 2009 Routing problem under the shared storage policy for unit-load automated storage and

retrieval systems with separate input and output points. International Journal of Production Research

47(9):2391–2408.

Tang L, Liu J, Rong A, Yang Z, 2000 A multiple traveling salesman problem model for hot rolling scheduling

in shanghai baoshan iron & steel complex. European Journal of Operational Research 124(2):267–282.

Tompkins JA, White JA, Bozer YA, Tanchoco JMA, 2010 Facilities Planning (John Wiley & Sons, Inc), 4th

edition.

Toth P, Vigo D, 2002 An overview of vehicle routing problems. The vehicle routing problem 1–26.

Uit het Broek MAJ, Schrotenboer AH, Jargalsaikhan B, Roodbergen KJ, Coelho LC, 2020 Asymmetric

multi-depot vehicle routing problems: Valid inequalities and a branch-and-cut algorithm. Operations

Research Forthcoming.

Van den Berg JP, 2002 Analytic expressions for the optimal dwell point in an automated storage/retrieval

system. International Journal of Production Economics 76(1):13–25.

39

Van Den Berg JP, Gademann AJRM, 1999 Optimal routing in an automated storage/retrieval system with

dedicated storage. IIE transactions 31(5):407–415.

Venkatesh P, Singh A, 2015 Two metaheuristic approaches for the multiple traveling salesperson problem.

Applied Soft Computing 26:74–89.

Vis IFA, Roodbergen KJ, 2009 Scheduling of container storage and retrieval. Operations Research 57(2):456–

467.

Wacholder E, Han J, Mann RC, 1989 A neural network algorithm for the multiple traveling salesmen problem.

Biological Cybernetics 61(1):11–19.

Wauters T, Villa F, Christiaens J, Alvarez-Valdes R, Vanden Berghe G, 2016 A decomposition approach to

dual shuttle automated storage and retrieval systems. Computers & Industrial Engineering 101:325–337.

Weidinger F, Boysen N, 2018 Scattered storage: How to distribute stock keeping units all around a mixed-

shelves warehouse. Transportation Science 52(6):1412–1427.

Weidinger F, Boysen N, Briskorn D, 2018 Storage assignment with rack-moving mobile robots in kiva ware-

houses. Transportation Science 52(6):1479–1495.

Xu PJ, Allgor R, Graves SC, 2009 Benefits of reevaluating real-time order fulfilment decisions. Manufacturing

& Service Operations Management 11(2):340–355.

Yalcin A, Koberstein A, Schocke KO, 2019 An optimal and a heuristic algorithm for the single-item retrieval

problem in puzzle-based storage systems with multiple escorts. International Journal of Production

Research 57(1):1431–65.

Yang P, Miao L, Xue Z, Ye B, 2015 Variable neighborhood search heuristic for storage location assignment and

storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems.

Transportation Research Part E: Logistics and Transportation Review 79:164–177.

Yang P, Peng Y, Ye B, Miao L, 2017 Integrated optimization of location assignment and sequencing in multi-

shuttle automated storage and retrieval systems under modified 2 n-command cycle pattern. Engineering

Optimization 49(9):1604–1620.

Yousefikhoshbakht M, Didehvar F, Rahmati F, 2013 Modification of the ant colony optimization for solving

the multiple traveling salesman problem. Romanian Journal of Information Science and Technology

16(1):65–80.

Yu Q, Wang D, Lin D, Li Y, Wu C, 1997 A novel two-level hybrid algorithm for multiple traveling salesman

problems. Advances in Swarm Intelligence, volume 7331 of Lecture Notes in Computer Science, 497–503

(Berlin Heidelberg: Springer).

Yu Y, De Koster R, 2012 Sequencing heuristics for storing and retrieving unit loads in 3d compact automated

warehousing systems. IIE Transactions 44(2):69–87.

Yuan S, Skinner B, Huang S, Liu D, 2013 A new crossover approach for solving the multiple travelling

salesmen problem using genetic algorithms. European Journal of Operational Research 228(1):72–82.

40

Yuan Y, Tang L, 2017 Novel time-space network flow formulation and approximate dynamic programming

approach for the crane scheduling in a coil warehouse. European Journal of Operational Research

262(2):424–437.

