18 research outputs found

    Deep learning for i-vector speaker and language recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without any need of speaker or phonetic labels. In order to fill the performance gap between cosine and PLDA scoring given unlabeled background data, we have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural Networks (DNNs) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in both scenarios. Experiments on the National Institute of Standard and Technology (NIST) 2014 i-vector challenge show that 46% of this performance gap, in terms of minDCF, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap. In the second line of the research, we have developed an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process. Finally, for the Language Identification (LID) application, we have proposed a DNN architecture to model effectively the i-vector space of four languages, English, Spanish, German, and Finnish, in the car environment. Both raw i-vectors and session variability compensated i-vectors are evaluated as input vectors to DNN. The performance of the proposed DNN architecture is compared with both conventional GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering the effect of duration of signals. It is shown that the signals with duration between 2 and 3 sec meet the accuracy and speed requirements of this application, in which the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems by 37% and 28%, respectively.En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento de hablantes y de idioma. Los últimos avances en la tecnología de Aprendizaje Profundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados para cada hablante y/o unidad fon ética, los cuales no son fácilmente accesibles en la práctica. La falta de datos etiquetados provoca una gran diferencia de los resultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Probabilístico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las etiquetas de los hablantes, no pueden estimar las etiquetas con precisión. Esta tesis trata de resolver los problemas mencionados usando la tecnología DL de diferentes maneras, sin necesidad de etiquetas de hablante o fon éticas. Con el fin de reducir la diferencia de resultados entre distancia coseno y PLDA a partir de datos no etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación a un modelo universal en un sistema hibrido basado en Deep Belief Networks (DBN) y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma discriminativa. Con el fin de tener más información sobre el comportamiento de las técnicas DL en las tareas de identificación de hablante en una única sesión y en varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los experimentos utilizando los datos del National Institute of Standard and Technology (NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados, en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además, la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con etiquetas estimadas reduce el 79% de esta diferencia. En la segunda línea de la investigación, hemos desarrollado una representación vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más bajo posible y evitando las etiquetas fon éticas, Los vectores propuestos se basan tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Maquinas Boltzmann Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre los supervectores del GMM gen érico. Este RBM, al que se hará referencia como RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los vectores propuestos, de menor dimensión. Además, se estudia el uso de diferentes funciones de activación para el entrenamiento de la URBM y diferentes funciones de transformación para extraer los vectores propuestos. Finalmente, se propone una variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han conseguidos resultados comparables con los i-vectores convencionales, con una carga computacional claramente inferior en el proceso de extracción de vectores. Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores originales como los i-vectores propuestos son evaluados como vectores de entrada a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sistemas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA) considerando el efecto de la duración de las señales. Se muestra que en caso de señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un 37% y 28%, respectivament

    Advances in Subspace-based Solutions for Diarization in the Broadcast Domain

    Get PDF
    La motivación de esta tesis es la necesidad de soluciones robustas al problema de diarización. Estas técnicas de diarización deben proporcionar valor añadido a la creciente cantidad disponible de datos multimedia mediante la precisa discriminación de los locutores presentes en la señal de audio. Desafortunadamente, hasta tiempos recientes este tipo de tecnologías solamente era viable en condiciones restringidas, quedando por tanto lejos de una solución general. Las razones detrás de las limitadas prestaciones de los sistemas de diarización son múltiples. La primera causa a tener en cuenta es la alta complejidad de la producción de la voz humana, en particular acerca de los procesos fisiológicos necesarios para incluir las características discriminativas de locutor en la señal de voz. Esta complejidad hace del proceso inverso, la estimación de dichas características a partir del audio, una tarea ineficiente por medio de las técnicas actuales del estado del arte. Consecuentemente, en su lugar deberán tenerse en cuenta aproximaciones. Los esfuerzos en la tarea de modelado han proporcionado modelos cada vez más elaborados, aunque no buscando la explicación última de naturaleza fisiológica de la señal de voz. En su lugar estos modelos aprenden relaciones entre la señales acústicas a partir de un gran conjunto de datos de entrenamiento. El desarrollo de modelos aproximados genera a su vez una segunda razón, la variabilidad de dominio. Debido al uso de relaciones aprendidas a partir de un conjunto de entrenamiento concreto, cualquier cambio de dominio que modifique las condiciones acústicas con respecto a los datos de entrenamiento condiciona las relaciones asumidas, pudiendo causar fallos consistentes en los sistemas.Nuestra contribución a las tecnologías de diarización se ha centrado en el entorno de radiodifusión. Este dominio es actualmente un entorno todavía complejo para los sistemas de diarización donde ninguna simplificación de la tarea puede ser tenida en cuenta. Por tanto, se deberá desarrollar un modelado eficiente del audio para extraer la información de locutor y como inferir el etiquetado correspondiente. Además, la presencia de múltiples condiciones acústicas debido a la existencia de diferentes programas y/o géneros en el domino requiere el desarrollo de técnicas capaces de adaptar el conocimiento adquirido en un determinado escenario donde la información está disponible a aquellos entornos donde dicha información es limitada o sencillamente no disponible.Para este propósito el trabajo desarrollado a lo largo de la tesis se ha centrado en tres subtareas: caracterización de locutor, agrupamiento y adaptación de modelos. La primera subtarea busca el modelado de un fragmento de audio para obtener representaciones precisas de los locutores involucrados, poniendo de manifiesto sus propiedades discriminativas. En este área se ha llevado a cabo un estudio acerca de las actuales estrategias de modelado, especialmente atendiendo a las limitaciones de las representaciones extraídas y poniendo de manifiesto el tipo de errores que pueden generar. Además, se han propuesto alternativas basadas en redes neuronales haciendo uso del conocimiento adquirido. La segunda tarea es el agrupamiento, encargado de desarrollar estrategias que busquen el etiquetado óptimo de los locutores. La investigación desarrollada durante esta tesis ha propuesto nuevas estrategias para estimar el mejor reparto de locutores basadas en técnicas de subespacios, especialmente PLDA. Finalmente, la tarea de adaptación de modelos busca transferir el conocimiento obtenido de un conjunto de entrenamiento a dominios alternativos donde no hay datos para extraerlo. Para este propósito los esfuerzos se han centrado en la extracción no supervisada de información de locutor del propio audio a diarizar, sinedo posteriormente usada en la adaptación de los modelos involucrados.<br /

    Анализ идентификационных признаков в речевых данных с помощью GMM-UBM системы верификации диктора

    Get PDF
    This paper is devoted to feature selection and evaluation in an automatic text-independent speaker verification task. In order to solve this problem a speaker verification system based on the Gaussian mixture model and the universal background model (GMM-UBM system) was used. The application sphere and challenges of modern systems of automatic speaker identification were considered. Overview of the modern speaker recognition methods and main speech features used in speaker identification is provided. Features extraction process used in this article was examined. Reviewed speech features were used for speaker verification including mel-cepstral coefficients (MFCC), line spectral pairs (LSP), perceptual linear prediction cepstral coefficients (PLP), short-term energy, formant frequencies, fundamental frequency, voicing probability, zero crossing rate (ZCR), jitter and shimmer. The experimental evaluation of the GMM-UBM system using different speech features was conducted on a 50 speaker set and a result is presented. Feature selection was done using the genetic algorithm and the greedy adding and deleting algorithm. Equal error rate (EER) equals 0,579 % when using 256 component Gaussian mixture model and the obtained feature vector. Comparing to standard 14 MFCC vector, 42,1 % of EER improvement was acquired.Данная статья посвящена отбору и оценке речевых признаков, используемых в задаче автоматической текстонезависимой верификации диктора. Для решения поставленной задачи была использована система верификации диктора, основанная на модели Гауссовых смесей и универсальной фоновой модели (GMM-UBM система). Рассмотрены область применения и проблемы современных систем автоматической идентификации диктора. Произведен обзор современных методов идентификации диктора, основных речевых признаков, используемых при решении задачи идентификации диктора, а также рассмотрен процесс извлечения признаков, использованных далее. К рассмотренным признакам относятся мел-кепстральные коэффициенты (MFCC), пары линейного спектра (LSP), кепстральные коэффициенты перцептивного линейного предсказания (PLP), кратковременная энергия, формантные частоты, частота основного тона, вероятность вокализации (voicing probability), частота пересечения нуля (ZCR), джиттер и шиммер. Произведена экспериментальная оценка GMM-UBM системы с применением различных наборов речевых признаков на речевом корпусе, включающем в себя записи 50 дикторов. Признаки отобраны с помощью генетического алгоритма и алгоритма жадного добавления-удаления. Используя 256-компонентные Гауссовы смеси и полученный вектор из 28 признаков, была получена равная ошибка 1-го и 2-го рода (EER), составляющая 0,579 %. По сравнению со стандартным вектором, состоящим из 14 мел-кепстральных коэффициентов, ошибка EER была уменьшена на 42,1 %

    Automatic text-independent speaker verification using convolutional deep belief network

    Get PDF
    Данная статья посвящена применению свёрточных глубоких сетей доверия в качестве средства извлечения речевых признаков из аудиозаписей для решения задачи автоматической, текстонезависимой верификации диктора. В работе описаны область применения и проблемы систем автоматической верификации диктора. Рассмотрены типы современных систем верификации диктора, основные типы речевых признаков, используемых в системах верификации диктора. Описана структура свёрточных глубоких сетей доверия, алгоритм обучения данной сети. Предложено применение речевых признаков, извлекаемых из трёх слоёв обученной свёрточной глубокой сети доверия. Данный подход основан на применении методов анализа изображений как к уже выделенным признакам речевого сигнала, так и для их выделения из слоёв нейронной сети. Произведены экспериментальные исследования предложенных признаков на двух речевых корпусах: собственном речевом корпусе, включающем аудиозаписи 50 дикторов, и речевом корпусе TIMIT, включающем аудиозаписи 630 дикторов. Была произведена оценка точности предложенных признаков с применением классификаторов различного типа. Непосредственное применение данных признаков не дало увеличения точности по сравнению с использованием традиционных речевых признаков, таких как мел-кепстральные коэффициенты. Однако применение данных признаков в составе ансамбля классификаторов позволило достичь уменьшения равной ошибки 1-го и 2-го рода до 0,21% на собственном речевом корпусе и до 0,23% на речевом корпусе TIMIT. This paper is devoted to the use of the convolutional deep belief network as a speech feature extractor for automatic text-independent speaker verification. The paper describes the scope and problems of automatic speaker verification systems. Types of modern speaker verification systems and types of speech features used in speaker verification systems are considered. The structure and learning algorithm of convolutional deep belief networks is described. The use of speech features extracted from three layers of a trained convolution deep belief network is proposed. Experimental studies of the proposed features were performed on two speech corpora: own speech corpus including audio recordings of 50 speakers and TIMIT speech corpus including audio recordings of 630 speakers. The accuracy of the proposed features was assessed using different types of classifiers. Direct use of these features did not increase the accuracy compared to the use of traditional spectral speech features, such as mel-frequency cepstral coefficients. However, the use of these features in the classifiers ensemble made it possible to achieve a reduction of the equal error rate to 0.21% on 50-speaker speech corpus and to 0.23% on the TIMIT speech corpus.Результаты были получены в рамках выполнения базовой части государственного задания Минобрнауки России, проект 8.9628.2017/8.9

    Subspace Gaussian Mixture Models for Language Identification and Dysarthric Speech Intelligibility Assessment

    Get PDF
    En esta Tesis se ha investigado la aplicación de técnicas de modelado de subespacios de mezclas de Gaussianas en dos problemas relacionados con las tecnologías del habla, como son la identificación automática de idioma (LID, por sus siglas en inglés) y la evaluación automática de inteligibilidad en el habla de personas con disartria. Una de las técnicas más importantes estudiadas es el análisis factorial conjunto (JFA, por sus siglas en inglés). JFA es, en esencia, un modelo de mezclas de Gaussianas en el que la media de cada componente se expresa como una suma de factores de dimensión reducida, y donde cada factor representa una contribución diferente a la señal de audio. Esta factorización nos permite compensar nuestros modelos frente a contribuciones indeseadas presentes en la señal, como la información de canal. JFA se ha investigado como clasficador y como extractor de parámetros. En esta última aproximación se modela un solo factor que representa todas las contribuciones presentes en la señal. Los puntos en este subespacio se denominan i-Vectors. Así, un i-Vector es un vector de baja dimensión que representa una grabación de audio. Los i-Vectors han resultado ser muy útiles como vector de características para representar señales en diferentes problemas relacionados con el aprendizaje de máquinas. En relación al problema de LID, se han investigado dos sistemas diferentes de acuerdo al tipo de información extraída de la señal. En el primero, la señal se parametriza en vectores acústicos con información espectral a corto plazo. En este caso, observamos mejoras de hasta un 50% con el sistema basado en i-Vectors respecto al sistema que utilizaba JFA como clasificador. Se comprobó que el subespacio de canal del modelo JFA también contenía información del idioma, mientras que con los i-Vectors no se descarta ningún tipo de información, y además, son útiles para mitigar diferencias entre los datos de entrenamiento y de evaluación. En la fase de clasificación, los i-Vectors de cada idioma se modelaron con una distribución Gaussiana en la que la matriz de covarianza era común para todos. Este método es simple y rápido, y no requiere de ningún post-procesado de los i-Vectors. En el segundo sistema, se introdujo el uso de información prosódica y formántica en un sistema de LID basado en i-Vectors. La precisión de éste estaba por debajo de la del sistema acústico. Sin embargo, los dos sistemas son complementarios, y se obtuvo hasta un 20% de mejora con la fusión de los dos respecto al sistema acústico solo. Tras los buenos resultados obtenidos para LID, y dado que, teóricamente, los i-Vectors capturan toda la información presente en la señal, decidimos usarlos para la evaluar de manera automática la inteligibilidad en el habla de personas con disartria. Los logopedas están muy interesados en esta tecnología porque permitiría evaluar a sus pacientes de una manera objetiva y consistente. En este caso, los i-Vectors se obtuvieron a partir de información espectral a corto plazo de la señal, y la inteligibilidad se calculó a partir de los i-Vectors obtenidos para un conjunto de palabras dichas por el locutor evaluado. Comprobamos que los resultados eran mucho mejores si en el entrenamiento del sistema se incorporaban datos de la persona que iba a ser evaluada. No obstante, esta limitación podría aliviarse utilizando una mayor cantidad de datos para entrenar el sistema.In this Thesis, we investigated how to effciently apply subspace Gaussian mixture modeling techniques onto two speech technology problems, namely automatic spoken language identification (LID) and automatic intelligibility assessment of dysarthric speech. One of the most important of such techniques in this Thesis was joint factor analysis (JFA). JFA is essentially a Gaussian mixture model where the mean of the components is expressed as a sum of low-dimension factors that represent different contributions to the speech signal. This factorization makes it possible to compensate for undesired sources of variability, like the channel. JFA was investigated as final classiffer and as feature extractor. In the latter approach, a single subspace including all sources of variability is trained, and points in this subspace are known as i-Vectors. Thus, one i-Vector is defined as a low-dimension representation of a single utterance, and they are a very powerful feature for different machine learning problems. We have investigated two different LID systems according to the type of features extracted from speech. First, we extracted acoustic features representing short-time spectral information. In this case, we observed relative improvements with i-Vectors with respect to JFA of up to 50%. We realized that the channel subspace in a JFA model also contains language information whereas i-Vectors do not discard any language information, and moreover, they help to reduce mismatches between training and testing data. For classification, we modeled the i-Vectors of each language with a Gaussian distribution with covariance matrix shared among languages. This method is simple and fast, and it worked well without any post-processing. Second, we introduced the use of prosodic and formant information with the i-Vectors system. The performance was below the acoustic system but both were found to be complementary and we obtained up to a 20% relative improvement with the fusion with respect to the acoustic system alone. Given the success in LID and the fact that i-Vectors capture all the information that is present in the data, we decided to use i-Vectors for other tasks, specifically, the assessment of speech intelligibility in speakers with different types of dysarthria. Speech therapists are very interested in this technology because it would allow them to objectively and consistently rate the intelligibility of their patients. In this case, the input features were extracted from short-term spectral information, and the intelligibility was assessed from the i-Vectors calculated from a set of words uttered by the tested speaker. We found that the performance was clearly much better if we had available data for training of the person that would use the application. We think that this limitation could be relaxed if we had larger databases for training. However, the recording process is not easy for people with disabilities, and it is difficult to obtain large datasets of dysarthric speakers open to the research community. Finally, the same system architecture for intelligibility assessment based on i-Vectors was used for predicting the accuracy that an automatic speech recognizer (ASR) system would obtain with dysarthric speakers. The only difference between both was the ground truth label set used for training. Predicting the performance response of an ASR system would increase the confidence of speech therapists in these systems and would diminish health related costs. The results were not as satisfactory as in the previous case, probably because an ASR is a complex system whose accuracy can be very difficult to be predicted only with acoustic information. Nonetheless, we think that we opened a door to an interesting research direction for the two problems

    A study into automatic speaker verification with aspects of deep learning

    Get PDF
    Advancements in automatic speaker verification (ASV) can be considered to be primarily limited to improvements in modelling and classification techniques, capable of capturing ever larger amounts of speech data. This thesis begins by presenting a fairly extensive review of developments in ASV, up to the current state-of-the-art with i-vectors and PLDA. A series of practical tuning experiments then follows. It is found somewhat surprisingly, that even the training of the total variability matrix required for i-vector extraction, is potentially susceptible to unwanted variabilities. The thesis then explores the use of deep learning in ASV. A literature review is first made, with two training methodologies appearing evident: indirectly using a deep neural network trained for automatic speech recognition, and directly with speaker related output classes. The review finds that interest in direct training appears to be increasing, underpinned with the intent to discover new robust 'speaker embedding' representations. Last a preliminary experiment is presented, investigating the use of a deep convolutional network for speaker identification. The small set of results show that the network successfully identifies two test speakers, out of 84 possible speakers enrolled. It is hoped that subsequent research might lead to new robust speaker representations or features
    corecore